1
|
Jiang J, Shen H, Zhang Y, Li Y, Jing Y, Chen X, Wu H, Xie Y, Liu H. Acupuncture treatment of diabetic peripheral neuropathy: an overview of systematic reviews based on evidence mapping. Front Neurol 2024; 15:1420510. [PMID: 39421572 PMCID: PMC11483369 DOI: 10.3389/fneur.2024.1420510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Objective The study attempted to evaluate the meta-analyses (MAs) of the acupuncture treatment of diabetic peripheral neuropathy (DPN) to provide a basis for clinical decision-making. Methods Eight databases, such as PubMed, Cochrane Library, Embase, Web of Science, CNKI, Wanfang Data, CQVIP, and CBM, were searched from database creation to December 22, 2023. The MAs of DPN treatment using acupuncture or acupuncture combined with conventional Western medicine were included. AMSTAR-2 and PRISMA 2020 helped evaluate the methodological and reporting quality of the included studies. The GRADE methodology helped assess the evidence quality of outcome indicators. Evidence mapping was performed to display evaluation results. Results A total of 18 MAs involving 23,240 DPN patients were included. Based on the methodological quality evaluation, four MAs were of "moderate" quality, seven had a quality grade of "low," and another seven were of "critically low" quality. The evidence quality evaluation showed that among studies of acupuncture vs. conventional Western medicine, four had an evidence quality of "moderate," 18 had an evidence quality of "low," and 17 had an evidence quality of "critically low" and that among studies of acupuncture + conventional Western medicine vs. conventional Western medicine, 12 had an evidence quality of "moderate," 29 had an evidence quality of "low," and 33 had an evidence quality of "critically low." Compared with conventional Western medicine, simple acupuncture and acupuncture + conventional Western medicine significantly improved total effective rate (TER) and nerve conduction velocity (NCV). Conclusion Acupuncture treatment of DPN significantly improves TER and NCV with proven safety. However, the MAs of the acupuncture treatment of DPN must strictly refer to relevant standards and specifications regarding methodological and reporting quality, along with the design, execution, and reporting of primary randomized controlled trials (RCTs).
Collapse
Affiliation(s)
- Junjie Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Shen
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Jing
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Chen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongli Wu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanming Xie
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Kiani FA, Li H, Nan S, Li Q, Lei Q, Yin R, Cao S, Ding M, Ding Y. Electroacupuncture Relieves Neuropathic Pain via Adenosine 3 Receptor Activation in the Spinal Cord Dorsal Horn of Mice. Int J Mol Sci 2024; 25:10242. [PMID: 39408573 PMCID: PMC11475944 DOI: 10.3390/ijms251910242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 10/20/2024] Open
Abstract
Neuropathic pain (NPP) is a devastating and unbearable painful condition. As prevailing treatment strategies have failed to mitigate its complications, there remains a demand for effective therapies. Electroacupuncture (EA) has proved a potent remedial strategy in NPP management in humans and mammals. However, past studies have investigated the underlying mechanism of the analgesic effects of EA on NPP, focusing primarily on adenosine receptors in peripheral tissues. Herein, we elucidate the role of the adenosine (Adora-3) signaling pathway in mediating pain relief through EA in the central nervous system, which is obscure in the literature and needs exploration. Specific pathogen-free (SPF) male adult mice (C57BL/6 J) were utilized to investigate the effect of EA on adenosine metabolism (CD73, ADA) and its receptor activation (Adora-3), as potential mechanisms to mitigate NPP in the central nervous system. NPP was induced via spared nerve injury (SNI). EA treatment was administered seven times post-SNI surgery, and lumber (L4-L6) spinal cord was collected to determine the molecular expression of mRNA and protein levels. In the spinal cord of mice, following EA application, the expression results revealed that EA upregulated (p < 0.05) Adora-3 and CD73 by inhibiting ADA expression. In addition, EA triggered the release of adenosine (ADO), which modulated the nociceptive responses and enhanced neuronal activation. Meanwhile, the interplay between ADO levels and EA-induced antinociception, using an Adora-3 agonist and antagonist, showed that the Adora-3 agonist IB-MECA significantly increased (p < 0.05) nociceptive thresholds and expression levels. In contrast, the antagonist MRS1523 exacerbated neuropathic pain. Furthermore, an upregulated effect of EA on Adora-3 expression was inferred when the Adora-3 antagonist was administered, and the EA treatment increased the fluorescent intensity of Adora-3 in the spinal cord. Taken together, EA effectively modulates NPP by regulating the Adora-3 signaling pathway under induced pain conditions. These findings enhance our understanding of NPP management and offer potential avenues for innovative therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.A.K.); (H.L.)
| |
Collapse
|
3
|
Liang JH, Yu H, Xia CP, Zheng YH, Zhang Z, Chen Y, Raza MA, Wu L, Yan H. Ginkgolide B effectively mitigates neuropathic pain by suppressing the activation of the NLRP3 inflammasome through the induction of mitophagy in rats. Biomed Pharmacother 2024; 177:117006. [PMID: 38908197 DOI: 10.1016/j.biopha.2024.117006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Neuropathic pain is a pathological state induced by the aberrant generation of pain signals within the nervous system. Ginkgolide B(GB), an active component found of Ginkgo. biloba leaves, has neuroprotective properties. This study aimed to explore the effects of GB on neuropathic pain and its underlying mechanisms. In the in vivo study, we adopted the rat chronic constriction injury model, and the results showed that GB(4 mg/kg) treatment effectively reduced pain sensation in rats and decreased the expressions of Iba-1 (a microglia marker), NLRP3 inflammasome, and inflammatory factors, such as interleukin (IL)-1β, in the spinal cord 7 days post-surgery. In the in vitro study, we induced microglial inflammation using lipopolysaccharide (500 ng/mL) / adenosine triphosphate (5 mM) and treated it with GB (10, 20, and 40 μM). GB upregulated the expression of mitophagy proteins, such as PINK1, Parkin, LC3 II/I, Tom20, and Beclin1, and decreased the cellular production of reactive oxygen species. Moreover, it lowered the expression of inflammation-related proteins, such as Caspase-1, IL-1β, and NLRP3 in microglia. However, this effect was reversed by Parkin shRNA/siRNA or the autophagy inhibitor 3-methyladenine (5 mM). These findings reveal that GB alleviates neuropathic pain by mitigating neuroinflammation through the activation of PINK1-Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Jing-Hao Liang
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Heng Yu
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chuan-Peng Xia
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yue-Hui Zheng
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Department of Geriatry, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhe Zhang
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yu Chen
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mazhar Ali Raza
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Long Wu
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Hede Yan
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
4
|
Lin B, Wang M, Chen X, Chai L, Ni J, Huang J. Involvement of P2X7R-mediated microglia polarization and neuroinflammation in the response to electroacupuncture on post-stroke memory impairment. Brain Res Bull 2024; 212:110967. [PMID: 38670470 DOI: 10.1016/j.brainresbull.2024.110967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
PURPOSE Post-stroke cognitive impairment (PSCI) is a common complication of ischemic stroke episodes. Memory impairment is an important component of the poststroke cognitive syndrome. Microglial activation plays a critical role in stroke-induced neuroinflammation. Previous studies have reported that electroacupuncture (EA) provides neuroprotective effects by reducing the expression levels of the Purinergic receptor P2X ligand-gated ion channel 7 (P2X7) and inhibiting neuroinflammation in rat model of ischemic stroke. Further understanding of the role and connections between P2X7R and microglial activation in EA-induced anti-inflammatory can reveal novel targets for post-stroke memory impairment treatment. METHODS A Middle cerebral artery occlusion and reperfusion (MCAO/R) model was established. We used 2'(3')-O-(4-benzoyl) benzoyl ATP (BzATP) as a P2X7R agonist. Following MCAO/R injury, the rats underwent EA therapy at the Baihui (DU20) and Shenting (DU24) acupoints for seven consecutive days. The Barnes maze test was used to evaluate memory function. Following intervention, a T2 weighted images (T2WI) scan was performed to identify changes in cerebral infarction volume in MCAO/R rats. The levels of Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and Interleukin-4 (IL-4), Interleukin-10 (IL-10) in the peri-infarct hippocampal were examined by ELISA. Immunofluorescence was employed to evaluate Iba-1+ / P2X7R+, Iba-1+/ iNOS+ and Iba-1+/ Arg-1+ cell populations in the peri-infarct hippocampal DG area. The protein expression of P2X7R, Nuclear factor E2-related factor 2 (Nrf2), Recombinant nlr family, pyrin domain containing protein 3 (NLRP3), Inducible nitric oxide synthase (iNOS) and Arginase-1 (Arg-1) in the peri-infarct hippocampal were investigated using western blot assays. Besides, we also measured the levels of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA). RESULTS We found EA treatment reduced inflammation and oxidative stress, which is consistent with a decrease in P2X7R expression and improved learning and memory functions. In contrast, we found BzATP enhanced inflammation and oxidative stress. Moreover, our results showed EA treatment up-regulated Nrf2, down-regulated NLRP3, and promoted microglia M2 polarization. Finally, EA-mediated positive effects were reversed by intracerebroventricular injection of BzATP, which is consistent with an increase in P2X7R expression. CONCLUSION EA ameliorates memory impairment in a rat model of ischemic stroke by reducing inflammation and ROS through the inhibition of P2X7R expression. In turn, this mechanism regulates Nrf2 and NLRP3 expression, suggesting EA is beneficial for ischemic stroke treatment using P2X7R as target.
Collapse
Affiliation(s)
- Bingbing Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mengxue Wang
- TCM Rehabilitation Research Center of SATCM, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaocheng Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Linsong Chai
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jinglei Ni
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation, Ministry of Education, China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| |
Collapse
|
5
|
Wang J, Song W, Zhang Y, Wang J, Wang Y, Song J, Zhou Y. Electroacupuncture Alleviates Pain by Suppressing P2Y12R-Dependent Microglial Activation in Monoarthritic Rats. Neurochem Res 2024; 49:1268-1277. [PMID: 38337134 DOI: 10.1007/s11064-024-04114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/13/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Electroacupuncture (EA) effectively improves arthritis-induced hyperalgesia and allodynia by repressing spinal microglial activation, which plays a crucial role in pain hypersensitivity following tissue inflammation. However, the mechanism by which EA suppresses spinal microglial activation in monoarthritis (MA) remains unclear. In the present study, a rat model of MA was established through unilateral ankle intra-articular injection of complete Freund's adjuvant (CFA). The relationship among P2Y12 receptor (P2Y12R) expression, spinal microglial activation, and EA analgesia was investigated using quantitative real-time PCR (qRT‒PCR), western blotting, immunofluorescence (IF), and behavioral testing. The results found that EA treatment at the ipsilateral "Huantiao" (GB30) and "Yanglingquan" (GB34) acupoints markedly attenuated pain and spinal microglia M1 polarization in MA rats. In particular, P2Y12R expression was significantly increased at the mRNA and protein levels in the spinal dorsal horn in MA rats, whereas EA treatment effectively repressed the MA-induced upregulation of P2Y12R. IF analysis further revealed that most P2Y12R was expressed in microglia in the spinal dorsal horn. Pharmacological inhibition of P2Y12R by its antagonist (AR-C69931MX) decreased MA-induced spinal microglial activation and subsequent proinflammatory cytokine production. Consequently, AR-C69931MX significantly intensified the anti-pain hypersensitive function of EA in MA rats. Taken together, these results demonstrate that EA alleviates MA-induced pain by suppressing P2Y12R-dependent microglial activation.
Collapse
Affiliation(s)
- Jing Wang
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China
| | - Wei Song
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China
| | - Yujiao Zhang
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China
| | - Jian Wang
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China
| | - Yongqiang Wang
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China
| | - Jiangang Song
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China.
| | - Yalan Zhou
- Department of Anesthesiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, No. 185, Pu An Road, Shanghai, 201203, China.
| |
Collapse
|
6
|
Zhuang R, Xiong Z, Yan S, Zhang H, Dong Q, Liu W, Miao J, Zhuo Y, Fan X, Zhang W, Wang X, Liu L, Cao J, Zhang T, Hao C, Huang X, Jiang L. Efficacy of electro-acupuncture versus sham acupuncture for diabetic peripheral neuropathy: study protocol for a three-armed randomised controlled trial. BMJ Open 2024; 14:e079354. [PMID: 38569706 PMCID: PMC10989182 DOI: 10.1136/bmjopen-2023-079354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
INTRODUCTION Specific treatment for diabetic peripheral neuropathy (DPN) is still lacking, and acupuncture may relieve the symptoms. We intend to investigate the efficacy and safety of electro-acupuncture (EA) in alleviating symptoms associated with DPN in diabetes. METHODS AND ANALYSIS This multicentre, three-armed, participant- and assessor-blind, randomised, sham-controlled trial will recruit 240 eligible participants from four hospitals in China and will randomly assign (1:1:1) them to EA, sham acupuncture (SA) or usual care (UC) group. Participants in the EA and SA groups willl receive either 24-session EA or SA treatment over 8 weeks, followed by an 8-week follow-up period, while participants in the UC group will be followed up for 16 weeks. The primary outcome of this trial is the change in DPN symptoms from baseline to week 8, as rated by using the Total Symptom Score. The scale assesses four symptoms: pain, burning, paraesthesia and numbness, by evaluating the frequency and severity of each. All results will be analysed with the intention-to-treat population. ETHICS AND DISSEMINATION The protocol has been approved by the Ethics Committee of the Beijing University of Chinese Medicine (Identifier: 2022BZYLL0509). Every participant will be informed of detailed information about the study before signing informed consent. The results of this trial will be published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER ChiCTR2200061408.
Collapse
Affiliation(s)
- Rong Zhuang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiyi Xiong
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Shiyan Yan
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Zhang
- College of Preschool Education, Beijing Youth Politics College, Beijing, China
| | - Qi Dong
- Department of Metabolic Diseases, Shanxi Provincial Hospital of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Weiai Liu
- Department of Acupuncture and Massage Rehabilitation, The Second Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Jinling Miao
- Acupuncture and Moxibustion Department, Shanxi Provincial Acupuncture and Moxibustion Hospital, Taiyuan, Shanxi, China
| | - Yuanyuan Zhuo
- Department of Acupuncture and Moxibustion, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Xiaohong Fan
- Department of Metabolic Diseases, Shanxi Provincial Hospital of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Weiliang Zhang
- Department of Metabolic Diseases, Shanxi Provincial Hospital of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Xiaomei Wang
- Department of Metabolic Diseases, Shanxi Provincial Hospital of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Lian Liu
- Department of Acupuncture and Massage Rehabilitation, The Second Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Jianan Cao
- Department of Acupuncture and Massage Rehabilitation, The Second Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Tiansheng Zhang
- Acupuncture and Moxibustion Department, Shanxi Provincial Acupuncture and Moxibustion Hospital, Taiyuan, Shanxi, China
| | - Chongyao Hao
- Acupuncture and Moxibustion Department, Shanxi Provincial Acupuncture and Moxibustion Hospital, Taiyuan, Shanxi, China
| | - Xingxian Huang
- Department of Acupuncture and Moxibustion, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Lijiao Jiang
- The fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Huo M, Zhang Q, Si Y, Zhang Y, Chang H, Zhou M, Zhang D, Fang Y. The role of purinergic signaling in acupuncture-mediated relief of neuropathic and inflammatory pain. Purinergic Signal 2024:10.1007/s11302-024-09985-y. [PMID: 38305986 DOI: 10.1007/s11302-024-09985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Acupuncture is a traditional medicinal practice in China that has been increasingly recognized in other countries in recent decades. Notably, several reports have demonstrated that acupuncture can effectively aid in pain management. However, the analgesic mechanisms through which acupuncture provides such benefits remain poorly understood. Purinergic signaling, which is mediated by purine nucleotides and purinergic receptors, has been proposed to play a central role in acupuncture analgesia. On the one hand, acupuncture affects the transmission of nociception by increasing adenosine triphosphate dephosphorylation and thereby decreasing downstream P2X3, P2X4, and P2X7 receptors signaling activity, regulating the levels of inflammatory factors, neurotrophic factors, and synapsin I. On the other hand, acupuncture exerts analgesic effects by promoting the production of adenosine, enhancing the expression of downstream adenosine A1 and A2A receptors, and regulating downstream inflammatory factors or synaptic plasticity. Together, this systematic overview of the field provides a sound, evidence-based foundation for future research focused on the application of acupuncture as a means of relieving pain.
Collapse
Affiliation(s)
- Mingzhu Huo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuxin Si
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Youlin Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Mengmeng Zhou
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Haihe Laboratory of Modern Chinese, Tianjin, 301617, People's Republic of China.
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
8
|
Zhang J, Gao L, Zhang Y, Wang H, Sun S, Wu L. Involvement of microglial P2X7 receptor in pain modulation. CNS Neurosci Ther 2024; 30:e14496. [PMID: 37950524 PMCID: PMC10805404 DOI: 10.1111/cns.14496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Pain is a rapid response mechanism that compels organisms to retreat from the harmful stimuli and triggers a repair response. Nonetheless, when pain persists for extended periods, it can lead to adverse changes into in the individual's brain, negatively impacting their emotional state and overall quality of life. Microglia, the resident immune cells in the central nervous system (CNS), play a pivotal role in regulating a variety of pain-related disorders. Specifically, recent studies have shed light on the central role that microglial purinergic ligand-gated ion channel 7 receptor (P2X7R) plays in regulating pain. In this respect, the P2X7R on microglial membranes represents a potential therapeutic target. AIMS To expound on the intricate link between microglial P2X7R and pain, offering insights into potential avenues for future research. METHODS We reviewed 140 literature and summarized the important role of microglial P2X7R in regulating pain, including the structure and function of P2X7R, the relationship between P2X7R and microglial polarization, P2X7R-related signaling pathways, and the effects of P2X7R antagonists on pain regulation. RESULTS P2X7R activation is related to M1 polarization of microglia, while suppressing P2X7R can transfer microglia from M1 into M2 phenotype. And targeting the P2X7R-mediated signaling pathways helps to explore new therapy for pain alleviation. P2X7R antagonists also hold potential for translational and clinical applications in pain management. CONCLUSIONS Microglial P2X7R holds promise as a potential novel pharmacological target for clinical treatments due to its distinctive structure, function, and the development of antagonists.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Lei Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Yaoyuan Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Haozhen Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Shukai Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Li‐an Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
9
|
Liu N, Zhang GX, Zhu CH, Lan XB, Tian MM, Zheng P, Peng XD, Li YX, Yu JQ. Antinociceptive and neuroprotective effect of echinacoside on peripheral neuropathic pain in mice through inhibiting P2X7R/FKN/CX3CR1 pathway. Biomed Pharmacother 2023; 168:115675. [PMID: 37812887 DOI: 10.1016/j.biopha.2023.115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
Clinically, neuropathic pain treatment remains a challenging issue because the major therapy, centred around pharmacological intervention, is not satisfactory enough to patient by reason of low effectiveness and more adverse reaction. Therefore, it is still necessary to find more effective and safe therapy to ameliorate neuropathic pain. The purpose of this study was to explore the antinociceptive effect of Echinacoside (ECH), an active compound of Cistanche deserticola Ma, on peripheral neuropathic pain induced by chronic constriction injury (CCI) in mice, and to demonstrate its potential mechanism in vivo and vitro. In the present study, results showed that intraperitoneal administration of ECH (50, 100, and 200 mg/kg) could alleviate mechanical allodynia, cold allodynia and thermal hyperalgesia via behavioural test. Moreover, the structure and function of injured sciatic nerve by CCI were taken a turn for the better to a certain extent after ECH treatment using histopathological and electrophysiological test. Furthermore, ECH repressed the expression of the P2X7R and FKN and reduced the expression and release of the IL-1β, IL-6 and TNF-α. Besides, ECH could decrease Ca2+ influx and Cats efflux and inhibit phosphorylation of p38MAPK. To sum up, the present study illustrated that ECH could alleviate peripheral neuropathic pain by inhibiting microglia overactivation and inflammation through P2X7R/FKN/CX3CR1 signalling pathway in spinal cord. This study would provide a new perspective and strategy for the pharmacological treatment on neuropathic pain.
Collapse
Affiliation(s)
- Ning Liu
- Ningxia Key Laboratory of Drug Development and Generic Drug Research, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guo-Xin Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun-Hao Zhu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiao-Bing Lan
- Ningxia Key Laboratory of Drug Development and Generic Drug Research, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Miao-Miao Tian
- Ningxia Key Laboratory of Drug Development and Generic Drug Research, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Ping Zheng
- Ningxia Key Laboratory of Drug Development and Generic Drug Research, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiao-Dong Peng
- Ningxia Key Laboratory of Drug Development and Generic Drug Research, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yu-Xiang Li
- School of Nursing, Ningxia Medical University, Yinchuan, China.
| | - Jian-Qiang Yu
- Ningxia Key Laboratory of Drug Development and Generic Drug Research, School of Pharmacy, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
10
|
Liang Y, Zhong S, Wang H, Wu D, Gong Q. Comparisons of the analgesic effect of different pulsed radiofrequency targets in SNI-induced neuropathic pain. Neuroreport 2023; 34:720-727. [PMID: 37577901 DOI: 10.1097/wnr.0000000000001946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
An injury of the peripheral nerve may lead to neuropathic pain, which could be treated with pulsed radiofrequency to the dorsal root ganglion (DRG) or peripheral nerve [the nerve trunk (NT) or proximal to the injury site (NI)]. However, it is not clear whether there is any difference in analgesic effect or maintenance among the three targets. PRF was applied to the ipsilateral L5 DRG, peripheral nerve (NT or NI) 5 days after spared nerve injury (SNI). Triptolide (10 µg/kg) or vehicle was intrathecally administered 5 days after SNI for 3 days. Mechanical withdrawal thresholds were tested after treatment at different time points. Furthermore, microglia and the P2X7 receptor (P2X7R) in the ipsilateral spinal cord were measured with immunofluorescence and western blotting, respectively. PRF + NI exerted a more remarkable analgesic effect than PRF + DRG and PRF + NT at the early stage, but PRF + DRG had a stronger analgesic effect than PRF + NI and PRF + NT at the end of our study. In addition, PRF + DRG showed no significant difference from intrathecal administration of triptolide. Moreover, SNI-induced microglia activation and upregulation of P2X7R in spinal dorsal horn could be markedly inhibited by PRF + DRG. The results suggest that the analgesic effect of PRF + DRG increased with time whereas the other two not and microglia and P2X7R in the ipsilateral spinal dorsal horn may be involved in the process.
Collapse
Affiliation(s)
- Ying Liang
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University
- Department of Anesthesiology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province
| | - Shuotao Zhong
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University
| | - Honghua Wang
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Danlei Wu
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University
| | - Qingjuan Gong
- Department of Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University
| |
Collapse
|
11
|
Ding YY, Xu F, Wang YF, Han LL, Huang SQ, Zhao S, Ma LL, Zhang TH, Zhao WJ, Chen XD. Electroacupuncture alleviates postoperative pain through inhibiting neuroinflammation via stimulator of interferon genes/type-1 interferon pathway. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:496-508. [PMID: 37517892 DOI: 10.1016/j.joim.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE This work explores the impact of electroacupuncture (EA) on acute postoperative pain (APP) and the role of stimulator of interferon genes/type-1 interferon (STING/IFN-1) signaling pathway modulation in the analgesic effect of EA in APP rats. METHODS The APP rat model was initiated through abdominal surgery and the animals received two 30 min sessions of EA at bilateral ST36 (Zusanli) and SP6 (Sanyinjiao) acupoints. Mechanical, thermal and cold sensitivity tests were performed to measure the pain threshold, and electroencephalograms were recorded in the primary somatosensory cortex to identify the effects of EA treatment on APP. Western blotting and immunofluorescence were used to examine the expression and distribution of proteins in the STING/IFN-1 pathway as well as neuroinflammation. A STING inhibitor (C-176) was administered intrathecally to verify its role in EA. RESULTS APP rats displayed mechanical and thermal hypersensitivities compared to the control group (P < 0.05). APP significantly reduced the amplitude of θ, α and γ oscillations compared to their baseline values (P < 0.05). Interestingly, expression levels of proteins in the STING/IFN-1 pathway were downregulated after inducing APP (P < 0.05). Further, APP increased pro-inflammatory factors, including interleukin-6, tumor necrosis factor-α and inducible nitric oxide synthase, and downregulated anti-inflammatory factors, including interleukin-10 and arginase-1 (P < 0.05). EA effectively attenuated APP-induced painful hypersensitivities (P < 0.05) and restored the θ, α and γ power in APP rats (P < 0.05). Meanwhile, EA distinctly activated the STING/IFN-1 pathway and mitigated the neuroinflammatory response (P < 0.05). Furthermore, STING/IFN-1 was predominantly expressed in isolectin-B4- or calcitonin-gene-related-peptide-labeled dorsal root ganglion neurons and superficial laminae of the spinal dorsal horn. Inhibition of the STING/IFN-1 pathway by intrathecal injection of C-176 weakened the analgesic and anti-inflammatory effects of EA on APP (P < 0.05). CONCLUSION EA can generate robust analgesic and anti-inflammatory effects on APP, and these effects may be linked to activating the STING/IFN-1 pathway, suggesting that STING/IFN-1 may be a target for relieving APP. Please cite this article as: Ding YY, Xu F, Wang YF, Han LL, Huang SQ, Zhao S, Ma LL, Zhang TH, Zhao WJ, Chen XD. Electroacupuncture alleviates postoperative pain through inhibiting neuroinflammation via stimulator of interferon genes/type-1 interferon pathway. J Integr Med. 2023; 21(5): 496-508.
Collapse
Affiliation(s)
- Yuan-Yuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Ya-Feng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Lin-Lin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Shi-Qian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Shuai Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Lu-Lin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Tian-Hao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Wen-Jing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xiang-Dong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
12
|
Wu F, Wei H, Hu Y, Gao J, Xu S. Upregulation of P2X7 Exacerbates Myocardial Ischemia-Reperfusion Injury through Enhancing Inflammation and Apoptosis in Diabetic Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1962-1973. [PMID: 37144844 PMCID: PMC10235857 DOI: 10.4049/jimmunol.2200838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/20/2023] [Indexed: 05/06/2023]
Abstract
Diabetes-aggravated myocardial ischemia-reperfusion (MI/R) injury remains an urgent medical issue, and the molecular mechanisms involved with diabetes and MI/R injury remain largely unknown. Previous studies have shown that inflammation and P2X7 signaling participate in the pathogenesis of the heart under individual conditions. It remains to be explored if P2X7 signaling is exacerbated or alleviated under double insults. We established a high-fat diet and streptozotocin-induced diabetic mouse model, and we compared the differences in immune cell infiltration and P2X7 expression between diabetic and nondiabetic mice after 24 h of reperfusion. The antagonist and agonist of P2X7 were administered before and after MI/R. Our study showed that the MI/R injury of diabetic mice was characterized by increased infarct area, impaired ventricular contractility, more apoptosis, aggravated immune cell infiltration, and overactive P2X7 signaling compared with nondiabetic mice. The major trigger of increased P2X7 was the MI/R-induced recruitment of monocytes and macrophages, and diabetes can be a synergistic factor in this process. Administration of P2X7 agonist eliminated the differences in MI/R injury between nondiabetic mice and diabetic mice. Both 2 wk of brilliant blue G injection before MI/R and acutely administered A438079 at the time of MI/R injury attenuated the role of diabetes in exacerbating MI/R injury, as evidenced by decreased infarct size, improved cardiac function, and inhibition of apoptosis. Additionally, brilliant blue G blockade decreased the heart rate after MI/R, which was accompanied by downregulation of tyrosine hydroxylase expression and nerve growth factor transcription. In conclusion, targeting P2X7 may be a promising strategy for reducing the risk of MI/R injury in diabetes.
Collapse
Affiliation(s)
- Fancan Wu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Wei
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Anesthesiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yingxin Hu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiahong Gao
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Spinal cord astrocyte P2X7Rs mediate the inhibitory effect of electroacupuncture on visceral hypersensitivity of rat with irritable bowel syndrome. Purinergic Signal 2023; 19:43-53. [PMID: 35389158 PMCID: PMC9984627 DOI: 10.1007/s11302-021-09830-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/17/2021] [Indexed: 10/18/2022] Open
Abstract
This study explored the role of P2X7 receptors in spinal cord astrocytes in the electroacupuncture-induced inhibition of visceral hypersensitivity (VH) in rats with irritable bowel syndrome (IBS). Visceral hypersensitivity of IBS was intracolonically induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). Visceromotor responses to colorectal distension (CRD-20,40,60,80 mmHg) and abdominal withdrawal reflex scoring (AWRs) were recorded after electroacupuncture at bilateral Zusanli (ST36) and Sanyinjiao (SP6) acupoints to evaluate the analgesic effect of electroacupuncture on visceral pain in rats with IBS. Fluorocitric acid (FCA), an astrocyte activity inhibitor, was injected intrathecally before electroacupuncture intervention and AWRs were recorded. Western blot and real-time qPCR were used to detect the expression of NMDA and P2X7 receptor to observe the regulation effect of electroacupuncture on NMDA receptor in the spinal cord of rats with visceral hypersensitivity. Intrathecal injection of P2X7 agonist or antagonist was administered before electroacupuncture treatment. To observe the effect of P2X7 receptor in spinal astrocytes on the inhibition of visceral hyperalgesia by electroacupuncture, the changes of AWR score, NMDA receptor in the spinal cord, and GFAP expression in astrocytes were detected. Inflammation of the colon had basically subsided at day 21 post-TNBS; persistent visceral hypersensitivity could be suppressed by electroacupuncture. This analgesic effect could be inhibited by FCA. The analgesic effect, downregulation of NMDA receptor NR1 subunit, and P2X7 protein of electroacupuncture were all reversed by FCA. P2X7 receptor antagonist A740003 can cooperate with EA to carry out analgesic effect in rats with visceral pain and downregulate the expression of NR1, NR2B, and GFAP in spinal dorsal horn. However, the P2X7 receptor agonist BzATP could partially reverse the analgesic effect of EA, inhibiting the downregulatory effect of EA on the expression of NR1, NR2B, and GFAP. These results indicate that EA may downregulate the expression of the NMDA receptor by inhibiting the P2X7 receptor in the spinal cord, thereby inhibiting spinal cord sensitization in IBS rats with visceral pain, in which astrocytes are an important medium.
Collapse
|
14
|
Yin HY, Fan YP, Liu J, Li DT, Guo J, Yu SG. Purinergic ATP triggers moxibustion-induced local anti-nociceptive effect on inflammatory pain model. Purinergic Signal 2023; 19:5-12. [PMID: 34378078 PMCID: PMC9984580 DOI: 10.1007/s11302-021-09815-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022] Open
Abstract
Purinergic signalling adenosine and its A1 receptors have been demonstrated to get involved in the mechanism of acupuncture (needling therapy) analgesia. However, whether purinergic signalling would be responsible for the local analgesic effect of moxibustion therapy, the predominant member in acupuncture family procedures also could trigger analgesic effect on pain diseases, it still remains unclear. In this study, we applied moxibustion to generate analgesic effect on complete Freund's adjuvant (CFA)-induced inflammatory pain rats and detected the purine released from moxibustioned-acupoint by high-performance liquid chromatography (HPLC) approach. Intramuscular injection of ARL67156 into the acupoint Zusanli (ST36) to inhibit the breakdown of ATP showed the analgesic effect of moxibustion was increased while intramuscular injection of ATPase to speed up ATP hydrolysis caused a reduced moxibustion-induced analgesia. These data implied that purinergic ATP at the location of ST36 acupoint is a potentially beneficial factor for moxibustion-induced analgesia.
Collapse
Affiliation(s)
- Hai-Yan Yin
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China. .,Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China.
| | - Ya-Peng Fan
- Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, 471000, China
| | - Juan Liu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Dao-Tong Li
- Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, 471000, China
| | - Jing Guo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Shu-Guang Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
15
|
Li H, Liu T, Sun J, Zhao S, Wang X, Luo W, Luo R, Shen W, Luo C, Fu D. Up-Regulation of ProBDNF/p75 NTR Signaling in Spinal Cord Drives Inflammatory Pain in Male Rats. J Inflamm Res 2023; 16:95-107. [PMID: 36643954 PMCID: PMC9838215 DOI: 10.2147/jir.s387127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Background The spinal cord expresses brain-derived neurotrophic factor precursor (proBDNF) and its receptor pan neurotrophin receptor 75 (p75NTR). However, the role of spinal proBDNF signaling in the pathogenesis of inflammatory pain remains unknown. Methods Rats were locally injected with complete Freund's adjuvant (CFA) to induce inflammatory pain. The proBDNF signal expression was detected by double-labeled immunofluorescence. ProBDNF protein, p75NTR extracellular domain (p75NTR-ECD), or monoclonal anti-proBDNF (McAb-proB) were administrated by intrathecal injection to investigate their effects on pain behavior. Paw withdrawal thermal latency (PWL) and paw withdrawal mechanical threshold (PWT) were performed to evaluate pain behavior. Immunoblotting, immunohistochemistry, and immunofluorescence were used to assess inflammation-induced biochemical changes. Results CFA induced a rapid increase in proBDNF in the ipsilateral spinal cord, and immunofluorescence revealed that CFA-enhanced proBDNF was expressed in NeuN positive neurons and GFAP positive astrocytes. The administration of furin cleavage-resistant proBDNF via intrathecal injection (I.t.) significantly decreased the PWT and PWL, whereas McAb-proB by I.t. alleviated CFA-induced pain-like hypersensitivity in rats. Meanwhile, CFA administration triggered the activation of p75NTR and its downstream signaling extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor (NF)-kappaB p65 in the spinal cord. I.t. administration of p75NTR-ECD suppressed CFA-induced pain and neuroinflammation, including the expression of p-ERK1/2, p-p65, and the gene expression of tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6). Conclusion Our study reveals that the activated proBDNF/p75NTRsignaling in the spinal cord contributes to the development of CFA-induced inflammatory pain. McAb-proB and p75NTR-ECD appear to be promising therapeutic agents for inflammatory pain.
Collapse
Affiliation(s)
- Hui Li
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Tao Liu
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Jingjing Sun
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Shuai Zhao
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Xin Wang
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Wei Luo
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Ruyi Luo
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Weiyun Shen
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Cong Luo
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, People’s Republic of China
| | - Di Fu
- Department of Anesthesiology, the XiangYa Hospital, Central South University, ChangSha, People’s Republic of China,Correspondence: Di Fu, Department of Anesthesiology, the XiangYa Hospital, Central South University, Xiangya Road No. 86, Changsha, Hunan Province, 410011, People’s Republic of China, Tel/Fax +86 85295987, Email
| |
Collapse
|
16
|
Tang Y, Rubini P, Yin HY, Illes P. Acupuncture for Counteracting P2X4 and P2X7 Receptor Involvement in Neuroinflammation. PURINERGIC SIGNALING IN NEURODEVELOPMENT, NEUROINFLAMMATION AND NEURODEGENERATION 2023:359-374. [DOI: 10.1007/978-3-031-26945-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Matesanz-García L, Schmid AB, Cáceres-Pajuelo JE, Cuenca-Martínez F, Arribas-Romano A, González-Zamorano Y, Goicoechea-García C, Fernández-Carnero J. Effect of Physiotherapeutic Interventions on Biomarkers of Neuropathic Pain: A Systematic Review of Preclinical Literature. THE JOURNAL OF PAIN 2022; 23:1833-1855. [PMID: 35768044 PMCID: PMC7613788 DOI: 10.1016/j.jpain.2022.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/02/2023]
Abstract
The purpose of this systematic review was to evaluate the effects of physiotherapeutic interventions on biomarkers of neuropathic pain in preclinical models of peripheral neuropathic pain (PNP). The search was performed in Pubmed, Web of Science, EMBASE, Cochrane, Cinhal, Psycinfo, Scopus, Medline, and Science Direct. Studies evaluating any type of physiotherapy intervention for PNP (systemic or traumatic) were included. Eighty-one articles were included in this review. The most common PNP model was chronic constriction injury, and the most frequently studied biomarkers were related to neuro-immune processes. Exercise therapy and Electro-acupuncture were the 2 most frequently studied physiotherapy interventions while acupuncture and joint mobilization were less frequently examined. Most physiotherapeutic interventions modulated the expression of biomarkers related to neuropathic pain. Whereas the results seem promising; they have to be considered with caution due to the high risk of bias of included studies and high heterogeneity of the type and anatomical localization of biomarkers reported. The review protocol is registered on PROSPERO (CRD42019142878). PERSPECTIVE: This article presents the current evidence about physiotherapeutic interventions on biomarkers of neuropathic pain in preclinical models of peripheral neuropathic pain. Existing findings are reviewed, and relevant data are provided on the effectiveness of each physiotherapeutic modality, as well as its certainty of evidence and clinical applicability.
Collapse
Affiliation(s)
- Luis Matesanz-García
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain; Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Annina B Schmid
- Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Ferran Cuenca-Martínez
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain.
| | - Alberto Arribas-Romano
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain; Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
| | - Yeray González-Zamorano
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain; Grupo de Investigación de Neurorrehabilitación del Daño Cerebral y los Trastornos del Movimiento (GINDAT), Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | | | - Josué Fernández-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain; Grupo de Investigación de Neurorrehabilitación del Daño Cerebral y los Trastornos del Movimiento (GINDAT), Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain; Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain; Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Grupo de Excelencia Investigadora URJC-Banco de Santander, Madrid, Spain; La Paz Hospital Institute for Health Research, IdiPAZ, Madrid, Spain
| |
Collapse
|
18
|
Combined-Acupoint Electroacupuncture Induces Better Analgesia via Activating the Endocannabinoid System in the Spinal Cord. Neural Plast 2022; 2022:7670629. [PMID: 36160326 PMCID: PMC9499800 DOI: 10.1155/2022/7670629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
Electroacupuncture (EA) therapy has been widely reported to alleviate neuropathic pain with few side effects in both clinical practice and animal studies worldwide. However, little is known about the comparison of the therapeutic efficacy among the diverse EA schemes used for neuropathic pain. The present study is aimed at investigating the therapeutic efficacy discrepancy between the single and combined-acupoint EA and to reveal the difference of mechanisms behind them. Electroacupuncture was given at both Zusanli (ST36) and Huantiao (GB30) in the combined group or ST36 alone in the single group. Paw withdrawal mechanical threshold (PWMT) was measured to determine the pain level. Electrophysiology was performed to detect the effects of EA on synaptic transmission in the spinal dorsal horn of the vGlut2-tdTomato mice. Spinal contents of endogenous opioids, endocannabinoids, and their receptors were examined. Inhibitors of CBR (cannabinoid receptor) and opioid receptors were used to study the roles of opioid and endocannabinoid system (ECS) in EA analgesia. We found that combined-acupoint acupuncture provide stronger analgesia than the single group did, and the former inhibited the synaptic transmission at the spinal level to a greater extent than later. Besides, the high-intensity stimulation at ST36 or normal stimulation at two sham acupoints did not mimic the similar efficacy of analgesia in the combined group. Acupuncture stimulation in single and combined groups both activated the endogenous opioid system. The ECS was only activated in the combined group. Naloxone totally blocked the analgesic effect of single-acupoint EA; however, it did not attenuate that of combined-acupoint EA unless coadministered with CBR antagonists. Hence, in the CCI-induced neuropathic pain model, combined-acupoint EA at ST36 and GB30 is more effective in analgesia than the single-acupoint EA at ST36. EA stimulation at GB30 alone neither provided a superior analgesic effect to EA treatment at ST36 nor altered the content of AEA, 2-AG, CB1 receptor, or CB2 receptor compared with the CCI group. Activation of the ECS is the main contributor of the better analgesia by the combined acupoint stimulation than that induced by single acupoint stimulation.
Collapse
|
19
|
Hua SQ, Hu JL, Zou FL, Liu JP, Luo HL, Hu DX, Wu LD, Zhang WJ. P2X7 receptor in inflammation and pain. Brain Res Bull 2022; 187:199-209. [PMID: 35850190 DOI: 10.1016/j.brainresbull.2022.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
Abstract
Different studies have confirmed P2X7 receptor-mediated inflammatory mediators play a key role in the development of pain. P2X7 receptor activation can induce the development of pain by mediating the release of inflammatory mediators. In view of the fact that P2X7 receptor is expressed in the nervous system and immune system, it is closely related to the stability and maintenance of the nervous system function. ATP activates P2X7 receptor, opens non-selective cation channels, activates multiple intracellular signaling, releases multiple inflammatory cytokines, and induces pain. At present, the role of P2X7 receptor in inflammatory response and pain has been widely recognized and affirmed. Therefore, in this paper, we discussed the pathological mechanism of P2X7 receptor-mediated inflammation and pain, focused on the internal relationship between P2X7 receptor and pain. Moreover, we also described the effects of some antagonists on pain relief by inhibiting the activities of P2X7 receptor. Thus, targeting to inhibit activation of P2X7 receptor is expected to become another potential target for the relief of pain.
Collapse
Affiliation(s)
- Shi-Qi Hua
- Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Jia-Ling Hu
- Emergency Department, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Fei-Long Zou
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Ji-Peng Liu
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Hong-Liang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China.
| | - Li-Dong Wu
- Emergency Department, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China.
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China.
| |
Collapse
|
20
|
Jiang K, Sun Y, Chen X. Mechanism Underlying Acupuncture Therapy in Spinal Cord Injury: A Narrative Overview of Preclinical Studies. Front Pharmacol 2022; 13:875103. [PMID: 35462893 PMCID: PMC9021644 DOI: 10.3389/fphar.2022.875103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/14/2022] [Indexed: 12/29/2022] Open
Abstract
Spinal cord injury (SCI) results from various pathogenic factors that destroy the normal structure and function of the spinal cord, subsequently causing sensory, motor, and autonomic nerve dysfunction. SCI is one of the most common causes of disability and death globally. It leads to severe physical and mental injury to patients and causes a substantial economic burden on families and the society. The pathological changes and underlying mechanisms within SCI involve oxidative stress, apoptosis, inflammation, etc. As a traditional therapy, acupuncture has a positive effect promoting the recovery of SCI. Acupuncture-induced neuroprotection includes several mechanisms such as reducing oxidative stress, inhibiting the inflammatory response and neuronal apoptosis, alleviating glial scar formation, promoting neural stem cell differentiation, and improving microcirculation within the injured area. Therefore, the recent studies exploring the mechanism of acupuncture therapy in SCI will help provide a theoretical basis for applying acupuncture and seeking a better treatment target and acupuncture approach for SCI patients.
Collapse
Affiliation(s)
- Kunpeng Jiang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yulin Sun
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Xinle Chen
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
- *Correspondence: Xinle Chen,
| |
Collapse
|
21
|
Zhou X, Dai W, Qin Y, Qi S, Zhang Y, Tian W, Gu X, Zheng B, Xiao J, Yu W, Chen X, Su D. Electroacupuncture relieves neuropathic pain by inhibiting degradation of the ecto-nucleotidase PAP in the dorsal root ganglions of CCI mice. Eur J Pain 2022; 26:991-1005. [PMID: 35138669 DOI: 10.1002/ejp.1923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Although electroacupuncture is widely used in chronic pain management, it is quite controversial due to its unclear mechanism. We hypothesised that EA alleviates pain by inhibiting degradation of the ecto-nucleotidase prostatic acid phosphatase (PAP) and facilitating ATP dephosphorylation in dorsal root ganglions (DRGs). METHODS We applied EA in male C57 mice subjected to chronic constriction injury (CCI) and assessed extracellular ATP and 5'-nucleotidease expression in DRGs. Specifically, we used a luminescence assay, quantitative reverse transcriptase-polymerase chain reaction, western blotting, immunohistochemistry and nociceptive-related behavioural changes to gather data, and we tested for effects after PAP expression was inhibited with an adeno-associated virus (AAV). Moreover, membrane PAP degradation was investigated in cultured DRG neurons and the inhibitory effects of EA on this degradation were assessed using immunoprecipitation. RESULTS EA treatment alleviated CCI surgery induced mechanical pain hypersensitivity. Furthermore, extracellular ATP decreased significantly in both the DRGs and dorsal horn of EA-treated mice. PAP protein but not mRNA increased in L4-L5 DRGs, and inhibition of PAP expression via AAV microinjection reversed the analgesic effect of EA. Membrane PAP degradation occurred through a clathrin-mediated endocytosis pathway in cultured DRG neurons; EA treatment inhibited the phosphorylation of adaptor protein complex 2, which subsequently reduced the endocytosis of membrane PAP. CONCLUSIONS EA treatment alleviated peripheral nerve injury-induced mechanical pain hypersensitivity in mice by inhibiting membrane PAP degradation via reduced endocytosis and subsequently promote ATP dephosphorylation in DRGs.
Collapse
Affiliation(s)
- Xiaoxin Zhou
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Wanbing Dai
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Yi Qin
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Siyi Qi
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Yizhe Zhang
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Weitian Tian
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Xiyao Gu
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Beijie Zheng
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Jie Xiao
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Weifeng Yu
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Xuemei Chen
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Diansan Su
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| |
Collapse
|
22
|
Wang Y, Xia YY, Xue M, Jiang Q, Huang Z, Huang C. Electroacupuncture ameliorates mechanical hypersensitivity by down-regulating spinal Janus kinase 2/signal transducer and activation of transcription 3 and interleukin 6 in rats with spared nerve injury. Acupunct Med 2021; 39:358-366. [PMID: 32744065 DOI: 10.1177/0964528420938376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Evidence shows that the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway participates in the pathogenesis of neuropathic pain. Our previous study revealed that electroacupuncture (EA) attenuated neuropathic pain via activation of alpha-7 nicotinic acetylcholine receptor (α7nAChR) in the spinal cord. However, whether 2 Hz EA alleviates neuropathic pain by regulating the downstream molecules JAK2/STAT3 has not been fully clarified. METHODS Paw withdrawal threshold (PWT) was used as a marker of mechanical allodynia in rats with spared nerve injury (SNI). After applying 2 Hz EA on day 3, 7, 14 and 21 post-surgery, spinal expression of JAK2, STAT3 and pro-inflammatory cytokine interleukin (IL)-6 was examined using quantitative reverse transcription and real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. Intrathecal injection of the α7nAChR antagonist alpha-bungarotoxin (α-Bgtx) was used to further explore the mechanism underlying the effects of 2 Hz EA on expression of JAK2/STAT3 in SNI rats. RESULTS It was found that levels of spinal STAT3 and IL-6 mRNA, as well as levels of phosphorylated (p)-JAK2, p-STAT3 and IL-6 protein, were markedly increased in SNI rats. 2 Hz EA attenuated the SNI-induced up-regulation of p-JAK2, p-STAT3 and IL-6 expression in the spinal cord. Furthermore, intrathecal injection of α-Bgtx (1.0 μg/kg) not only inhibited the effect of 2 Hz EA on mechanical hypersensitivity but also ameliorated the down-regulation of p-JAK2, p-STAT3 and IL-6 expression induced by 2 Hz EA. CONCLUSION This study revealed that 2 Hz EA attenuated SNI-induced mechanical hypersensitivity and the concomitant up-regulation of spinal JAK2, STAT3 and IL-6 in SNI rats, suggesting that suppression of the JAK2/STAT3 signaling pathway might be the mechanism underlying the therapeutic effect of 2 Hz EA on neuropathic pain.
Collapse
Affiliation(s)
- Ying Wang
- Department of Physiology, Gannan Medical University, Ganzhou, P.R. China
| | - Yang-Yang Xia
- Department of Physiology, Gannan Medical University, Ganzhou, P.R. China
| | - Meng Xue
- Department of Physiology, Gannan Medical University, Ganzhou, P.R. China
| | - Qian Jiang
- Department of Physiology, Gannan Medical University, Ganzhou, P.R. China
| | - Zhihua Huang
- Department of Physiology, Gannan Medical University, Ganzhou, P.R. China
- Pain Medicine Research Institute, Gannan Medical University, Ganzhou, P.R. China
| | - Cheng Huang
- Department of Physiology, Gannan Medical University, Ganzhou, P.R. China
- Pain Medicine Research Institute, Gannan Medical University, Ganzhou, P.R. China
| |
Collapse
|
23
|
D’Amico R, Fusco R, Siracusa R, Impellizzeri D, Peritore AF, Gugliandolo E, Interdonato L, Sforza AM, Crupi R, Cuzzocrea S, Genovese T, Cordaro M, Di Paola R. Inhibition of P2X7 Purinergic Receptor Ameliorates Fibromyalgia Syndrome by Suppressing NLRP3 Pathway. Int J Mol Sci 2021; 22:ijms22126471. [PMID: 34208781 PMCID: PMC8234677 DOI: 10.3390/ijms22126471] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Fibromyalgia is a chronic condition characterized by persistent widespread pain that significantly reduces quality of life in patients. The purinergic P2X7 receptor (P2X7R) seems to be involved in different pain states and neuroinflammation. The purpose of this study is to investigate the positive effects of P2X7R inhibition by the antagonist Brilliant Blue G (BBG) in a rat model of reserpine-induced fibromyalgia. Sprague-Dawley male rats were injected with 1 mg/kg of reserpine for three consecutive days. Later, animals were administered BBG (50 mg/kg) intraperitoneally for seven days. Reserpine injections induced a significant increase in pain pro-inflammatory mediators as well as a significant increase in neuroinflammation. Chronic pain, in turn, led to depressive-like symptoms and reduced neurogenesis. Blockage of P2X7R by BBG administrations is able to attenuate the behavioral deficits, pain mediators and microglial activation induced by reserpine injection. Additionally, BBG prevents NLRP3 inflammasome activation and consequently the release of active interleukin (IL)-1 and IL-18, involved in the activation of nociceptors. In conclusion, these results suggest that inhibition of P2X7R should be further investigated to develop a potential approach for the management of fibromyalgia.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.)
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Andrea Maria Sforza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
- Correspondence: (S.C.); (T.G.); Tel.: +39-090-676-5208 (S.C. & T.G.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
- Correspondence: (S.C.); (T.G.); Tel.: +39-090-676-5208 (S.C. & T.G.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, via Consolare Valeria, 98125 Messina, Italy;
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| |
Collapse
|
24
|
Li J, Zhang Y, Illes P, Tang Y, Rubini P. Increasing Efficiency of Repetitive Electroacupuncture on Purine- and Acid-Induced Pain During a Three-Week Treatment Schedule. Front Pharmacol 2021; 12:680198. [PMID: 34040538 PMCID: PMC8141797 DOI: 10.3389/fphar.2021.680198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Acupuncture (AP) is an important constituent of the therapeutic repertoire of traditional Chinese medicine and has been widely used to alleviate chronic painful conditions all over the world. We studied in rats the efficiency of electroacupuncture (EAP) applied to the Zusanli acupoint (ST36) as an analgesic treatment over a 3-week period of time on purine (α,β-methylene ATP, dibenzoyl-ATP)- and acid (pH 6.0 medium)-induced pain in the rat paw. The two ATP derivatives stimulated P2X3 and P2X7 receptors, respectively, while the slightly acidic medium stimulated the “acid-sensitive ion channel 3” (ASIC3). It was found that the P2X7 receptor and ASIC-mediated pain was counteracted by EAP with greater efficiency at the end than at the beginning of the treatment schedule, while the P2X3 receptor–mediated pain was not. Our findings have important clinical and theoretical consequences, among others, because they are difficult to reconcile with the assumption that AP is primarily due to the release of peripheral and central opioid peptides causing the well-known tolerance to their effects. In consequence, AP is a convenient therapeutic instrument to treat subacute and chronic pain.
Collapse
Affiliation(s)
- Jie Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, China
| | - Ying Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, China
| | - Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, China.,International Collaborative Center on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Medicine, Chengdu, China.,Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, China.,International Collaborative Center on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Medicine, Chengdu, China
| | - Patrizia Rubini
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, China.,International Collaborative Center on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Medicine, Chengdu, China
| |
Collapse
|
25
|
Yamashita T, Kamikaseda S, Tanaka A, Tozaki-Saitoh H, Caaveiro JMM, Inoue K, Tsuda M. New Inhibitory Effects of Cilnidipine on Microglial P2X7 Receptors and IL-1β Release: An Involvement in its Alleviating Effect on Neuropathic Pain. Cells 2021; 10:434. [PMID: 33670748 PMCID: PMC7922706 DOI: 10.3390/cells10020434] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
P2X7 receptors (P2X7Rs) belong to a family of ATP-gated non-selective cation channels. Microglia represent a major cell type expressing P2X7Rs. The activation of microglial P2X7Rs causes the release of pro-inflammatory cytokines such as interleukin-1β (IL-1β). This response has been implicated in neuroinflammatory states in the central nervous system and in various diseases, including neuropathic pain. Thus, P2X7R may represent a potential therapeutic target. In the present study, we screened a chemical library of clinically approved drugs (1979 compounds) by high-throughput screening and showed that the Ca2+ channel blocker cilnidipine has an inhibitory effect on rodent and human P2X7R. In primary cultured rat microglial cells, cilnidipine inhibited P2X7R-mediated Ca2+ responses and IL-1β release. Moreover, in a rat model of neuropathic pain, the intrathecal administration of cilnidipine produced a reversal of nerve injury-induced mechanical hypersensitivity, a cardinal symptom of neuropathic pain. These results point to a new inhibitory effect of cilnidipine on microglial P2X7R-mediated inflammatory responses and neuropathic pain, proposing its therapeutic potential.
Collapse
Affiliation(s)
- Tomohiro Yamashita
- Department of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.K.); (A.T.); (H.T.-S.); (K.I.)
| | - Sawako Kamikaseda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.K.); (A.T.); (H.T.-S.); (K.I.)
| | - Aya Tanaka
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.K.); (A.T.); (H.T.-S.); (K.I.)
| | - Hidetoshi Tozaki-Saitoh
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.K.); (A.T.); (H.T.-S.); (K.I.)
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jose M. M. Caaveiro
- Department of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.K.); (A.T.); (H.T.-S.); (K.I.)
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.K.); (A.T.); (H.T.-S.); (K.I.)
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
26
|
Zheng Y, Jia C, Jiang X, Chen J, Chen XL, Ying X, Wu J, Jiang M, Yang G, Tu W, Zhou K, Jiang S. Electroacupuncture effects on the P2X4R pathway in microglia regulating the excitability of neurons in the substantia gelatinosa region of rats with spinal nerve ligation. Mol Med Rep 2021; 23:175. [PMID: 33398365 PMCID: PMC7821227 DOI: 10.3892/mmr.2020.11814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/05/2020] [Indexed: 01/02/2023] Open
Abstract
Electroacupuncture (EA) has been used to treat neuropathic pain induced by peripheral nerve injury (PNI) by applying an electrical current to acupoints with acupuncture needles. However, the mechanisms by which EA treats pain remain indistinct. High P2X4 receptor (P2X4R) expression levels demonstrate a notable increase in hyperactive microglia in the ipsilateral spinal dorsal horn following PNI. In order to demonstrate the possibility that EA analgesia is mediated in part by P2X4R in hyperactive microglia, the present study performed mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) tests in male Sprague-Dawley rats that had undergone spinal nerve ligation (SNL). The expression levels of spinal P2X4R were determined using reverse transcription-quantitative PCR, western blotting analysis and immunofluorescence staining. Furthermore, spontaneous excitatory postsynaptic currents (sEPSCs) were recorded using whole-cell patch clamp to demonstrate the effect of EA on synaptic transmission in rat spinal substantia gelatinosa (SG) neurons. The results of the present study demonstrated that EA increased the MWT and TWL and decreased overexpression of P2X4R in hyperactive microglia in SNL rats. Moreover, EA attenuated the frequency of sEPSCs in SG neurons in SNL rats. The results of the present study indicate that EA may mediate P2X4R in hyperactive spinal microglia to inhibit nociceptive transmission of SG neurons, thus relieving pain in SNL rats.
Collapse
Affiliation(s)
- Yuyin Zheng
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Chengqian Jia
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xia Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jie Chen
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xiao-Long Chen
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xinwang Ying
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jiayu Wu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Mingchen Jiang
- China‑USA Institute for Acupuncture and Rehabilitation, Integrative and Optimized Medicine Research Center, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Guanhu Yang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Wenzhan Tu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Kecheng Zhou
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Songhe Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
27
|
Yu X, Chen X, Liu W, Jiang M, Wang Z, Tao J. Proteomics Analysis of the Spinal Dorsal Horn in Diabetic Painful Neuropathy Rats With Electroacupuncture Treatment. Front Endocrinol (Lausanne) 2021; 12:608183. [PMID: 34177794 PMCID: PMC8224168 DOI: 10.3389/fendo.2021.608183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/12/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Clinical evidence demonstrates that electro-acupuncture (EA) of the Zu sanli (ST36) and Shen shu (BL23) acupoints is effective in relieving diabetic painful neuropathy (DPN); however, the underlying molecular mechanism requires further investigation, including the protein molecules associated with EA's effects on DPN. METHODS Sprague-Dawley adult male rats (n =36) were randomly assigned into control, DPN, and EA groups (n=12 each). After four weeks of EA treatment, response to mechanical pain and fasting blood glucose were analyzed. A tandem mass tag (TMT) labeling approach coupled with liquid chromatography with tandem mass spectrometry was used to identify potential biomarkers in the spinal dorsal horn. Further, proteomics analysis was used to quantify differentially expressed proteins (DEPs), and gene ontology, KEGG pathways, cluster, and string protein network interaction analyses conducted to explore the main protein targets of EA. RESULTS Compared with the DPN model group, the mechanical pain threshold was significantly increased, while the fasting blood glucose levels were clearly decreased in EA group rats. Proteomics analysis was used to quantify 5393 proteins, and DEPs were chosen for further analyses, based on a threshold of 1.2-fold difference in expression level (P < 0.05) compared with control groups. Relative to the control group, 169 down-regulated and 474 up-regulated proteins were identified in the DPN group, while 107 and 328 proteins were up- and down-regulated in the EA treatment group compared with the DPN group. Bioinformatics analysis suggested that levels of proteins involved in oxidative stress injury regulation were dramatically altered during the EA effects on DPN. CONCLUSIONS Our results provide the valuable protein biomarkers, which facilitates unique mechanistic insights into the DPN pathogenesis and EA analgesic, antioxidant stress and hypoglycemic effect.
Collapse
Affiliation(s)
- Xiangmei Yu
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaomei Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weiting Liu
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Menghong Jiang
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhifu Wang
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Zhifu Wang, ; Jing Tao,
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Zhifu Wang, ; Jing Tao,
| |
Collapse
|
28
|
Zhang WJ, Luo HL, Zhu JF, Hu CG, Zhu ZM. Transplantation of olfactory ensheathing cells combined with chitosan down-regulates the expression of P2X7 receptor in the spinal cord and inhibits neuropathic pain. Brain Res 2020; 1748:147058. [PMID: 32888912 DOI: 10.1016/j.brainres.2020.147058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/25/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Neuropathic pain (NPP) is the common symptom of most clinical diseases, and its treatment has always been a difficult problem at present. Therefore, the purpose of this study is to explore a new method for the treatment of NPP by transplanting olfactory ensheathing cells combined with chitosan (OECs-CS). METHODS Animal model of chronic compression sciatic nerve injury (CCI) was made, olfactory ensheathing cells (OECs) were cultured, chitosan (CS) biomaterials were prepared, and biocompatibility of OECs and CS were detected by MTT method, OECs and OECs-CS were transplanted into the site of the injured sciatic nerve respectively, behavioral method was used to measured the mechanical withdrawal thresholds (MWT) and thermal withdrawal latency (TWL) of rats. On days 7 and 14 after surgery, the expression level of P2X7 receptor (P2X7R) in the L4-5 spinal cord was measured by using in situ hybridization, western-blotting and qRT-PCR. To explore the therapeutic effect of OECs-CS transplantation on pain suppression. RESULTS After chronic compression sciatic nerve injury, the MWT and TWL of rats were significantly reduced, and the expression levels of P2X7R protein and mRNA in the L4-5 spinal cord was significantly increased. After the transplantation of OECs and OECs-CS, the expression levels of P2X7R was significantly reduced, and the MWT and TWL of rats were significantly increased. Importantly, compared with the transplantation of OECs, OECs-CS transplantation could better reduce the expression levels of P2X7R, and relieve hyperalgesia in rats. Moreover, compared with the CCI + OECs-CS group on days 7 after surgery, the expression levels of P2X7R in the CCI + OECs-CS group was reduced on days 14 after surgery, and the pain in rats was relieved. CONCLUSION OECs and OECs-CS transplantation can inhibit P2X7R overexpression mediated NPP, while OECs-CS transplantation has better therapeutic effect than OECs transplantation alone. Our results provide a novel method and theoretical basis for the treatment of NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China
| | - Hong-Liang Luo
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China
| | - Jin-Feng Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China
| | - Ce-Gui Hu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China
| | - Zheng-Ming Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China.
| |
Collapse
|
29
|
Inoue K, Tsuda M. Nociceptive signaling mediated by P2X3, P2X4 and P2X7 receptors. Biochem Pharmacol 2020; 187:114309. [PMID: 33130129 DOI: 10.1016/j.bcp.2020.114309] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Chronic pain is a debilitating condition that often occurs following peripheral tissue inflammation and nerve injury. This pain, especially neuropathic pain, is a significant clinical problem because of the ineffectiveness of clinically available drugs. Since Burnstock proposed new roles of nucleotides as neurotransmitters, the roles of extracellular ATP and P2 receptors (P2Rs) in pain signaling have been extensively studied, and ATP-P2R signaling has subsequently received much attention as it can provide clues toward elucidating the mechanisms underlying chronic pain and serve as a potential therapeutic target. This review summarizes the literature regarding the role of ATP signaling via P2X3Rs (as well as P2X2/3Rs) in primary afferent neurons and via P2X4Rs and P2X7Rs in spinal cord microglia in chronic pain, and discusses their respective therapeutic potentials.
Collapse
Affiliation(s)
- Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka 812-8582, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka 812-8582, Japan; Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka 812-8582, Japan
| |
Collapse
|
30
|
Tribute to Prof. Geoffrey Burnstock: his contribution to acupuncture. Purinergic Signal 2020; 17:71-77. [PMID: 33034832 PMCID: PMC7954886 DOI: 10.1007/s11302-020-09729-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
|
31
|
Huang MC, Yen HR, Lin CL, Lee YC, Sun MF, Wu MY. Acupuncture decreased the risk of stroke among patients with fibromyalgia in Taiwan: A nationwide matched cohort study. PLoS One 2020; 15:e0239703. [PMID: 33002009 PMCID: PMC7529290 DOI: 10.1371/journal.pone.0239703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/12/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the effectiveness of acupuncture in decreasing the risk of stroke in patients with fibromyalgia. METHODS We enrolled patients who was newly diagnosed as having fibromyalgia between 1 January, 2000 and 31 December, 2010 from the Taiwanese National Health Insurance Research Database. The claim data for both the acupuncture cohort and non-acupuncture cohort were assessed from the index date to 31 December, 2013. A Cox regression model adjusted for age, sex, comorbidities, and drugs use was used to compare the hazard ratios of the two cohorts. The cumulative incidence of stroke was estimated by using the Kaplan-Meier method. RESULTS After performing a propensity score matching with a 1:1 ratio, there were 65,487 patients in the acupuncture and non-acupuncture cohorts with similar distributions in the baseline characteristics. The cumulative incidence of stroke was significantly lower in the acupuncture cohort (log-rank test, p < 0.001). In the follow-up period, 4,216 patients in the acupuncture cohort (11.01 per 1000 person-years) and 6,849 patients in the non-acupuncture cohort (19.82 per 1000 person-years) suffered from stroke (adjusted HR 0.53, 95% CI 0.51-0.55). Acupuncture favorably affected the incidence of stroke regardless of the patient's age, sex, comorbidities, and conventional drug use. CONCLUSIONS Our study found that acupuncture might have a beneficial effect on reducing the risk of stroke in patients with fibromyalgia in Taiwan. Additional clinical and basic science studies are warranted.
Collapse
Affiliation(s)
- Ming-Cheng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hung-Rong Yen
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Research Center for Traditional Chinese Medicine, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office of Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chen Lee
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Mao-Feng Sun
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Mei-Yao Wu
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
32
|
Abstract
Neuropathic pain (NP) has become a serious global health issue and a huge clinical challenge without available effective treatment. P2 receptors family is involved in pain transmission and represents a promising target for pharmacological intervention. Traditional Chinese medicine (TCM) contains multiple components which are effective in targeting different pathological mechanisms involved in NP. Different from traditional analgesics, which target a single pathway, TCMs take the advantage of multiple components and multiple targets, and can significantly improve the efficacy of treatment and contribute to the prediction of the risks of NP. Compounds of TCM acting at nucleotide P2 receptors in neurons and glial cells could be considered as a potential research direction for moderating neuropathic pain. This review summarized the recently published data and highlighted several TCMs that relieved NP by acting at P2 receptors.
Collapse
|
33
|
He JR, Yu SG, Tang Y, Illes P. Purinergic signaling as a basis of acupuncture-induced analgesia. Purinergic Signal 2020; 16:297-304. [PMID: 32577957 PMCID: PMC7524941 DOI: 10.1007/s11302-020-09708-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
This review summarizes experimental evidence indicating that purinergic mechanisms are causally involved in acupuncture (AP)-induced analgesia. Electroacupuncture (EAP) and manual AP release at pain-relevant acupoints ATP which may activate purinergic P2X receptors (Rs) especially of the P2X3 type situated at local sensory nerve endings (peripheral terminals of dorsal root ganglion [DRG] neurons); the central processes of these neurons are thought to inhibit via collaterals of ascending dorsal horn spinal cord neurons, pain-relevant pathways projecting to higher centers of the brain. In addition, during AP/EAP non-neuronal P2X4 and/or P2X7Rs localized at microglial cells of the CNS become activated at the spinal or supraspinal levels. In consequence, these microglia secrete bioactive compounds such as growth factors, cytokines, chemokines, reactive oxygen, and nitrogen species, which modulate the ascending neuronal pathways conducting painful stimuli. Alternatively, ATP released at acupoints by AP/EAP may be enzymatically degraded to adenosine, stimulating in loco presynaptic A1Rs exerting an inhibitory influence on the primary afferent fibers (the above mentioned pain-sensing peripheral terminals of DRG neurons) which thereby fail to conduct action potentials to the spinal cord dorsal horn. The net effect of the stimulation of P2X3, P2X4, P2X7, and A1Rs by the AP/EAP-induced release of ATP/adenosine at certain acupoints will be analgesia.
Collapse
Affiliation(s)
- Jin-Rong He
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Shu-Guang Yu
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.,Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.,Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, 610075, China
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China. .,Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|
34
|
Zheng Y, Zhou Y, Wu Q, Yue J, Ying X, Li S, Lou X, Yang G, Tu W, Zhou K, Jiang S. Effect of electroacupuncture on the expression of P2 × 4, GABAA γ 2 and long-term potentiation in spinal cord of rats with neuropathic pain. Brain Res Bull 2020; 162:1-10. [PMID: 32428626 DOI: 10.1016/j.brainresbull.2020.04.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/10/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To observe the impacts of electroacupuncture (EA) stimulation at "Zusanli and Kunlun Points" on spinal dorsal horn microglia activation in L5 spinal nerve ligation (SNL) rats and BNDF, P2 × 4 and GABAAγ2, and the changes in spinal dorsal horn synaptic plasticity in model rats. METHODS Adult male SD rats (180-220 g) were selected and randomly divided into 6 groups, including the sham group, the SNL group, the SNL + EA group, the SNL+5-BDBD group, the SNL + EA + 5-BDBD group and the SNL + FEA group. The changes in the Iba-1, BDNF, P2 × 4 and GABAAγ2 in the spinal cord of rats were observed by Western blotting, immunofluorescence, RT-PCR and other techniques; the long-term changes in the potential after the excitatory synapse of the spinal dorsal horn in rats were observed by in vivo electrophysiological technique. RESULTS After 7 days of intervention, the fluorescence intensity (FI) of P2 × 4 and Iba-1 in the SNL + EA group was lower than that in the SNL group and higher than that in the sham group(P < 0.01), but the FI of GABAAγ2 was higher than that in the SNL group(P < 0.01); the expression of Iba-1, BDNF and P2 × 4 proteins in the SNL + EA group, the SNL+5-BDBD group and the SNL + EA + 5-BDBD group was significantly lower than that in the SNL + FEA group(P < 0.05), but the expression of GABAAγ2 protein was higher (P < 0.05); after treatment with EA, the expression levels of Iba-1 mRNA and P2 × 4 mRNA in the SNL + EA group were lower than those in the SNL group(P < 0.01), but the expression levels of GABAAγ2 mRNA were higher (P < 0.01). Meanwhile, long-term potentiation changes could not be induced in the SNL + EA group. CONCLUSION The EA stimulation at "Zusanli" and "Kunlun" points can improve the pain threshold of rats with neuropathic pain (NP), inhibit the excitatory postsynaptic potential (EPSP), and weaken the excitatory transmission efficiency between synapses during NP.
Collapse
Affiliation(s)
- Yuyin Zheng
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ye Zhou
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiaoyun Wu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Yue
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinwang Ying
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sisi Li
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinfa Lou
- Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guanhu Yang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenzhan Tu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Kecheng Zhou
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Songhe Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
35
|
Yang H, Wu L, Deng H, Chen Y, Zhou H, Liu M, Wang S, Zheng L, Zhu L, Lv X. Anti-inflammatory protein TSG-6 secreted by bone marrow mesenchymal stem cells attenuates neuropathic pain by inhibiting the TLR2/MyD88/NF-κB signaling pathway in spinal microglia. J Neuroinflammation 2020; 17:154. [PMID: 32393298 PMCID: PMC7216552 DOI: 10.1186/s12974-020-1731-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background Neuroinflammation plays a vital role in the development and maintenance of neuropathic pain. Recent evidence has proved that bone marrow mesenchymal stem cells (BMSCs) can inhibit neuropathic pain and possess potent immunomodulatory and immunosuppressive properties via secreting a variety of bioactive molecules, such as TNF-α-stimulated gene 6 protein (TSG-6). However, it is unknown whether BMSCs exert their analgesic effect against neuropathic pain by secreting TSG-6. Therefore, the present study aimed to evaluate the analgesic effects of TSG-6 released from BMSCs on neuropathic pain induced by chronic constriction injury (CCI) in rats and explored the possible underlying mechanisms in vitro and in vivo. Methods BMSCs were isolated from rat bone marrow and characterized by flow cytometry and functional differentiation. One day after CCI surgery, about 5 × 106 BMSCs were intrathecally injected into spinal cerebrospinal fluid. Behavioral tests, including mechanical allodynia, thermal hyperalgesia, and motor function, were carried out at 1, 3, 5, 7, 14 days after CCI surgery. Spinal cords were processed for immunohistochemical analysis of the microglial marker Iba-1. The mRNA and protein levels of pro-inflammatory cytokines (IL-1β, TNFα, IL-6) were detected by real-time RT-PCR and ELISA. The activation of the TLR2/MyD88/NF-κB signaling pathway was evaluated by Western blot and immunofluorescence staining. The analgesic effect of exogenous recombinant TSG-6 on CCI-induced mechanical allodynia and heat hyperalgesia was observed by behavioral tests. In the in vitro experiments, primary cultured microglia were stimulated with the TLR2 agonist Pam3CSK4, and then co-cultured with BMSCs or recombinant TSG-6. The protein expression of TLR2, MyD88, p-p65 was evaluated by Western blot. The mRNA and protein levels of IL-1β, TNFα, IL-6 were detected by real-time RT-PCR and ELISA. BMSCs were transfected with the TSG-6-specific shRNA and then intrathecally injected into spinal cerebrospinal fluid in vivo or co-cultured with Pam3CSK4-treated primary microglia in vitro to investigate whether TSG-6 participated in the therapeutic effect of BMSCs on CCI-induced neuropathic pain and neuroinflammation. Results We found that CCI-induced mechanical allodynia and heat hyperalgesia were ameliorated by intrathecal injection of BMSCs. Moreover, intrathecal administration of BMSCs inhibited CCI-induced neuroinflammation in spinal cord tissues. The analgesic effect and anti-inflammatory property of BMSCs were attenuated when TSG-6 expression was silenced. We also found that BMSCs inhibited the activation of the TLR2/MyD88/NF-κB pathway in the ipsilateral spinal cord dorsal horn by secreting TSG-6. Meanwhile, we proved that intrathecal injection of exogenous recombinant TSG-6 effectively attenuated CCI-induced neuropathic pain. Furthermore, in vitro experiments showed that BMSCs and TSG-6 downregulated the TLR2/MyD88/NF-κB signaling and reduced the production of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, in primary microglia treated with the specific TLR2 agonist Pam3CSK4. Conclusions The present study demonstrated a paracrine mechanism by which intrathecal injection of BMSCs targets the TLR2/MyD88/NF-κB pathway in spinal cord dorsal horn microglia to elicit neuroprotection and sustained neuropathic pain relief via TSG-6 secretion.
Collapse
Affiliation(s)
- Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Lingmin Wu
- Department of Anesthesiology, The first Hospital of Anhui Medical University, 218 Jixi Rd, Hefei, 230022, China
| | - Huimin Deng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Huanping Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Meiyun Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Shaochen Wang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China
| | - Li Zheng
- Department of Anesthesiology, Fuyang Hospital of Anhui Medical University, 99 Huangshan Rd, Fuyang, 236000, China
| | - Lina Zhu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China.
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Rd, Shanghai, 200433, China. .,Department of Anesthesiology, The first Hospital of Anhui Medical University, 218 Jixi Rd, Hefei, 230022, China.
| |
Collapse
|
36
|
Electroacupuncture Treatment Suppresses Transcription Factor IRF8 in Spinal Cord of Rats with Spared Nerve Injury. Pain Res Manag 2020; 2020:1854363. [PMID: 32351637 PMCID: PMC7171679 DOI: 10.1155/2020/1854363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 11/25/2022]
Abstract
Objective Neuropathic pain with complex mechanisms has become a major public health problem that greatly impacts patients' quality of life. Therefore, novel and more effective strategies against neuropathic pain need further investigation. Electroacupuncture (EA) has an ameliorating effect on neuropathic pain following spared nerve injury (SNI), but the underlying mechanism remains to be fully clarified. Interferon regulatory factor 8 (IRF8), a critical transcription factor, was reported to be involved in the modulation of neuropathic pain. Here, we focused on exploring whether 2 Hz EA stimulation exerts an inhibitory action on spinal IRF8 in SNI rats. Methods In this study, SNI rats were treated with 2 Hz EA once every other day for 21 days. Paw withdrawal threshold (PWT) was applied to determine the analgesic effect of 2 Hz EA on SNI rats. The spinal IRF8 and CX3CRl expressions were detected with qRT-PCR and western blot, and immunofluorescence staining was used to evaluate colocation of IRF8 or CX3CRl with microglial activation marker CD11b in the spinal cord. Results It was found that SNI induced significant elevation of spinal IRF8 and CX3CRl mRNA and protein expression. Additionally, immunofluorescence results showed that SNI elicited the coexpression of IRF8 with CD11b, as well as CX3CRl with CD11b in the spinal cord. Meanwhile, 2 Hz EA treatment of SNI rats not only reduced IRF8 and CX3CRl mRNA and protein expression, but also reversed the coexpression of IRF8 or CX3CRl with CD11b in the spinal cord, along with an attenuation of SNI-evoked mechanical hypersensitivity. Conclusion This experiment highlighted that 2 Hz EA can inhibit IRF8 expression and microglial activation in the spinal cord of SNI rats. Hence, targeting IRF8 may be a promising therapeutic strategy for 2 Hz EA treatment of neuropathic pain.
Collapse
|
37
|
Zhang WJ, Zhu ZM, Liu ZX. The role and pharmacological properties of the P2X7 receptor in neuropathic pain. Brain Res Bull 2020; 155:19-28. [PMID: 31778766 DOI: 10.1016/j.brainresbull.2019.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/03/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Neuropathic Pain (NPP) is caused by direct or indirect damage to the nervous system and is a common symptom of many diseases. Clinically, drugs are usually used to suppress pain, such as (lidocaine, morphine, etc.), but the effect is short-lived, poor analgesia, and there are certain dependence and side effects. Therefore, the investigation of the treatment of NPP has become an urgent problem in medical, attracting a lot of research attention. P2X7 is dependent on Adenosine triphosphate (ATP) ion channel receptors and has dual functions for the development of nerve damage and pain. In this review, we explored the link between the P2X7 receptor (P2X7R) and NPP, providing insight into the P2X7R and NPP, discussing the pathological mechanism of P2 X7R in NPP and the biological characteristics of P2X7R antagonist inhibiting its over-expression for the targeted therapy of NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- The Second Affiliate Hospital. Nanchang University, Nanchang City. Jiangxi Province, China; Basic Medical School, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Zheng-Ming Zhu
- The Second Affiliate Hospital. Nanchang University, Nanchang City. Jiangxi Province, China.
| | - Zeng-Xu Liu
- Basic Medical School, Nanchang University, Nanchang City, Jiangxi Province, China
| |
Collapse
|
38
|
Zhao YX, Yao MJ, Liu Q, Xin JJ, Gao JH, Yu XC. Electroacupuncture Treatment Attenuates Paclitaxel-Induced Neuropathic Pain in Rats via Inhibiting Spinal Glia and the TLR4/NF-κB Pathway. J Pain Res 2020; 13:239-250. [PMID: 32099448 PMCID: PMC7005725 DOI: 10.2147/jpr.s241101] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose Neuropathic pain is a major side-effect of paclitaxel (PTX) chemotherapy. Although the precise mechanisms responsible for this pain are unclear, the activation of neuroglia and upregulation of the TLR4/NF-κB pathway are known to be involved. In this study, we determined whether electroacupuncture (EA) could limit mechanical hypersensitivity resulting from the chemotherapeutic drug PTX in rats, and investigated the potential mechanisms involved. Methods Rats intraperitoneally received a cumulative dose of 8 mg/kg PTX (2 mg/kg per day) or vehicle control on alternate days (day 0, 2, 4 and 6). EA treatment (10 Hz, 1 mA) was applied at bilateral ST36 acupoints in rats once every other day on days 0–14. For sham EA, needles were inserted at ST36 acupoints without electrical stimulation. Mechanical allodynia was measured by mechanical withdrawal latency (MWL) of paws to a mechanical stimulus every 2 days. Protein expression of TLR4 and NF-κB p65, as well as TMEM119 and GFAP (indicators of microglia and astrocytes, respectively) in spinal cord was quantified by Western blot analysis. Levels of inflammatory cytokines IL-1β and TNF-α in spinal cord and serum were detected by ELISA. Results Mechanical allodynia induced by PTX in both paws (right and left) of rats was significantly attenuated by EA but not sham EA treatment. In addition, EA, but not sham EA, inhibited the activation of both microglia (TMEM119) and astrocytes (GFAP) in lumbar spinal cord. Moreover, Western blot analysis revealed that protein expression of TLR4 and NF-κB in spinal cord was suppressed by EA but not sham EA treatment. PTX significantly increased inflammatory cytokines in spinal cord and serum, which were ameliorated by EA treatment but not by sham EA. Conclusion These results indicate that EA treatment attenuates PTX-induced mechanical allodynia. The putative mechanism corroborating this finding could be related to the suppression of activated microglia and astrocytes in spinal cord, as well as the inhibition of the activated TLR4/NF-κB signaling pathway by EA treatment.
Collapse
Affiliation(s)
- Yu-Xue Zhao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Ming-Jiang Yao
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, People's Republic of China.,Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing 100091, People's Republic of China
| | - Qun Liu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Juan-Juan Xin
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Jun-Hong Gao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Xiao-Chun Yu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| |
Collapse
|
39
|
Zhang Y, Huang L, Kozlov SA, Rubini P, Tang Y, Illes P. Acupuncture alleviates acid- and purine-induced pain in rodents. Br J Pharmacol 2019; 177:77-92. [PMID: 31444978 DOI: 10.1111/bph.14847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ying Zhang
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| | - Lumei Huang
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| | - Sergey A Kozlov
- Shemyakin-Ovchinikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Patrizia Rubini
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China
| | - Peter Illes
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, China.,Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
40
|
Yin Y, Hong J, Phạm TL, Shin J, Gwon DH, Kwon HH, Shin N, Shin HJ, Lee SY, Lee WH, Kim DW. Evans Blue Reduces Neuropathic Pain Behavior by Inhibiting Spinal ATP Release. Int J Mol Sci 2019; 20:ijms20184443. [PMID: 31505901 PMCID: PMC6770806 DOI: 10.3390/ijms20184443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/19/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
Upon peripheral nerve injury, vesicular ATP is released from damaged primary afferent neurons. This extracellular ATP subsequently activates purinergic receptors of the spinal cord, which play a critical role in neuropathic pain. As an inhibitor of the vesicular nucleotide transporter (VNUT), Evans blue (EB) inhibits the vesicular storage and release of ATP in neurons. Thus, we tested whether EB could attenuate neuropathic pain behavior induced by spinal nerve ligation (SNL) in rats by targeting VNUT. An intrathecal injection of EB efficiently attenuated mechanical allodynia for five days in a dose-dependent manner and enhanced locomotive activity in an SNL rat model. Immunohistochemical analysis showed that EB was found in VNUT immunoreactivity on neurons in the dorsal root ganglion and the spinal dorsal horn. The level of ATP in cerebrospinal fluid in rats with SNL-induced neuropathic pain decreased upon administration of EB. Interestingly, EB blocked ATP release from neurons, but not glial cells in vitro. Eventually, the loss of ATP decreased microglial activity in the ipsilateral dorsal horn of the spinal cord, followed by a reduction in reactive oxygen species and proinflammatory mediators, such as interleukin (IL)-1β and IL-6. Finally, a similar analgesic effect of EB was demonstrated in rats with monoiodoacetate-induced osteoarthritis (OA) pain. Taken together, these data demonstrate that EB prevents ATP release in the spinal dorsal horn and reduces the ATP/purinergic receptor-induced activation of spinal microglia followed by a decline in algogenic substances, thereby relieving neuropathic pain in rats with SNL.
Collapse
Affiliation(s)
- Yuhua Yin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea.
| | - Jinpyo Hong
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Thuỳ Linh Phạm
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Juhee Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Do Hyeong Gwon
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Hyeok Hee Kwon
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Nara Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| | - Sun Yeul Lee
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea.
| | - Won-Hyung Lee
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Korea.
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea.
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 35015, Korea.
| |
Collapse
|
41
|
Wang Y, Xue M, Xia Y, Jiang Q, Huang Z, Huang C. Electroacupuncture treatment upregulates α7nAChR and inhibits JAK2/STAT3 in dorsal root ganglion of rat with spared nerve injury. J Pain Res 2019; 12:1947-1955. [PMID: 31308727 PMCID: PMC6613452 DOI: 10.2147/jpr.s203867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/27/2019] [Indexed: 12/23/2022] Open
Abstract
Background Neuropathic pain with complicated mechanism severely disrupts patient quality of life. The novel approaches and more effective management should be further investigated. It was reported that alpha-7 nicotinic acetylcholine receptor (α7nAChR) and janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling in dorsal root ganglion (DRG) contributed to the pathogenesis of neuropathic pain. Our previous study has shown that electroacupuncture (EA) alleviated neuropathic pain via activating α7nAChR in the spinal cord. However, whether the effect of 2 Hz EA on spared nerve injury (SNI)-induced neuropathic pain is mediated through modulation of α7nAChR and JAK2/STAT3 pathway in the DRG remains unclear. Materials and methods The SNI-induced neuropathic pain rat model was used in this study. After application of 2 Hz EA treatment to SNI rats on day 3, 7, 14 and 21 post-surgery, the expression levels of α7nAChR, JAK2/STAT3 and some cytokines in DRG were determined by qRT-PCR and Western blot analysis. Results We found that SNI induced significant down-regulation of α7nAChR mRNA and protein expression. SNI also obviously elicited the decrease in anti-inflammatory cytokine IL-10 protein expression. The enhancement of p-JAK2, p-STAT3, pro-inflammatory cytokines IL-1β and IL-6 protein levels induced by SNI were also observed. However, 2 Hz EA treatment to SNI rats distinctly improved α7nAChR and IL-10 levels and reduced p-JAK2, p-STAT3, IL-1β and IL-6 expression in the DRG. Conclusion Our present study suggested that 2 Hz EA treatment indeed activated α7nAChR, suppressed JAK2/STAT3 signaling and re-balanced the relationship between pro-inflammatory and anti-inflammatory cytokines in DRG of SNI rat, which provided insight into our understanding of the mechanism for 2 Hz EA to attenuate neuropathic pain.
Collapse
Affiliation(s)
- Ying Wang
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Meng Xue
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Yangyang Xia
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Qian Jiang
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Zhihua Huang
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China.,Pain Medicine Research Institute, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Cheng Huang
- Department of Physiology, Gannan Medical University, Ganzhou 341000, People's Republic of China.,Pain Medicine Research Institute, Gannan Medical University, Ganzhou 341000, People's Republic of China
| |
Collapse
|
42
|
MiR-187-3p mimic alleviates ischemia-reperfusion-induced pain hypersensitivity through inhibiting spinal P2X7R and subsequent mature IL-1β release in mice. Brain Behav Immun 2019; 79:91-101. [PMID: 31100367 DOI: 10.1016/j.bbi.2019.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion (IR)-induced pain hypersensitivity shares features of neuroinflammation and neuropathic pain, accompanied by overproduction of interleukin (IL)-1β. Multiple microRNAs (miRs) are dysregulated during IR; among these miRs, miR-187-3p was recently reported to drive IL-1β release in retinal disease by activating members of the purinergic receptor family. However, the roles of miR-187-3p in the spinal cord are unclear. Thus, we investigated whether miR-187-3p is involved in the pathogenesis of IR-induced pain hypersensitivity by regulating the P2X7R signal and subsequent IL-1β release. METHODS A mouse model was established by 5-min occlusion of the aortic arch. Pain hypersensitivity was assessed by the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). MiR-187-3p, P2X7R, cleaved caspase-1 and mature IL-1β expression levels were measured by RT-PCR and Western blotting. The in vivo roles of miR-187-3p, P2X7R and IL-1β were explored by intrathecal treatment with synthetic miRs, selective agonists and antagonists in separate experiments. Double immunofluorescence staining was performed to delineate the cellular distribution of P2X7R and IL-1β. RESULTS IR-induced progressively decreased PWT and PWL values were closely related to decreases in miR-187-3p and increases in P2X7R expression levels over time. The functional miR-187-3p/P2X7R pair was preliminarily predicted by a bioinformatic database and confirmed in vivo by quantitative analysis, as mimic-187 greatly increased miR-187-3p but decreased P2X7R expression levels, whereas inhibitor-187 reversed these changes. In contrast, downregulating P2X7R by mimic-187 or A-438079 treatment comparably increased PWT and PWL values in IR-injured mice, while upregulating P2X7R by inhibitor-187 or BzATP treatment decreased PWT and PWL values in sham-operated mice. Moreover, P2X7R and IL-1β immunoreactivities in each group were changed in the same patterns. This finding was further supported by results showing that downregulating IL-1β by A-438079 and IL-1β-neutralizing antibody similarly decreased P2X7R, cleaved caspase-1 and mature IL-1β expression levels, whereas BzATP treatment increased these levels. Expectedly, mimic-187 treatment preserved PWT and PWL values, with decreased cleaved caspase-1 and mature IL-1β expression levels, whereas inhibitor-187 reversed these effects. CONCLUSIONS The spinal miR-187-3p/P2X7R pair functioned in a mouse IR model. Increasing miR-187-3p protected against pain hypersensitivity and mature IL-1β overproduction, partially through inhibiting P2X7R activation.
Collapse
|
43
|
Zhang W, Liu Y, Sun Y, Liu Z. Effects of microencapsulated olfactory ensheathing cell transplantation on neuropathic pain and P2X7 receptor expression in the L4-5 spinal cord segment. Neurosci Lett 2019; 701:48-53. [DOI: 10.1016/j.neulet.2019.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 11/26/2022]
|
44
|
Tang Y, Yin HY, Liu J, Rubini P, Illes P. P2X receptors and acupuncture analgesia. Brain Res Bull 2018; 151:144-152. [PMID: 30458249 DOI: 10.1016/j.brainresbull.2018.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
Purinergic signaling has recently been suggested to constitute the cellular mechanism underlying acupuncture-induced analgesia (AA). By extending the original hypothesis on endogenous opioids being released during AA, Geoffrey Burnstock and Maiken Nedergaard supplied evidence for the involvement of purinoceptors (P2 and P1/A1 receptors) in the beneficial effects of AA. In view of certain pain states (e.g. neuropathic pain) which respond only poorly to therapy with standard analgesics, as well as with respect to the numerous unwanted effects of opioids and non-steroidal anti-inflammatory drugs, it is of great significance to search for alternative therapeutic options. Because clinical studies on AA yielded sometimes heterogeneous results, it is of eminent importance to relay on experiments carried out on laboratory animals, by evaluating the data with stringent statistical methods including comparison with a sufficient number of control groups. In this review, we summarize the state of the art situation with respect to the participation of P2 receptors in AA and try to forecast how the field is likely to move forward in the future.
Collapse
Affiliation(s)
- Yong Tang
- Medical & Nursing School, Chengdu University, 610106 Chengdu, China; Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China.
| | - Hai-Yan Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China
| | - Juan Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China
| | - Patrizia Rubini
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, 04107 Leipzig, Germany; Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China.
| |
Collapse
|
45
|
Shi C, Liu Y, Zhang W, Lei Y, Lu C, Sun R, Sun Y, Jiang M, Gu X, Ma Z. Intraoperative electroacupuncture relieves remifentanil-induced postoperative hyperalgesia via inhibiting spinal glial activation in rats. Mol Pain 2018; 13:1744806917725636. [PMID: 28825338 PMCID: PMC5570117 DOI: 10.1177/1744806917725636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Accumulating studies have suggested that remifentanil, the widely-used opioid analgesic in clinical anesthesia, can activate the pronociceptive systems and enhance postoperative pain. Glial cells are thought to be implicated in remifentanil-induced hyperalgesia. Electroacupuncture is a complementary therapy to relieve various pain conditions with few side effects, and glial cells may be involved in its antinociceptive effect. In this study, we investigated whether intraoperative electroacupuncture could relieve remifentanil-induced postoperative hyperalgesia by inhibiting the activation of spinal glial cells, the production of spinal proinflammatory cytokines, and the activation of spinal mitogen-activated protein kinases. Methods A rat model of remifentanil-induced postoperative hyperalgesia was used in this study. Electroacupuncture during surgery was conducted at bilateral Zusanli (ST36) acupoints. Behavior tests, including mechanical allodynia and thermal hyperalgesia, were performed at different time points. Astrocytic marker glial fibrillary acidic protein, microglial marker Iba1, proinflammatory cytokines, and phosphorylated mitogen-activated protein kinases in the spinal cord were detected by Western blot and/or immunofluorescence. Results Mechanical allodynia and thermal hyperalgesia were induced by both surgical incision and remifentanil infusion, and remifentanil infusion significantly exaggerated and prolonged incision-induced pronociceptive effects. Glial fibrillary acidic protein, Iba1, proinflammatory cytokines (interleukin-1β and tumor necrosis factor-α), and phosphorylated mitogen-activated protein kinases (p-p38, p-JNK, and p-ERK1/2) were upregulated after surgical incision, remifentanil infusion, and especially after their combination. Intraoperative electroacupuncture significantly attenuated incision- and/or remifentanil-induced pronociceptive effects, spinal glial activation, proinflammatory cytokine upregulation, and phosphorylated mitogen-activated protein kinase upregulation. Conclusions Our study suggests that remifentanil-induced postoperative hyperalgesia can be relieved by intraoperative electroacupuncture via inhibiting the activation of spinal glial cells, the upregulation of spinal proinflammatory cytokines, and the activation of spinal mitogen-activated protein kinases.
Collapse
Affiliation(s)
- Changxi Shi
- 1 Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province, China.,2 Department of Anesthesiology, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province, China
| | - Yue Liu
- 3 Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Province, China
| | - Wei Zhang
- 3 Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Province, China
| | - Yishan Lei
- 3 Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Province, China
| | - Cui'e Lu
- 3 Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Province, China
| | - Rao Sun
- 3 Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Province, China
| | - Yu'e Sun
- 3 Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Province, China
| | - Ming Jiang
- 3 Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Province, China
| | - Xiaoping Gu
- 3 Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Province, China
| | - Zhengliang Ma
- 3 Department of Anesthesiology, Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Province, China
| |
Collapse
|
46
|
Wang Y, Jiang Q, Xia YY, Huang ZH, Huang C. Involvement of α7nAChR in electroacupuncture relieving neuropathic pain in the spinal cord of rat with spared nerve injury. Brain Res Bull 2018; 137:257-264. [DOI: 10.1016/j.brainresbull.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/24/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022]
|
47
|
Lolis AM, Falsone S, Beric A. Common peripheral nerve injuries in sport: diagnosis and management. HANDBOOK OF CLINICAL NEUROLOGY 2018; 158:401-419. [PMID: 30482369 DOI: 10.1016/b978-0-444-63954-7.00038-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peripheral nerve injuries are unusual in sport but impact an athlete's safe return to play. Nerve injuries result from either acute trauma (most commonly in contact/collision sports) or from repetitive microtrauma and overuse. Diagnosis of overuse nerve injuries includes nerve localization and surrounding soft-tissue anatomy, and must account for possible causes of repetitive microtrauma, including biomechanics, equipment, training schedule, and recovery. Prognosis is related to the type of nerve injury. Management should not simply be rest and gradual return to sport but should address biomechanical and training predispositions to injury. Understanding the type of injury and the tissues involved will guide appropriate rehabilitation decisions. Recognizing acute care considerations and implementing appropriate strategies can help minimize secondary trauma to an area following acute injury.
Collapse
Affiliation(s)
- Athena M Lolis
- Division of Clinical Neurophysiology, Department of Neurology, NYU School of Medicine, New York, NY, United States
| | - Susan Falsone
- Department of Athletic Training, A.T. Still University, Mesa, AZ, United States
| | - Aleksandar Beric
- Division of Clinical Neurophysiology, Department of Neurology, NYU School of Medicine, New York, NY, United States.
| |
Collapse
|
48
|
Huang J, You X, Liu W, Song C, Lin X, Zhang X, Tao J, Chen L. Electroacupuncture ameliorating post-stroke cognitive impairments via inhibition of peri-infarct astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:480. [PMID: 29017492 PMCID: PMC5635586 DOI: 10.1186/s12906-017-1974-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
Background During ischemic stroke (IS), adenosine 5′-triphosphate (ATP) is released from damaged nerve cells of the infract core region to the extracellular space, invoking peri-infarct glial cellular P2 purinoceptors singling, and causing pro-inflammatory cytokine secretion, which is likely to initiate or aggravate motor and cognitive impairment. It has been proved that electroacupuncture (EA) is an effective and safe strategy used in anti-inflammation. However, EA for the role of purine receptors in the central nervous system has not yet been reported. Methods Ischemia-reperfusion injured rat model was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). EA treatment at the DU 20 and DU 24 acupoints treatment were conducted to rats from the 12 h after MCAO/R injury for consecutive 7 days. The neurological outcomes, infarction volumes and the level of astroglial and microglial/macrophage hyperplasia, inflammatory cytokine and P2X7R and P2Y1R expression in the peri-infarct hippocampal CA1and sensorimotor cortex were investigated after IS to evaluate the MCAO/R model and therapeutic mechanism of EA treatment. Results EA effectively reduced the level of pro-inflammatory cytokine interleukin-1β (IL-1β) as evidenced by reduction in astroglial and microglial/macrophage hyperplasia and the levels of P2X7R and ED1, P2X7R and GFAP, P2Y1R and ED1, P2Y1R and GFAP co-expression in peri-infarct hippocampal CA1 and sensorimotor cortex compared with that of MCAO/R model and Non-EA treatment, accompanied by the improved neurological deficit and the motor and memory impairment outcomes. Therefore, our data support the hypothesis that EA could exert its anti-inflammatory effect via inhibiting the astroglial and microglial/macrophage P2 purinoceptors (P2X7R and P2Y1R)-mediated neuroinflammation after MCAO/R injury. Conclusion Astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia in peri-infarct hippocampal CA1 and sensorimotor cortex were attenuated by EA treatment after ischemic stroke accompanied by the improved motor and memory behavior performance. Electronic supplementary material The online version of this article (10.1186/s12906-017-1974-y) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Bäckryd E, Tanum L, Lind AL, Larsson A, Gordh T. Evidence of both systemic inflammation and neuroinflammation in fibromyalgia patients, as assessed by a multiplex protein panel applied to the cerebrospinal fluid and to plasma. J Pain Res 2017; 10:515-525. [PMID: 28424559 PMCID: PMC5344444 DOI: 10.2147/jpr.s128508] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In addition to central hyperexcitability and impaired top–down modulation, chronic inflammation probably plays a role in the pathophysiology of fibromyalgia (FM). Indeed, on the basis of both animal experiments and human studies involving the analysis of cytokines and other inflammation-related proteins in different body fluids, neuroinflammatory mechanisms are considered to be central to the pathophysiology of many chronic pain conditions. However, concerning FM, previous human plasma/serum and/or cerebrospinal fluid (CSF) cytokine studies have looked only at a few predetermined cytokine candidates. Instead of analyzing only a few substances at a time, we used a new multiplex protein panel enabling simultaneous analysis of 92 inflammation-related proteins. Hence, we investigated the CSF and plasma inflammatory profiles of 40 FM patients compared with CSF from healthy controls (n=10) and plasma from blood donor controls (n=46). Using multivariate data analysis by projection, we found evidence of both neuroinflammation (as assessed in CSF) and chronic systemic inflammation (as assessed in plasma). Two groups of proteins (one for CSF and one for plasma) highly discriminating between patients and controls are presented. Notably, we found high levels of CSF chemokine CX3CL1 (also known as fractalkine). In addition, previous findings concerning IL-8 in FM were replicated, in both CSF and plasma. This is the first time that such an extensive inflammatory profile has been described for FM patients. Hence, FM seems to be characterized by objective biochemical alterations, and the lingering characterization of its mechanisms as essentially idiopathic or even psychogenic should be seen as definitively outdated.
Collapse
Affiliation(s)
- Emmanuel Bäckryd
- Pain and Rehabilitation Center, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Lars Tanum
- Department of R&D in Mental Health, Akershus University Hospital, Lørenskog, Norway
| | | | - Anders Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
50
|
Yamashita T, Yamamoto S, Zhang J, Kometani M, Tomiyama D, Kohno K, Tozaki-Saitoh H, Inoue K, Tsuda M. Duloxetine Inhibits Microglial P2X4 Receptor Function and Alleviates Neuropathic Pain after Peripheral Nerve Injury. PLoS One 2016; 11:e0165189. [PMID: 27768754 PMCID: PMC5074465 DOI: 10.1371/journal.pone.0165189] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/08/2016] [Indexed: 11/29/2022] Open
Abstract
P2X4 receptors (P2X4R) are a family of ATP-gated non-selective cation channels. We previously demonstrated that activation of P2X4R in spinal microglia is crucial for neuropathic pain, a highly debilitating chronic pain condition, suggesting that P2X4R is a potential therapeutic target for treating neuropathic pain. Thus, the identification of a compound that has a potent inhibitory effect on P2X4R is an important clinical challenge. In the present study, we screened a chemical library of clinically approved drugs and show for the first time that duloxetine, a serotonin and noradrenaline reuptake inhibitor, has an inhibitory effect on rodent and human P2X4R. In primary cultured microglial cells, duloxetine also inhibited P2X4R-, but not P2X7R-, mediated responses. Moreover, intrathecal administration of duloxetine in a model of neuropathic pain produced a reversal of nerve injury-induced mechanical allodynia, a cardinal symptom of neuropathic pain. In rats that were pretreated with a serotonin-depleting agent and a noradrenaline neurotoxin, the antiallodynic effect of duloxetine was reduced, but still remained. Based on these results, we suggest that, in addition to duloxetine’s primary inhibitory action on serotonin and noradrenaline transporters, an inhibitory effect on P2X4R may be involved at least in part in an antiallodynic effect of intrathecal duloxetine in a model of neuropathic pain.
Collapse
Affiliation(s)
- Tomohiro Yamashita
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shota Yamamoto
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jiaming Zhang
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Miho Kometani
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Daisuke Tomiyama
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keita Kohno
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hidetoshi Tozaki-Saitoh
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- * E-mail: (MT); (KI)
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- * E-mail: (MT); (KI)
| |
Collapse
|