1
|
Zheng H, Xiao X, Han Y, Wang P, Zang L, Wang L, Zhao Y, Shi P, Yang P, Guo C, Xue J, Zhao X. Research progress of propofol in alleviating cerebral ischemia/reperfusion injury. Pharmacol Rep 2024; 76:962-980. [PMID: 38954373 DOI: 10.1007/s43440-024-00620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Ischemic stroke is a leading cause of adult disability and death worldwide. The primary treatment for cerebral ischemia patients is to restore blood supply to the ischemic region as quickly as possible. However, in most cases, more severe tissue damage occurs, which is known as cerebral ischemia/reperfusion (I/R) injury. The pathological mechanisms of brain I/R injury include mitochondrial dysfunction, oxidative stress, excitotoxicity, calcium overload, neuroinflammation, programmed cell death and others. Propofol (2,6-diisopropylphenol), a short-acting intravenous anesthetic, possesses not only sedative and hypnotic effects but also immunomodulatory and neuroprotective effects. Numerous studies have reported the protective properties of propofol during brain I/R injury. In this review, we summarize the potential protective mechanisms of propofol to provide insights for its better clinical application in alleviating cerebral I/R injury.
Collapse
Affiliation(s)
- Haijing Zheng
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
- Zhengzhou Central Hospital, Zhengzhou, China
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Xian Xiao
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Yiming Han
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Pengwei Wang
- Department of Pharmacy, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, Henan, 453100, China
| | - Lili Zang
- Department of Surgery, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, China
| | - Lilin Wang
- Department of Pediatric Surgery, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, China
| | - Yinuo Zhao
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Peijie Shi
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Pengfei Yang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Chao Guo
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Jintao Xue
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Xinghua Zhao
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| |
Collapse
|
2
|
Chae MS, Kim JY, Koh HJ. Early Cognitive Function after Deep Sedation Using Different Anesthetic Agents in Pediatric Patients: A Prospective, Randomized Controlled Trial. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1342. [PMID: 39202623 PMCID: PMC11356384 DOI: 10.3390/medicina60081342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: The impact of anesthetic agents on memory and cognitive function following general anesthesia is of great interest, particularly regarding their effects on the developing pediatric brain. While numerous studies have examined the relationship between anesthetic drugs and brain function, research focusing on early cognitive function following sedation remains limited. Materials and Methods: This study was a prospective, randomized controlled trial involving 148 pediatric patients scheduled for hematological procedures, specifically bone marrow aspiration (BMA) and intrathecal chemotherapy (ITC). Patients were divided into two groups based on the primary anesthetic used: the inhalational sedation group (IHG), in which sevoflurane was used, and the intravenous sedation group (IVG), which received propofol infusion. Apart from the main anesthetic agent, all sedation methods were consistent across both groups. A cognitive function test administered before sedation involved memorizing four distinct images, each associated with a different number. Then, the patients were asked to identify the omitted image upon awakening in the recovery room. Herein, this pre- vs. post-sedation test is called the early recognition assessment (ERA) tool. The primary outcome was the correct response rate after sedation for the two groups. Secondary outcomes included the sedation score, the behavior response score, and the correct response rates according to the number of sedation procedures. Results: This study included 130 patients in the final analysis, with 74 originally assigned to each group. The initial cognitive assessment revealed no significant difference in performance between the anesthetic agents. In addition, no differences were observed in the rates of correct responses or post-sedation scores after repeated procedures. However, the IVG demonstrated higher behavior response scores compared to the IHG. Conclusions: There were no significant differences in the rates of correct responses using the ERA tool between the two groups, irrespective of the number of sedation procedures performed. While some differences were noted in preoperative, intraoperative, and post-anesthesia care, these did not significantly impact the cognitive outcomes measured.
Collapse
Affiliation(s)
| | | | - Hyun Jung Koh
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.S.C.); (J.Y.K.)
| |
Collapse
|
3
|
Hu Q, Cai H, Ke X, Wang H, Zheng D, Chen Y, Wang Y, Chen G. The lateral septum partakes the regulation of propofol-induced anxiety-like behavior. Eur J Pharmacol 2024; 977:176756. [PMID: 38897021 DOI: 10.1016/j.ejphar.2024.176756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/23/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Repeated exposure to propofol during early brain development is associated with anxiety disorders in adulthood, yet the mechanisms underlying propofol-induced susceptibility to anxiety disorders remain elusive. The lateral septum (LS), primarily composed of γ-aminobutyric acidergic (GABAergic) neurons, serves as a key brain region in the regulation of anxiety. However, it remains unclear whether LS GABAergic neurons are implicated in propofol-induced anxiety. Therefore, we conducted c-Fos immunostaining of whole-brain slices from mice exposed to propofol during early life. Our findings indicate that propofol exposure activates GABAergic neurons in the LS. Selective activation of LS GABAergic neurons resulted in increased anxiety-like behavior, while selective inhibition of these neurons reduced such behaviors. These results suggest that the LS is a critical brain region involved in propofol-induced anxiety. Furthermore, we investigated the molecular mechanism of propofol-induced anxiety in the LS. Microglia activation underlies the development of anxiety. Immunofluorescence staining and Western blot analysis of LS revealed activated microglia and significantly elevated levels of phospho-NF-κB p65 protein. Additionally, a decrease in the number of neuronal spines was observed. Our study highlights the crucial role of the LS in the development of anxiety-like behavior in adulthood following childhood propofol exposure, accompanied by the activation of inflammatory pathways.
Collapse
Affiliation(s)
- Qian Hu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huajing Cai
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinlong Ke
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hongwei Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Du Zheng
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
4
|
Liu L, Gao W, Yang S, Yang F, Li S, Tian Y, Yang L, Deng Q, Gan Z, Tu S. Ferritinophagy-Mediated Hippocampus Ferroptosis is Involved in Cognitive Impairment in Immature Rats Induced by Hypoxia Combined with Propofol. Neurochem Res 2024; 49:1703-1719. [PMID: 38512425 DOI: 10.1007/s11064-024-04128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
Propofol is a clinically common intravenous general anesthetic and is widely used for anesthesia induction, maintenance and intensive care unit (ICU) sedation in children. Hypoxemia is a common perioperative complication. In clinical work, we found that children with hypoxemia who received propofol anesthesia experienced significant postoperative cognitive changes. To explore the causes of this phenomenon, we conducted the study. In this study, our in vivo experiments found that immature rats exposed to hypoxia combined with propofol (HCWP) could develop cognitive impairment. We performed the RNA-seq analysis of its hippocampal tissues and found that autophagy and ferroptosis may play a role in our model. Next, we verified the participation of the two modes of death by detecting the expression of autophagy-related indexes Sequestosome 1 (SQSTM1) and Beclin1, and ferroptosis-related indicators Fe2+, reactive oxygen species (ROS) and glutathione peroxidase 4 (GPX4). Meanwhile, we found that ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, could improve cognitive impairment in immature rats caused by HCWP. In addition, we found that nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy, which acted as a key junction between autophagy and ferroptosis, was also involved. Finally, our in vitro experiments concluded that autophagy activation was an upstream factor in HCWP-induced hippocampus ferroptosis through the intervention of autophagy inhibitor 3-methyladenine (3-MA). Our study was expected to provide an attractive therapeutic target for cognitive impairment that occurred after HCWP exposures.
Collapse
Affiliation(s)
- Ling Liu
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China
| | - Wen Gao
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China
| | - Shun Yang
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China
| | - Fei Yang
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China
| | - Shangyingying Li
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China
| | - Yaqiong Tian
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China
| | - Li Yang
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China
| | - Qianyu Deng
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China
| | - Zhengwei Gan
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China
| | - Shengfen Tu
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing City, China.
| |
Collapse
|
5
|
Yang Y, Liu T, Li J, Yan D, Hu Y, Wu P, Fang F, McQuillan PM, Hang W, Leng J, Hu Z. General anesthetic agents induce neurotoxicity through astrocytes. Neural Regen Res 2024; 19:1299-1307. [PMID: 37905879 PMCID: PMC11467951 DOI: 10.4103/1673-5374.385857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/10/2023] [Accepted: 09/09/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Neuroscientists have recognized the importance of astrocytes in regulating neurological function and their influence on the release of glial transmitters. Few studies, however, have focused on the effects of general anesthetic agents on neuroglia or astrocytes. Astrocytes can also be an important target of general anesthetic agents as they exert not only sedative, analgesic, and amnesic effects but also mediate general anesthetic-induced neurotoxicity and postoperative cognitive dysfunction. Here, we analyzed recent advances in understanding the mechanism of general anesthetic agents on astrocytes, and found that exposure to general anesthetic agents will destroy the morphology and proliferation of astrocytes, in addition to acting on the receptors on their surface, which not only affect Ca2+ signaling, inhibit the release of brain-derived neurotrophic factor and lactate from astrocytes, but are even involved in the regulation of the pro- and anti-inflammatory processes of astrocytes. These would obviously affect the communication between astrocytes as well as between astrocytes and neighboring neurons, other neuroglia, and vascular cells. In this review, we summarize how general anesthetic agents act on neurons via astrocytes, and explore potential mechanisms of action of general anesthetic agents on the nervous system. We hope that this review will provide a new direction for mitigating the neurotoxicity of general anesthetic agents.
Collapse
Affiliation(s)
- Yanchang Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Tiantian Liu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Anesthesiology, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang Province, China
| | - Jun Li
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Anesthesiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang Province, China
| | - Dandan Yan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yuhan Hu
- Cell Biology Department, Yale University, New Haven, CT, USA
| | - Pin Wu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Fuquan Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Patrick M. McQuillan
- Department of Anesthesiology, Penn State Hershey Medical Centre, Penn State College of Medicine, Hershey, PA, USA
| | - Wenxin Hang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianhang Leng
- Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhiyong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
6
|
He H, Han Y, Wan Q, Yue Y, Li S, Su B, Li J. Curcumin inhibits propofol-induced autophagy of MN9D cells via Akt/mTOR/p70S6K signaling pathway. Cell Biol Int 2024; 48:461-472. [PMID: 38196274 DOI: 10.1002/cbin.12117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
The rapid rise in propofol dependency and abuse has highlighted limited resources for addressing substance abuse-related cognitive impairment, prompting the development of novel therapies. Dysregulated autophagy flow accelerates neuronal cell death, and interventions countering this dysregulation offer an appealing strategy for neuronal protection. Curcumin, a potent natural polyphenol derived from turmeric rhizomes, is renowned for its robust antineurotoxic properties and enhanced cognitive function. Utilizing CCK-8 and Ki67 fluorescent staining, our study revealed that curcumin treatment increased cell viability and proliferative potential in MN9D cells exposed to propofol-induced neurotoxicity. Furthermore, enzyme-linked immunosorbent assay and western blot analysis demonstrated the partial restoration of dopamine synthesis, secretion levels, and TH expression in damaged MN9D cells treated with curcumin. Scanning electrode microscope images displayed reduced autolysosomes and phagosomes in curcumin-treated cells compared to the propofol group. Immunoblotting revealed that curcumin mitigated the degradation of LC3I to LC3II and p62 induced by propofol stimulation, with green fluorescence expression of LC3 postcurcumin treatment resembling that following autophagy inhibitor HCQ treatment, indicating that modulating autophagy flow can alleviate propofol's toxic effects. Moreover, curcumin treatment upregulated the Akt/mTOR/p70S6K signaling pathway, suggesting that curcumin potentially curtails autophagy dysregulation in nerve cells by activating Akt/mTOR/p70S6K. In conclusion, our findings suggest that curcumin can ameliorate propofol abuse-induced neurotoxicity, partially through autophagy regulation and Akt/mTOR/p70S6K signaling activation.
Collapse
Affiliation(s)
- Hongxia He
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Development and Regeneration Key Lab of Sichuan Province, Department of Histology and Embryology, Department of Pathology, Chengdu Medical College, Chengdu, Sichuan, China
- Mianyang Key Laboratory of Anesthesia and Neuro-regulation, Department of Anesthesiology, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Yuping Han
- Development and Regeneration Key Lab of Sichuan Province, Department of Histology and Embryology, Department of Pathology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Qiuyan Wan
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Development and Regeneration Key Lab of Sichuan Province, Department of Histology and Embryology, Department of Pathology, Chengdu Medical College, Chengdu, Sichuan, China
- Mianyang Key Laboratory of Anesthesia and Neuro-regulation, Department of Anesthesiology, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Yao Yue
- Development and Regeneration Key Lab of Sichuan Province, Department of Histology and Embryology, Department of Pathology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Shurong Li
- Development and Regeneration Key Lab of Sichuan Province, Department of Histology and Embryology, Department of Pathology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Bingyin Su
- Development and Regeneration Key Lab of Sichuan Province, Department of Histology and Embryology, Department of Pathology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Jun Li
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Mianyang Key Laboratory of Anesthesia and Neuro-regulation, Department of Anesthesiology, Mianyang Central Hospital, Mianyang, Sichuan, China
| |
Collapse
|
7
|
Ni C, Xu W, Mu B, Li H, Geng J, Qu Y, Tian Y, Yu J, Tian N, Wang X, Chen C, Jin X, Zheng H. The feasibility of dexmedetomidine-led anesthesia maintenance strategy during major abdominal surgery. Heliyon 2024; 10:e26983. [PMID: 38444477 PMCID: PMC10912630 DOI: 10.1016/j.heliyon.2024.e26983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
Background Dexmedetomidine is known for its selective action on α2-adrenoceptor sites and is recognized for its neuroprotective capabilities. It can improve postoperative cognitive function. Commonly used anesthetics, such as sevoflurane and propofol, have been reported to affect postoperative cognitive function. Therefore, it could be valuable to explore dexmedetomidine-led anesthesia strategy. This study was designed to assess the performance, safety, and effective infusion rate in anesthesia maintenance, to explore a feasible dexmedetomidine-led anesthesia maintenance protocol, and to provide a foundation for potential combined anesthesia. Methods Thirty patients aged 18-60 years, classified as ASA I or II, undergoing abdominal surgery were involved. The anesthesia maintenance was achieved with dexmedetomidine, remifentanil and rocuronium. Dixon up-and-down sequential methodology was utilized to ascertain the ED50 of dexmedetomidine for maintaining Patient State Index (PSI) 25-40 (depth of stage III anesthesia). Intraoperative HR, BP and depth of anesthesia were monitored and controlled. The wake-up time from anesthesia, the incidence of intraoperative awareness and postoperative delirium, and the patients' satisfaction were assessed. Results The results indicated that dexmedetomidine-led anesthesia could maintain the depth of stage III anesthesia during abdominal surgery. The ED50 and ED95 of dexmedetomidine infusion rates during anesthesia maintenance were 2.298 μg/kg·h (95%CI: 2.190-2.404 μg/kg·h) and 3.765 μg/kg·h (95%CI: 3.550-4.050 μg/kg·h). Continuous infusion of dexmedetomidine and 0.1-0.3 μg/kg·min remifentanil could maintain PSI 25-40, and provide appropriate anesthesia depth for abdominal surgery. Perioperative bradycardia and hypertension could be rapidly corrected with atropine and nitroglycerin. The median wake-up time after anesthesia was 4.8 min, the perioperative maximum HR had significant correlation with wake-up time and intraoperative dexmedetomidine dose. No intraoperative awareness and postoperative delirium occurred; the patients were satisfied with dexmedetomidine-led anesthesia. Conclusions dexmedetomidine-led strategy could maintain stable depth of anesthesia throughout surgery, and the ED50 of dexmedetomidine infusion rates was 2.298 μg/kg·h. Intraoperative HR, BP and depth of anesthesia require monitoring, the bradycardia and hypertension could be rapidly corrected.
Collapse
Affiliation(s)
- Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Wenjie Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Bing Mu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hongyi Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jiao Geng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yinyin Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, PR China
| | - Yi Tian
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jie Yu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Naiyuan Tian
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiaoxiao Wang
- Clinical Epidemiology Research Center, Peking University Third Hospital, Beijing, PR China
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xu Jin
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
8
|
Zhou Z, Dai W, Liu T, Shi M, Wei Y, Chen L, Xie Y. Transfer of massive mitochondria from astrocytes reduce propofol neurotoxicity. Neurosci Lett 2024; 818:137542. [PMID: 37926293 DOI: 10.1016/j.neulet.2023.137542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Studies have shown that propofol-induced neurotoxicity is mediated by disruption of mitochondrial fission and fusion, leading to an imbalance in energy supply for developing neurons. Healthy mitochondria released from astrocytes migrate to compromised neurons to mitigate propofol-induced neurotoxicity, yet the precise mechanisms involved require further clarification. In our investigation, primary neurons were incubated with propofol, which decreased ATP synthesis and mitochondrial membrane potential, increased ROS generation and neuronal apoptosis. Notably, astrocytes did not respond to the deleterious effects of propofol. The culture medium of neurons or astrocytes incubated with propofol was collected. It was found that mitochondrial ratio was decreased and mitochondrial function was impaired. Non-contact co-culture of neuro-astrocytes facilitated transcellular mitochondrial transfer in both physiological and propofol interventions, but failed to reverse propofol-induced neurotoxicity. The more pronounced damage to neuronal mitochondria induced by propofol compared to that in astrocytes alludes to secondary injury. Damaged neurons incubated with large, functional extracellular mitochondria derived from astrocytes demonstrates transfer of mitochondria to neurons, effectively reversing propofol-induced neurotoxicity. This discovery presents a novel mitochondrial transfer of neuro-astrocytes crosstalk that contributes to neuroprotection and neurological recovery in neurotoxicity.
Collapse
Affiliation(s)
- Zhan Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Weixin Dai
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Tianxiao Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Min Shi
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Yi Wei
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Lifei Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
9
|
İZGİ M, SUR E. Determination of the embryotoxic effects of propofol injected into eggs on the cerebellum and spinal cord using histologic methods: an animal study. Turk J Med Sci 2023; 54:1-15. [PMID: 38812654 PMCID: PMC11031173 DOI: 10.55730/1300-0144.5760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/15/2024] [Accepted: 11/29/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim This study aims to determine the possible embryotoxic effects of propofol on the cerebellum and spinal cord using fertile chicken eggs. Materials and methods A total of 430 fertile eggs were divided into 5 groups: control, saline, 2.5 mg.kg-1, 12.5 mg.kg-1, and 37.5 mg.kg-1 propofol. Injections were made immediately before incubation via the air chamber. On the 15th, 18th, and 21st day of incubation, 6 embryos from each group were evaluated. Serial paraffin sections taken from the cerebellum and spinal cord were stained with hematoxylin-eosin, Kluver-Barrera, toluidine blue, and periodic acid-Schiff's reaction. The outer granular layer and total cortex thickness were measured, and the linear density of the Purkinje cells was determined. The ratios of the substantia grisea surface area to the total surface area of the spinal cord were calculated. The transverse and longitudinal diameters of the canalis centralis were also assessed. Results No structural malformation was observed in any embryos examined macroscopically. No significant difference was observed between the groups in terms of development and histologic organization of the cerebellum and spinal cord. However, on the 15th, 18th, and 21st day, the outer granular layer (p < 0.001 for all days) and the total cortex thickness (p < 0.01, p < 0.001, and p < 0.001, respectively) decreased significantly in different propofol dose groups in varying degrees in the cerebellum. Similarly, in the spinal cord, there were significant changes in the ratios of the substantia grisea surface area to the total surface area (p < 0.01 and p < 0.001, respectively). Conclusion It was concluded that the in-ovo-administered propofol given immediately before incubation has adverse effects on the developing cerebellum and spinal cord. Therefore, it is important for anesthesiologists always to remain vigilant when treating female patients of childbearing age.
Collapse
Affiliation(s)
- Murat İZGİ
- Department of Anaesthesiology and Reanimation, Faculty of Medicine, Hacettepe University, Ankara,
Turkiye
| | - Emrah SUR
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Selçuk University, Konya,
Turkiye
| |
Collapse
|
10
|
Yu S, Liao J, Lin X, Luo Y, Lu G. Crucial role of autophagy in propofol-treated neurological diseases: a comprehensive review. Front Cell Neurosci 2023; 17:1274727. [PMID: 37946715 PMCID: PMC10631783 DOI: 10.3389/fncel.2023.1274727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Neurological disorders are the leading cause of disability and death globally. Currently, there is a significant concern about the therapeutic strategies that can offer reliable and cost-effective treatment for neurological diseases. Propofol is a widely used general intravenous anesthetic in the clinic. Emerging studies demonstrate that propofol exerts neuroprotective effects on neurological diseases and disorders, while its underlying pathogenic mechanism is not well understood. Autophagy, an important process of cell turnover in eukaryotes, has been suggested to involve in the neuroprotective properties developed by propofol. In this narrative review, we summarized the current evidence on the roles of autophagy in propofol-associated neurological diseases. This study highlighted the effect of propofol on the nervous system and the crucial roles of autophagy. According to the 21 included studies, we found that propofol was a double-edged sword for neurological disorders. Several eligible studies reported that propofol caused neuronal cell damage by regulating autophagy, leading to cognitive dysfunction and other neurological diseases, especially high concentration and dose of propofol. However, some of them have shown that in the model of existing nervous system diseases (e.g., cerebral ischemia-reperfusion injury, electroconvulsive therapy injury, cobalt chloride-induced injury, TNF-α-induced injury, and sleep deprivation-induced injury), propofol might play a neuroprotective role by regulating autophagy, thus improving the degree of nerve damage. Autophagy plays a pivotal role in the neurological system by regulating oxidative stress, inflammatory response, calcium release, and other mechanisms, which may be associated with the interaction of a variety of related proteins and signal cascades. With extensive in-depth research in the future, the autophagic mechanism mediated by propofol will be fully understood, which may facilitate the feasibility of propofol in the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sicong Yu
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Xuezheng Lin
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yu Luo
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Guangtao Lu
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
11
|
Gullapalli P, Fossati N, Stamenkovic D, Haque M, Cattano D. Tale of Two Cities: narrative review of oxygen. F1000Res 2023; 12:246. [PMID: 37224313 PMCID: PMC10189297 DOI: 10.12688/f1000research.130592.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
The human brain contributes 2% of the body weight yet receives 15% of cardiac output and demands a constant supply of oxygen (O 2) and nutrients to meet its metabolic needs. Cerebral autoregulation is responsible for maintaining a constant cerebral blood flow that provides the supply of oxygen and maintains the energy storage capacity. We selected oxygen administration-related studies published between 1975-2021 that included meta-analysis, original research, commentaries, editorial, and review articles. In the present narrative review, several important aspects of the oxygen effects on brain tissues and cerebral autoregulation are discussed, as well the role of exogenous O 2 administration in patients with chronic ischemic cerebrovascular disease: We aimed to revisit the utility of O 2 administration in pathophysiological situations whether or not being advantageous. Indeed, a compelling clinical and experimental body of evidence questions the utility of routine oxygen administration in acute and post-recovery brain ischemia, as evident by studies in neurophysiology imaging. While O 2 is still part of common clinical practice, it remains unclear whether its routine use is safe.
Collapse
Affiliation(s)
- Pranathi Gullapalli
- Department of Anesthesiology, McGovern Medical School UTHealth, Hosuton, USA
| | - Nicoletta Fossati
- Department of Anaesthesia, St George’s Hospital and Medical School, London, UK
| | | | - Muhammad Haque
- Department of Neurology, McGovern Medical School UTHealth, Houston, USA
| | - Davide Cattano
- Department of Anesthesiology, McGovern Medical School UTHealth, Hosuton, USA
| |
Collapse
|
12
|
She YJ, Xu HP, Gao Y, Wang Q, Zheng J, Ruan X. Calpain-TRPC6 signaling pathway contributes to propofol-induced developmental neurotoxicity in rats. Neurotoxicology 2023; 95:56-65. [PMID: 36640868 DOI: 10.1016/j.neuro.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
Growing animal studies suggest a risk of neuronal damage following early childhood exposure to anesthesia and sedation drugs including propofol. Inhibition of transient receptor potential canonical 6 (TRPC6) degradation has been shown to protect neurons from neuronal damage induced by multiple brain injury models. Our aim was to investigate whether calpain-TRPC6 pathway is a target in propofol-induced neurotoxicity. Postnatal day (PND) 7 rats were exposed to five bolus injections of 25 mg/kg propofol or 10 % intralipid at hourly intervals. Neuronal injury was assessed by the expression pattern of TUNEL staining and cleaved-caspase-3. The Morris water maze test was used to evaluate learning and memory functions in later life. Pretreatments consisting of intracerebroventricular injections of a TRPC6 agonist, TRPC6 inhibitor, or calpain inhibitor were used to confirm the potential role of the calpain-TRPC6 pathway in propofol-induced neurotoxicity. Prolonged exposure to propofol induced neuronal injury, downregulation of TRPC6, and enhancement of calpain activity in the cerebral cortex up to 24 h after anesthesia. It also induced long-term behavioral disorders, manifesting as longer escape latency at PND40 and PND41 and as fewer platform-crossing times and less time spent in the target quadrant at PND42. These propofol-induced effects were attenuated by treatment with the TRPC6 agonist and exaggerated by the TRPC6 inhibitor. Pretreatment with the calpain inhibitor alleviated the propofol-induced TRPC6 downregulation and neuronal injury in the cerebral cortex. In conclusion, our data suggest that a calpain-TRPC6 signaling pathway contributes to propofol-induced acute cortical neuron injury and long-term behavioral disorders in rats.
Collapse
Affiliation(s)
- Ying-Jun She
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510600, China
| | - Hai-Ping Xu
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510600, China
| | - Yin Gao
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510600, China
| | - Qiong Wang
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510600, China
| | - Jun Zheng
- Department of Anesthesiology and Pain Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xiangcai Ruan
- Department of Anesthesiology and Pain Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
13
|
Chang C, Bai W, Li J, Huo S, Wang T, Shao J. Effects of Subchronic Propofol Administration on the Proliferation and Differentiation of Neural Stem Cells in Rat Hippocampus. CURRENT THERAPEUTIC RESEARCH 2023; 98:100691. [PMID: 36798524 PMCID: PMC9925857 DOI: 10.1016/j.curtheres.2023.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Background Although controversial, experimental data suggest the use of propofol may be associated with neurotoxicity. The mechanisms responsible for propofol neurotoxicity in animals are not yet clear. Objective This study aimed to determine the effects of propofol on the proliferation of neural stem cells in rat hippocampus and the mechanisms underlying these effects. Methods Forty-five adult male Sprague-Dawley rats were randomly divided into 5 groups: Control (N group), intralipid (V group), 30 mg/kg propofol (Prop30 group), 60 mg/kg propofol (Prop60 group), and 120 mg/kg propofol (Prop120 group). The rats in all groups received 5, once daily intraperitoneal injections. For each of the 5 days, the N group received 6 mL/kg normal saline, the V group received 6 mL/kg fat emulsion, the Prop30 group received 30 mg/kg propofol, the Prop60 group received 60 mg/kg propofol, and the Prop120 group received 120 mg/kg propofol. Memory function was scored daily using the Morris water maze test. Immunofluorescence staining was used to histologically monitor the proliferation and differentiation of the rats' hippocampal neural stem cells, and real time quantitative polymerase chain reaction and Western blotting were used to determine the expression of Notch3, Hes1, and Hes5. Results Compared with the N group, the Prop120 group exhibited reduced learning and memory, whereas there were no significant differences for the Prop60 group. The number of β-tubulin III+ cells increased in the Prop60 group, but decreased in the Prop120 group. Compared with the N group, the relative expression of Notch3 and Hes5 increased significantly in the Prop60 group, whereas this expression decreased in the Prop120 group. Conclusions These data demonstrate that repeated, subchronic (5 days) intraperitoneal injections of 60 mg/kg propofol can effectively promote rat hippocampal neural stem cells proliferation and differentiation, and that this is likely mediated by its effects on the Notch3-Hes5 pathway.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China,Department of anesthesiology, The first people's hospital of huaihua, huaihua, Hunan Province, China
| | - Wenya Bai
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Junjie Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Siying Huo
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Tinghua Wang
- Experimental Animal Center, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China,Address correspondence to: Jian-Lin Shao, PhD, Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Rd, Kunming, Yunnan 650032, P.R. China.
| |
Collapse
|
14
|
Wang J, Liu Z. Research progress on molecular mechanisms of general anesthetic-induced neurotoxicity and cognitive impairment in the developing brain. Front Neurol 2022; 13:1065976. [PMID: 36504660 PMCID: PMC9729288 DOI: 10.3389/fneur.2022.1065976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
General anesthetics-induced neurotoxicity and cognitive impairment in developing brains have become one of the current research hotspots in the medical science community. The underlying mechanisms are complex and involve various related molecular signaling pathways, cell mediators, autophagy, and other pathological processes. However, few drugs can be directly used to treat neurotoxicity and cognitive impairment caused by general anesthetics in clinical practice. This article reviews the molecular mechanism of general anesthesia-induced neurotoxicity and cognitive impairment in the neonatal brain after surgery in the hope of providing critical references for the treatments of clinical diseases.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China,Baotou Clinical Medical College, Inner Mongolia Medical University, Baotou, China
| | - Zhihui Liu
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China,*Correspondence: Zhihui Liu
| |
Collapse
|
15
|
Ji D, Karlik J. Neurotoxic Impact of Individual Anesthetic Agents on the Developing Brain. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1779. [PMID: 36421228 PMCID: PMC9689007 DOI: 10.3390/children9111779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 11/14/2022] [Indexed: 08/04/2023]
Abstract
Concerns about the safety of anesthetic agents in children arose after animal studies revealed disruptions in neurodevelopment after exposure to commonly used anesthetic drugs. These animal studies revealed that volatile inhalational agents, propofol, ketamine, and thiopental may have detrimental effects on neurodevelopment and cognitive function, but dexmedetomidine and xenon have been shown to have neuroprotective properties. The neurocognitive effects of benzodiazepines have not been extensively studied, so their effects on neurodevelopment are undetermined. However, experimental animal models may not truly represent the pathophysiological processes in children. Multiple landmark studies, including the MASK, PANDA, and GAS studies have provided reassurance that brief exposure to anesthesia is not associated with adverse neurocognitive outcomes in infants and children, regardless of the type of anesthetic agent used.
Collapse
|
16
|
Zhao A, Jin H, Fan G, Li Y, Li C, Li Q, Ma X, Zhao T, Sun S, Liu S, Gao Y, Qi S. Inhibition of the expression of rgs-3 alleviates propofol-induced decline in learning and memory in Caenorhabditis elegans. CNS Neurosci Ther 2022; 29:306-316. [PMID: 36284438 PMCID: PMC9804065 DOI: 10.1111/cns.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Exposure to anesthesia leads to extensive neurodegeneration and long-term cognitive deficits in the developing brain. Caenorhabditis elegans also shows persistent behavioral changes during development after exposure to anesthetics. Clinical and rodent studies have confirmed that altered expression of the regulators of G protein signaling (RGS) in the nervous system is a factor contributing to neurodegenerative and psychological diseases. Evidence from preclinical studies has suggested that RGS controls drug-induced plasticity, including morphine tolerance and addiction. This study aimed to observe the effect of propofol exposure in the neurodevelopmental stage on learning and memory in the L4 stage and to study whether this effect is related to changes in rgs-3 expression. METHODS Caenorhabditis elegans were exposed to propofol at the L1 stage, and learning and memory abilities were observed at the L4 stage. The expression of rgs-3 and the nuclear distribution of EGL-4 were determined to study the relevant mechanisms. Finally, RNA interference was performed on rgs-3-expressing cells after propofol exposure. Then, we observed their learning and memory abilities. RESULTS Propofol time- and dose-dependently impaired the learning capacity. Propofol induced a decline in non-associative and associative long-term memory, rgs-3 upregulation, and a failure of nuclear accumulation of EGL-4/PKG in AWC neurons. Inhibition of rgs-3 could alleviate the propofol-induced changes. CONCLUSION Inhibition of the expression of rgs-3 alleviated propofol-induced learning and memory deficits in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Ayang Zhao
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Hongjiang Jin
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Guibo Fan
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yan Li
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Chenglong Li
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Qi Li
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xiaofei Ma
- Department of ICUThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Tianyang Zhao
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Siqi Sun
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Shuai Liu
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yueyue Gao
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Sihua Qi
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
17
|
Smith HAB, Berkenbosch JW. The authors reply. Pediatr Crit Care Med 2022; 23:e491-e492. [PMID: 36190366 PMCID: PMC9836078 DOI: 10.1097/pcc.0000000000003053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Heidi A B Smith
- Monroe Carell Jr Children's Hospital at Vanderbilt, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
- Department of Anesthesiology, Division of Pediatric Cardiac Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - John W Berkenbosch
- "Just For Kids" Critical Care Center, Norton Children's Hospital, Louisville, KY
- Division of Pediatric Critical Care, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
18
|
Li Y, Zhang Q, Yan W, Wang X, Yu J, Yin C, Zhou Q, Hou Z, Wang Q. Young plasma reverses anesthesia and surgery-induced cognitive impairment in aged rats by modulating hippocampal synaptic plasticity. Front Aging Neurosci 2022; 14:996223. [PMID: 36147703 PMCID: PMC9485610 DOI: 10.3389/fnagi.2022.996223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
We investigated the protective effect of young plasma on anesthesia- and surgery-induced cognitive impairment and the potential underlying mechanism using bioinformatics, functional enrichment analysis, gene set enrichment analysis, Golgi-Cox staining, dendritic spine analysis, immunofluorescence assay, western blot analysis, and transmission electron microscopy. Furthermore, we performed behavioral assessments using the open field test, the novel object recognition test, and the Morris water maze test. We identified 1969 differentially expressed genes induced by young plasma treatment, including 800 upregulated genes and 1169 downregulated genes, highlighting several enriched biological processes (signal release from synapse, postsynaptic density and neuron to neuron synapse). Anesthesia- and surgery-induced cognitive impairment in aged rats was comparatively less severe following young plasma preinfusion. In addition, the decreased levels of synapse-related and tyrosine kinase B/extracellular signal-regulated protein kinase/cyclic adenosine monophosphate response element-binding protein (TrkB/ERK/CREB) signaling pathway-related proteins, dendritic and spine deficits, and ultrastructural changes were ameliorated in aged mice following young plasma preinfusion. Together, these findings suggest that young plasma reverses anesthesia- and surgery-induced cognitive impairment in aged rats and that the mechanism is associated with the activation of the TrkB/ERK/CREB signaling pathway and improvement in hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Yanan Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi Zhang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Anesthesiology, Hebei Children’s Hospital Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenyu Yan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xupeng Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiaxu Yu
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chunping Yin
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qi Zhou
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhiyong Hou
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiujun Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
19
|
Imaging of Macrocephaly. Clin Perinatol 2022; 49:715-734. [PMID: 36113931 DOI: 10.1016/j.clp.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Macrocephaly is a common diagnosis in the pediatric population, particularly in the infantile time period. There is a wide range of causes of macrocephaly, from benign to malignant, for which imaging plays a key role in the diagnosis and clinical guidance. Our aim is to review the distinct and prevalent neuroimaging findings in the evaluation of the macrocephalic infant.
Collapse
|
20
|
Wong-Kee-You AMB, Loveridge-Easther C, Mueller C, Simon N, Good WV. The impact of early exposure to general anesthesia on visual and neurocognitive development. Surv Ophthalmol 2022; 68:539-555. [PMID: 35970232 DOI: 10.1016/j.survophthal.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
Abstract
Every year millions of children are exposed to general anesthesia while undergoing surgical and diagnostic procedures. In the field of ophthalmology, 44,000 children are exposed to general anesthesia annually for strabismus surgery alone. While it is clear that general anesthesia is necessary for sedation and pain minimization during surgical procedures, the possibility of neurotoxic impairments from its exposure is of concern. In animals there is strong evidence linking early anesthesia exposure to abnormal neural development. but in humans the effects of anesthesia are debated. In humans many aspects of vision develop within the first year of life, making the visual system vulnerable to early adverse experiences and potentially vulnerable to early exposure to general anesthesia. We attempt to address whether the visual system is affected by early postnatal exposure to general anesthesia. We first summarize key mechanisms that could account for the neurotoxic effects of general anesthesia on the developing brain and review existing literature on the effects of early anesthesia exposure on the visual system in both animals and humans and on neurocognitive development in humans. Finally, we conclude by proposing future directions for research that could address unanswered questions regarding the impact of general anesthesia on visual development.
Collapse
Affiliation(s)
| | - Cam Loveridge-Easther
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA; University of Auckland, Auckland, New Zealand
| | - Claudia Mueller
- Sutter Health, San Francisco, CA, USA; Stanford Children's Health, Palo Alto, CA, USA
| | | | - William V Good
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA.
| |
Collapse
|
21
|
Integrated Excitatory/Inhibitory Imbalance and Transcriptomic Analysis Reveals the Association between Dysregulated Synaptic Genes and Anesthetic-Induced Cognitive Dysfunction. Cells 2022; 11:cells11162497. [PMID: 36010580 PMCID: PMC9406780 DOI: 10.3390/cells11162497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Emerging evidence from human epidemiologic and animal studies has demonstrated that developmental anesthesia neurotoxicity could cause long-term cognitive deficits and behavioral problems. However, the underlying mechanisms remain largely unknown. We conducted an electrophysiological analysis of synapse activity and a transcriptomic assay of 24,881 mRNA expression on hippocampal tissues from postnatal day 60 (P60) mice receiving propofol exposure at postnatal day 7 (P7). We found that developmentally propofol-exposed P60 mouse hippocampal neurons displayed an E/I imbalance, compared with control mice as evidenced by the decreased excitation and increased inhibition. We found that propofol exposure at P7 led to the abnormal expression of 317 mRNAs in the hippocampus of P60 mice, including 23 synapse-related genes. Various bioinformatic analyses revealed that these abnormally expressed synaptic genes were associated with the function and development of synapse activity and plasticity, E/I balance, behavior, and cognitive impairment. Our findings suggest that the altered E/I balance may constitute a mechanism for propofol-induced long-term impaired learning and memory in mice. The transcriptomic and bioinformatic analysis of these dysregulated genes related to synaptic function paves the way for development of therapeutic strategies against anesthetic neurodegeneration through the restoration of E/I balance and the modification of synaptic gene expression.
Collapse
|
22
|
MicroRNA-17-5p Protects against Propofol Anesthesia-Induced Neurotoxicity and Autophagy Impairment via Targeting BCL2L11. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6018037. [PMID: 35799645 PMCID: PMC9256336 DOI: 10.1155/2022/6018037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Background. Propofol (PPF) has been shown in studies to cause cognitive impairment and neuronal cell death in developing animals. PPF has been demonstrated to decrease the expression of microRNA-17-5p (miR-17-5p) in a recent study. Nonetheless, the function of miR-17-5p in PPF-induced neurotoxicity and related mechanisms is uncharacterized. Methods. After the induction of neurotoxicity by treating the SH-SY5Y cells with PPF, qRT-PCR was conducted to evaluate the level of miR-17-5p. Using MTT and flow cytometry, cell viability and apoptosis rate were assessed, respectively. Interaction between miR-17-5p and BCL2 like 11 was (BCL2L11) studied using a Luciferase reporter assay. With the help of western blot analysis, we determined the level of proteins of apoptosis-related genes and autophagy-related markers. Results. In SH-SY5Y cells, PPF treatment induced neurotoxicity and downregulated miR-17-5p expression. In SH-SY5Y cells post-PPF exposure, overexpression of miR-17-5p increased cell viability and decreased apoptosis. Consistently, miR-17-5p mimics mitigated PPF-generated autophagy via inhibition of Atg5, Beclin1, and LC3II/I level and elevation of p62 protein expression. In addition, BCL2L11, which was highly expressed in PPF-treated SH-SY5Y cells, was directly targeted by miR-17-5p. Further, in PPF-treated SH-SY5Y cells, overexpressed BCL2L11 counteracted the suppressing behavior of miR-17-5p elevation on PPF-induced apoptosis. Conclusion. Overexpressed miR-17-5p alleviates PPF exposure-induced neurotoxicity and autophagy in SH-SY5Y cells via binding to BCL2L11, suggesting the possibility that miR-17-5p can serve as a candidate in the treatment of neurotoxicity (caused by PPF).
Collapse
|
23
|
Fu N, Zhu R, Zeng S, Li N, Zhang J. Effect of Anesthesia on Oligodendrocyte Development in the Brain. Front Syst Neurosci 2022; 16:848362. [PMID: 35664684 PMCID: PMC9158484 DOI: 10.3389/fnsys.2022.848362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocytes (OLs) participate in the formation of myelin, promoting the propagation of action potentials, and disruption of their proliferation and differentiation leads to central nervous system (CNS) damage. As surgical techniques have advanced, there is an increasing number of children who undergo multiple procedures early in life, and recent experiments have demonstrated effects on brain development after a single or multiple anesthetics. An increasing number of clinical studies showing the effects of anesthetic drugs on the development of the nervous system may mainly reside in the connections between neurons, where myelin development will receive more research attention. In this article, we review the relationship between anesthesia exposure and the brain and OLs, provide new insights into the development of the relationship between anesthesia exposure and OLs, and provide a theoretical basis for clinical prevention of neurodevelopmental risks of general anesthesia drugs.
Collapse
|
24
|
Ma LH, Yan J, Jiao XH, Zhou CH, Wu YQ. The Role of Epigenetic Modifications in Neurotoxicity Induced by Neonatal General Anesthesia. Front Mol Neurosci 2022; 15:877263. [PMID: 35571375 PMCID: PMC9097083 DOI: 10.3389/fnmol.2022.877263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
It has been widely demonstrated by numerous preclinical studies and clinical trials that the neonates receiving repeated or long-time general anesthesia (GA) could develop prolonged cognitive dysfunction. However, the definite mechanism remains largely unknown. Epigenetics, which is defined as heritable alterations in gene expression that are not a result of alteration of DNA sequence, includes DNA methylation, histone post-translational modifications, non-coding RNAs (ncRNAs), and RNA methylation. In recent years, the role of epigenetic modifications in neonatal GA-induced neurotoxicity has been widely explored and reported. In this review, we discuss and conclude the epigenetic mechanisms involving in the process of neonatal anesthesia-induced cognitive dysfunction. Also, we analyze the wide prospects of epigenetics in this field and its possibility to work as treatment target.
Collapse
Affiliation(s)
- Lin-Hui Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jing Yan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Cheng-Hua Zhou,
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Cheng-Hua Zhou,
| |
Collapse
|
25
|
Wang Q, Li Y, Tan H, Wang Y. Sevoflurane-Induced Apoptosis in the Mouse Cerebral Cortex Follows Similar Characteristics of Physiological Apoptosis. Front Mol Neurosci 2022; 15:873658. [PMID: 35465098 PMCID: PMC9024292 DOI: 10.3389/fnmol.2022.873658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
General anesthetics are capable of inducing neuronal apoptosis during the rapid synaptogenesis of immature mammalian brains. In this vulnerable time window, physiological apoptosis also occurs to eliminate excess and inappropriately integrated neurons. We previously showed that physiological and ketamine-induced apoptosis in mouse primary somatosensory cortex (S1) followed similar developmental patterns. However, since sevoflurane is more widely used in pediatric anesthesia, and targets mainly on different receptors, as compared with ketamine, it is important to determine whether sevoflurane-induced apoptosis also follows similar developmental patterns as physiological apoptosis or not. Mice at postnatal days 5 (P5) and P9 were anesthetized with 1.5% sevoflurane for 4 h, and the apoptotic neurons in S1 were quantitated by immunohistochemistry. The results showed that sevoflurane raised the levels of apoptosis in S1 without interfering with the developmental patterns of physiological apoptosis. The cells more vulnerable to both physiological and sevoflurane-induced apoptosis shifted from layer V pyramidal neurons at P5 to layers II–IV GABAergic neurons by P9. The magnitude of both sevoflurane-induced and physiological apoptosis was more attenuated at P9 than P5. To determine whether the Akt-FoxO1-PUMA pathway contributes to the developmental decrease in magnitude of both physiological and sevoflurane-induced apoptosis, Western blot was used to measure the levels of related proteins in S1 of P5 and P9 mice. We observed higher levels of antiapoptotic phosphorylated Akt (p-Akt) and phosphorylated FoxO1 (p-FoxO1), and lower levels of the downstream proapoptotic factor PUMA in control and anesthetized mice at P9 than P5. In addition, the Akt-FoxO1-PUMA pathway may also be responsible for sevoflurane-induced apoptosis. Together, these results suggest that magnitude, lamination pattern and cell-type specificity to sevoflurane-induced apoptosis are age-dependent and follow physiological apoptosis pattern. Moreover, The Akt-FoxO1-PUMA pathway may mediate the developmental decreases in magnitude of both physiological and sevoflurane-induced apoptosis in neonatal mouse S1.
Collapse
|
26
|
Ma LH, Wan J, Yan J, Wang N, Liu YP, Wang HB, Zhou CH, Wu YQ. Hippocampal SIRT1-Mediated Synaptic Plasticity and Glutamatergic Neuronal Excitability Are Involved in Prolonged Cognitive Dysfunction of Neonatal Rats Exposed to Propofol. Mol Neurobiol 2022; 59:1938-1953. [PMID: 35034265 DOI: 10.1007/s12035-021-02684-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/01/2021] [Indexed: 01/07/2023]
Abstract
Neonates who receive repeated or prolonged general anesthesia before the age of 4 are at a significantly higher risk of developing cognitive dysfunction later in life. In this study, we investigated the effects of repeated neonatal propofol exposure on hippocampal synaptic plasticity, neuronal excitability, and cognitive function. Adeno-associated SIRT1 virus with CaMKIIɑ promotor and a viral vector carrying the photosensitive gene ChR2 with the CaMKIIɑ promotor, as well as their control vectors, were stereotaxically injected into the hippocampal CA1 region of postnatal day 5 (PND-5) rats. PND-7 rats were given intraperitoneal injection of 60 mg/kg propofol or fat emulsion for three consecutive days. Western blotting, Golgi staining, and double immunofluorescence staining were used to evaluate the SIRT1 expression, synaptic plasticity, and the excitability of neurons in the hippocampal CA1 region. The Morris water maze (MWM) test was conducted on PND-30 to assess the learning and memory abilities of rats. Repeated neonatal propofol exposure reduced SIRT1 expression, suppressed synaptic plasticity, decreased glutamatergic neuron excitability in the hippocampus, and damaged learning and memory abilities. Overexpression of SIRT1 attenuated propofol-induced cognitive dysfunction, excitation-inhibition imbalance, and synaptic plasticity damage. After optogenetic stimulation of glutamatergic neurons in the hippocampal CA1 region, the learning and memory abilities of rats exposed to propofol were improved on PND-30. Our findings demonstrate that SIRT1 plays an important role in cognitive dysfunction induced by repeated neonatal propofol exposure by suppressing synaptic plasticity and neuronal excitability.
Collapse
Affiliation(s)
- Lin-Hui Ma
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Jing Yan
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Ning Wang
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yan-Ping Liu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Hai-Bi Wang
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| |
Collapse
|
27
|
Feng L, Fu S, Yao Y, Li Y, Xu L, Zhao Y, Luo L. Roles for c-Abl in postoperative neurodegeneration. Int J Med Sci 2022; 19:1753-1761. [PMID: 36313229 PMCID: PMC9608039 DOI: 10.7150/ijms.73740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022] Open
Abstract
The nonreceptor tyrosine kinase c-Abl is inactive under normal conditions. Upon activation, c-Abl regulates signaling pathways related to cytoskeletal reorganization. It plays a vital role in modulating cell protrusion, cell migration, morphogenesis, adhesion, endocytosis and phagocytosis. A large number of studies have also found that abnormally activated c-Abl plays an important role in a variety of pathologies, including various inflammatory diseases and neurodegenerative diseases. c-Abl also plays a crucial role in neurodevelopment and neurodegenerative diseases, mainly through mechanisms such as neuroinflammation, oxidative stress (OS), and Tau protein phosphorylation. Inhibiting expression or activity of this kinase has certain neuroprotective and anti-inflammatory effects and can also improve cognition and behavior. Blockers of this kinase may have good preventive and treatment effects on neurodegenerative diseases. Cognitive dysfunction after anesthesia is also closely related to the abovementioned mechanisms. We infer that alterations in the expression and activity of c-Abl may underlie postoperative cognitive dysfunction (POCD). This article summarizes the current understanding and research progress on the mechanisms by which c-Abl may be related to postoperative neurodegeneration.
Collapse
Affiliation(s)
- Long Feng
- Department of Anesthesiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China
| | - Shihui Fu
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China.,Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yao Yao
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, North Carolina, USA.,Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, China
| | - Yulong Li
- Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Longhe Xu
- Department of Anesthesiology, The Third Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yali Zhao
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China
| | - Leiming Luo
- Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
28
|
Hammon DE, Pearsall K, Smith NM, McBride AS, Bass AL, Tooze JA, McLean TW. Eutectic Mixture of Lidocaine and Prilocaine Decreases Movement and Propofol Requirements for Pediatric Lumbar Puncture During Deep Sedation: A Randomized, Placebo-Controlled, Double Blind Trial. J Pediatr Hematol Oncol 2022; 44:e213-e216. [PMID: 33885035 PMCID: PMC8528901 DOI: 10.1097/mph.0000000000002169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/24/2021] [Indexed: 01/03/2023]
Abstract
Deep sedation/general anesthesia is commonly used in pediatric oncology patients undergoing lumbar puncture (LP). Propofol is often used for sedation, with or without a narcotic. We hypothesized that eutectic mixture of lidocaine and prilocaine (EMLA) would allow for lower cumulative doses of propofol and less movement. We performed a prospective, randomized, double blind, placebo-controlled trial in children undergoing sedation for LP. Standard initial weight-based doses of propofol and fentanyl were administered, with either EMLA cream or a placebo cream applied topically. The primary outcome was the total dose of propofol administered to each patient. We also tracked patient movement and complications. Twenty-seven patients underwent 152 LPs. Patients randomized to EMLA cream (n=75) were significantly more likely to receive a lower dose of propofol (2.94 mg/kg, SE=0.25, vs. 3.22 mg/kg, SE=0.19; P=0.036) and to not require additional propofol doses (probability 0.49, SE=0.08 vs. 0.69, SE=0.06; P=0.001) compared with patients randomized to placebo cream (n=77). In addition, patients with EMLA cream were significantly less likely to demonstrate minor or major movement. EMLA cream results in less movement and less propofol administration in pediatric oncology patients undergoing sedation for LP.
Collapse
Affiliation(s)
- Dudley E. Hammon
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Katharine Pearsall
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Nancy M. Smith
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Allison S. McBride
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Andora L. Bass
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Janet A. Tooze
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Thomas W. McLean
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
29
|
Huang H, Zhao C, Hu Q, Liu Q, Sun YM, Chen C, Huang H, Zhou CH, Wu YQ. Neonatal Anesthesia by Ketamine in Neonatal Rats Inhibits the Proliferation and Differentiation of Hippocampal Neural Stem Cells and Decreases Neurocognitive Function in Adulthood via Inhibition of the Notch1 Signaling Pathway. Mol Neurobiol 2021; 58:6272-6289. [PMID: 34480336 DOI: 10.1007/s12035-021-02550-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/28/2021] [Indexed: 12/28/2022]
Abstract
The Notch signaling pathway plays an important role in the regulation of neurogenesis. The objective of this study was to investigate whether the Notch signaling pathway was involved in the neurogenesis impairment and long-term neurocognitive dysfunction caused by neonatal exposure to ketamine. On postnatal day 7 (PND-7), male Sprague-Dawley (SD) rats were intraperitoneally injected with 40 mg/kg ketamine four consecutive times (40 mg/kg × 4) at 1-h intervals. Notch ligand Jagged1 (0.5 mg/kg) and lentivirus overexpressing the Notch1 intracellular domain (LV-NICD1) were microinjected into the hippocampal dentate gyrus (DG) 1 h or 4 days before ketamine administration, respectively. The expression of Notch1 signaling pathway-related proteins was detected by Western blotting 24 h after ketamine administration. The proliferation and differentiation of the neural stem cells (NSCs) in the hippocampal DG were evaluated by double immunofluorescence staining 24 h after treatment. Moreover, changes in hippocampus-dependent spatial memory of 2-month-old rats were investigated with the Morris water maze test. Ketamine anesthesia in neonatal rats decreased the expression levels of Jagged1, Notch1, NICD1, and hairy enhancer of split 1 (Hes1); inhibited the proliferation and astrocytic differentiation of NSCs; and promoted the differentiation of neurons. Neonatal exposure to ketamine caused deficits in hippocampus-dependent spatial reference memory tasks in 2-month-old rats. Microinjection of Jagged1 or LV-NICD1 reversed the inhibitory effect of ketamine on the expression of Notch1-related proteins in the hippocampal DG, attenuated the ketamine-mediated decrease in NSC proliferation and differentiation, and improved the cognitive function of 2-month-old rats after neonatal exposure to ketamine. These results suggest that neonatal exposure to ketamine in rats inhibits the proliferation and differentiation of hippocampal NSCs and impairs neurocognitive function in adulthood. The Notch1 signaling pathway may be involved in the impairment of hippocampus-dependent learning and memory during adulthood caused by neonatal exposure to ketamine. These findings contribute to further understanding the neurotoxicity induced by neonatal exposure to ketamine and the underlying mechanisms.
Collapse
Affiliation(s)
- He Huang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chao Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Qian Hu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yi-Man Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Hui Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, People's Republic of China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, People's Republic of China.
| |
Collapse
|
30
|
Zhang T, Ji D, Sun J, Song J, Nie L, Sun N. NPAS4 suppresses propofol-induced neurotoxicity by inhibiting autophagy in hippocampal neuronal cells. Arch Biochem Biophys 2021; 711:109018. [PMID: 34418347 DOI: 10.1016/j.abb.2021.109018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 01/15/2023]
Abstract
Propofol, a general intravenous anesthetic, has been demonstrated to cause a profound neuroapoptosis in the developing brain followed by long-term neurocognitive impairment. Our study aimed to examine the neuroprotective effect of neuronal PAS domain protein 4 (NPAS4), an activity-dependent neuron-specific transcription factor, on propofol-induced neurotoxicity in hippocampal neuronal HT22 cells. The differentially expressed genes in HT22 cells after treatment with propofol were screened from Gene Expression Omnibus dataset GSE106799. NPAS4 expression in HT22 cells treated with different doses of propofol was investigated by qRT-PCR and Western blot analysis. Cell viability, lactate dehydrogenase (LDH) release, caspase-3 activity, and apoptosis were evaluated by MTT, a LDH-Cytotoxicity Assay Kit, a Caspase-3 Colorimetric Assay Kit, and TUNEL assay, respectively. The protein levels of LC3-I, LC3-II, Beclin 1, p62 and NPAS4 were detected using Western blot analysis. Propofol treatment concentration-dependently decreased NPAS4 expression in HT22 cells. Propofol treatment inhibited cell viability, increased LDH release and caspase-3 activity, and induced apoptosis and autophagy in HT22 cells. NPAS4 overexpression suppressed propofol-induced cell injury and autophagy in HT22 cells. Mechanistically, autophagy agonist rapamycin attenuated the neuroprotective effect of NPAS4 in propofol-treated HT22 cells. In conclusion, NAPS4 overexpression protected hippocampal neuronal HT22 cells against propofol-induced neurotoxicity by reducing autophagy.
Collapse
Affiliation(s)
- Tongyin Zhang
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, 473065, China
| | - Daofei Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Junyi Sun
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, 473065, China
| | - Jiangling Song
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, 473065, China
| | - Limin Nie
- Department of Anesthesiology, Nanshi Hospital Affiliated to Henan University, Nanyang, 473065, China
| | - Na Sun
- Catheterization Room, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, China.
| |
Collapse
|
31
|
Unchiti K, Leurcharusmee P, Samerchua A, Pipanmekaporn T, Chattipakorn N, Chattipakorn SC. The potential role of dexmedetomidine on neuroprotection and its possible mechanisms: Evidence from in vitro and in vivo studies. Eur J Neurosci 2021; 54:7006-7047. [PMID: 34561931 DOI: 10.1111/ejn.15474] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
Neurological disorders following brain injuries and neurodegeneration are on the rise worldwide and cause disability and suffering in patients. It is crucial to explore novel neuroprotectants. Dexmedetomidine, a selective α2-adrenoceptor agonist, is commonly used for anxiolysis, sedation and analgesia in clinical anaesthesia and critical care. Recent studies have shown that dexmedetomidine exerts protective effects on multiple organs. This review summarized and discussed the current neuroprotective effects of dexmedetomidine, as well as the underlying mechanisms. In preclinical studies, dexmedetomidine reduced neuronal injury and improved functional outcomes in several models, including hypoxia-induced neuronal injury, ischaemic-reperfusion injury, intracerebral haemorrhage, post-traumatic brain injury, anaesthetic-induced neuronal injury, substance-induced neuronal injury, neuroinflammation, epilepsy and neurodegeneration. Several mechanisms are associated with the neuroprotective function of dexmedetomidine, including neurotransmitter regulation, inflammatory response, oxidative stress, apoptotic pathway, autophagy, mitochondrial function and other cell signalling pathways. In summary, dexmedetomidine has the potential to be a novel neuroprotective agent for a wide range of neurological disorders.
Collapse
Affiliation(s)
- Kantarakorn Unchiti
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prangmalee Leurcharusmee
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Artid Samerchua
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Tanyong Pipanmekaporn
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
32
|
Liang C, Sun M, Zhong J, Miao C, Han X. The Role of Pink1-Mediated Mitochondrial Pathway in Propofol-Induced Developmental Neurotoxicity. Neurochem Res 2021; 46:2226-2237. [PMID: 34014489 DOI: 10.1007/s11064-021-03359-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 11/25/2022]
Abstract
The mechanisms underlying propofol-induced toxicity in developing neurons are still unclear. The aim of present study was to explore the role of Pink1 mediated mitochondria pathway in propofol-induced developmental neurotoxicity. The primary Neural Stem Cells (NSCs) were isolated from the hippocampus of E15.5 mice embryos and then treated with propofol. The effects of propofol on proliferation, differentiation, apoptosis, mitochondria ultrastructure and MMP of NSCs were investigated. In addition, the abundance of Pink1 and a group of mitochondria related proteins in the cytoplasm and/or mitochondria were investigated, which mainly included CDK1, Drp1, Parkin1, DJ-1, Mfn1, Mfn2 and OPA1. Moreover, the relationship between Pink1 and these molecules was explored using gene silencing, or pretreatment with protein inhibitors. Finally, the NSCs were pretreated with mitochondrial specific antioxidant (MitoQ) or Drp1 inhibitor (Mdivi-1), and then the toxic effects of propofol on NSCs were investigated. Our results indicated that propofol treatment inhibited NSCs proliferation and division, and promoted NSCs apoptosis. Propofol induced significant NSCs mitochondria deformation, vacuolization and swelling, and decreased MMP. Additional studies showed that propofol affected a group of mitochondria related proteins via Pink1 inhibition, and CDK1, Drp1, Parkin1 and DJ-1 are the important downstream proteins of Pink1. Finally, the effects of propofol on proliferation, differentiation, apoptosis, mitochondrial ultrastructure and MMP of NSCs were significantly attenuated by MitoQ or Mdivi-1 pretreatment. The present study demonstrated that propofol regulates the proliferation, differentiation and apoptosis of NSCs via Pink1mediated mitochondria pathway.
Collapse
Affiliation(s)
- Chao Liang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minli Sun
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Zhong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xiaodan Han
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
33
|
Arzua T, Jiang C, Yan Y, Bai X. The importance of non-coding RNAs in environmental stress-related developmental brain disorders: A systematic review of evidence associated with exposure to alcohol, anesthetic drugs, nicotine, and viral infections. Neurosci Biobehav Rev 2021; 128:633-647. [PMID: 34186153 PMCID: PMC8357057 DOI: 10.1016/j.neubiorev.2021.06.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/23/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Brain development is a dynamic and lengthy process that includes cell proliferation, migration, neurogenesis, gliogenesis, synaptogenesis, and pruning. Disruption of any of these developmental events can result in long-term outcomes ranging from brain structural changes, to cognitive and behavioral abnormality, with the mechanisms largely unknown. Emerging evidence suggests non-coding RNAs (ncRNAs) as pivotal molecules that participate in normal brain development and neurodevelopmental disorders. NcRNAs such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are transcribed from the genome but not translated into proteins. Many ncRNAs have been implicated as tuners of cell fate. In this review, we started with an introduction of the current knowledge of lncRNAs and miRNAs, and their potential roles in brain development in health and disorders. We then reviewed and discussed the evidence of ncRNA involvement in abnormal brain development resulted from alcohol, anesthetic drugs, nicotine, and viral infections. The complex connections among these ncRNAs were also discussed, along with potential overlapping ncRNA mechanisms, possible pharmacological targets for therapeutic/neuroprotective interventions, and potential biomarkers for brain developmental disorders.
Collapse
Affiliation(s)
- Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Congshan Jiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yasheng Yan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
34
|
Jimenez-Tellez N, Iqbal F, Pehar M, Casas-Ortiz A, Rice T, Syed NI. Dexmedetomidine does not compromise neuronal viability, synaptic connectivity, learning and memory in a rodent model. Sci Rep 2021; 11:16153. [PMID: 34373548 PMCID: PMC8352930 DOI: 10.1038/s41598-021-95635-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/21/2021] [Indexed: 02/08/2023] Open
Abstract
Recent animal studies have drawn concerns regarding most commonly used anesthetics and their long-term cytotoxic effects, specifically on the nervous tissue. It is therefore imperative that the search continues for agents that are non-toxic at both the cellular and behavioural level. One such agent appears to be dexmedetomidine (DEX) which has not only been found to be less neurotoxic but has also been shown to protect neurons from cytotoxicity induced by other anesthetic agents. However, DEX's effects on the growth and synaptic connectivity at the individual neuronal level, and the underlying mechanisms have not yet been fully resolved. Here, we tested DEX for its impact on neuronal growth, synapse formation (in vitro) and learning and memory in a rodent model. Rat cortical neurons were exposed to a range of clinically relevant DEX concentrations (0.05-10 µM) and cellular viability, neurite outgrowth, synaptic assembly and mitochondrial morphology were assessed. We discovered that DEX did not affect neuronal viability when used below 10 µM, whereas significant cell death was noted at higher concentrations. Interestingly, in the presence of DEX, neurons exhibited more neurite branching, albeit with no differences in corresponding synaptic puncta formation. When rat pups were injected subcutaneously with DEX 25 µg/kg on postnatal day 7 and again on postnatal day 8, we discovered that this agent did not affect hippocampal-dependent memory in freely behaving animals. Our data demonstrates, for the first time, the non-neurotoxic nature of DEX both in vitro and in vivo in an animal model providing support for its utility as a safer anesthetic agent. Moreover, this study provides the first direct evidence that although DEX is growth permissive, causes mitochondrial fusion and reduces oxygen reactive species production, it does not affect the total number of synaptic connections between the cortical neurons in vitro.
Collapse
Affiliation(s)
- Nerea Jimenez-Tellez
- grid.22072.350000 0004 1936 7697Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, Calgary, Canada ,grid.413571.50000 0001 0684 7358Alberta Children’s Hospital Research Institute, Calgary, Canada
| | - Fahad Iqbal
- grid.413571.50000 0001 0684 7358Alberta Children’s Hospital Research Institute, Calgary, Canada
| | - Marcus Pehar
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, Calgary, Canada ,grid.413571.50000 0001 0684 7358Alberta Children’s Hospital Research Institute, Calgary, Canada
| | - Alberto Casas-Ortiz
- grid.22072.350000 0004 1936 7697Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada ,grid.413571.50000 0001 0684 7358Alberta Children’s Hospital Research Institute, Calgary, Canada
| | - Tiffany Rice
- grid.413571.50000 0001 0684 7358Alberta Children’s Hospital Research Institute, Calgary, Canada ,grid.22072.350000 0004 1936 7697Department of Anesthesiology, Perioperative and Pain Medicine, University of Calgary, Calgary, Canada
| | - Naweed I. Syed
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, Calgary, Canada ,grid.413571.50000 0001 0684 7358Alberta Children’s Hospital Research Institute, Calgary, Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| |
Collapse
|
35
|
Baseline Values and Kinetics of IL-6, Procalcitonin, and TNF- α in Landrace-Large White Swine Anesthetized with Propofol-Based Total Intravenous Anesthesia. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6672573. [PMID: 34250089 PMCID: PMC8238574 DOI: 10.1155/2021/6672573] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/01/2021] [Accepted: 05/22/2021] [Indexed: 01/01/2023]
Abstract
The baseline levels of various inflammatory mediators and their changes during anesthesia in swine are not known. The aim of this animal study was to measure the baseline values and kinetics of interleukin-6, procalcitonin, and tumor necrosis factor-alpha in healthy Landrace-Large White swine anesthetized with propofol-based total intravenous anesthesia. We included 8 healthy male pigs with an average weight of 19 ± 2 kg (aged 10-15 weeks) that were subjected to propofol-based total intravenous anesthesia for 8 hours. Complete blood count, serum chemistry, and serum levels of interleukin-6, procalcitonin, and tumor necrosis factor-alpha were analyzed, and serum levels were quantified hourly. Blood was also collected for bacterial culturing. Baseline values of interleukin-6 and procalcitonin were 18 pg/ml and 21 ng/ml, respectively, while tumor necrosis factor-alpha was not detectable during collection of baseline samples. A statistically significant difference was observed in interleukin-6 levels between time points (p < 0.0001). Procalcitonin increased with time, but there were no significant differences between time points (p = 0.152). Tumor necrosis factor-alpha increased until the 3rd hour of propofol-based total intravenous anesthesia, while after the 4th hour, it gradually decreased, reaching its baseline undetectable values by the 7th hour (p < 0.001). Our results can serve as the basis for further translational research.
Collapse
|
36
|
Chen J, Ying X, Yang D. Propofol combined with remifentanil reduces the adverse reactions of patients undergoing laparoscopic cholecystectomies. Am J Transl Res 2021; 13:6560-6567. [PMID: 34306397 PMCID: PMC8290765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/27/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To explore the effectiveness of using isoflurane and propofol combined with remifentanil in laparoscopic cholecystectomies (LC). METHODS A total of 118 patients undergoing LC in our hospital from April 2018 to January 2019 were recruited as the study cohort. 56 of the patients were anesthetized with isoflurane combined with remifentanil during their operations (the IR group), and the other 62 patients were anesthetized with propofol combined with remifentanil during their operations (the PR group). The effects of the two anesthesia methods on the hemodynamics and stress responses were compared, and the postoperative recoveries, adverse reactions, analgesia, and cognitive functions were recorded. RESULTS Compared with the IR group, the average arterial pressure, heart rate, norepinephrine, and cortisol decreased in the PR group. Compared with the IR group, the total postoperative adverse reaction rate was lower in the PR group. Compared with the IR group, the spontaneous respiration recovery times, the times to opening eyes, and the extubation times were significantly shortened in the PR group. There was no significant difference in the postoperative pain levels between the two groups. Compared with the IR group, the postoperative cognitive function assessment was better in the PR group. CONCLUSION Compared with isoflurane combined with remifentanil, propofol combined with remifentanil has a smaller impact on the hemodynamics and cognitive functions of patients undergoing LC, and it causes a more significant reduction in the stress response. In addition, its postoperative adverse reactions are lower, so it is worthy of promoting in clinical practice.
Collapse
Affiliation(s)
- Juhui Chen
- Department of Anesthesiology, College of Medicine, Zhejiang University, Sir Run Run Shaw Hospital Hangzhou 310015, Zhejiang Province, China
| | - Xiaogang Ying
- Department of Anesthesiology, College of Medicine, Zhejiang University, Sir Run Run Shaw Hospital Hangzhou 310015, Zhejiang Province, China
| | - Danfeng Yang
- Department of Anesthesiology, College of Medicine, Zhejiang University, Sir Run Run Shaw Hospital Hangzhou 310015, Zhejiang Province, China
| |
Collapse
|
37
|
Gong H, Wan X, Zhang Y, Liang S. Downregulation of HOTAIR reduces neuronal pyroptosis by targeting miR-455-3p/NLRP1 axis in propofol-treated neurons in vitro. Neurochem Res 2021; 46:1141-1150. [PMID: 33534059 DOI: 10.1007/s11064-021-03249-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Propofol is one of the most common intravenous anesthetics which may cause neuronal cell death in young mice. HOX transcript antisense RNA (HOTAIR) was abnormally expressed in neurodegenerative diseases. However, the effect of HOTAIR on propofol-induced pyroptosis of neurons and related mechanisms are still unknown. In this study, propofol treatment significantly reduced neuronal the viability of neurons, and promoted the expression of inflammation-related factors. Propofol treatment also promoted neuron death and neuronal pyroptosis. All the above effects might be related to the propofol-induced overexpression of HOTAIR. Interestingly, knockdown of HOTAIR by shRNA (sh-HOTAIR) significantly inhibited neuronal pyroptosis, but increased neuronal viability. Further analysis showed that HOTAIR and Nod-like receptor protein1 (NLRP1) were the targets of miR-455-3p, respectively. Notably, propofol treatment decreased the level of miR-455-3p, while increased the level of NLRP1. In addition, sh-HOTAIR increased the level of miR-455-3p, which further inhibited the expression of NLRP1 and the activation of NLRP1 inflammasome, thereby inhibiting neuronal pyroptosis. More importantly, NLRP1 overexpression decreased neuronal viability, and reactivated NLRP1 inflammasome, thus reversing the inhibitory effect of sh-HOTAIR on pyroptosis. Our findings indicated that HOTAIR inhibited propofol-induced pyroptosis of neurons by regulating miR-455-3p/NLRP1 axis, indicating that HOTAIR may be a potential therapeutic target for propofol-induced neurotoxicity.
Collapse
Affiliation(s)
- Haixia Gong
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu, Nanchang, 330006, Jiangxi, China
| | - Xianwen Wan
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu, Nanchang, 330006, Jiangxi, China.
| | - Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu, Nanchang, 330006, Jiangxi, China
| | - Sisi Liang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
38
|
Liu H, Wang M, Xu L, Li M, Zhao M. Neuroprotective effect of miR-204-5p downregulation against isoflurane-induced learning and memory impairment via targeting EphB2 and inhibiting neuroinflammation. Hum Exp Toxicol 2021; 40:1746-1754. [PMID: 33878909 DOI: 10.1177/09603271211009970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Isoflurane, one of the most commonly used inhalational anesthetics, is usually used in surgery patients and often causes long-term learning and memory impairment. The aim of this study was to explore the role of microRNA-204-5p (miR-204-5p) in isoflurane-induced learning and memory impairment in rats. METHODS The Morris Water Maze (MWM) test was used to estimate the spatial learning and memory abilities of laboratory rats. Enzyme-linked immunosorbent assay (ELISA) was used to determine interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) concentrations in the hippocampal tissues. The expression level of miR-204-5p was determined by using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The potential target genes of miR-204-5p were predicted and verified by the TargetScan and dual-luciferase reporter assay, respectively. RESULTS Isoflurane-induced rats showed significantly higher neurological function scores, higher escape latency and shorter time spent in the original quadrant. Isoflurane could significantly induce neuroinflammation, and the expression of miR-204-5p was increased in the hippocampal tissue of rats exposed to isoflurane. Moreover, downregulation of miR-204-5p attenuated the effect of isoflurane treatment on the escape latency and the time in the original quadrant, and inflammatory cytokines level was downregulated by inhibiting the expression of miR-204-5p. EphB2 was verified as a direct target gene of miR-204-5p. CONCLUSION Downregulated miR-204-5p exerts protective effects against isoflurane-induced learning and memory impairment via targeting EphB2 and inhibiting neuroinflammation. MiR-204-5p could serve as a potential therapeutic target for the lightening of cognitive dysfunction induced by isoflurane.
Collapse
Affiliation(s)
- H Liu
- Anesthesiology Department, Jinan Third People's Hospital, Jinan, Shandong, People's Republic of China
| | - M Wang
- Anesthesiology Department, Jinan Third People's Hospital, Jinan, Shandong, People's Republic of China
| | - L Xu
- Anesthesiology Department, Jinan Third People's Hospital, Jinan, Shandong, People's Republic of China
| | - M Li
- Anesthesiology Department, Jinan Third People's Hospital, Jinan, Shandong, People's Republic of China
| | - M Zhao
- Anesthesiology Department, Jinan Third People's Hospital, Jinan, Shandong, People's Republic of China
| |
Collapse
|
39
|
Neurodevelopmental Outcomes after Premedication with Atropine/Propofol vs Atropine/Atracurium/Sufentanil for Neonatal Intubation: 2-Year Follow-Up of a Randomized Clinical Trial. J Pediatr 2021; 231:273-277.e3. [PMID: 33301785 DOI: 10.1016/j.jpeds.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023]
Abstract
This study followed 173 newborn infants in the PREmedication Trial for Tracheal Intubation of the NEOnate multicenter, double-blind, randomized controlled trial of atropine-propofol vs atropine-atracurium-sufentanil for premedication before nonemergency intubation. At 2 years of corrected age, there was no significant difference between the groups in death or risk of neurodevelopmental delay assessed with the Ages and Stages Questionnaire. Trial registration Clinicaltrials.gov: NCT01490580.
Collapse
|
40
|
Fan X, Yang H, Hu L, Wang D, Wang R, Hao A, Chen X. Propofol impairs specification of retinal cell types in zebrafish by inhibiting Zisp-mediated Noggin-1 palmitoylation and trafficking. Stem Cell Res Ther 2021; 12:195. [PMID: 33743805 PMCID: PMC7980560 DOI: 10.1186/s13287-021-02204-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Propofol can have adverse effects on developing neurons, leading to cognitive disorders, but the mechanism of such an effect remains elusive. Here, we aimed to investigate the effect of propofol on neuronal development in zebrafish and to identify the molecular mechanism(s) involved in this pathway. Methods The effect of propofol on neuronal development was demonstrated by a series of in vitro and in vivo experiments. mRNA injections, whole-mount in situ hybridization and immunohistochemistry, quantitative real-time polymerase chain reaction, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, 5-ethynyl-2′-deoxyuridine labeling, co-immunoprecipitation, and acyl–biotin exchange labeling were used to identify the potential mechanisms of propofol-mediated zisp expression and determine its effect on the specification of retinal cell types. Results Propofol impaired the specification of retinal cell types, thereby inhibiting neuronal and glial cell formation in retinas, mainly through the inhibition of Zisp expression. Furthermore, Zisp promoted the stabilization and secretion of a soluble form of the membrane-associated protein Noggin-1, a specific palmitoylation substrate. Conclusions Propofol caused a severe phenotype during neuronal development in zebrafish. Our findings established a direct link between an anesthetic agent and protein palmitoylation in the regulation of neuronal development. This could be used to investigate the mechanisms via which the improper use of propofol might result in neuronal defects. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02204-0.
Collapse
Affiliation(s)
- Xiaoqing Fan
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China
| | - Haoran Yang
- Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Lizhu Hu
- Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Delong Wang
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China
| | - Ruiting Wang
- Department of Anesthesiology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), No. 17, Lujiang Road, Hefei, 230001, Anhui, China
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, No. 44, Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Xueran Chen
- Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China. .,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
| |
Collapse
|
41
|
Expression Signature of lncRNAs and mRNAs in Sevoflurane-Induced Mouse Brain Injury: Implication of Involvement of Wide Molecular Networks and Pathways. Int J Mol Sci 2021; 22:ijms22031389. [PMID: 33573239 PMCID: PMC7869012 DOI: 10.3390/ijms22031389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Sevoflurane, one of the most commonly used pediatric anesthetics, was found to cause developmental neurotoxicity. To understand specific risk groups and develop countermeasures, a better understanding of its mechanisms is needed. We hypothesize that, as in many other brain degeneration pathways, long non-coding RNAs (lncRNAs) are involved in the sevoflurane-induced neurotoxicity. Postnatal day 7 (PD7) mice were exposed to 3% sevoflurane for 6 h. To quantify neurotoxicity in these mice, we (1) detected neural apoptosis through analysis of caspase 3 expression level and activity and (2) assessed long-term learning ability via the Morris water maze at PD60. To elucidate specific mechanisms, profiles of 27,427 lncRNAs and 18,855 messenger RNAs (mRNAs) in mouse hippocampi were analyzed using microarray assays. Sevoflurane-induced abnormal lncRNA and mRNA expression-associated function pathways were predicted by bioinformatic analysis. We found that sevoflurane induced significant neurotoxicity, causing acute neuroapoptosis and abnormal expression of 148 mRNAs and 301 lncRNAs on PD7 in mouse hippocampus. Additionally, exposed mice exhibited impaired memory on PD60. Bioinformatic analysis predicted that the dysregulated mRNAs, which are highly correlated with their co-expressed dysregulated lncRNAs, might be involved in 34 neurodegenerative signaling pathways (e.g., brain cell apoptosis and intellectual developmental disorder). Our study reveals for the first time that neonatal exposure to 3% sevoflurane induces abnormal lncRNA and mRNA expression profiles. These dysregulated lncRNAs/mRNAs form wide molecular networks that might contribute to various functional neurological disease pathways in the hippocampus, resulting in the observed acute apoptosis and impaired long-term memory.
Collapse
|
42
|
Reynolds P, Bustani P, Darby C, Fernandez Alvarez JR, Fox G, Jones S, Robertson SJ, Vasu V, Roehr CC. Less-Invasive Surfactant Administration for Neonatal Respiratory Distress Syndrome: A Consensus Guideline. Neonatology 2021; 118:586-592. [PMID: 34515188 DOI: 10.1159/000518396] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Less-invasive surfactant administration (LISA) is a method of surfactant delivery to preterm infants for treating respiratory distress syndrome (RDS), which can reduce the composite risk of death or bronchopulmonary dysplasia and the time on mechanical ventilation. METHODS A systematic literature search of studies published up to April 2021 on minimally invasive catheter surfactant delivery in preterm infants with RDS was conducted. Based on these studies, with parental feedback sought via an online questionnaire, 9 UK-based specialists in neonatal respiratory disease developed their consensus for implementing LISA. Recommendations were developed following a modified, iterative Delphi process using a questionnaire employing a 9-point Likert scale and an a priori level of agreement/disagreement. RESULTS Successful implementation of LISA can be achieved by training the multidisciplinary team and following locally agreed guidance. From the time of the decision to administer surfactant, LISA should take <30 min. The comfort of the baby and requirements to maintain non-invasive respiratory support are important. While many infants can be managed without requiring additional sedation/analgesia, fentanyl along with atropine may be considered. Parents should be provided with sufficient information about medication side effects and involved in treatment discussions. CONCLUSION LISA has the potential to improve outcomes for preterm infants with RDS and can be introduced as a safe and effective part of UK-based neonatal care with appropriate training.
Collapse
Affiliation(s)
- Peter Reynolds
- Neonatal Intensive Care Unit, St. Peter's Hospital, Ashford & St. Peter's Hospitals NHS Foundation Trust, Chertsey, United Kingdom
| | - Porus Bustani
- Children's and Adolescent Services, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Colm Darby
- Neonatal Unit, Craigavon Area Hospital, Portadown, United Kingdom
| | | | - Grenville Fox
- Evelina London Children's Hospital Neonatal Unit, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Steve Jones
- Neonatology, Royal United Hospital, Bath, United Kingdom
| | - Sara Jane Robertson
- Neonatal Intensive Care Unit, St. Peter's Hospital, Ashford & St. Peter's Hospitals NHS Foundation Trust, Chertsey, United Kingdom
| | - Vimal Vasu
- Neonatal Medicine, East Kent Hospitals University NHS Foundation Trust, William Harvey Hospital, Ashford, United Kingdom
| | - Charles Christoph Roehr
- National Perinatal Epidemiology Unit, Medical Sciences Division, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.,Newborn Services, John Radcliffe Hospital, Oxford University Hospitals, NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
43
|
Feng L, Sun ZG, Liu QW, Ma T, Xu ZP, Feng ZG, Yuan WX, Zhang H, Xu LH. Propofol inhibits the expression of Abelson nonreceptor tyrosine kinase without affecting learning or memory function in neonatal rats. Brain Behav 2020; 10:e01810. [PMID: 32869521 PMCID: PMC7667295 DOI: 10.1002/brb3.1810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Propofol is one of the most commonly used intravenous drugs to induce and maintain general anesthesia. In vivo and in vitro studies have shown that propofol can affect neuronal growth, leading to apoptosis and impairing cognitive function. The Abelson nonreceptor tyrosine kinase (c-Abl) is associated with both neuritic plaques and neurofibrillary tangles in the brains of patients with Alzheimer's disease and other neurodegenerative diseases. This study aimed to explore the effect of propofol on apoptosis and neurocognition through its regulation of c-Abl expression in vivo and in vitro. MATERIALS AND METHODS In this study, primary hippocampal neurons were cultured and exposed to propofol at different concentrations. Protein expression was measured by Western blotting and coimmunoprecipitation. The c-Abl transcription level was verified by fluorescence quantitative PCR. Reactive oxygen species (ROS) levels were detected by flow cytometry. In addition, an animal experiment was conducted to assess neuronal apoptosis by immunofluorescence staining for caspase-3 and to evaluate behavioral changes by the Morris water maze (MWM) test. RESULTS The in vitro experiment showed that propofol significantly decreased c-Abl expression and ROS levels. In addition, propofol has no cytotoxic effect and does not affect cell activity. Moreover, in the animal experiment, intraperitoneal injection of 50 mg/kg propofol for 5 days obviously decreased the expression of c-Abl in the neonatal rat brain (p < .05) but did not significantly increase the number of caspase-3-positive cells. Propofol treatment did not significantly reduce the number of platform crossings (p > .05) or prolong the escape latency of neonatal rats (p > .05) in the MWM test. CONCLUSIONS The present data suggest that reduced expression of this nonreceptor tyrosine kinase through consecutive daily administration of propofol did not impair learning or memory function in neonatal rats.
Collapse
Affiliation(s)
- Long Feng
- Anesthesia and Operation Center, Chinese PLA Medical School, Beijing, China.,PLA general hospital of Hainan Hospital, Hainan, China
| | - Zhi-Gao Sun
- PLA general hospital of Hainan Hospital, Hainan, China
| | - Qiang-Wei Liu
- Anesthesia and Operation Center, Chinese PLA Medical School, Beijing, China
| | - Tao Ma
- Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Zhi-Peng Xu
- Anesthesia and Operation Center, Chinese PLA Medical School, Beijing, China
| | - Ze-Guo Feng
- Anesthesia and Operation Center, Chinese PLA Medical School, Beijing, China
| | - Wei-Xiu Yuan
- PLA general hospital of Hainan Hospital, Hainan, China
| | - Hong Zhang
- Anesthesia and Operation Center, Chinese PLA Medical School, Beijing, China
| | - Long-He Xu
- Anesthesia and Operation Center, Chinese PLA Medical School, Beijing, China.,PLA general hospital of Hainan Hospital, Hainan, China
| |
Collapse
|
44
|
Luo X, Chen L, Zhang Y, Liu J, Xie H. Developmental and cardiac toxicities of propofol in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108838. [PMID: 32585369 DOI: 10.1016/j.cbpc.2020.108838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/09/2020] [Accepted: 06/20/2020] [Indexed: 12/31/2022]
Abstract
Propofol, a commonly used anesthetic, is convenient to use, induces quick effect, enables rapid recovery, and is widely accessible given its stable supply. However, its adverse effects are a concern. Reportedly, propofol exhibits a significant inhibitory effect on the respiratory and circulatory systems. Furthermore, intravenous administration of this drug results in hypotension, rapid heart rate, and respiratory failure. Because many pregnant women are administered propofol during childbirth, it may have a significant negative effect on the development of infants. Propofol can cause considerable developmental neurotoxicity and has known activity on the heart. However, the underling mechanisms of these toxicities remain unclear. In the present study, zebrafish embryos were exposed to propofol at different concentrations (0.05, 0.1, 0.5, 1, 5, 10, and 20 μg/ml) to determine its developmental and cardiac toxicities. Propofol exposure decreased the survival rate and hatchability of zebrafish embryos. Additionally, the embryo malformation rate increased in a concentration-dependent manner. Different types of malformations were observed following propofol administration. The proportion of pericardial cysts increased, whereas the heart rate and size decreased with an increase in propofol concentration. The quantitative reverse-transcription polymerase chain reaction revealed that propofol significantly altered the expression of genes related to cardiac development and functions in zebrafish. Collectively, our findings indicate that propofol exposure induces significant developmental and cardiac toxicities in zebrafish.
Collapse
Affiliation(s)
- Xiaopan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China; Department of anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Long Chen
- Department of anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yunlong Zhang
- Department of anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Jintao Liu
- Department of anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Hong Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China.
| |
Collapse
|
45
|
Xian XS, Wang YT, Jiang XM. Propofol Inhibits Proliferation and Invasion of Stomach Cancer Cells by Regulating miR-205/YAP1 Axis. Cancer Manag Res 2020; 12:10771-10779. [PMID: 33149682 PMCID: PMC7605617 DOI: 10.2147/cmar.s270344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Background Propofol is a common clinical intravenous anesthetic. In the last few years, studies have revealed that propofol not only has good anesthetic effect but also has certain anticancer effect. However, its role in stomach cancer (SC) and related mechanisms are still under investigation. Objective This study was designed to determine the effect of propofol on SC and its related mechanisms. Methods Purchased SC cells were treated with propofol at different concentrations (5, 10, and 20 μg/mL), miR-205 overexpression, and YAP1 inhibition. Then, the Cell Counting Kit-8 (CCK8), Transwell, and flow cytometry were carried out to determine the biological behavior changes of treated cells and the expression of miR-205 and YAP1 after treatment. Results Propofol (10 μg/mL and 20 μg/mL) inhibited the growth of SC cells and promoted their apoptosis, and overexpressing miR-205 or inhibiting YAP1 can exert the same effects. In addition, propofol (10μg/mL and 20μg/mL) up-regulated miR-205 in SC cells. The dual-luciferase reporter assay revealed that YAP1 could be targeted and regulated by miR-205, and the rescue assay revealed that inhibiting miR-205 or overexpressing YAP1 could weaken the effect of propofol on the biological behaviors of SC cells. Conclusion Propofol can strongly suppress the proliferation and invasion of SC cells and induce their apoptosis via the miR-205/YAP1 axis.
Collapse
Affiliation(s)
- Xiang-Shu Xian
- Department of Gastroenterology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Qingdao 264000, People's Republic of China
| | - Yu-Tie Wang
- Department of Rheumatology and Immunology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Qingdao 264000, People's Republic of China
| | - Xiao-Meng Jiang
- Department of Digestive, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| |
Collapse
|
46
|
Arzua T, Yan Y, Jiang C, Logan S, Allison RL, Wells C, Kumar SN, Schäfer R, Bai X. Modeling alcohol-induced neurotoxicity using human induced pluripotent stem cell-derived three-dimensional cerebral organoids. Transl Psychiatry 2020; 10:347. [PMID: 33051447 PMCID: PMC7553959 DOI: 10.1038/s41398-020-01029-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Maternal alcohol exposure during pregnancy can substantially impact the development of the fetus, causing a range of symptoms, known as fetal alcohol spectrum disorders (FASDs), such as cognitive dysfunction and psychiatric disorders, with the pathophysiology and mechanisms largely unknown. Recently developed human cerebral organoids from induced pluripotent stem cells are similar to fetal brains in the aspects of development and structure. These models allow more relevant in vitro systems to be developed for studying FASDs than animal models. Modeling binge drinking using human cerebral organoids, we sought to quantify the downstream toxic effects of alcohol (ethanol) on neural pathology phenotypes and signaling pathways within the organoids. The results revealed that alcohol exposure resulted in unhealthy organoids at cellular, subcellular, bioenergetic metabolism, and gene expression levels. Alcohol induced apoptosis on organoids. The apoptotic effects of alcohol on the organoids depended on the alcohol concentration and varied between cell types. Specifically, neurons were more vulnerable to alcohol-induced apoptosis than astrocytes. The alcohol-treated organoids exhibit ultrastructural changes such as disruption of mitochondria cristae, decreased intensity of mitochondrial matrix, and disorganized cytoskeleton. Alcohol exposure also resulted in mitochondrial dysfunction and metabolic stress in the organoids as evidenced by (1) decreased mitochondrial oxygen consumption rates being linked to basal respiration, ATP production, proton leak, maximal respiration and spare respiratory capacity, and (2) increase of non-mitochondrial respiration in alcohol-treated organoids compared with control groups. Furthermore, we found that alcohol treatment affected the expression of 199 genes out of 17,195 genes analyzed. Bioinformatic analyses showed the association of these dysregulated genes with 37 pathways related to clinically relevant pathologies such as psychiatric disorders, behavior, nervous system development and function, organismal injury and abnormalities, and cellular development. Notably, 187 of these genes are critically involved in neurodevelopment, and/or implicated in nervous system physiology and neurodegeneration. Furthermore, the identified genes are key regulators of multiple pathways linked in networks. This study extends for the first time animal models of binge drinking-related FASDs to a human model, allowing in-depth analyses of neurotoxicity at tissue, cellular, subcellular, metabolism, and gene levels. Hereby, we provide novel insights into alcohol-induced pathologic phenotypes, cell type-specific vulnerability, and affected signaling pathways and molecular networks, that can contribute to a better understanding of the developmental neurotoxic effects of binge drinking during pregnancy.
Collapse
Affiliation(s)
- Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Yasheng Yan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Congshan Jiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Sarah Logan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Reilly L Allison
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Clive Wells
- Department of Microbiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Suresh N Kumar
- Department of Pathology, Children's Research Institute Imaging Core, Neuroscience Imaging Facility, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, 60438, Frankfurt am Main, Germany
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA.
| |
Collapse
|
47
|
Zhu X, Li H, Tian M, Zhou S, He Y, Zhou M. miR-455-3p alleviates propofol-induced neurotoxicity by reducing EphA4 expression in developing neurons. Biomarkers 2020; 25:685-692. [PMID: 33032457 DOI: 10.1080/1354750x.2020.1832147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Propofol, an aesthetic agent in paediatric patients, results in neurotoxicity in the developing neurons. To reduce side effects of propofol, the protective role of miR-455-3p (microRNA-455-3p) in developing rat brain was investigated. MATERIALS AND METHODS Primary hippocampal neurons were isolated from postnatal day 1 or 2 SD (Sprague-Dawley) rats. The neurons were exposed to various concentrations of propofol (0, 10, 30, or 50 μM) for 6 h. Propofol-induced cell viability was assessed by MTT assay, expression levels of miR-455-3p and EphA4 (erythropoietin-producing hepatocellular A4) in propofol-induced neurons were determined using qRT-PCR and western blot, respectively. Binding ability between miR-455-3p and EphA4 was predicted, and then validated by luciferase reporter assay. Neurons expressing miR-455-3p mimics, were treated with 50 μM propofol for 6 h, and apoptosis status was evaluated by flow cytometry. RESULTS Exposure to propofol significantly decreased cell viability of developing neurons isolated from neonatal rats. Propofol decreased miR-455-3p expression, while increased EphA4 level in the neurons. miR-455-3p mimics increased propofol-induced reduce in cell viability, and attenuated propofol-induced cell apoptosis of neurons. MiR-455-3p could target EphA4, and decreased expression of EphA4 in neurons exposure to propofol. EphA4 knockdown counteracted with the promotive effects of propofol on cell viability and apoptosis of neurons. CONCLUSION Propofol treatment induces neurotoxicity and suppresses miR-455-3p levels in the developing hippocampal neurons. However, miR-455-3p could alleviate such neurotoxicity by reducing EphA4 expression, provided new insights into miR-455-3p as novel therapeutic target to prevent propofol-induced damages from bench to clinic.
Collapse
Affiliation(s)
- Xiaojuan Zhu
- Department of Anesthesiology, The First People's Hospital of Kashi, Kashgar City, China
| | - Huifang Li
- Department of Anesthesiology, The First People's Hospital of Kashi, Kashgar City, China
| | - Ming Tian
- Department of Anesthesiology, The First People's Hospital of Kashi, Kashgar City, China
| | - Shuqin Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| | - Yuqin He
- Department of Anesthesiology, The First People's Hospital of Kashi, Kashgar City, China
| | - Ming Zhou
- Department of Anesthesiology, The First People's Hospital of Kashi, Kashgar City, China
| |
Collapse
|
48
|
Cao J, Li Y, Zeng F, Liu X, Tao T, Qin Z. Propofol Exposure Disturbs the Differentiation of Rodent Neural Stem Cells via an miR-124-3p/Sp1/Cdkn1b Axis. Front Cell Dev Biol 2020; 8:838. [PMID: 32984332 PMCID: PMC7481336 DOI: 10.3389/fcell.2020.00838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/05/2020] [Indexed: 11/13/2022] Open
Abstract
Accumulating studies have indicated that propofol may lead to neurotoxicity and its effect on neural stem cells (NSCs) may play pivotal role in propofol-related neurotoxicity. Previously, we found that propofol could promote NSCs proliferation and could regulate several microRNA expressions. However, the underlying mechanism between microRNAs and NSCs development after propofol exposure is still unclear. Our data first observed that rat primary neural stem cells exposed to propofol exhibited a cell cycle arrest status and an inclination to differentiate into GFAP+ or S100β+ cells. This phenomenon was accompanying with a lower miR-124-3p expression and could be reversed via overexpression miR-124-3p in NSCs. Using bioinformatic predictions and luciferase assay we confirmed that Sp1 (Specificity Protein 1) is the target gene of miR-124-3p, indicating that miR-124-3p may regulate NSCs development through Sp1. Further, knockdown of Sp1 rescue the effect of propofol on NSCs differentiation. Finally, we demonstrated that Sp1 could bind cdkn1b promoter region through chromatin immunoprecipitation assay, indicating that Sp1 affect NSC's cell cycle through cdkn1b directly. Overall, our study highlights the miR-124-3p/Sp1/cdkn1b axis to be important in propofol interfering the differentiation of NSCs.
Collapse
Affiliation(s)
- Jun Cao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Anesthesiology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yan Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Fanning Zeng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolei Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tao Tao
- Department of Anesthesiology, The Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Zaisheng Qin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
49
|
Yang F, Zhao H, Zhang K, Wu X, Liu H. Research progress and treatment strategies for anesthetic neurotoxicity. Brain Res Bull 2020; 164:37-44. [PMID: 32798600 DOI: 10.1016/j.brainresbull.2020.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022]
Abstract
Every year, a large number of infants and young children worldwide are administered general anesthesia. Whether general anesthesia adversely affects the intellectual development and cognitive function of children at a later date remains controversial. Many animal experiments have shown that general anesthetics can cause nerve damage during development, affect synaptic plasticity, and induce apoptosis, and finally affect learning and memory function in adulthood. The neurotoxicity of pediatric anesthetics (PAN) has received extensive attention in the field of anesthesia, which has been listed as a potential problem affecting public health by NFDA of the United States. Previous studies on rodents and non-human primates indicate that inhalation of anesthetics early after birth can induce long-term and sustained impairment of learning and memory function, as well as changes in brain function. Many anti-oxidant drugs, dexmedetomidine, as well as a rich living environment and exercise have been proven to reduce the neurotoxicity of anesthetics. In this paper, we summarize the research progress, molecular mechanisms and current intervention measures of anesthetic neurotoxicity.
Collapse
Affiliation(s)
- Fan Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| | - Hai Zhao
- Clinical Skills Center, Shenyang Medical College, Huanghe Street 146, Shenyang, 110034, China.
| | - Kaiyuan Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| | - Hongtao Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| |
Collapse
|
50
|
Wang M, Suo L, Yang S, Zhang W. CircRNA 001372 Reduces Inflammation in Propofol-Induced Neuroinflammation and Neural Apoptosis through PIK3CA/Akt/NF-κB by miRNA-148b-3p. J INVEST SURG 2020; 34:1167-1177. [PMID: 32506974 DOI: 10.1080/08941939.2020.1771639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Objectives: To investigate effects of circular RNA (circRNA) 001372 and its antagonist miRNAs-148b-3p on propofol-induced neurotoxicity and neuroinflammation in rat brain and pheochromocytoma cells.Methods: Sprague Dawley rats in propofol model group (n = 6) were intraperitoneal injected with propofol (50 mg/kg) and in sham control group (n = 6) without any treatment. Twenty-four h later, brain tissues were acquired during pentobarbital anesthesia. PC-12 cells were transfected with or without circRNA001372 mimics, circRNA001372 inhibitor, negative mimics or miRNA-148b-3p for 48 h and then treated with propofol (100 μM) for 48 h. Quantitative reverse transcription PCR and gene chips were used for detecting levels of circRNA001372, Haemotoxylin and Eosin staining for cell morphology, MTT for cell viability, flow cytometry for apoptosis, enzyme-linked immunosorbent assay for lactate dehydrogenase (LDH), interleukin-1β (IL-1β), IL-6, IL17 and IL-18, and Western blots for phosphoinositide 3-kinase (PI3K), Akt, phosphorylated Akt, and nuclear factor (NF) κB, dual-light luminescent reporter gene assay for luciferase reporter.Results: The propofol anesthesia in rats decreases levels of circRNA001372 and increases levels of cytokines including IL-1β, IL-6, IL17 and IL-18, resulting in the neurocyte damage in brain. In propofol-treated PC-12 cells, the inhibition of circRNA001372 increases apoptosis and cell damage makers, including LDH, IL-1β, IL-6, IL17, IL-18, resulting in the reduction of cell viability, which have been revised after over-expression of circRNA001372. MiRNA-148b-3p reduces circRNA001372-incresed PI3K and pAKt levels but enhances the circRNA001372-decreased NFκB level.Conclusions: CircRNA001372 suppresses propofol-induced neurotoxicity and neuroinflammation through PI3K/Akt/NF-κB signaling pathway in rat brain and neurocytes. MiRNA-148b-3p antagonizes the effects of circRNA001372.
Collapse
Affiliation(s)
- Mingyu Wang
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Liangyuan Suo
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Shun Yang
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Weiqing Zhang
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| |
Collapse
|