1
|
Asadi A, Wiesman AI, Wiest C, Baillet S, Tan H, Muthuraman M. Electrophysiological approaches to informing therapeutic interventions with deep brain stimulation. NPJ Parkinsons Dis 2025; 11:20. [PMID: 39833210 PMCID: PMC11747345 DOI: 10.1038/s41531-024-00847-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Neuromodulation therapy comprises a range of non-destructive and adjustable methods for modulating neural activity using electrical stimulations, chemical agents, or mechanical interventions. Here, we discuss how electrophysiological brain recording and imaging at multiple scales, from cells to large-scale brain networks, contribute to defining the target location and stimulation parameters of neuromodulation, with an emphasis on deep brain stimulation (DBS).
Collapse
Affiliation(s)
- Atefeh Asadi
- Neural Engineering with Signal Analytics and Artificial Intelligence, Department of Neurology, University Clinic Würzburg, Würzburg, Germany.
| | - Alex I Wiesman
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Christoph Wiest
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Huiling Tan
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Muthuraman Muthuraman
- Neural Engineering with Signal Analytics and Artificial Intelligence, Department of Neurology, University Clinic Würzburg, Würzburg, Germany
- Informatics for Medical Technology, Institute of Computer Science, University Augsburg, Augsburg, Germany
| |
Collapse
|
2
|
Huang PH, Pan YS, Chen SY, Lin SH. Anesthetic Effect on the Subthalamic Nucleus in Microelectrode Recording and Local Field Potential of Parkinson's Disease. Neuromodulation 2024:S1094-7159(24)00073-4. [PMID: 38852085 DOI: 10.1016/j.neurom.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVES Anesthetic agents used during deep brain stimulation (DBS) surgery might interfere with microelectrode recording (MER) and local field potential (LFP) and thus affect the accuracy of surgical target localization. This review aimed to identify the effects of different anesthetic agents on neuronal activity of the subthalamic nucleus (STN) during the MER procedure. MATERIALS AND METHODS We used Medical Subject Heading terms to search the PubMed, EMBASE, EBSCO, and ScienceDirect data bases. MER characteristics were sorted into quantitative and qualitative data types. Quantitative data included the burst index, pause index, firing rate (FR), and interspike interval. Qualitative data included background activity, burst discharge (BD), and anesthetic agent effect. We also categorized the reviewed manuscripts into those describing local anesthesia with sedation (LAWS) and those describing general anesthesia (GA) and compiled the effects of anesthetic agents on MER and LFP characteristics. RESULTS In total, 26 studies on MER were identified, of which 12 used LAWS and 14 used GA. Three studies on LFP also were identified. We found that the FR was preserved under LAWS but tended to be lower under GA, and BD was reduced in both groups. Individually, propofol enhanced BD but was better used for sedation, or the dosage should be minimized in GA. Similarly, low-dose dexmedetomidine sedation did not disturb MER. Opioids could be used as adjunctive anesthetic agents. Volatile anesthesia had the least adverse effect on MER under GA, with minimal alveolar concentration at 0.5. Dexmedetomidine anesthesia did not affect LFP, whereas propofol interfered with the power of LFP. CONCLUSIONS The effects of the tested anesthetics on the STN in MER and LFP of Parkinson's disease varied; however, identifying the STN and achieving a good clinical outcome are possible under controlled anesthetic conditions. For patient comfort, anesthesia should be considered in STN-DBS.
Collapse
Affiliation(s)
- Pin-Han Huang
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yu-Shen Pan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shin-Yuan Chen
- Department of Neurosurgery, Hualien Tzu Chi Hospital/Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Sheng-Huang Lin
- Department of Neurology, Hualien Tzu Chi Hospital/Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
| |
Collapse
|
3
|
Lim ML, Zhan ABB, Liu SJ, Saffari SE, Li W, Teo MM, Wong TGL, Ng WH, Wan KR. Awake versus Asleep Anesthesia in Deep Brain Stimulation Surgery for Parkinson's Disease: A Systematic Review and Meta-Analysis. Stereotact Funct Neurosurg 2024; 102:141-155. [PMID: 38636468 PMCID: PMC11152021 DOI: 10.1159/000536310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/02/2024] [Indexed: 04/20/2024]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is a well-established surgical therapy for patients with Parkinsons' Disease (PD). Traditionally, DBS surgery for PD is performed under local anesthesia, whereby the patient is awake to facilitate intraoperative neurophysiological confirmation of the intended target using microelectrode recordings. General anesthesia allows for improved patient comfort without sacrificing anatomic precision and clinical outcomes. METHODS We performed a systemic review and meta-analysis on patients undergoing DBS for PD. Published randomized controlled trials, prospective and retrospective studies, and case series which compared asleep and awake techniques for patients undergoing DBS for PD were included. A total of 19 studies and 1,900 patients were included in the analysis. RESULTS We analyzed the (i) clinical effectiveness - postoperative UPDRS III score, levodopa equivalent daily doses and DBS stimulation requirements. (ii) Surgical and anesthesia related complications, number of lead insertions and operative time (iii) patient's quality of life, mood and cognitive measures using PDQ-39, MDRS, and MMSE scores. There was no significant difference in results between the awake and asleep groups, other than for operative time, for which there was significant heterogeneity. CONCLUSION With the advent of newer technology, there is likely to have narrowing differences in outcomes between awake or asleep DBS. What would therefore be more important would be to consider the patient's comfort and clinical status as well as the operative team's familiarity with the procedure to ensure seamless transition and care.
Collapse
Affiliation(s)
- Michelle L Lim
- Department of Surgical Intensive Care, Division of Anaesthesiology and Perioperative Medicine, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Anaesthesiology and Perioperative Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Angela B B Zhan
- Department of Nursing, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Sherry J Liu
- Department of Neurosurgery, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore,
| | - Seyed E Saffari
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
| | - Wei Li
- Department of Nursing, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Mavis M Teo
- Department of Anaesthesiology and Perioperative Medicine, Singapore General Hospital, Singapore, Singapore
| | - Theodore G-L Wong
- Department of Anaesthesiology and Perioperative Medicine, Singapore General Hospital, Singapore, Singapore
| | - Wai H Ng
- Department of Neurosurgery, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore
- Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| | - Kai R Wan
- Department of Neurosurgery, National Neuroscience Institute, Tan Tock Seng Hospital, Singapore, Singapore
- Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
4
|
Kornilov E, Baker Erdman H, Kahana E, Fireman S, Zarchi O, Israelashvili M, Reiner J, Glik A, Weiss P, Paz R, Bergman H, Tamir I. Interleaved Propofol-Ketamine Maintains DBS Physiology and Hemodynamic Stability: A Double-Blind Randomized Controlled Trial. Mov Disord 2024; 39:694-705. [PMID: 38396358 DOI: 10.1002/mds.29746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The gold standard anesthesia for deep brain stimulation (DBS) surgery is the "awake" approach, using local anesthesia alone. Although it offers high-quality microelectrode recordings and therapeutic-window assessment, it potentially causes patients extreme stress and might result in suboptimal surgical outcomes. General anesthesia or deep sedation is an alternative, but may reduce physiological testing reliability and lead localization accuracy. OBJECTIVES The aim is to investigate a novel anesthesia regimen of ketamine-induced conscious sedation for the physiological testing phase of DBS surgery. METHODS Parkinson's patients undergoing subthalamic DBS surgery were randomly divided into experimental and control groups. During physiological testing, the groups received 0.25 mg/kg/h ketamine infusion and normal saline, respectively. Both groups had moderate propofol sedation before and after physiological testing. The primary outcome was recording quality. Secondary outcomes included hemodynamic stability, lead accuracy, motor and cognitive outcome, patient satisfaction, and adverse events. RESULTS Thirty patients, 15 from each group, were included. Intraoperatively, the electrophysiological signature and lead localization were similar under ketamine and saline. Tremor amplitude was slightly lower under ketamine. Postoperatively, patients in the ketamine group reported significantly higher satisfaction with anesthesia. The improvement in Unified Parkinson's disease rating scale part-III was similar between the groups. No negative effects of ketamine on hemodynamic stability or cognition were reported perioperatively. CONCLUSIONS Ketamine-induced conscious sedation provided high quality microelectrode recordings comparable with awake conditions. Additionally, it seems to allow superior patient satisfaction and hemodynamic stability, while maintaining similar post-operative outcomes. Therefore, it holds promise as a novel alternative anesthetic regimen for DBS. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Evgeniya Kornilov
- Department of Anesthesiology, Rabin Medical Center, Beilinson Hospital, Petach Tikvah, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Halen Baker Erdman
- Department of Medical Neurobiology, Hebrew University, Jerusalem, Israel
| | - Eilat Kahana
- Department of Anesthesiology, Rabin Medical Center, Beilinson Hospital, Petach Tikvah, Israel
| | - Shlomo Fireman
- Department of Anesthesiology, Rabin Medical Center, Beilinson Hospital, Petach Tikvah, Israel
| | - Omer Zarchi
- Intraoperative Neurophysiology Unit, Rabin Medical Center, Beilinson Hospital, Petach Tikvah, Israel
| | | | - Johnathan Reiner
- Department of Neurology, Rabin Medical Center, Beilinson Hospital, Petach Tikvah, Israel
| | - Amir Glik
- Department of Neurology, Rabin Medical Center, Beilinson Hospital, Petach Tikvah, Israel
- Cognitive Neurology Clinic, Rabin Medical Center, Beilinson Hospital, Petach Tikvah, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Penina Weiss
- Occupational Therapy Department, Rabin Medical Center, Beilinson Hospital, Petach Tikvah, Israel
| | - Rony Paz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology, Hebrew University, Jerusalem, Israel
- Department of Neurosurgery, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel
| | - Idit Tamir
- Department of Neurosurgery, Rabin Medical Center, Beilinson Hospital, Petach Tikvah, Israel
| |
Collapse
|
5
|
Xie S, Shi L, Xiong W, Chen L, Li X, Tong Y, Yang W, Wang A, Zhang J, Han R. Choice of anaesthesia in microelectrode recording-guided deep-brain stimulation for Parkinson's disease (CHAMPION): study protocol for a single-centre, open-label, non-inferiority randomised controlled trial. BMJ Open 2023; 13:e071726. [PMID: 37253497 PMCID: PMC10255000 DOI: 10.1136/bmjopen-2023-071726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023] Open
Abstract
INTRODUCTION Deep brain stimulation (DBS) implantation under general anaesthesia (GA) has been applied to patients with Parkinson's disease (PD) with severe comorbidities or disabling off-medication symptoms. However, general anaesthetics may affect intraoperative microelectrode recording (MER) to varying degrees. At present, there are few studies on the effects of sedatives or general anaesthetics on multiunit activity characteristics performed by MER in patients with PD during DBS. Therefore, the effect of the choice of anaesthesia on MER remains unclear. METHODS/DESIGN This is a prospective randomised controlled, non-inferiority study that will be carried out at Beijing Tiantan Hospital, Capital Medical University. Patients undergoing elective bilateral subthalamic nucleus (STN)-DBS will be enrolled after careful screening for eligibility. One hundred and eighty-eight patients will be randomised to receive either conscious sedation (CS) or GA at a 1:1 ratio. The primary outcome is the proportion of high normalised root mean square (NRMS) recorded by the MER signal. ETHICS AND DISSEMINATION The study was approved by the Ethics Committee of Beijing Tiantan Hospital of Capital Medical University (KY2022-147-02). Negative study results will indicate that GA using desflurane has a non-inferior effect on MER during STN-DBS compared with CS. The results of this clinical trial will be presented at national or international conferences and submitted to a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT05550714.
Collapse
Affiliation(s)
- Sining Xie
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing, China
| | - Wei Xiong
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liang Chen
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiangjiahui Li
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Tong
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wanning Yang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anxin Wang
- Department of Statistics, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing, China
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Qian K, Wang J, Rao J, Zhang P, Sun Y, Hu W, Hao J, Jiang X, Fu P. Intraoperative microelectrode recording under general anesthesia guided subthalamic nucleus deep brain stimulation for Parkinson's disease: One institution's experience. Front Neurol 2023; 14:1117681. [PMID: 36908617 PMCID: PMC9997081 DOI: 10.3389/fneur.2023.1117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Objective Microelectrode recording (MER) guided subthalamic nucleus deep brain stimulation (STN-DBS) under local anesthesia (LA) is widely applied in the management of advanced Parkinson's disease (PD). Whereas, awake DBS under LA is painful and burdensome for PD patients. We analyzed the influence of general anesthesia (GA) on intraoperative MER, to assess the feasibility and effectiveness of GA in MER guided STN-DBS. Methods Retrospective analysis was performed on the PD patients, who underwent bilateral MER guided STN-DBS in Wuhan Union Hospital from July 2019 to December 2021. The patients were assigned to LA or GA group according to the anesthetic methods implemented. Multidimensional parameters, including MER signals, electrode implantation accuracy, clinical outcome and adverse events, were analyzed. Results A total of 40 PD patients were enrolled in this study, including 18 in LA group and 22 in GA group. There were no statistically significant differences in patient demographics and baseline characteristics between two groups. Although, the parameters of MER signal, including frequency, inter-spike interval (ISI) and amplitude, were obviously interfered under GA, the waveforms of MER signals were recognizable and shared similar characteristics with LA group. Both LA and GA could achieve effective electrode implantation accuracy and clinical outcome. They also shared similar adverse events postoperatively. Conclusion GA is viable and comparable to LA in MER guided STN-DBS for PD, regarding electrode implantation accuracy, clinical outcome and adverse events. Notably, GA is more friendly and acceptable to the patients who are incapable of enduring intraoperative MER under LA.
Collapse
Affiliation(s)
- Kang Qian
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajing Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Rao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqiang Sun
- Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Guangdong Institute of Artificial Intelligence and Advanced Computing, Guangzhou, China
| | - Wenqing Hu
- Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Guangdong Institute of Artificial Intelligence and Advanced Computing, Guangzhou, China
| | - Jie Hao
- Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Guangdong Institute of Artificial Intelligence and Advanced Computing, Guangzhou, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Nomogram for Prediction of Postoperative Delirium after Deep Brain Stimulation of Subthalamic Nucleus in Parkinson’s Disease under General Anesthesia. PARKINSON'S DISEASE 2022; 2022:6915627. [DOI: 10.1155/2022/6915627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 12/05/2022]
Abstract
Introduction. Postoperative delirium can increase cognitive impairment and mortality in patients with Parkinson’s disease. The purpose of this study was to develop and internally validate a clinical prediction model of delirium after deep brain stimulation of the subthalamic nucleus in Parkinson’s disease under general anesthesia. Methods. We conducted a retrospective observational cohort study on the data of 240 patients with Parkinson’s disease who underwent deep brain stimulation of the subthalamic nucleus under general anesthesia. Demographic characteristics, clinical evaluation, imaging data, laboratory data, and surgical anesthesia information were collected. Multivariate logistic regression was used to develop the prediction model for postoperative delirium. Results. A total of 159 patients were included in the cohort, of which 38 (23.90%) had postoperative delirium. Smoking (OR 4.51, 95% CI 1.56–13.02,
) was the most important risk factor; other independent predictors were orthostatic hypotension (OR 3.42, 95% CI 0.90–13.06,
), inhibitors of type-B monoamine oxidase (OR 3.07, 95% CI 1.17–8.04,
), preoperative MRI with silent brain ischemia or infarction (OR 2.36, 95% CI 0.90–6.14,
), Hamilton anxiety scale score (OR 2.12, 95% CI 1.28–3.50,
), and apolipoprotein E level in plasma (OR 1.48, 95% CI 0.95–2.29,
). The area under the receiver operating characteristic curve (AUC) was 0.76 (95% CI 0.66–0.86). A nomogram was established and showed good calibration and clinical predictive capacity. After bootstrap for internal verification, the AUC was 0.74 (95% CI 0.66–0.83). Conclusion. This study provides evidence for the independent inducing factors of delirium after deep brain stimulation of the subthalamic nucleus in Parkinson’s disease under general anesthesia. By predicting the development of delirium, our model may identify high-risk groups that can benefit from early or preventive intervention.
Collapse
|
8
|
Sinclair NC, McDermott HJ, Lee WL, Xu SS, Acevedo N, Begg A, Perera T, Thevathasan W, Bulluss KJ. Electrically evoked and spontaneous neural activity in the subthalamic nucleus under general anesthesia. J Neurosurg 2022; 137:449-458. [PMID: 34891136 DOI: 10.3171/2021.8.jns204225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/09/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) surgery is commonly performed with the patient awake to facilitate assessments of electrode positioning. However, awake neurosurgery can be a barrier to patients receiving DBS. Electrode implantation can be performed with the patient under general anesthesia (GA) using intraoperative imaging, although such techniques are not widely available. Electrophysiological features can also aid in the identification of target neural regions and provide functional evidence of electrode placement. Here we assess the presence and positional variation under GA of spontaneous beta and high-frequency oscillation (HFO) activity, and evoked resonant neural activity (ERNA), a novel evoked response localized to the subthalamic nucleus. METHODS ERNA, beta, and HFO were intraoperatively recorded from DBS leads comprising four individual electrodes immediately after bilateral awake implantation into the subthalamic nucleus of 21 patients with Parkinson's disease (42 hemispheres) and after subsequent GA induction deep enough to perform pulse generator implantation. The main anesthetic agent was either propofol (10 patients) or sevoflurane (11 patients). RESULTS GA reduced the amplitude of ERNA, beta, and HFO activity (p < 0.001); however, ERNA amplitudes remained large in comparison to spontaneous local field potentials. Notably, a moderately strong correlation between awake ERNA amplitude and electrode distance to an "ideal" therapeutic target within dorsal STN was preserved under GA (awake: ρ = -0.73, adjusted p value [padj] < 0.001; GA: ρ = -0.69, padj < 0.001). In contrast, correlations were diminished under GA for beta (awake: ρ = -0.45, padj < 0.001; GA: ρ = -0.13, padj = 0.12) and HFO (awake: ρ = -0.69, padj < 0.001; GA: ρ = -0.33, padj < 0.001). The largest ERNA occurred at the same electrode (awake vs GA) for 35/42 hemispheres (83.3%) and corresponded closely to the electrode selected by the clinician for chronic therapy at 12 months (awake ERNA 77.5%, GA ERNA 82.5%). The largest beta amplitude occurred at the same electrode (awake vs GA) for only 17/42 (40.5%) hemispheres and 21/42 (50%) for HFO. The electrode measuring the largest awake beta and HFO amplitudes corresponded to the electrode selected by the clinician for chronic therapy at 12 months in 60% and 70% of hemispheres, respectively. However, this correspondence diminished substantially under GA (beta 20%, HFO 35%). CONCLUSIONS ERNA is a robust electrophysiological signal localized to the dorsal subthalamic nucleus subregion that is largely preserved under GA, indicating it could feasibly guide electrode implantation, either alone or in complementary use with existing methods.
Collapse
Affiliation(s)
- Nicholas C Sinclair
- 1Bionics Institute, East Melbourne
- 2Medical Bionics Department, The University of Melbourne, East Melbourne
| | - Hugh J McDermott
- 1Bionics Institute, East Melbourne
- 2Medical Bionics Department, The University of Melbourne, East Melbourne
| | | | - San San Xu
- 1Bionics Institute, East Melbourne
- 3Department of Neurology, Austin Hospital, Heidelberg
| | | | | | - Thushara Perera
- 1Bionics Institute, East Melbourne
- 2Medical Bionics Department, The University of Melbourne, East Melbourne
| | - Wesley Thevathasan
- 1Bionics Institute, East Melbourne
- 3Department of Neurology, Austin Hospital, Heidelberg
- 5Department of Medicine, The University of Melbourne, Parkville
| | - Kristian J Bulluss
- 1Bionics Institute, East Melbourne
- 6Department of Neurosurgery, St. Vincent's and Austin Hospitals, Melbourne; and
- 7Department of Surgery, The University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
9
|
Erdman HB, Kornilov E, Kahana E, Zarchi O, Reiner J, Socher A, Strauss I, Firman S, Israel Z, Bergman H, Tamir I. Asleep DBS under ketamine sedation: Proof of concept. Neurobiol Dis 2022; 170:105747. [PMID: 35550159 DOI: 10.1016/j.nbd.2022.105747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is commonly and safely performed for selective Parkinson's disease patients. Many centers perform DBS lead positioning exclusively under local anesthesia, to optimize brain microelectrode recordings (MER) and testing of stimulation-related therapeutic and side effects. These measures enable physiological identification of the DBS borders and subdomains based on electrophysiological properties like firing rates and patterns, intra-operative evaluation of therapeutic window, and improvement of lead placement accuracy. Nevertheless, due to the challenges of awake surgery, some centers use sedation or general anesthesia, despite the distortion of discharge properties and interference with clinical testing, resulting in potential impact on surgical outcomes. Thus, there is a need for a novel anesthesia regimen that enables sedation without compromising intra-operative monitoring. OBJECTIVE This open-label study investigates the use of low-dose ketamine for conscious sedation during microelectrode recordings and lead positioning in subthalamic nucleus (STN) DBS for Parkinson's disease patients. METHODS Three anesthetic regimens were retrospectively compared in 38 surgeries (74 MER trajectories, 5962 recording sites) across three DBS centers: 1) Interleaved propofol-ketamine (PK), 2) Interleaved propofol-awake (PA), and 3) Fully awake (AA). RESULTS All anesthesia regimens achieved satisfactory MER. Detection of STN borders and subdomains by expert electrophysiologist was similar between the groups. Electrophysiological signature of the STN under ketamine was not inferior to either control group. All patients completed stimulation testing. CONCLUSIONS This study supports a low-dose ketamine anesthesia regimen for DBS which allows microelectrode recordings and stimulation testing that are not inferior to those conducted under awake and propofol-awake regimens and may optimize patient experience. A prospective double-blind study that would also compare patients' satisfaction level and clinical outcome should be performed to confirm these findings.
Collapse
Affiliation(s)
- Halen Baker Erdman
- Department of Medical Neurobiology, Hebrew University, Jerusalem, Israel.
| | - Evgeniya Kornilov
- Department of Anesthesiology, Rabin Medical Center, Beilinson Hospital, Petach Tikvah, Israel; Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Eilat Kahana
- Department of Anesthesiology, Rabin Medical Center, Beilinson Hospital, Petach Tikvah, Israel
| | - Omer Zarchi
- Intraoperative Neurophysiology Unit, Rabin Medical Center, Beilinson Hospital, Petach Tikvah, Israel
| | - Johnathan Reiner
- Department of Neurology, Rabin Medical Center, Beilinson Hospital, Petach Tikvah, Israel
| | - Achinoam Socher
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Strauss
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shimon Firman
- Department of Anesthesiology, Critical Care Medicine, and Pain Management, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Zvi Israel
- Department of Neurosurgery, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology, Hebrew University, Jerusalem, Israel; Department of Neurosurgery, Hadassah Medical Center, Hebrew University, Jerusalem, Israel; The Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel
| | - Idit Tamir
- Department of Neurosurgery, Rabin Medical Center, Beilinson Hospital, Petach Tikvah, Israel.
| |
Collapse
|
10
|
Feng L, Liu Y, Tang H, Ling Z, Xu L, Yuan W, Feng Z. Delayed Recovery After Deep Brain Stimulation Surgery for Parkinson's Disease Under General Anesthesia-Cases Report. Front Surg 2022; 9:811337. [PMID: 35300247 PMCID: PMC8921249 DOI: 10.3389/fsurg.2022.811337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Parkinson's disease (PD) is a neurodegenerative syndrome, and deep-brain stimulation (DBS) is an effective therapy for carefully screened patients with PD. However, delayed recovery after anesthesia, which occurs after taking prolonged general anesthesia for such patients, has been reported less frequently in literature. This report explores the possible causes of postoperative awakening delay in patients undergoing DBS surgery due to general anesthesia and provides a reference for anesthesia management of similar operations in the future. Case Presentation Three patients with PD elective underwent DBS surgery. The first patients demonstrated walking disability, gait deficits, unstable posture, limb stiffness, and imbalance. The second demonstrated left limb static tremor, stiffness, and bradykinesia. The third demonstrated bradykinesia, rigidity, walking deficits, and decreased facial expression. These included two males and one female with a mean patient age of 60.7 ± 6.7year, weight of 63.7 ± 11 kg, the height of 163.3 ± 7.6 cm, and preoperative American Society of Anesthesiology rating of 2.3 ± 0.6. The preoperative Glasgow Coma Scale mean score was 15. All patients completed the operation under general anesthesia (the mean anesthesia time was 5.3 ± 1.1 h). The mean operation time was 252 ± 60 min. The mean bleeding volume was 50 ml, and the urine volume was 867 ± 569 ml. However, all the patients showed unconsciousness after 95 ± 22 min after stopping the anesthetic, and the respiratory function was in good condition, but they could not cooperate with anesthesiologists and had no response to the anesthesiologist's instructions. The mean hospital stay was 17 ± 7 days. All patients were discharged uneventfully. The average number of days patients followed up postoperatively was 171 ± 28.5 days. Motor and speech were improved significantly postoperatively in three patients compared with preoperatively. Taking anti-Parkinson medication was markedly reduced. There were no complications during postoperative follow-up. Conclusions To prevent delayed recovery occurring after DBS surgery in Parkinson's disease, it is recommended to take scalp nerve block + general anesthesia to complete the procedure while avoiding general anesthesia.
Collapse
Affiliation(s)
- Long Feng
- Department of Anesthesiology, Hainan Hospital of Chinese People's Liberation Army (PLA) General Hospital, Sanya, China
| | - Yaohong Liu
- Department of Anesthesiology, Hainan Hospital of Chinese People's Liberation Army (PLA) General Hospital, Sanya, China
| | - Hao Tang
- Department of Neurosurgery, Hainan Hospital of Chinese People's Liberation Army (PLA) General Hospital, Sanya, China
| | - Zhipei Ling
- Department of Anesthesiology, Hainan Hospital of Chinese People's Liberation Army (PLA) General Hospital, Sanya, China
- Zhipei Ling
| | - Longhe Xu
- Department of Anesthesiology, The Third Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Longhe Xu
| | - Weixiu Yuan
- Department of Anesthesiology, Hainan Hospital of Chinese People's Liberation Army (PLA) General Hospital, Sanya, China
- Weixiu Yuan
| | - Zeguo Feng
- Department of Pain, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Zeguo Feng
| |
Collapse
|
11
|
Chen YC, Kuo CC, Chen SY, Chen TY, Pan YH, Wang PK, Tsai ST. Median Nerve Stimulation Facilitates the Identification of Somatotopy of the Subthalamic Nucleus in Parkinson’s Disease Patients under Inhalational Anesthesia. Biomedicines 2021; 10:biomedicines10010074. [PMID: 35052754 PMCID: PMC8772994 DOI: 10.3390/biomedicines10010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
Deep brain stimulation (DBS) improves Parkinson’s disease (PD) symptoms by suppressing neuropathological oscillations. These oscillations are also modulated by inhalational anesthetics used during DBS surgery in some patients, influencing electrode placement accuracy. We sought to evaluate a method that could avoid these effects. We recorded subthalamic nucleus (STN) neuronal firings in 11 PD patients undergoing DBS under inhalational anesthesia. Microelectrode recording (MER) during DBS was collected under median nerve stimulation (MNS) delivered at 5, 20, and 90 Hz frequencies and without MNS. We analyzed the spike firing rate and neuronal activity with power spectral density (PSD), and assessed correlations between the neuronal oscillation parameters and clinical motor outcomes. No patient experienced adverse effects during or after DBS surgery. PSD analysis revealed that peripheral 20 Hz MNS produced significant differences in the dorsal and ventral subthalamic nucleus (STN) between the beta band oscillation (16.9 ± 7.0% versus 13.5 ± 4.8%, respectively) and gamma band oscillation (56.0 ± 13.7% versus 66.3 ± 9.4%, respectively) (p < 0.05). Moreover, 20-Hz MNS entrained neural oscillation over the dorsal STN, which correlated positively with motor disabilities. MNS allowed localization of the sensorimotor STN and identified neural characteristics under inhalational anesthesia. This paradigm may help identify an alternative method to facilitate STN identification and DBS surgery under inhalational anesthesia.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (Y.-C.C.); (S.-Y.C.); (Y.-H.P.)
- Department of Medical Informatics, Tzu Chi University, Hualien 970, Taiwan
| | - Chang-Chih Kuo
- Department of Physiology and Master Program in Medical Physiology, Tzu Chi University, Hualien 970, Taiwan;
| | - Shin-Yuan Chen
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (Y.-C.C.); (S.-Y.C.); (Y.-H.P.)
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
| | - Tsung-Ying Chen
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
- Department of Anesthesiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Yan-Hong Pan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (Y.-C.C.); (S.-Y.C.); (Y.-H.P.)
| | - Po-Kai Wang
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
- Department of Anesthesiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Correspondence: (P.-K.W.); (S.-T.T.)
| | - Sheng-Tzung Tsai
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (Y.-C.C.); (S.-Y.C.); (Y.-H.P.)
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
- Correspondence: (P.-K.W.); (S.-T.T.)
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is a rapidly expanding surgical modality for the treatment of patients with movement disorders. Its ability to be adjusted, titrated, and optimized over time has given it a significant advantage over traditional more invasive surgical procedures. Therefore, the success and popularity of this procedure have led to the discovery of new indications and therapeutic targets as well as advances in surgical techniques. The aim of this review is to highlight the important updates in DBS surgery and to exam the anesthesiologist's role in providing optimal clinical management. RECENT FINDINGS New therapeutic indications have a significant implication on perioperative anesthesia management. In addition, new technologies like frameless stereotaxy and intraoperative magnetic resonance imaging to guide electrode placement have altered the need for intraoperative neurophysiological monitoring and hence increased the use of general anesthesia. With an expanding number of patients undergoing DBS implantation, patients with preexisting DBS increasingly require anesthesia for unrelated surgery and the anesthesiologist must be aware of the considerations for perioperative management of these devices and potential complications. SUMMARY DBS will continue to grow and evolve requiring adaptation and modification to the anesthetic management of these patients.
Collapse
Affiliation(s)
- Michael Dinsmore
- Department of Anesthesia and Pain Management, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
13
|
Bos MJ, Buhre W, Temel Y, Joosten EAJ, Absalom AR, Janssen MLF. Effect of Anesthesia on Microelectrode Recordings During Deep Brain Stimulation Surgery: A Narrative Review. J Neurosurg Anesthesiol 2021; 33:300-307. [PMID: 31913866 DOI: 10.1097/ana.0000000000000673] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022]
Abstract
Deep brain stimulation (DBS) is an effective surgical treatment for patients with various neurological and psychiatric disorders. Clinical improvements rely on careful patient selection and accurate electrode placement. A common method for target localization is intraoperative microelectrode recording (MER). To facilitate MER, DBS surgery is traditionally performed under local or regional anesthesia. However, sedation or general anesthesia is sometimes needed for patients who are unable to tolerate the procedure fully awake because of severe motor symptoms, psychological distress, pain, or other forms of discomfort. The effect of anesthetic drugs on MER is controversial but likely depends on the type and dose of a particular anesthetic agent, underlying disease, and surgical target. In this narrative review, we provide an overview of the current literature on the anesthetic drugs most often used for sedation and anesthesia during DBS surgery, with a focus on their effects on MERs.
Collapse
Affiliation(s)
- Michaël J Bos
- Departments of Anesthesiology and Pain Medicine
- School for Mental Health and Neuroscience, Maastricht University, Maastricht
| | | | - Yasin Temel
- Neurosurgery
- School for Mental Health and Neuroscience, Maastricht University, Maastricht
| | - Elbert A J Joosten
- Departments of Anesthesiology and Pain Medicine
- School for Mental Health and Neuroscience, Maastricht University, Maastricht
| | - Anthony R Absalom
- Department of Anesthesiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcus L F Janssen
- Neurology
- Clinical Neurophysiology, Maastricht University Medical Center
- School for Mental Health and Neuroscience, Maastricht University, Maastricht
| |
Collapse
|
14
|
Guang J, Baker H, Ben-Yishay Nizri O, Firman S, Werner-Reiss U, Kapuller V, Israel Z, Bergman H. Toward asleep DBS: cortico-basal ganglia spectral and coherence activity during interleaved propofol/ketamine sedation mimics NREM/REM sleep activity. NPJ PARKINSONS DISEASE 2021; 7:67. [PMID: 34341348 PMCID: PMC8329235 DOI: 10.1038/s41531-021-00211-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022]
Abstract
Deep brain stimulation (DBS) is currently a standard procedure for advanced Parkinson's disease. Many centers employ awake physiological navigation and stimulation assessment to optimize DBS localization and outcome. To enable DBS under sedation, asleep DBS, we characterized the cortico-basal ganglia neuronal network of two nonhuman primates under propofol, ketamine, and interleaved propofol-ketamine (IPK) sedation. Further, we compared these sedation states in the healthy and Parkinsonian condition to those of healthy sleep. Ketamine increases high-frequency power and synchronization while propofol increases low-frequency power and synchronization in polysomnography and neuronal activity recordings. Thus, ketamine does not mask the low-frequency oscillations used for physiological navigation toward the basal ganglia DBS targets. The brain spectral state under ketamine and propofol mimicked rapid eye movement (REM) and Non-REM (NREM) sleep activity, respectively, and the IPK protocol resembles the NREM-REM sleep cycle. These promising results are a meaningful step toward asleep DBS with nondistorted physiological navigation.
Collapse
Affiliation(s)
- Jing Guang
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Halen Baker
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Shimon Firman
- Department of Anesthesiology, Critical Care Medicine, and Pain Management, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Uri Werner-Reiss
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vadim Kapuller
- Department of Pediatric Surgery, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel.,Asuta-Ashdod University Medical Center, Ashdod, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zvi Israel
- Department of Neurosurgery, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagai Bergman
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Neurosurgery, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
15
|
Multimodal monitoring of arousal, or just call your patient by name. Br J Anaesth 2021; 127:170-172. [PMID: 34120756 DOI: 10.1016/j.bja.2021.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/20/2021] [Accepted: 04/29/2021] [Indexed: 11/20/2022] Open
|
16
|
Jiang N, Ling YT, Yang C, Liu Y, Xian WB, Zhang LN, Guo QQ, Jin XY, Wu B, Zhang CM, Chen L, Zhang ZG, Liu JL. Optimized Propofol Anesthesia Increases Power of Subthalamic Neuronal Activity in Patients with Parkinson's Disease Undergoing Deep Brain Stimulation. Neurol Ther 2021; 10:785-802. [PMID: 34095990 PMCID: PMC8571439 DOI: 10.1007/s40120-021-00259-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/22/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Propofol is a general anesthetic option for deep brain stimulation (DBS) of the subthalamic nucleus (STN) of patients with Parkinson's disease (PD). However, its effects on STN activity and neuropsychological outcomes are controversial. The optimal propofol anesthesia for asleep DBS is unknown. This study investigated the safety and effectiveness of an optimized propofol anesthesia regimen in asleep DBS. Methods This retrospective study enrolled 68 PD patients undergoing bilateral STN-DBS surgery. All patients received local scalp anesthesia, with (asleep group, n = 35) or without (awake group, n = 33) propofol-remifentanil general anesthesia by target-controlled infusion under electroencephalogram monitoring. The primary outcome was subthalamic neuronal spiking characterization during microelectrode recording. The secondary outcomes were clinical outcomes including motor, cognition, mind, sleep, and quality of life at 6 months. Results Significantly increased delta and theta power were obtained under propofol anesthesia (awake vs. asleep group, mean ± standard deviation; delta: 31.97 ± 9.87 vs. 39.77 ± 10.56, p < 0.01; theta: 21.09 ± 5.55 vs. 24.82 ± 6.63, p = 0.01). After excluding the influence of confounding factors of age and preoperative motor scores, there was a statistically significant influence on the delta, theta, and alpha power of STN neuronal activity under different anesthesia regimens (delta: β = 2.64, p < 0.01; theta: β = 2.11, p < 0.01; alpha: β = 1.42, p = 0.01). There were no differences in modified burst index, firing rate, tract numbers of microelectrode recording, and other clinical outcomes between the two groups. Conclusion Optimized propofol anesthesia enhanced the delta, theta, and alpha power in STN compared with the awake technique and likely contributed to target recognition under propofol anesthesia. These results demonstrate that propofol is suitable, but needs to be optimized, for asleep STN-DBS. Trial Registration Chinese Clinical Trial Registry Identification number: ChiCTR2100045942. Registered 29 April 2021–Retrospectively registered Supplementary Information The online version contains supplementary material available at 10.1007/s40120-021-00259-y.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Anesthesiology, First Affiliated Hospital of Sun Yat-sen University , Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Yu-Ting Ling
- Department of Anesthesiology, First Affiliated Hospital of Sun Yat-sen University , Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Chao Yang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University , Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Yi Liu
- Department of Anesthesiology, First Affiliated Hospital of Sun Yat-sen University , Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Wen-Biao Xian
- Department of Neurology, First Affiliated Hospital of Sun Yat-sen University , Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Li-Nan Zhang
- Department of Anesthesiology, First Affiliated Hospital of Sun Yat-sen University , Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Qian-Qian Guo
- Department of Anesthesiology, First Affiliated Hospital of Sun Yat-sen University , Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Xing-Yi Jin
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Bin Wu
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University , Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Chang-Ming Zhang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University , Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Ling Chen
- Department of Neurology, First Affiliated Hospital of Sun Yat-sen University , Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Zhi-Guo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Jin-Long Liu
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University , Guangzhou, 510080, Guangdong Province, People's Republic of China.
| |
Collapse
|
17
|
Bos MJ, de Korte-de Boer D, Alzate Sanchez AM, Duits A, Ackermans L, Temel Y, Absalom AR, Buhre WF, Roberts MJ, Janssen MLF. Impact of Procedural Sedation on the Clinical Outcome of Microelectrode Recording Guided Deep Brain Stimulation in Patients with Parkinson's Disease. J Clin Med 2021; 10:1557. [PMID: 33917205 PMCID: PMC8068017 DOI: 10.3390/jcm10081557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Subthalamic nucleus (STN) deep brain stimulation (DBS) has become a routine treatment of advanced Parkinson's disease (PD). DBS surgery is commonly performed under local anesthesia (LA) to obtain reliable microelectrode recordings. However, procedural sedation and/or analgesia (PSA) is often desirable to improve patient comfort. The impact of PSA in addition to LA on outcome is largely unknown. Therefore, we performed an observational study to assess the effect of PSA compared to LA alone during STN DBS surgery on outcome in PD patients. METHODS Seventy PD patients (22 under LA, 48 under LA + PSA) scheduled for STN DBS implantation were included. Dexmedetomidine, clonidine or remifentanil were used for PSA. The primary outcome was the change in Movement Disorders Society Unified Parkinson's Disease Rating Score III (MDS-UPDRS III) and levodopa equivalent daily dosage (LEDD) between baseline, one month before surgery, and twelve months postoperatively. Secondary outcome measures were motor function during activities of daily living (MDS-UPDRS II), cognitive alterations and surgical adverse events. Postoperative assessment was conducted in "on" stimulation and "on" medication conditions. RESULTS At twelve months follow-up, UPDRS III and UPDRS II scores in "on" medication conditions were similar between the LA and PSA groups. The two groups showed a similar LEDD reduction and an equivalent decline in executive function measured by the Stroop Color-Word Test, Trail Making Test-B, and verbal fluency. The incidence of perioperative and postoperative adverse events was similar between groups. CONCLUSION This study demonstrates that PSA during STN DBS implantation surgery in PD patients was not associated with differences in motor and non-motor outcome after twelve months compared with LA only.
Collapse
Affiliation(s)
- Michael J. Bos
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands; (D.d.K.-d.B.); (W.F.B.)
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (A.D.); (Y.T.); (M.L.F.J.)
| | - Dianne de Korte-de Boer
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands; (D.d.K.-d.B.); (W.F.B.)
| | - Ana Maria Alzate Sanchez
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (A.D.); (Y.T.); (M.L.F.J.)
| | - Annelien Duits
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (A.D.); (Y.T.); (M.L.F.J.)
- Department of Medical Psychology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands;
| | - Yasin Temel
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (A.D.); (Y.T.); (M.L.F.J.)
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands;
| | - Anthony R. Absalom
- Department of Anesthesiology, University Medical Center Groningen, Groningen University, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Wolfgang F. Buhre
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands; (D.d.K.-d.B.); (W.F.B.)
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (A.D.); (Y.T.); (M.L.F.J.)
| | - Mark J. Roberts
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Marcus L. F. Janssen
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (A.D.); (Y.T.); (M.L.F.J.)
- Department of Clinical Neurophysiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
18
|
Nikolov P, Heil V, Hartmann CJ, Ivanov N, Slotty PJ, Vesper J, Schnitzler A, Groiss SJ. Motor Evoked Potentials Improve Targeting in Deep Brain Stimulation Surgery. Neuromodulation 2021; 25:888-894. [PMID: 33779014 DOI: 10.1111/ner.13386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/22/2021] [Accepted: 02/15/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES One of the main challenges posed by the surgical deep brain stimulation (DBS) procedure is the successful targeting of the structures of interest and avoidance of side effects, especially in asleep surgery. Here, intraoperative motor evoked potentials (MEPs) might serve as tool to identify the pyramidal tract. We hypothesized that intraoperative MEPs are useful to define the distance to the pyramidal tract and reduce the occurrence of postoperative capsular side effects. MATERIALS AND METHODS Motor potentials were evoked through both microelectrode and DBS-electrode stimulation during stereotactic DBS surgery on 25 subthalamic nuclei and 3 ventral intermediate thalamic nuclei. Internal capsule proximity was calculated for contacts on microelectrode trajectories, as well as for DBS-electrodes, and correlated with the corresponding MEP thresholds. Moreover, the predictivity of intraoperative MEP thresholds on the probability of postoperative capsular side effects was calculated. RESULTS Intraoperative MEPs thresholds correlated significantly with internal capsule proximity, regardless of the stimulation source. Furthermore, MEPs thresholds were highly accurate to exclude the occurrence of postoperative capsular side effects. CONCLUSIONS Intraoperative MEPs provide additional targeting guidance, especially in asleep DBS surgery, where clinical value of microelectrode recordings and test stimulation may be limited. As this technique can exclude future capsular side effects, it can directly be translated into clinical practice.
Collapse
Affiliation(s)
- Petyo Nikolov
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Verena Heil
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian J Hartmann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nikola Ivanov
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp J Slotty
- Department of Functional Neurosurgery and Stereotaxy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan Vesper
- Department of Functional Neurosurgery and Stereotaxy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Jun Groiss
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
19
|
Desflurane and sevoflurane differentially affect activity of the subthalamic nucleus in Parkinson's disease. Br J Anaesth 2020; 126:477-485. [PMID: 33160604 DOI: 10.1016/j.bja.2020.09.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Desflurane and sevoflurane are commonly used during inhalational anaesthesia, but few studies have investigated their effects on deep cerebral neuronal activity. In addition, the association between subthalamic nucleus (STN) neurophysiology and general anaesthesia induced by volatile anaesthetics are not yet identified. This study aimed to identify differences in neurophysiological characteristics of the STN during comparable minimal alveolar concentration (MAC) desflurane and sevoflurane anaesthesia for deep brain stimulation (DBS) in patients with Parkinson's disease. METHODS Twelve patients with similar Parkinson's disease severity received desflurane (n=6) or sevoflurane (n=6) during DBS surgery. We obtained STN spike firing using microelectrode recording at 0.5-0.6 MAC and compared firing rate, power spectral density, and coherence. RESULTS Neuronal firing rate was lower with desflurane (47.4 [26.7] Hz) than with sevoflurane (63.9 [36.5] Hz) anaesthesia (P<0.001). Sevoflurane entrained greater gamma oscillation power than desflurane (62.9% [0.9%] vs 57.0% [1.5%], respectively; P=0.002). There was greater coherence in the theta band of the desflurane group compared with the sevoflurane group (13% vs 6%, respectively). Anaesthetic choice did not differentially influence STN mapping accuracy or the clinical outcome of DBS electrode implantation. CONCLUSIONS Desflurane and sevoflurane produced distinct neurophysiological profiles in humans that may be associated with their analgesic and hypnotic actions.
Collapse
|
20
|
The role of dexmedetomidine in neurosurgery. Best Pract Res Clin Anaesthesiol 2020; 35:221-229. [PMID: 34030806 DOI: 10.1016/j.bpa.2020.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 01/14/2023]
Abstract
Dexmedetomidine can be used for sedation and analgesia and has been approved for this use by the European Medicines Agency since 2017. It causes an arousable state of sedation, which is beneficial during neurosurgical procedures that require the patient to cooperate with neurological tests (i.e. tumor surgery or implantation of deep brain stimulators). During procedures where monitoring of somatosensory evoked potentials and/or motor evoked potentials is required, dexmedetomidine can be used as an adjunct to general anesthesia with GABAergic drugs to decrease the dose of the latter when these drugs impair the monitoring signals. The use of dexmedetomidine has also been associated with neuroprotective effects and a decreased incidence of delirium, but studies confirming these effects in the peri-operative (neuro-)surgical setting are lacking. Although dexmedetomidine does not cause respiratory depression, its hemodynamic effects are complex and careful patient selection, choice of dose, and monitoring must be performed.
Collapse
|
21
|
Park HR, Lim YH, Song EJ, Lee JM, Park K, Park KH, Lee WW, Kim HJ, Jeon B, Paek SH. Bilateral Subthalamic Nucleus Deep Brain Stimulation under General Anesthesia: Literature Review and Single Center Experience. J Clin Med 2020; 9:jcm9093044. [PMID: 32967337 PMCID: PMC7564882 DOI: 10.3390/jcm9093044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Bilateral subthalamic nucleus (STN) Deep brain stimulation (DBS) is a well-established treatment in patients with Parkinson's disease (PD). Traditionally, STN DBS for PD is performed by using microelectrode recording (MER) and/or intraoperative macrostimulation under local anesthesia (LA). However, many patients cannot tolerate the long operation time under LA without medication. In addition, it cannot be even be performed on PD patients with poor physical and neurological condition. Recently, it has been reported that STN DBS under general anesthesia (GA) can be successfully performed due to the feasible MER under GA, as well as the technical advancement in direct targeting and intraoperative imaging. The authors reviewed the previously published literature on STN DBS under GA using intraoperative imaging and MER, focused on discussing the technique, clinical outcome, and the complication, as well as introducing our single-center experience. Based on the reports of previously published studies and ours, GA did not interfere with the MER signal from STN. STN DBS under GA without intraoperative stimulation shows similar or better clinical outcome without any additional complication compared to STN DBS under LA. Long-term follow-up with a large number of the patients would be necessary to validate the safety and efficacy of STN DBS under GA.
Collapse
Affiliation(s)
- Hye Ran Park
- Department of Neurosurgery, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea;
| | - Yong Hoon Lim
- Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea; (Y.H.L.); (E.J.S.)
| | - Eun Jin Song
- Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea; (Y.H.L.); (E.J.S.)
| | - Jae Meen Lee
- Department of Neurosurgery, Pusan National University Hospital, Busan 49241, Korea;
| | - Kawngwoo Park
- Department of Neurosurgery, Gachon University Gil Medical Center, Incheon 21565, Korea;
| | - Kwang Hyon Park
- Department of Neurosurgery, Chuungnam National University Sejong Hospital, Sejong 30099, Korea;
| | - Woong-Woo Lee
- Department of Neurology, Nowon Eulji Medical Center, Eulji University, Seoul 01830, Korea;
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea; (H.-J.K.); (B.J.)
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea; (H.-J.K.); (B.J.)
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea; (Y.H.L.); (E.J.S.)
- Correspondence: ; Tel.: +82-22-072-2876
| |
Collapse
|
22
|
Benady A, Zadik S, Eimerl D, Heymann S, Bergman H, Israel Z, Raz A. Sedative drugs modulate the neuronal activity in the subthalamic nucleus of parkinsonian patients. Sci Rep 2020; 10:14536. [PMID: 32884017 PMCID: PMC7471283 DOI: 10.1038/s41598-020-71358-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
Microelectrode recording (MER) is often used to identify electrode location which is critical for the success of deep brain stimulation (DBS) treatment of Parkinson’s disease. The usage of anesthesia and its’ impact on MER quality and electrode placement is controversial. We recorded neuronal activity at a single depth inside the Subthalamic Nucleus (STN) before, during, and after remifentanil infusion. The root mean square (RMS) of the 250–6000 Hz band-passed signal was used to evaluate the regional spiking activity, the power spectrum to evaluate the oscillatory activity and the coherence to evaluate synchrony between two microelectrodes. We compare those to new frequency domain (spectral) analysis of previously obtained data during propofol sedation. Results showed Remifentanil decreased the normalized RMS by 9% (P < 0.001), a smaller decrease compared to propofol. Regarding the beta range oscillatory activity, remifentanil depressed oscillations (drop from 25 to 5% of oscillatory electrodes), while propofol did not (increase from 33.3 to 41.7% of oscillatory electrodes). In the cases of simultaneously recorded oscillatory electrodes, propofol did not change the synchronization while remifentanil depressed it. In conclusion, remifentanil interferes with the identification of the dorsolateral oscillatory region, whereas propofol interferes with RMS identification of the STN borders. Thus, both have undesired effect during the MER procedure. Trial registration: NCT00355927 and NCT00588926.
Collapse
Affiliation(s)
- Amit Benady
- St George's University of London Medical School, Sheba Medical Center, Ramat Gan, Israel.,Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Sean Zadik
- St George's University of London Medical School, Sheba Medical Center, Ramat Gan, Israel
| | - Dan Eimerl
- Department of Anesthesia, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Sami Heymann
- Department of Neurosurgery, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology, Hebrew University - Hadassah Medical Scholl, Jerusalem, Israel
| | - Zvi Israel
- Department of Neurosurgery, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Aeyal Raz
- Department of Anesthesiology, Rambam Health Care Center affiliated with the Ruth and Bruce Rappaport Faculty of Medicine, Rambam Health Care Campus, Technion - Israel Institute of Technology, 8 HaAliya HaShniya St., 3109601, Haifa, Israel.
| |
Collapse
|
23
|
Chen W, de Hemptinne C, Miller AM, Leibbrand M, Little SJ, Lim DA, Larson PS, Starr PA. Prefrontal-Subthalamic Hyperdirect Pathway Modulates Movement Inhibition in Humans. Neuron 2020; 106:579-588.e3. [PMID: 32155442 PMCID: PMC7274135 DOI: 10.1016/j.neuron.2020.02.012] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/06/2020] [Accepted: 02/10/2020] [Indexed: 10/24/2022]
Abstract
The ability to dynamically change motor outputs, such as stopping an initiated response, is an important aspect of human behavior. A hyperdirect pathway between the inferior frontal gyrus and subthalamic nucleus is hypothesized to mediate movement inhibition, but there is limited evidence for this in humans. We recorded high spatial and temporal resolution field potentials from both the inferior frontal gyrus and subthalamic nucleus in 21 subjects. Cortical potentials evoked by subthalamic stimulation revealed short latency events indicative of monosynaptic connectivity between the inferior frontal gyrus and ventral subthalamic nucleus. During a stop signal task, stopping-related potentials in the cortex preceded stopping-related activity in the subthalamic nucleus, and synchronization between these task-evoked potentials predicted the stop signal reaction time. Thus, we show that a prefrontal-subthalamic hyperdirect pathway is present in humans and mediates rapid stopping. These findings may inform therapies to treat disorders featuring perturbed movement inhibition.
Collapse
Affiliation(s)
- Witney Chen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Coralie de Hemptinne
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew M Miller
- School of Medicine, University of Kansas, Kansas City, KS 66160, USA
| | | | - Simon J Little
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Paul S Larson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
24
|
Milosevic L, Scherer M, Cebi I, Guggenberger R, Machetanz K, Naros G, Weiss D, Gharabaghi A. Online Mapping With the Deep Brain Stimulation Lead: A Novel Targeting Tool in Parkinson's Disease. Mov Disord 2020; 35:1574-1586. [PMID: 32424887 DOI: 10.1002/mds.28093] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Beta-frequency oscillations (13-30 Hz) are a subthalamic hallmark in patients with Parkinson's disease, and there is increased interest in their utility as an intraoperative marker. OBJECTIVES The objectives of this study were to assess whether beta activity measured directly from macrocontacts of deep brain stimulation leads could be used (a) as an intraoperative electrophysiological approach for guiding lead placements and (b) for physiologically informed stimulation delivery. METHODS Every millimeter along the surgical trajectory, local field-potential data were collected from each macrocontact, and power spectral densities were calculated and visualized (n = 39 patients). This was done for online intraoperative functional mapping and post hoc statistical analyses using 2 methods: generating distributions of spectral activity along surgical trajectories and direct delineation (presence versus lack) of beta peaks. In a subset of patients, this approach was corroborated by microelectrode recordings. Furthermore, the match rate between beta peaks at the final target position and the clinically determined best stimulation site were assessed. RESULTS Subthalamic recording sites were delineated by both methods of reconstructing functional topographies of spectral activity along surgical trajectories at the group level (P < 0.0001). Beta peaks were detected when any portion of the 1.5 mm macrocontact was within the microelectrode-defined subthalamic border. The highest beta peak at the final implantation site corresponded to the site of active stimulation in 73.3% of hemispheres (P < 0.0001). In 93.3% of hemispheres, active stimulation corresponded to the first-highest or second-highest beta peak. CONCLUSIONS Online measures of beta activity with the deep brain stimulation macroelectrode can be used to inform surgical lead placement and contribute to optimization of stimulation programming procedures. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Luka Milosevic
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Tübingen NeuroCampus, University of Tübingen, Tübingen, Germany
| | - Maximilian Scherer
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Tübingen NeuroCampus, University of Tübingen, Tübingen, Germany
| | - Idil Cebi
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Tübingen NeuroCampus, University of Tübingen, Tübingen, Germany.,Centre for Neurology, Department for Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Robert Guggenberger
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Tübingen NeuroCampus, University of Tübingen, Tübingen, Germany
| | - Kathrin Machetanz
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Tübingen NeuroCampus, University of Tübingen, Tübingen, Germany
| | - Georgios Naros
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Tübingen NeuroCampus, University of Tübingen, Tübingen, Germany
| | - Daniel Weiss
- Centre for Neurology, Department for Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, and Tübingen NeuroCampus, University of Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Abstract
Abstract
Background
General anesthetics-induced changes of electrical oscillations in the basal ganglia may render the identification of the stimulation targets difficult. The authors hypothesized that while sevoflurane anesthesia entrains coherent lower frequency oscillations, it does not affect the identification of the subthalamic nucleus and clinical outcome.
Methods
A cohort of 19 patients with Parkinson’s disease with comparable disability underwent placement of electrodes under either sevoflurane general anesthesia (n = 10) or local anesthesia (n = 9). Microelectrode recordings during targeting were compared for neuronal spiking characteristics and oscillatory dynamics. Clinical outcomes were compared at 5-yr follow-up.
Results
Under sevoflurane anesthesia, subbeta frequency oscillations predominated (general vs. local anesthesia, mean ± SD; delta: 13 ± 7.3% vs. 7.8 ± 4.8%; theta: 8.4 ± 4.1% vs. 3.9 ± 1.6%; alpha: 8.1 ± 4.1% vs. 4.8 ± 1.5%; all P < 0.001). In addition, distinct dorsolateral beta and ventromedial gamma oscillations were detected in the subthalamic nucleus solely in awake surgery (mean ± SD; dorsal vs. ventral beta band power: 20.5 ± 6.6% vs. 15.4 ± 4.3%; P < 0.001). Firing properties of subthalamic neurons did not show significant difference between groups. Clinical outcomes with regard to improvement in motor and psychiatric symptoms and adverse effects were comparable for both groups. Tract numbers of microelectrode recording, active contact coordinates, and stimulation parameters were also equivalent.
Conclusions
Sevoflurane general anesthesia decreased beta-frequency oscillations by inducing coherent lower frequency oscillations, comparable to the pattern seen in the scalp electroencephalogram. Nevertheless, sevoflurane-induced changes in electrical activity patterns did not reduce electrode placement accuracy and clinical effect. These observations suggest that microelectrode-guided deep brain stimulation under sevoflurane anesthesia is a feasible clinical option.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
26
|
Bos MJ, Alzate Sanchez AM, Bancone R, Temel Y, de Greef BT, Absalom AR, Gommer ED, van Kranen-Mastenbroek VH, Buhre WF, Roberts MJ, Janssen ML. Influence of Anesthesia and Clinical Variables on the Firing Rate, Coefficient of Variation and Multi-Unit Activity of the Subthalamic Nucleus in Patients with Parkinson's Disease. J Clin Med 2020; 9:jcm9041229. [PMID: 32344572 PMCID: PMC7230272 DOI: 10.3390/jcm9041229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Microelectrode recordings (MER) are used to optimize lead placement during subthalamic nucleus deep brain stimulation (STN-DBS). To obtain reliable MER, surgery is usually performed while patients are awake. Procedural sedation and analgesia (PSA) is often desirable to improve patient comfort, anxiolysis and pain relief. The effect of these agents on MER are largely unknown. The objective of this study was to determine the effects of commonly used PSA agents, dexmedetomidine, clonidine and remifentanil and patient characteristics on MER during DBS surgery. Methods: Data from 78 patients with Parkinson’s disease (PD) who underwent STN-DBS surgery were retrospectively reviewed. The procedures were performed under local anesthesia or under PSA with dexmedetomidine, clonidine or remifentanil. In total, 4082 sites with multi-unit activity (MUA) and 588 with single units were acquired. Single unit firing rates and coefficient of variation (CV), and MUA total power were compared between patient groups. Results: We observed a significant reduction in MUA, an increase of the CV and a trend for reduced firing rate by dexmedetomidine. The effect of dexmedetomidine was dose-dependent for all measures. Remifentanil had no effect on the firing rate but was associated with a significant increase in CV and a decrease in MUA. Clonidine showed no significant effect on firing rate, CV or MUA. In addition to anesthetic effects, MUA and CV were also influenced by patient-dependent variables. Conclusion: Our results showed that PSA influenced neuronal properties in the STN and the dexmedetomidine (DEX) effect was dose-dependent. In addition, patient-dependent characteristics also influenced MER.
Collapse
Affiliation(s)
- Michael J. Bos
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands;
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
- Correspondence:
| | - Ana Maria Alzate Sanchez
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
| | - Raffaella Bancone
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
| | - Yasin Temel
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Bianca T.A. de Greef
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
- Department of Neurology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Anthony R. Absalom
- Department of Anesthesiology, Groningen University, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Erik D. Gommer
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
- Department of Clinical Neurophysiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Vivianne H.J.M. van Kranen-Mastenbroek
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
- Department of Clinical Neurophysiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Wolfgang F. Buhre
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands;
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
| | - Mark J. Roberts
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Marcus L.F. Janssen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.M.A.S.); (R.B.); (Y.T.); (B.T.A.d.G.); (E.D.G.); (V.H.J.M.v.K.-M.)
- Department of Clinical Neurophysiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
27
|
Huang Y, Hu K, Green AL, Ma X, Gillies MJ, Wang S, Fitzgerald JJ, Pan Y, Martin S, Huang P, Zhan S, Li D, Tan H, Aziz TZ, Sun B. Dynamic changes in rhythmic and arrhythmic neural signatures in the subthalamic nucleus induced by anaesthesia and tracheal intubation. Br J Anaesth 2020; 125:67-76. [PMID: 32336475 DOI: 10.1016/j.bja.2020.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Subcortical structures, including the basal ganglia, have been proposed to be crucial for arousal, consciousness, and behavioural responsiveness. How the basal ganglia contribute to the loss and recovery of consciousness during anaesthesia has, however, not yet been well characterised. METHODS Twelve patients with advanced Parkinson's disease, who were undergoing deep brain stimulation (DBS) electrode implantation in the subthalamic nucleus (STN), were included in this study. Local field potentials (LFPs) were recorded from the DBS electrodes and EEG was recorded from the scalp during induction of general anaesthesia (with propofol and sufentanil) and during tracheal intubation. Neural signatures of loss of consciousness and of the expected arousal during intubation were sought in the STN and EEG recordings. RESULTS Propofol-sufentanil anaesthesia resulted in power increases in delta, theta, and alpha frequencies, and broadband power decreases in higher frequencies in both STN and frontal cortical areas. This was accompanied by increased STN-frontal cortical coherence only in the alpha frequency band (119 [68]%; P=0.0049). We observed temporal activity changes in STN after tracheal intubation, including power increases in high-beta (22-40 Hz) frequency (98 [123]%; P=0.0064) and changes in the power-law exponent in the power spectra at lower frequencies (2-80 Hz), which were not observed in the frontal cortex. During anaesthesia, the dynamic changes in the high-gamma power in STN LFPs correlated with the power-law exponent in the power spectra at lower frequencies (2-80 Hz). CONCLUSIONS Apart from similar activity changes in both STN and cortex associated with anaesthesia-induced unresponsiveness, we observed specific neuronal activity changes in the STN in response to the anaesthesia and tracheal intubation. We also show that the power-law exponent in the power spectra in the STN was modulated by tracheal intubation in anaesthesia. Our results support the hypothesis that subcortical nuclei may play an important role in the loss and return of responsiveness.
Collapse
Affiliation(s)
- Yongzhi Huang
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Kejia Hu
- Center of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Xin Ma
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Martin J Gillies
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - James J Fitzgerald
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Yixin Pan
- Center of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sean Martin
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Peng Huang
- Center of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shikun Zhan
- Center of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Center of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Bomin Sun
- Center of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
Lin YS, Liu KD, Chang C, Yang HZ, Tsou MY, Chu YC. Inhibitory concentration of propofol in combination with dexmedetomidine during microelectrode recording for deep brain stimulator insertion surgeries under general anesthesia. J Chin Med Assoc 2020; 83:188-193. [PMID: 31972830 DOI: 10.1097/jcma.0000000000000248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Microelectrode recording (MER) for target refinement is widely used in deep brain stimulator insertion for Parkinson disease. Signals may be influenced by anesthetics when patients receive general anesthesia (GA). This study determined the inhibitory concentration (IC) of propofol on MER signals when it was coadministered with dexmedetomidine. METHODS Patients were anesthetized with dexmedetomidine (0.5 μg·kg loading, followed by infusion at 0.4 μg·kgh) and propofol through target-controlled infusion for GA with tracheal intubation. The surgeon conducted the online scoring of the background signals, spiking frequency, amplitude, and pattern of single-unit activities by using a 0-10 verbal numerical rating scale (NRS; 0, maximal suppression; 10, minimal suppression), and responses were grouped into suppression (NRS ≤ 6) and nonsuppression (NRS > 6). The median inhibitory concentration (IC50) of propofol (as target effect-site concentrations: Ceprop) was determined using modified Dixon's up-and-down method. Probit regression analysis was further used to obtain the dose-response relationship, and IC05 and IC95 were calculated. RESULTS Twenty-three adult patients participated in this study. Under the concomitant infusion of dexmedetomidine, the predicted IC50 value (95% CI) of Ceprop for neuronal suppression during MER was 1.29 (1.24-1.34) μg·mL as calculated using modified Dixon's up-and-down method. Using probit analysis, the estimated IC05, IC50, and IC95 values (95% CIs) were 1.17 (0.87-1.23), 1.28 (1.21-1.34), and 1.40 (1.33-1.85) μg·mL, respectively. CONCLUSION Our data provided reference values of propofol for dosage adjustment to avoid interference on MER under GA when anesthetics have to be continuously infused during recording.
Collapse
Affiliation(s)
- Yu-Shan Lin
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan, ROC
| | - Kang-Du Liu
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chi Chang
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan, ROC
| | - Huai-Zhe Yang
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan, ROC
| | - Mei-Yung Tsou
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ya-Chun Chu
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
29
|
Bos MJ, Alzate Sanchez AM, Smeets AYJM, Bancone R, Ackermans L, Absalom AR, Buhre WF, Roberts MJ, Janssen MLF. Effect of Anesthesia on Microelectrode Recordings during Deep Brain Stimulation Surgery in Tourette Syndrome Patients. Stereotact Funct Neurosurg 2019; 97:225-231. [PMID: 31707386 DOI: 10.1159/000503691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/25/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) is an accepted treatment for patients with medication-resistant Tourette syndrome (TS). Sedation is commonly required during electrode implantation to attenuate anxiety, pain, and severe tics. Anesthetic agents potentially impair the quality of microelectrode recordings (MER). Little is known about the effect of these anesthetics on MER in patients with TS. We describe our experience with different sedative regimens on MER and tic severity in patients with TS. METHODS The clinical records of all TS patients who underwent DBS surgery between 2010 and 2018 were reviewed. Demographic data, stimulation targets, anesthetic agents, perioperative complications, and MER from each hemisphere were collected and analyzed. Single-unit activity was identified by filtering spiking activity from broadband MER data and principal component analysis with K-means clustering. Vocal and motor tics which caused artifacts in the MER data were manually selected using visual and auditory inspection. RESULTS Six patients underwent bilateral DBS electrode implantation. In all patients, the target was the anterior internal globus pallidus. Patient comfort and hemodynamic and respiratory stability were maintained with conscious sedation with one or more of the following anesthetic drugs: propofol, midazolam, remifentanil, clonidine, and dexmedetomidine. Good quality MER and clinical testing were obtained in 9 hemispheres of 6 patients. In 3 patients, MER quality was poor on one side. CONCLUSION Cautiously applied sedative drugs can provide patient comfort, hemodynamic and respiratory stability, and suppress severe tics, with minimal interference with MER.
Collapse
Affiliation(s)
- Michael J Bos
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center, Maastricht, The Netherlands, .,School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands,
| | - Ana Maria Alzate Sanchez
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Anouk Y J M Smeets
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Raffaella Bancone
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Linda Ackermans
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Anthony R Absalom
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wolfgang F Buhre
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Mark J Roberts
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Marcus L F Janssen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Neurology and Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
30
|
|
31
|
Abstract
Deep brain stimulation is now the most common surgical treatment of tremor. Tremor can be classified as action or resting tremor and is one of the most common movement disorders. Initial treatment of tremor should focus on medical treatment but, if patients fail medical therapy, deep brain stimulation should be considered with likely success. The usual target is the ventral intermediate nucleus of the thalamus. Common side effects of treatment include paresthesias, dysarthria, and less often ataxia. Future directions of research and development, including directional leads and closed-loop stimulation, may eventually lead to additional improvement in patient outcomes.
Collapse
Affiliation(s)
- Wendell Lake
- University of Wisconsin-Madison, 600 Highland Avenue, Box 8660, Madison, WI 53792, USA
| | - Peter Hedera
- Vanderbilt University Medical Center, 645 21st Avenue South, Nashville, TN 37240, USA
| | - Peter Konrad
- Vanderbilt University Medical Center, Room 4333, VAV, 1500 21st Avenue, Nashville, TN 37212, USA.
| |
Collapse
|
32
|
Five-Year Clinical Outcomes of Local versus General Anesthesia Deep Brain Stimulation for Parkinson's Disease. PARKINSONS DISEASE 2019; 2019:5676345. [PMID: 30800263 PMCID: PMC6360066 DOI: 10.1155/2019/5676345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/15/2018] [Accepted: 12/06/2018] [Indexed: 12/03/2022]
Abstract
Background Studies comparing long-term outcomes between general anesthesia (GA) and local anesthesia (LA) for STN-DBS in Parkinson's disease (PD) are lacking. Whether patients who received STN-DBS in GA could get the same benefit without compromising electrophysiological recording is debated. Methods We compared five-year outcomes for different anesthetic methods (GA vs LA) during STN-DBS for PD. Thirty-six consecutive PD patients with similar preoperative characteristics, including age, disease duration, and severity, underwent the same surgical procedures except the GA (n=22) group with inhalational anesthesia and LA (n=14) with local anesthesia during microelectrode recording and intraoperative macrostimulation test. Surgical outcome evaluations included Unified Parkinson's Disease Rating Scale (UPDRS), Mini-Mental Status Examinations, and the Beck Depression Inventory. Stimulation parameters and coordinates of STN targeting were also collected. Results Both groups attained similar benefits in UPDRS part III from STN-DBS (GA 43.2 ± 14.1% vs. LA 46.8 ± 13.8% decrease, p=0.45; DBS on/Med off vs. DBS off/Med off) and no difference in reduction of levodopa equivalent doses (GA 47.56 ± 18.98% vs. LA 51.37 ± 31.73%, p=0.51) at the five-year follow-up. In terms of amplitude, frequency, and pulse width, the stimulation parameters used for DBS were comparable, and the coordinates of preoperative targeting and postoperative electrode tip were similar between two groups. There was no difference in STN recording length as well. Significantly less number of MER tracts in GA was found (p=0.04). Adverse effects were similar in both groups. Conclusions Our study confirmed that STN localization with microelectrode recording and patient comfort could be achieved based on equal effectiveness and safety of STN-DBS under GA compared with LA.
Collapse
|
33
|
Malekmohammadi M, Sparks H, AuYong N, Hudson A, Pouratian N. Propofol Anesthesia Precludes LFP-Based Functional Mapping of Pallidum during DBS Implantation. Stereotact Funct Neurosurg 2018; 96:249-258. [PMID: 30196280 DOI: 10.1159/000492231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/18/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIMS There are reports that microelectrode recording (MER) can be performed under certain anesthetized conditions for functional confirmation of the optimal deep brain stimulation (DBS) target. However, it is generally accepted that anesthesia affects MER. Due to a potential role of local field potentials (LFPs) in DBS functional mapping, we characterized the effect of propofol on globus pallidus interna (GPi) and externa (GPe) LFPs in Parkinson disease (PD) patients. METHODS We collected LFPs in 12 awake and anesthetized PD patients undergoing DBS implantation. Spectral power of β (13-35 Hz) and high-frequency oscillations (HFOs: 200-300 Hz) was compared across the pallidum. RESULTS Propofol suppressed GPi power by > 20 Hz while increasing power at lower frequencies. A similar power shift was observed in GPe; however, power in the high β range (20-35 Hz) increased with propofol. Before anesthesia both β and HFO activity were significantly greater at the GPi (χ2 = 20.63 and χ2 = 48.81, p < 0.0001). However, during anesthesia, we found no significant difference across the pallidum (χ2 = 0.47, p = 0.79, and χ2 = 4.11, p = 0.12). CONCLUSION GPi and GPe are distinguishable using LFP spectral profiles in the awake condition. Propofol obliterates this spectral differentiation. Therefore, LFP spectra cannot be relied upon in the propofol-anesthetized state for functional mapping during DBS implantation.
Collapse
Affiliation(s)
- Mahsa Malekmohammadi
- Department of Neurosurgery, University of California, Los Angeles, California, USA
| | - Hiro Sparks
- Department of Neurosurgery, University of California, Los Angeles, California, USA
| | - Nicholas AuYong
- Department of Neurosurgery, University of California, Los Angeles, California, USA
| | - Andrew Hudson
- Department of Anesthesiology, University of California, Los Angeles, California, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, California, USA.,Neuroscience Interdepartmental Program, University of California, Los Angeles, California, USA.,Brain Research Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
34
|
Myrov V, Sedov A, Salova E, Tomskiy A, Belova E. Single unit activity of subthalamic nucleus of patients with Parkinson's disease under local and generalized anaesthesia: Multifactor analysis. Neurosci Res 2018; 145:54-61. [PMID: 30121284 DOI: 10.1016/j.neures.2018.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/24/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
Abstract
The analysis of neuronal activity in human brain is a complicated task as it meets several limitations, including small sample sizes, dependent variables in the dataset and the short duration of recordings that entangles the analysis procedure. Here, we present the comparative research of neuronal activity in subthalamic nucleus (STN) of 8 Parkinsonian patients undergoing DBS surgery in awake state and under propofol anaesthesia using different statistical approaches. We studied 25 parameters of single unit activity and performed a direct comparison of the parameters between the groups to characterise the changes in STN activity under anaesthesia. We found a significant decrease in firing rate and a prominent increase in bursting of neurons in the anaesthetised state. Also, these data were used to determine the most important parameters for classification. We revealed the differences between parametric and nonparametric approaches regarding the identification of the most important spike train features. The random forest trees algorithm showed a greater accuracy of classification (91.7 ± 1.8%) compared to generalised linear models (82.4 ± 3.8%). The lists of the features important for classification according to F-scores and random forest trees also differed markedly. Our results indicate that feature interactions play a key role in neuronal activity analysis and must be taken into account.
Collapse
Affiliation(s)
- Vladislav Myrov
- Saint Petersburg Academic University, Saint Petersburg, Russia
| | - Alexey Sedov
- Semenov Institute of Chemical Physics RAS, Moscow, Russia; Moscow Institute of Physics and Technology, Moscow, Russia
| | - Ekaterina Salova
- Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russia
| | - Alexey Tomskiy
- Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russia
| | - Elena Belova
- Semenov Institute of Chemical Physics RAS, Moscow, Russia.
| |
Collapse
|
35
|
Thompson JA, Oukal S, Bergman H, Ojemann S, Hebb AO, Hanrahan S, Israel Z, Abosch A. Semi-automated application for estimating subthalamic nucleus boundaries and optimal target selection for deep brain stimulation implantation surgery. J Neurosurg 2018:1-10. [PMID: 29775152 DOI: 10.3171/2017.12.jns171964] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/04/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVEDeep brain stimulation (DBS) of the subthalamic nucleus (STN) has become standard care for the surgical treatment of Parkinson's disease (PD). Reliable interpretation of microelectrode recording (MER) data, used to guide DBS implantation surgery, requires expert electrophysiological evaluation. Recent efforts have endeavored to use electrophysiological signals for automatic detection of relevant brain structures and optimal implant target location.The authors conducted an observational case-control study to evaluate a software package implemented on an electrophysiological recording system to provide online objective estimates for entry into and exit from the STN. In addition, they evaluated the accuracy of the software in selecting electrode track and depth for DBS implantation into STN, which relied on detecting changes in spectrum activity.METHODSData were retrospectively collected from 105 MER-guided STN-DBS surgeries (4 experienced neurosurgeons; 3 sites), in which estimates for entry into and exit from the STN, DBS track selection, and implant depth were compared post hoc between those determined by the software and those determined by the implanting neurosurgeon/neurophysiologist during surgery.RESULTSThis multicenter study revealed submillimetric agreement between surgeon/neurophysiologist and software for entry into and exit out of the STN as well as optimal DBS implant depth.CONCLUSIONSThe results of this study demonstrate that the software can reliably and accurately estimate entry into and exit from the STN and select the track corresponding to ultimate DBS implantation.
Collapse
Affiliation(s)
- John A Thompson
- 1Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Hagai Bergman
- 2Department of Medical Neurobiology, The Hebrew University-Hadassah Medical School.,3Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Steven Ojemann
- 1Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Adam O Hebb
- 4Colorado Neurological Institute, Englewood, Colorado; and
| | - Sara Hanrahan
- 4Colorado Neurological Institute, Englewood, Colorado; and
| | - Zvi Israel
- 3Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Aviva Abosch
- 1Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
36
|
The Effects of Intraoperative Sedation on Surgical Outcomes of Deep Brain Stimulation Surgery. Can J Neurol Sci 2017; 45:168-175. [PMID: 29237514 DOI: 10.1017/cjn.2017.269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Intraoperative sedation is often used to facilitate deep brain stimulation (DBS) surgery; however, these sedative agents also suppress microelectrode recordings (MER). To date, there have been no studies that have examined the effects of differing sedatives on surgical outcomes and the success of DBS surgery. METHODS We performed a retrospective study to evaluate the effect of differing sedative agents on postoperative surgical outcomes at 6 months in parkinsonian adult patients who underwent DBS surgery, from January 2004 through December 2014, at one academic center. Surgical outcomes of DBS were evaluated using a simplified Unified Parkinson Diseases Rating Score-III and levodopa dose equivalent reduction at baseline and 6 months postoperatively. RESULTS We analyzed data from 121 of 124 consecutive parkinsonian patients. Propofol, dexmedetomidine, remifentanil, and midazolam were used individually or in combination. All sedatives were routinely discontinued 20 to 30 minutes before MER, in accordance with our institutional protocol. We found no statistically significant association between the use of individual agent or combination of sedative agents and surgical outcomes at 6 months, the success of DBS, duration of MER, duration of stage 1 procedure, and perioperative complications. CONCLUSIONS Our study showed that the choice of sedative agent was not associated with poor surgical outcomes after DBS surgery using MER and macrostimulation techniques in parkinsonian patients.
Collapse
|
37
|
Roberts DP, Lewis SJG. Considerations for general anaesthesia in Parkinson's disease. J Clin Neurosci 2017; 48:34-41. [PMID: 29133106 DOI: 10.1016/j.jocn.2017.10.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/23/2017] [Indexed: 12/19/2022]
Abstract
Parkinson's disease is a common neurodegenerative disorder in the elderly which when present has a significant influence on surgical management. These patients necessitate additional perioperative and anaesthetic considerations across disease specific domains as well as in relation to the respiratory and cardiovascular systems. This brief review focuses on the factors which contribute to perioperative morbidity, including the use of medications that may exacerbate symptoms or adversely interact with treatments for Parkinson's disease. Recommended dosing practices to reduce complications during hospitalisation are covered. In addition, recent concerns regarding anaesthetic exposure in early childhood as a risk factor for the development of Parkinson's disease are discussed in light of data from animal models of anaesthetic neurotoxicity and epidemiological studies.
Collapse
Affiliation(s)
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre, University of Sydney, NSW, Australia.
| |
Collapse
|
38
|
Tamir I, Marmor-Levin O, Eitan R, Bergman H, Israel Z. Posterolateral Trajectories Favor a Longer Motor Domain in Subthalamic Nucleus Deep Brain Stimulation for Parkinson Disease. World Neurosurg 2017; 106:450-461. [DOI: 10.1016/j.wneu.2017.06.178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 01/08/2023]
|
39
|
Effect of Dexmedetomidine and Propofol on Basal Ganglia Activity in Parkinson Disease: A Controlled Clinical Trial. Anesthesiology 2017; 126:1033-1042. [PMID: 28492384 DOI: 10.1097/aln.0000000000001620] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Deep brain stimulation electrodes can record oscillatory activity from deep brain structures, known as local field potentials. The authors' objective was to evaluate and quantify the effects of dexmedetomidine (0.2 μg·kg·h) on local field potentials in patients with Parkinson disease undergoing deep brain stimulation surgery compared with control recording (primary outcome), as well as the effect of propofol at different estimated peak effect site concentrations (0.5, 1.0, 1.5, 2.0, and 2.5 μg/ml) from control recording. METHODS A nonrandomized, nonblinded controlled clinical trial was carried out to assess the change in local field potentials activity over time in 10 patients with Parkinson disease who underwent deep brain stimulation placement surgery (18 subthalamic nuclei). The relationship was assessed between the activity in nuclei in the same patient at a given time and repeated measures from the same nucleus over time. RESULTS No significant difference was observed between the relative beta power of local field potentials in dexmedetomidine and control recordings (-7.7; 95% CI, -18.9 to 7.6). By contrast, there was a significant decline of 12.7% (95% CI, -21.3 to -4.7) in the relative beta power of the local field potentials for each increment in the estimated peak propofol concentrations at the effect site relative to the control recordings. CONCLUSIONS Dexmedetomidine (0.2 μg·kg·h) did not show effect on local field potentials compared with control recording. A significant deep brain activity decline from control recording was observed with incremental doses of propofol.
Collapse
|
40
|
PRO: General Anesthesia for Deep Brain Stimulator Insertion in Patients With Parkinson Disease. J Neurosurg Anesthesiol 2017; 29:348-349. [PMID: 28594735 DOI: 10.1097/01.ana.0000520879.70965.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
CON: Deep Brain Stimulator Insertion for Functional Neurosurgery Under General Anesthesia. J Neurosurg Anesthesiol 2017; 29:350-351. [PMID: 28594736 DOI: 10.1097/01.ana.0000520880.78588.8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Mathews L, Camalier CR, Kla KM, Mitchell MD, Konrad PE, Neimat JS, Smithson KG. The Effects of Dexmedetomidine on Microelectrode Recordings of the Subthalamic Nucleus during Deep Brain Stimulation Surgery: A Retrospective Analysis. Stereotact Funct Neurosurg 2017; 95:40-48. [PMID: 28132061 DOI: 10.1159/000453326] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 10/18/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The placement of subthalamic nucleus (STN) deep brain stimulation (DBS) electrodes can be facilitated by intraoperative microelectrode recording (MER) of the STN. OBJECTIVES Optimal anesthetic management during surgery remains unclear because of a lack of quantitative data of the effect of anesthetics on MER. Therefore, we measured the effects of dexmedetomidine (DEX) on MER measures of the STN commonly taken intraoperatively. METHODS MER from 45 patients was retrospectively compared between patients treated with remifentanil (REMI) alone or both REMI and DEX, which are the 2 main standards of care at our center. The measures examined were population activity, such as root mean square, STN length, and number of passes yielding STN, and the single-neuron measures of firing rate and variability. RESULTS The addition of DEX does not affect population measures (number of passes: DEX+REMI, n = 68, REMI only, n = 154), or neuronal firing rates (number of neurons: DEX+REMI, n = 64, REMI only, n = 72), but firing rate variability was reduced. CONCLUSIONS In this cohort, population-based measures routinely used for electrode placement in the STN were unaffected by DEX when added to REMI. Neuronal firing rates were also unaffected, but their variability was reduced, even beyond 20 min after cessation.
Collapse
Affiliation(s)
- Letha Mathews
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Castrioto A, Marmor O, Deffains M, Willner D, Linetsky E, Bergman H, Israel Z, Eitan R, Arkadir D. Anesthesia reduces discharge rates in the human pallidum without changing the discharge rate ratio between pallidal segments. Eur J Neurosci 2016; 44:2909-2913. [DOI: 10.1111/ejn.13417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Anna Castrioto
- Grenoble Institut des Neurosciences (GIN); University of Grenoble Alpes; Grenoble France
- Inserm U1216; Grenoble France
- Movement Disorders Unit; Neurology Department; CHU de Grenoble; Grenoble France
| | - Odeya Marmor
- Department of Medical Neurobiology; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Marc Deffains
- Department of Medical Neurobiology; Hadassah-Hebrew University Medical Center; Jerusalem Israel
- Edmond and Lily Safra Centre for Brain Research; The Hebrew University; Jerusalem Israel
| | - Dafna Willner
- Department of Anesthesiology; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Eduard Linetsky
- Department of Neurology; Hadassah-Hebrew University Medical Center; Jerusalem 91120 Israel
| | - Hagai Bergman
- Department of Medical Neurobiology; Hadassah-Hebrew University Medical Center; Jerusalem Israel
- Edmond and Lily Safra Centre for Brain Research; The Hebrew University; Jerusalem Israel
| | - Zvi Israel
- Department of Neurosurgery; Center for Functional and Restorative Neurosurgery; Hadassah-Hebrew University Medical Center; Jerusalem Israel
| | - Renana Eitan
- Edmond and Lily Safra Centre for Brain Research; The Hebrew University; Jerusalem Israel
| | - David Arkadir
- Department of Neurology; Hadassah-Hebrew University Medical Center; Jerusalem 91120 Israel
| |
Collapse
|
44
|
|
45
|
Smith KA, Pahwa R, Lyons KE, Nazzaro JM. Deep brain stimulation for Parkinson's disease: current status and future outlook. Neurodegener Dis Manag 2016; 6:299-317. [DOI: 10.2217/nmt-2016-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease is a neurodegenerative condition secondary to loss of dopaminergic neurons in the substantia nigra pars compacta. Surgical therapy serves as an adjunct when unwanted medication side effects become apparent or additional therapy is needed. Deep brain stimulation emerged into the forefront in the 1990s. Studies have demonstrated improvement in all of the cardinal parkinsonian signs with stimulation. Frameless and ‘mini-frame’ stereotactic systems, improved MRI for anatomic visualization, and intraoperative MRI-guided placement are a few of the surgical advances in deep brain stimulation. Other advances include rechargeable pulse generators, voltage- or current-based stimulation, and enhanced abilities to ‘steer’ stimulation. Work is ongoing investigating closed-loop ‘smart’ stimulation in which stimulation is predicated on neuronal feedback.
Collapse
Affiliation(s)
- Kyle A Smith
- Department of Neurosurgery, University of Kansas Medical Center, 3901 Rainbow Blvd, Mailstop 3021, Kansas City, KS 66160, USA
| | - Rajesh Pahwa
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kelly E Lyons
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jules M Nazzaro
- Department of Neurosurgery, University of Kansas Medical Center, 3901 Rainbow Blvd, Mailstop 3021, Kansas City, KS 66160, USA
| |
Collapse
|
46
|
The Effect of General Anesthesia on the Microelectrode Recordings From Pallidal Neurons in Patients With Dystonia. J Neurosurg Anesthesiol 2016; 28:256-61. [DOI: 10.1097/ana.0000000000000200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is a well tolerated and efficacious surgical treatment for movement disorders, chronic pain, psychiatric disorder, and a growing number of neurological disorders. Given that the brain targets are deep and small, accurate electrode placement is commonly accomplished by utilizing frame-based systems. DBS electrode placement is confirmed by microlectrode recordings and macrostimulation to optimize and verify target placement. With a reliance on electrophysiology, proper anaesthetic management is paramount to balance patient comfort without interfering with neurophysiology. RECENT FINDINGS To achieve optimal pain control, generous amounts of local anaesthesia are instilled into the planned incision. During the opening and closing states, conscious sedation is the prevailing method of anaesthesia. The preferred agents are dexmedetomidine, propofol, and remifentanil, as they affect neurocognitive testing the least, and shorter acting. All the agents are turned off 15-30 min prior to microelectrode recording. Dexmedetomidine has gained popularity in DBS procedures, but has some considerations at higher doses. The addition of ketamine is helpful for pediatric cases. SUMMARY DBS is a robust surgical treatment for a variety of neurological disorders. Appropriate anaesthetic agents that achieve patient comfort without interfering with electrophysiology are paramount.
Collapse
|
48
|
The effect of dopaminergic therapy on intraoperative microelectrode recordings for subthalamic deep brain stimulation under GA: Letter to the editor. Acta Neurochir (Wien) 2016; 158:1013. [PMID: 26928729 DOI: 10.1007/s00701-016-2756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/18/2016] [Indexed: 10/22/2022]
|
49
|
Tsai ST, Kuo CC, Chen TY, Chen SY. Neurophysiological comparisons of subthalamic deep-brain stimulation for Parkinson's disease between patients receiving general and local anesthesia. Tzu Chi Med J 2016; 28:63-67. [PMID: 28757724 PMCID: PMC5442892 DOI: 10.1016/j.tcmj.2016.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Subthalamic nucleus deep-brain stimulation (STN-DBS) is suggested as a standard treatment for patients with Parkinson's disease (PD) and drug-related side effects. Most centers perform the operation under local anesthesia (LA) to ensure better microelectrode recording (MER). Given the advances in imaging and MER, general anesthesia (GA) is perceived as an alternative choice for PD patients undergoing STN-DBS. However, the outcomes in terms of clinical symptoms and MER after GA have rarely been reported. In this report, we compared the outcomes after STN-DBS for PD between patients receiving LA and GA. MATERIALS AND METHODS We included 16 patients with comparable severity of PD undergoing either GA (n = 8) or LA (n = 8) for STN-DBS. MER was performed in all patients for STN localization, and surgical outcomes were evaluated using the Unified PD Rating Scales, and Mini-mental status examination. All adverse effects were documented. RESULTS Both groups (GA and LA) acquired similar benefits from STN-DBS, and there were no significant differences in neuropsychiatric outcome analysis between groups. There were no significant differences in stimulation parameters and adverse effects from STN-DBS between groups. The GA group had a trend toward a lower frequency rate of STN firing on MER. CONCLUSION Although the GA group has a lower neuronal firing frequency in the STN during surgery, STN-DBS under GA showed comparable and non-inferior outcomes as compared with STN-DBS under LA.
Collapse
Affiliation(s)
- Sheng-Tzung Tsai
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | - Chung-Chih Kuo
- Department of Physiology, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Ying Chen
- Department of Anesthesiology, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | - Shin-Yuan Chen
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
50
|
Kwon WK, Kim JH, Lee JH, Lim BG, Lee IO, Koh SB, Kwon TH. Microelectrode recording (MER) findings during sleep–awake anesthesia using dexmedetomidine in deep brain stimulation surgery for Parkinson’s disease. Clin Neurol Neurosurg 2016; 143:27-33. [DOI: 10.1016/j.clineuro.2016.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 11/27/2022]
|