1
|
Peschel AR, Shaw RG. Comparing the Predicted versus Realized Rate of Adaptation of Chamaecrista fasciculata to Climate Change. Am Nat 2024; 203:14-27. [PMID: 38207135 DOI: 10.1086/727507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
AbstractFisher's fundamental theorem of natural selection (FTNS) can be used in a quantitative genetics framework to predict the rate of adaptation in populations. Here, we estimated the capacity for a wild population of the annual legume Chamaecrista fasciculata to adapt to future environments and compared predicted and realized rates of adaptation. We planted pedigreed seeds from one population into three prairie reconstructions along an east-to-west decreasing precipitation gradient. The FTNS predicted adaptation at all sites, but we found a response to selection that was smaller at the home and westernmost sites and maladaptive at the middle site because of changes in the selective environment between generations. However, mean fitness of the progeny generation at the home and westernmost sites exceeded population replacement, which suggests that the environment was sufficiently favorable to promote population persistence. More studies employing the FTNS are needed to clarify the degree to which predictions of the rate of adaptation are realized and its utility in the conservation of populations at risk of extinction from climate change.
Collapse
|
2
|
Kulbaba MW, Yoko Z, Hamilton JA. Chasing the fitness optimum: temporal variation in the genetic and environmental expression of life-history traits for a perennial plant. ANNALS OF BOTANY 2023; 132:1191-1204. [PMID: 37493041 PMCID: PMC10902883 DOI: 10.1093/aob/mcad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND AND AIMS The ability of plants to track shifting fitness optima is crucial within the context of global change, where increasing environmental extremes may have dramatic consequences for life history, fitness, and ultimately population persistence. However, tracking changing conditions relies on the relationship between genetic and environmental variance, where selection may favour plasticity, the evolution of genetic differences, or both depending on the spatial and temporal scale of environmental heterogeneity. METHODS Over three years, we compared the genetic and environmental components of phenological and life-history variation in a common environment for the spring perennial Geum triflorum. Populations were sourced from alvar habitats that exhibit extreme but predictable annual flood-desiccation cycles and prairie habitats that exhibit similar but less predictable variation in water availability. KEY RESULTS Heritability was generally higher for early life-history (emergence probability) relative to later life-history traits (total seed mass), indicating that traits associated with establishment are under stronger genetic control relative to later life-history fitness expressions, where plasticity may play a larger role. This pattern was particularly notable in seeds sourced from environmentally extreme but predictable alvar habitats relative to less predictable prairie environments. Fitness landscapes based on seed source origin, largely characterized by varying water availability and flower production, described selection as the degree of maladaptation of seed source environment relative to the prairie common garden environment. Plants from alvar populations were consistently closer to the fitness optimum across all years. Annually, the breadth of the fitness optimum expanded primarily along a moisture gradient, with inclusion of more populations onto the expanding optimum. CONCLUSIONS These results highlight the importance of temporally and spatially varying selection in life-history evolution, indicating plasticity may become a primary mechanism needed to track fitness for later life-history events within perennial systems.
Collapse
Affiliation(s)
- Mason W Kulbaba
- Our Lady of the Lake University, Department of Mathematics and Science, San Antonio, TX 78207, USA
- St Mary’s University, Biology Area, 14500 Bannister Road SE, Calgary, Alberta, Canada, T2X 1Z4
| | - Zebadiah Yoko
- North Dakota State University, Department of Biological Sciences, Fargo, ND 58102, USA
| | - Jill A Hamilton
- North Dakota State University, Department of Biological Sciences, Fargo, ND 58102, USA
- Pennsylvania State University, Department of Ecosystem Science and Management, University Park, PA 16801, USA
| |
Collapse
|
3
|
Dittmar EL, Schemske DW. Temporal Variation in Selection Influences Microgeographic Local Adaptation. Am Nat 2023; 202:471-485. [PMID: 37792918 DOI: 10.1086/725865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractEcological heterogeneity can lead to local adaptation when populations exhibit fitness trade-offs among habitats. However, the degree to which local adaptation is affected by the spatial and temporal scale of environmental variation is poorly understood. A multiyear reciprocal transplant experiment was performed with populations of the annual plant Leptosiphon parviflorus living on adjacent serpentine and nonserpentine soil. Local adaptation over this small geographic scale was observed, but there were differences in the temporal variability of selection across habitats. On serpentine soil, the local population had a consistently large survival advantage, presumably as a result of the temporal stability in selection imposed by soil cation content. In contrast, a fecundity advantage was observed for the sandstone population on its native soil type but only in the two study years with the highest rainfall. A manipulative greenhouse experiment demonstrated that the fitness advantage of the sandstone population in its native soil type depends critically on water availability. The temporal variability in local adaptation driven by variation in precipitation suggests that continued drought conditions have the potential to erode local adaptation in these populations. These results show how different selective factors can influence spatial and temporal patterns of variation in fitness trade-offs.
Collapse
|
4
|
Peschel AR, Boehm EL, Shaw RG. Estimating the capacity of Chamaecrista fasciculata for adaptation to change in precipitation. Evolution 2020; 75:73-85. [PMID: 33215695 DOI: 10.1111/evo.14131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/21/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022]
Abstract
Adaptation through natural selection may be the only means by which small and fragmented plant populations will persist through present day environmental change. A population's additive genetic variance for fitness (VA (W)) represents its immediate capacity to adapt to the environment in which it exists. We evaluated this property for a population of the annual legume Chamaecrista fasciculata through a quantitative genetic experiment in the tallgrass prairie region of the Midwestern United States, where changing climate is predicted to include more variability in rainfall. To reduce incident rainfall, relative to controls receiving ambient rain, we deployed rain exclusion shelters. We found significant VA (W) in both treatments. We also detected a significant genotype-by-treatment interaction for fitness, which suggests that the genetic basis of the response to natural selection will differ depending on precipitation. For the trait-specific leaf area, we detected maladaptive phenotypic plasticity and an interaction between genotype and environment. Selection for thicker leaves was detected with increased precipitation. These results indicate capacity of this population of C. fasciculata to adapt in situ to environmental change.
Collapse
Affiliation(s)
- Anna Riba Peschel
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, Minnesota, 55108.,Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108
| | - Emma Lauren Boehm
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108.,Current Address: Department of Biology, Indiana University Bloomington, Bloomington, Indiana, 47405
| | - Ruth Geyer Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108
| |
Collapse
|
5
|
Hällfors M, Lehvävirta S, Aandahl T, Lehtimäki IM, Nilsson LO, Ruotsalainen A, Schulman LE, Hyvärinen MT. Translocation of an arctic seashore plant reveals signs of maladaptation to altered climatic conditions. PeerJ 2020; 8:e10357. [PMID: 33240662 PMCID: PMC7682418 DOI: 10.7717/peerj.10357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/23/2020] [Indexed: 01/20/2023] Open
Abstract
Ongoing anthropogenic climate change alters the local climatic conditions to which species may be adapted. Information on species' climatic requirements and their intraspecific variation is necessary for predicting the effects of climate change on biodiversity. We used a climatic gradient to test whether populations of two allopatric varieties of an arctic seashore herb (Primula nutans ssp. finmarchica) show adaptation to their local climates and how a future warmer climate may affect them. Our experimental set-up combined a reciprocal translocation within the distribution range of the species with an experiment testing the performance of the sampled populations in warmer climatic conditions south of their range. We monitored survival, size, and flowering over four growing seasons as measures of performance and, thus, proxies of fitness. We found that both varieties performed better in experimental gardens towards the north. Interestingly, highest up in the north, the southern variety outperformed the northern one. Supported by weather data, this suggests that the climatic optima of both varieties have moved at least partly outside their current range. Further warming would make the current environments of both varieties even less suitable. We conclude that Primula nutans ssp. finmarchica is already suffering from adaptational lag due to climate change, and that further warming may increase this maladaptation, especially for the northern variety. The study also highlights that it is not sufficient to run only reciprocal translocation experiments. Climate change is already shifting the optimum conditions for many species and adaptation needs also to be tested outside the current range of the focal taxon in order to include both historic conditions and future conditions.
Collapse
Affiliation(s)
- Maria Hällfors
- Research Centre for Environmental Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Botany Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Susanna Lehvävirta
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.,Department of Landscape Architecture, Planning and Management, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Tone Aandahl
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Ås, Norway
| | - Iida-Maria Lehtimäki
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Lars Ola Nilsson
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural Resources, Ås, Norway.,Halmstad University, Halmstad, Sweden
| | - Anna Ruotsalainen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Leif E Schulman
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Marko T Hyvärinen
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Brown KE, Kelly JK. Severe inbreeding depression is predicted by the “rare allele load” in
Mimulus guttatus
*. Evolution 2019; 74:587-596. [DOI: 10.1111/evo.13876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Keely E. Brown
- Ecology and Evolutionary Biology University of Kansas Lawrence Kansas 66045
| | - John K. Kelly
- Ecology and Evolutionary Biology University of Kansas Lawrence Kansas 66045
| |
Collapse
|
7
|
Flint SA, Olofson D, Jordan NR, Shaw RG. Population source affects competitive response and effect in a C
4
grass (
Panicum virgatum
). Restor Ecol 2019. [DOI: 10.1111/rec.13022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shelby A. Flint
- University of Minnesota, Conservation Biology Graduate Program, 135B Skok Hall, 2003 Upper Buford Circle St. Paul MN 55108 U.S.A
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue St. Paul MN 55108 U.S.A
| | - Dana Olofson
- University of Minnesota, University Honors Program, 390 Northrop, 84 Church Street SE Minneapolis MN 55455 U.S.A
- Mayo Clinic, Translational Research, Innovation, and Test Development Office, 200 First Street Southwest Rochester MN 55905 U.S.A
| | - Nicholas R. Jordan
- Department of Agronomy and Plant GeneticsUniversity of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle St. Paul MN 55108 U.S.A
| | - Ruth G. Shaw
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue St. Paul MN 55108 U.S.A
| |
Collapse
|
8
|
Kulbaba MW, Sheth SN, Pain RE, Eckhart VM, Shaw RG. Additive genetic variance for lifetime fitness and the capacity for adaptation in an annual plant. Evolution 2019; 73:1746-1758. [PMID: 31432512 DOI: 10.1111/evo.13830] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 01/17/2023]
Abstract
The immediate capacity for adaptation under current environmental conditions is directly proportional to the additive genetic variance for fitness, VA (W). Mean absolute fitness, W ¯ , is predicted to change at the rate V A ( W ) W ¯ , according to Fisher's Fundamental Theorem of Natural Selection. Despite ample research evaluating degree of local adaptation, direct assessment of VA (W) and the capacity for ongoing adaptation is exceedingly rare. We estimated VA (W) and W ¯ in three pedigreed populations of annual Chamaecrista fasciculata, over three years in the wild. Contrasting with common expectations, we found significant VA (W) in all populations and years, predicting increased mean fitness in subsequent generations (0.83 to 6.12 seeds per individual). Further, we detected two cases predicting "evolutionary rescue," where selection on standing VA (W) was expected to increase fitness of declining populations ( W ¯ < 1.0) to levels consistent with population sustainability and growth. Within populations, inter-annual differences in genetic expression of fitness were striking. Significant genotype-by-year interactions reflected modest correlations between breeding values across years, indicating temporally variable selection at the genotypic level that could contribute to maintaining VA (W). By directly estimating VA (W) and total lifetime W ¯ , our study presents an experimental approach for studies of adaptive capacity in the wild.
Collapse
Affiliation(s)
- Mason W Kulbaba
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, 55455
| | - Seema N Sheth
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, 55455.,Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, 27695
| | - Rachel E Pain
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, 55455
| | | | - Ruth G Shaw
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, 55455
| |
Collapse
|
9
|
Shaw RG. From the Past to the Future: Considering the Value and Limits of Evolutionary Prediction. Am Nat 2019; 193:1-10. [DOI: 10.1086/700565] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Sheth SN, Kulbaba MW, Pain RE, Shaw RG. Expression of additive genetic variance for fitness in a population of partridge pea in two field sites. Evolution 2018; 72:2537-2545. [DOI: 10.1111/evo.13614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Seema Nayan Sheth
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota 55455
- Department of Plant and Microbial Biology North Carolina State University Raleigh North Carolina 27695
| | - Mason W. Kulbaba
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota 55455
| | - Rachel E. Pain
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota 55455
| | - Ruth G. Shaw
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota 55455
| |
Collapse
|
11
|
de Villemereuil P. Quantitative genetic methods depending on the nature of the phenotypic trait. Ann N Y Acad Sci 2018; 1422:29-47. [PMID: 29363777 DOI: 10.1111/nyas.13571] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 11/27/2022]
Abstract
A consequence of the assumptions of the infinitesimal model, one of the most important theoretical foundations of quantitative genetics, is that phenotypic traits are predicted to be most often normally distributed (so-called Gaussian traits). But phenotypic traits, especially those interesting for evolutionary biology, might be shaped according to very diverse distributions. Here, I show how quantitative genetics tools have been extended to account for a wider diversity of phenotypic traits using first the threshold model and then more recently using generalized linear mixed models. I explore the assumptions behind these models and how they can be used to study the genetics of non-Gaussian complex traits. I also comment on three recent methodological advances in quantitative genetics that widen our ability to study new kinds of traits: the use of "modular" hierarchical modeling (e.g., to study survival in the context of capture-recapture approaches for wild populations); the use of aster models to study a set of traits with conditional relationships (e.g., life-history traits); and, finally, the study of high-dimensional traits, such as gene expression.
Collapse
|
12
|
Dixon AL, Busch JW. Common garden test of range limits as predicted by a species distribution model in the annual plant Mimulus bicolor. AMERICAN JOURNAL OF BOTANY 2017; 104:817-827. [PMID: 28645920 DOI: 10.3732/ajb.1600414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/10/2017] [Indexed: 05/25/2023]
Abstract
PREMISE OF THE STUDY Direct tests of a species distribution model (SDM) were used to evaluate the hypothesis that the northern and southern edges of Mimulus bicolor's geographical range are limited by temperature and precipitation. METHODS Climatic suitability was predicted using an SDM informed only by temperature and precipitation variables. These predictions were tested by growing plants in growth chambers with temperature and watering treatments informed by weather stations characteristic of environments at the geographic center, edges, and outside the range. An Aster analysis was used to assess whether treatments significantly affected lifetime flower production and to test for local adaptation. The relationship between climatic suitability and lifetime flower number in the growth chambers was also evaluated. KEY RESULTS The temperature and watering treatments significantly affected lifetime flower number, although local adaptation was not detected. Flower production was significantly lower under the two edge treatments compared to the central treatment. While no flowers were produced under the beyond-south treatments, flower production was greatest under the beyond-north treatment. These results suggest a hard abiotic limit at the southern edge, and suitable temperature and precipitation conditions beyond the northern edge. While predicted climatic suitability was significantly lower at the range edges, there was no correlation between the climatic suitability of the weather stations' locations and flower production. CONCLUSIONS These results suggest that temperature and precipitation play a significant role in defining the distribution of M. bicolor, but also indicate that dispersal limitation or metapopulation dynamics are likely important factors restricting access to habitable sites beyond the northern range limit.
Collapse
Affiliation(s)
- Andrea L Dixon
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, Washington 99164
| | - Jeremiah W Busch
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, Washington 99164
| |
Collapse
|
13
|
Samis KE, López-Villalobos A, Eckert CG. Strong genetic differentiation but not local adaptation toward the range limit of a coastal dune plant. Evolution 2016; 70:2520-2536. [DOI: 10.1111/evo.13047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Karen E. Samis
- Department of Biology; Queen's University; Kingston Ontario K7L 3N6 Canada
- Current Address: Department of Biology; University of Prince Edward Island; Charlottetown Prince Edward Island C1A 4P3 Canada
| | | | | |
Collapse
|
14
|
Kleynhans EJ, Otto SP, Reich PB, Vellend M. Adaptation to elevated CO2 in different biodiversity contexts. Nat Commun 2016; 7:12358. [PMID: 27510545 PMCID: PMC4987528 DOI: 10.1038/ncomms12358] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/24/2016] [Indexed: 11/09/2022] Open
Abstract
In the absence of migration, species persistence depends on adaption to a changing environment, but whether and how adaptation to global change is altered by community diversity is not understood. Community diversity may prevent, enhance or alter how species adapt to changing conditions by influencing population sizes, genetic diversity and/or the fitness landscape experienced by focal species. We tested the impact of community diversity on adaptation by performing a reciprocal transplant experiment on grasses that evolved for 14 years under ambient and elevated CO2, in communities of low or high species richness. Using biomass as a fitness proxy, we find evidence for local adaptation to elevated CO2, but only for plants assayed in a community of similar diversity to the one experienced during the period of selection. Our results indicate that the biological community shapes the very nature of the fitness landscape within which species evolve in response to elevated CO2.
Collapse
Affiliation(s)
- Elizabeth J. Kleynhans
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Sarah P. Otto
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Peter B. Reich
- Department of Forest Resources, University of Minnesota, 1530 Cleveland Avenue North, St Paul, Minnesota 55108, USA
- Hawksbury Institute for the Environment, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Mark Vellend
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, Canada J1K 2R1
| |
Collapse
|
15
|
Reynolds RJ, de los Campos G, Egan SP, Ott JR. Modelling heterogeneity among fitness functions using random regression. Methods Ecol Evol 2016; 7:70-79. [PMID: 26949509 PMCID: PMC4776641 DOI: 10.1111/2041-210x.12440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Summary
Statistical approaches for testing hypotheses of heterogeneity in fitness functions are needed to accommodate studies of phenotypic selection with repeated sampling across study units, populations or years. In this study, we tested directly for among‐population variation in complex fitness functions and demonstrate a new approach for locating the region of the trait distribution where variation in fitness and traits is greatest.
We modelled heterogeneity in fitness functions among populations by treating regression coefficients of fitness on traits as random variates. We applied random regression using two model specifications, (i) spline‐based curve and (ii) stepwise, to a 2‐year study of selection among 16 populations of the gall wasp, Belonocnema treatae. Log‐likelihood ratio tests of variance components and 10‐fold cross‐validation were used to assess the evidence that selection varied among populations.
Ten‐fold cross‐validation prediction error sums of squares (PSS) indicated that spline‐based fitness functions were population specific and that the strength of evidence for heterogeneity in selection differed between years. Hypothesis testing of variance components from both models was consistent with the PSS results. Both the stepwise model and the local prediction error estimates of spline‐based fitness functions identified the region(s) of the phenotype distribution harbouring the greatest heterogeneity among populations.
The adopted framework advances our understanding of phenotypic selection in natural populations by extending the analysis of spline‐based fitness functions to testing for heterogeneity among study units and isolating the regions of the phenotypic distribution where this variation is most pronounced.
Collapse
Affiliation(s)
- Richard J. Reynolds
- Department of Medicine, Division of Clinical Immunology and
Rheumatology, Department of Biostatistics, University of Alabama at Birmingham,
Birmingham, Alabama 35294; (205-975-9300)
| | - Gustavo de los Campos
- Departments of Epidemiology & Biostatistics, and Statistics,
Michigan State University, East Lansing, MI, 48824, (517-353-8623)
| | - Scott P. Egan
- Department of BioSciences, Rice University, Houston, Texas 77005;
(615-618-6601)
| | - James R. Ott
- Population and Conservation Biology Program, Department of Biology,
Texas State University, San Marcos, Texas 78666, (512-245-2321)
| |
Collapse
|
16
|
Anderson JT, Eckhart VM, Geber MA. Experimental studies of adaptation inClarkia xantiana. III. Phenotypic selection across a subspecies border. Evolution 2015; 69:2249-61. [DOI: 10.1111/evo.12745] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/11/2015] [Accepted: 07/08/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Jill T. Anderson
- Department of Genetics; University of Georgia; Athens Georgia 30602
| | | | - Monica A. Geber
- Ecology and Evolutionary Biology Department; Corson Hall, Cornell University; Ithaca New York 14853
| |
Collapse
|