1
|
Oxenford S, Ríos AS, Hollunder B, Neudorfer C, Boutet A, Elias GJB, Germann J, Loh A, Deeb W, Salvato B, Almeida L, Foote KD, Amaral R, Rosenberg PB, Tang-Wai DF, Wolk DA, Burke AD, Sabbagh MN, Salloway S, Chakravarty MM, Smith GS, Lyketsos CG, Okun MS, Anderson WS, Mari Z, Ponce FA, Lozano A, Neumann WJ, Al-Fatly B, Horn A. WarpDrive: Improving spatial normalization using manual refinements. Med Image Anal 2024; 91:103041. [PMID: 38007978 PMCID: PMC10842752 DOI: 10.1016/j.media.2023.103041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
Spatial normalization-the process of mapping subject brain images to an average template brain-has evolved over the last 20+ years into a reliable method that facilitates the comparison of brain imaging results across patients, centers & modalities. While overall successful, sometimes, this automatic process yields suboptimal results, especially when dealing with brains with extensive neurodegeneration and atrophy patterns, or when high accuracy in specific regions is needed. Here we introduce WarpDrive, a novel tool for manual refinements of image alignment after automated registration. We show that the tool applied in a cohort of patients with Alzheimer's disease who underwent deep brain stimulation surgery helps create more accurate representations of the data as well as meaningful models to explain patient outcomes. The tool is built to handle any type of 3D imaging data, also allowing refinements in high-resolution imaging, including histology and multiple modalities to precisely aggregate multiple data sources together.
Collapse
Affiliation(s)
- Simón Oxenford
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Ana Sofía Ríos
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Barbara Hollunder
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Neudorfer
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States; Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5T2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, ON M5T2S8, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, ON M5T1W7, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5T2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, ON M5T2S8, Canada
| | - Jurgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5T2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, ON M5T2S8, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5T2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, ON M5T2S8, Canada
| | - Wissam Deeb
- UMass Chan Medical School, Department of Neurology, Worcester, MA 01655, United States; UMass Memorial Health, Department of Neurology, Worcester, MA 01655, United States
| | - Bryan Salvato
- University of Florida Health Jacksonville, Jacksonville, FL, United States
| | - Leonardo Almeida
- Department of Neurology, University of Minnesota, Twin Cities Campus, Minneapolis, MN, United States
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Robert Amaral
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada
| | - Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences and Richman Family Precision Medicine Center of Excellence, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - David F Tang-Wai
- Krembil Research Institute, University of Toronto, Toronto, ON M5T2S8, Canada; Department of Medicine, Division of Neurology, University Health Network and University of Toronto, Toronto, ON M5T2S8, Canada
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Anna D Burke
- Barrow Neurological Institute, Phoenix, AZ, United States
| | | | - Stephen Salloway
- Department of Psychiatry and Human Behavior and Neurology, Alpert Medical School of Brown University, Providence, RI, United States; Memory & Aging Program, Butler Hospital, Providence, United States
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Gwenn S Smith
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada
| | | | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, United States
| | | | - Zoltan Mari
- Johns Hopkins School of Medicine, Baltimore, MD, United States; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
| | | | - Andres Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON M5T2S8, Canada; Krembil Research Institute, University of Toronto, Toronto, ON M5T2S8, Canada
| | - Wolf-Julian Neumann
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bassam Al-Fatly
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Horn
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States; Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Putz F, Bock M, Schmitt D, Bert C, Blanck O, Ruge MI, Hattingen E, Karger CP, Fietkau R, Grigo J, Schmidt MA, Bäuerle T, Wittig A. Quality requirements for MRI simulation in cranial stereotactic radiotherapy: a guideline from the German Taskforce "Imaging in Stereotactic Radiotherapy". Strahlenther Onkol 2024; 200:1-18. [PMID: 38163834 PMCID: PMC10784363 DOI: 10.1007/s00066-023-02183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Accurate Magnetic Resonance Imaging (MRI) simulation is fundamental for high-precision stereotactic radiosurgery and fractionated stereotactic radiotherapy, collectively referred to as stereotactic radiotherapy (SRT), to deliver doses of high biological effectiveness to well-defined cranial targets. Multiple MRI hardware related factors as well as scanner configuration and sequence protocol parameters can affect the imaging accuracy and need to be optimized for the special purpose of radiotherapy treatment planning. MRI simulation for SRT is possible for different organizational environments including patient referral for imaging as well as dedicated MRI simulation in the radiotherapy department but require radiotherapy-optimized MRI protocols and defined quality standards to ensure geometrically accurate images that form an impeccable foundation for treatment planning. For this guideline, an interdisciplinary panel including experts from the working group for radiosurgery and stereotactic radiotherapy of the German Society for Radiation Oncology (DEGRO), the working group for physics and technology in stereotactic radiotherapy of the German Society for Medical Physics (DGMP), the German Society of Neurosurgery (DGNC), the German Society of Neuroradiology (DGNR) and the German Chapter of the International Society for Magnetic Resonance in Medicine (DS-ISMRM) have defined minimum MRI quality requirements as well as advanced MRI simulation options for cranial SRT.
Collapse
Affiliation(s)
- Florian Putz
- Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Michael Bock
- Klinik für Radiologie-Medizinphysik, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Daniela Schmitt
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Christoph Bert
- Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Blanck
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maximilian I Ruge
- Klinik für Stereotaxie und funktionelle Neurochirurgie, Zentrum für Neurochirurgie, Universitätsklinikum Köln, Cologne, Germany
| | - Elke Hattingen
- Institut für Neuroradiologie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Christian P Karger
- Abteilung Medizinische Physik in der Strahlentherapie, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Nationales Zentrum für Strahlenforschung in der Onkologie (NCRO), Heidelberger Institut für Radioonkologie (HIRO), Heidelberg, Germany
| | - Rainer Fietkau
- Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johanna Grigo
- Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Manuel A Schmidt
- Neuroradiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Bäuerle
- Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Wittig
- Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Kanakaraj P, Rheault F, Cai LY, Newlin N, Yeh FC, Rogers BP, Schilling KG, Landman BA. Mapping the Impact of Approximate Gradient Nonlinearity Fields Correction on Tractography. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12464:1246427. [PMID: 37621418 PMCID: PMC10448744 DOI: 10.1117/12.2653884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Nonlinear gradients impact diffusion weighted MRI by introducing spatial variation in estimated diffusion tensors. Recent studies have shown that increasing signal-to-noise ratios and the use of ultra-strong gradients may lead to clinically significant impacts on analyses due to these nonlinear gradients in microstructural measures. These effects can potentially bias tractography results and cause misinterpretation of data. Herein, we characterize the impact of an "approximate" gradient nonlinearity correction technique in tractography using empirically derived gradient nonlinear fields. This technique scales the diffusion signal by the change in magnitude due to the gradient nonlinearities, without concomitant correction of gradient direction errors. The impact of this correction on tractography is assessed through white matter bundle segmentation and connectomics via bundle-wise volume, fractional anisotropy, mean diffusivity, radial diffusivity, axial diffusivity, primary eigenvector, and length; as well as the modularity, global efficiency, and characteristic path length connectomics graph measures. We investigate the differences between (1) these measures directly and (2) the within session variability of these measures before and after approximate correction in 61 subjects from the MASiVar pediatric reproducibility dataset. We find approximate correction results is little to no differences on the population level, but large differences on the subject-specific level for both the measures directly and their within session variability. Thus, this study suggests though approximate correction of gradient nonlinearities may not change tractography findings on the population level, subject-specific interpretations may exhibit large fluctuations. A limitation is the lack of comparison with the empirical voxel-wise gradient table correction.
Collapse
Affiliation(s)
| | - Francois Rheault
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Nancy Newlin
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburg, School of Medicine, Pittsburg, PA, USA
| | - Baxter P Rogers
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kurt G Schilling
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bennett A Landman
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Services, Vanderbilt University Medical Center, Vanderbilt University Medical, Nashville, TN, USA
| |
Collapse
|
4
|
Hwang HB, Yeon JS, Moon GS, Jung HN, Kim JY, Jeon SH, Yoon JM, Kim HW, Kim YC. 3D Reconstruction of a Unitary Posterior Eye by Converging Optically Corrected Optical Coherence and Magnetic Resonance Tomography Images via 3D CAD. Transl Vis Sci Technol 2022; 11:24. [PMID: 35895054 PMCID: PMC9344223 DOI: 10.1167/tvst.11.7.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose In acquiring images of the posterior eye, magnetic resonance imaging (MRI) provides low spatial resolution of the overall shape of the eye while optical coherence tomography (OCT) offers high spatial resolution of the limited range. Through the merger of the two devices, we attempted to acquire detailed anatomy of the posterior eye. Methods Optical and display distortions in OCT images were corrected using the Listing reduced eye model. The 3.0T orbital MRI images were placed on the three-dimensional coordinate system of the computer-aided design (CAD) program. Employing anterior scleral canal opening, visual axis, and scleral curvature as references, original and corrected OCT images were ported into the CAD application. The radii of curvature of the choroid–scleral interfaces (Rc values) of all original and corrected OCT images were compared to the MRI images. Results Sixty-five eyes of 33 participants (45.58 ± 19.82 years) with a mean Rc of 12.94 ± 1.24 mm on axial MRI and 13.66 ± 2.81 mm on sagittal MRI were included. The uncorrected horizontal OCT (30.51 ± 9.34 mm) and the uncorrected vertical OCT (34.35 ± 18.09 mm) lengths differed significantly from the MRI Rc values (both P < 0.001). However, the mean Rc values of the corrected horizontal (12.50 ± 1.21 mm) and vertical (13.05 ± 1.98 mm) images did not differ significantly from the Rc values of the corresponding MRI planes (P = 0.065 and P = 0.198, respectively). Conclusions Features identifiable only on OCT and features only on MRI were successfully integrated into a unitary posterior eye. Translational Relevance Our CAD-based converging method may establish the collective anatomy of the posterior eye and the neural canal, beyond the range of the OCT.
Collapse
Affiliation(s)
- Hyung Bin Hwang
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Ophthalmology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | | | - Seung Hee Jeon
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Ophthalmology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Myoung Yoon
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Ophthalmology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyo Won Kim
- Gangnam St. Mary's One Eye Clinic, Seoul, Republic of Korea
| | - Yong Chan Kim
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Ophthalmology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Kanakaraj P, Hansen CB, Rheault F, Cai LY, Ramadass K, Rogers BP, Schilling KG, Landman BA. Mapping the Impact of Non-Linear Gradient Fields on Diffusion MRI Tensor Estimation. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 12032:1203203. [PMID: 36303581 PMCID: PMC9604130 DOI: 10.1117/12.2611900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Non-linear gradients impact diffusion weighted (DW) MRI by corrupting the experimental setup and lead to problems during image encoding including the effects in-plane distortion, in-plane shifts, intensity modulations and phase errors. Recent studies have been shown this may present significant complication in the interpretation of results and conclusion while studying tractography and tissue microstructure in data. To interpret the degree in consequences of gradient non-linearities between the desired and achieved gradients, we introduced empirically derived gradient nonlinear fields at different orientations and different tensor properties. The impact is assessed through diffusion tensor properties including mean diffusivity (MD), fractional anisotropy (FA) and principal eigen vector (PEV). The study shows lower FA are more susceptible to LR fields and LR fields with determinant <1 or >1 corrupt tensor more. The corruption can result in significantly different FA based on true-FA and LR field. Apparent MD decreases for negative determinant, on the other hand positive determinant shows the opposite effect. LR field have a larger impact on PEV when FA value is small. The results are dependent on the underlying orientation, non-linear field corruption can cause both increase and decrease of estimated FA, MD and PEV value. This work provides insight into characterizing the non-linear gradient error and aid in selecting correction techniques to address the inaccuracies in b-values.
Collapse
Affiliation(s)
| | - Colin B Hansen
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Francois Rheault
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Karthik Ramadass
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Baxter P Rogers
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Services, Vanderbilt University Medical Center, Vanderbilt University Medical, Nashville, TN, USA
| | - Kurt G Schilling
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Services, Vanderbilt University Medical Center, Vanderbilt University Medical, Nashville, TN, USA
| | - Bennett A Landman
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute for Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Services, Vanderbilt University Medical Center, Vanderbilt University Medical, Nashville, TN, USA
| |
Collapse
|
6
|
Direct visualization of deep brain stimulation targets in patients with Parkinson's disease via 3-T quantitative susceptibility mapping. Acta Neurochir (Wien) 2021; 163:1335-1345. [PMID: 33576911 DOI: 10.1007/s00701-021-04715-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/11/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND The direct visualization of brain nuclei on magnetic resonance (MR) images is important for target localization during deep brain stimulation (DBS) in patients with Parkinson's disease (PD). We demonstrated the superiority of 3-T high-resolution submillimeter voxel size quantitative susceptibility mapping (QSM) for delineating the subthalamic nucleus (STN) and the globus pallidus internus (GPi). METHODS Preoperative 3-T QSM and T2 weighted (T2w) images were obtained from ten patients with PD. Qualitative visualization scores were analyzed by two neurosurgeons on both images using a 4-point and 5-point scale, respectively. Images were also compared with regard to contrast-to-noise ratios (CNRs) and edge detection power for the STN and GPi. The Wilcoxon rank-sum test and the signed-rank test were used to compare measurements between the two images. RESULTS Visualization scores for the STN and GPi, the mean CNR of the STN relative to the zona incerta (ZI) and the substantia nigra, and the mean CNR of the GPi relative to the internal capsule (IC) and the globus pallidum externum, were significantly higher on QSM images than on T2w images (P < 0.01). The edge detection powers of the STN-ZI and GPi-IC on QSM were significantly larger (by 2.6- and 3.8-fold, respectively) than those on T2w images (P < 0.01). QSM detected asymmetry of the STN in two patients. CONCLUSIONS QSM images provided improved delineation ability for the STN and GPi when compared to T2w images. Our findings are important for patients with PD who undergo DBS surgery, particularly those with asymmetric bilateral nuclei.
Collapse
|
7
|
Yahanda AT, Goble TJ, Sylvester PT, Lessman G, Goddard S, McCollough B, Shah A, Andrews T, Benzinger TLS, Chicoine MR. Impact of 3-Dimensional Versus 2-Dimensional Image Distortion Correction on Stereotactic Neurosurgical Navigation Image Fusion Reliability for Images Acquired With Intraoperative Magnetic Resonance Imaging. Oper Neurosurg (Hagerstown) 2020; 19:599-607. [PMID: 32521010 DOI: 10.1093/ons/opaa152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/30/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Fusion of preoperative and intraoperative magnetic resonance imaging (iMRI) studies during stereotactic navigation may be very useful for procedures such as tumor resections but can be subject to error because of image distortion. OBJECTIVE To assess the impact of 3-dimensional (3D) vs 2-dimensional (2D) image distortion correction on the accuracy of auto-merge image fusion for stereotactic neurosurgical images acquired with iMRI using a head phantom in different surgical positions. METHODS T1-weighted intraoperative images of the head phantom were obtained using 1.5T iMRI. Images were postprocessed with 2D and 3D image distortion correction. These studies were fused to T1-weighted preoperative MRI studies performed on a 1.5T diagnostic MRI. The reliability of the auto-merge fusion of these images for 2D and 3D correction techniques was assessed both manually using the stereotactic navigation system and via image analysis software. RESULTS Eight surgical positions of the head phantom were imaged with iMRI. Greater image distortion occurred with increased distance from isocenter in all 3 axes, reducing accuracy of image fusion to preoperative images. Visually reliable image fusions were accomplished in 2/8 surgical positions using 2D distortion correction and 5/8 using 3D correction. Three-dimensional correction yielded superior image registration quality as defined by higher maximum mutual information values, with improvements ranging between 2.3% and 14.3% over 2D correction. CONCLUSION Using 3D distortion correction enhanced the reliability of surgical navigation auto-merge fusion of phantom images acquired with iMRI across a wider range of head positions and may improve the accuracy of stereotactic navigation using iMRI images.
Collapse
Affiliation(s)
- Alexander T Yahanda
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | | | - Peter T Sylvester
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | - Amar Shah
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Trevor Andrews
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Tammie L S Benzinger
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri.,Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael R Chicoine
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
8
|
Magnetic resonance imaging for brain stereotactic radiotherapy : A review of requirements and pitfalls. Strahlenther Onkol 2020; 196:444-456. [PMID: 32206842 PMCID: PMC7182639 DOI: 10.1007/s00066-020-01604-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/03/2020] [Indexed: 12/29/2022]
Abstract
Due to its superior soft tissue contrast, magnetic resonance imaging (MRI) is essential for many radiotherapy treatment indications. This is especially true for treatment planning in intracranial tumors, where MRI has a long-standing history for target delineation in clinical practice. Despite its routine use, care has to be taken when selecting and acquiring MRI studies for the purpose of radiotherapy treatment planning. Requirements on MRI are particularly demanding for intracranial stereotactic radiotherapy, where accurate imaging has a critical role in treatment success. However, MR images acquired for routine radiological assessment are frequently unsuitable for high-precision stereotactic radiotherapy as the requirements for imaging are significantly different for radiotherapy planning and diagnostic radiology. To assure that optimal imaging is used for treatment planning, the radiation oncologist needs proper knowledge of the most important requirements concerning the use of MRI in brain stereotactic radiotherapy. In the present review, we summarize and discuss the most relevant issues when using MR images for target volume delineation in intracranial stereotactic radiotherapy.
Collapse
|
9
|
Principles of Safe Stereotactic Trajectories. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Bontzos G, Tsilimbaris M, Papadaki E, Maris TG, Mazonakis M, Detorakis ET. Estimation of Morphological Characteristics in Asymmetrical Myopic Posterior Staphyloma using Optical Coherence Tomography. Middle East Afr J Ophthalmol 2019; 25:131-136. [PMID: 30765950 PMCID: PMC6348944 DOI: 10.4103/meajo.meajo_45_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Posterior staphyloma is an ocular complication associated with high myopia and reflects degenerative changes on the sclera. Its morphology is associated with chorioretinal atrophy and myopic maculopathy. The purpose of this study was to validate the efficacy of optical coherence tomography (OCT) in providing a simple estimation of the staphyloma pattern. MATERIALS AND METHODS Observational case-series study of high myopic patients with posterior staphylomas. Patients were examined using the star scan pattern OCT in different radial planes. Three-dimensional (3D) magnetic resonance tomography was also performed to visualize the anatomical characteristics of the posterior pole. 3D-segmentation and curvature analysis were also performed. RESULTS Eight patients were totally enrolled in this pilot study. Our study pool consisted of 2 wide macular staphylomas, 2 narrow macular staphylomas, and 4 barrel-shaped staphylomas. Our preliminary results revealed that patients displayed mirror-image distortion in the steeper staphyloma axis. In the barrel-shaped subtype, no image distortion was displayed in any plane. CONCLUSION We estimated the axis of the smaller base curvature by noting the distortion pattern in the different radial axis. The recognition of pathologic axial myopia is important since there is a risk of permanent vision loss from vision to threatening sequelae.
Collapse
Affiliation(s)
- Georgios Bontzos
- Department of Ophthalmology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Miltiadis Tsilimbaris
- Department of Ophthalmology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Efrosini Papadaki
- Department of Radiology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Thomas G Maris
- Department of Medical Physics, University of Crete, Heraklion, Crete, Greece
| | - Michael Mazonakis
- Department of Medical Physics, University of Crete, Heraklion, Crete, Greece
| | | |
Collapse
|
11
|
Kremer NI, Oterdoom DLM, van Laar PJ, Piña-Fuentes D, van Laar T, Drost G, van Hulzen ALJ, van Dijk JMC. Accuracy of Intraoperative Computed Tomography in Deep Brain Stimulation-A Prospective Noninferiority Study. Neuromodulation 2019; 22:472-477. [PMID: 30629330 PMCID: PMC6618091 DOI: 10.1111/ner.12918] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/04/2018] [Accepted: 11/30/2018] [Indexed: 01/09/2023]
Abstract
Introduction Clinical response to deep brain stimulation (DBS) strongly depends on the appropriate placement of the electrode in the targeted structure. Postoperative MRI is recognized as the gold standard to verify the DBS‐electrode position in relation to the intended anatomical target. However, intraoperative computed tomography (iCT) might be a feasible alternative to MRI. Materials and Methods In this prospective noninferiority study, we compared iCT with postoperative MRI (24‐72 hours after surgery) in 29 consecutive patients undergoing placement of 58 DBS electrodes. The primary outcome was defined as the difference in Euclidean distance between lead tip coordinates as determined on both imaging modalities, using the lead tip depicted on MRI as reference. Secondary outcomes were difference in radial error and depth, as well as difference in accuracy relative to target. Results The mean difference between the lead tips was 0.98 ± 0.49 mm (0.97 ± 0.47 mm for the left‐sided electrodes and 1.00 ± 0.53 mm for the right‐sided electrodes). The upper confidence interval (95% CI, 0.851 to 1.112) did not exceed the noninferiority margin established. The average radial error between lead tips was 0.74 ± 0.48 mm and the average depth error was determined to be 0.53 ± 0.40 mm. The linear Deming regression indicated a good agreement between both imaging modalities regarding accuracy relative to target. Conclusions Intraoperative CT is noninferior to MRI for the verification of the DBS‐electrode position. CT and MRI have their specific benefits, but both should be considered equally suitable for assessing accuracy.
Collapse
Affiliation(s)
- Naomi I Kremer
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D L Marinus Oterdoom
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Jan van Laar
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dan Piña-Fuentes
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gea Drost
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arjen L J van Hulzen
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Patil AD, Singh V, Sukumar V, Shetty PM, Moiyadi AV. Comparison of outcomes of free-hand 2-dimensional ultrasound-guided versus navigated 3-dimensional ultrasound-guided biopsy for supratentorial tumours: a single-institution experience with 125 cases. Ultrasonography 2018; 38:255-263. [PMID: 30779873 PMCID: PMC6595123 DOI: 10.14366/usg.18036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/08/2018] [Indexed: 11/22/2022] Open
Abstract
Purpose The purpose of this study was to evaluate the relative utility and benefits of free-hand 2-dimensional intraoperative ultrasound (FUS) and navigated 3-dimensional intraoperative ultrasound (NUS) as ultrasound-guided biopsy (USGB) techniques for supratentorial lesions. Methods All patients who underwent USGB for suspected supratentorial tumours from January 2008 to December 2017 were retrospectively analyzed. The charts and electronic medical records of these patients were studied. Demographic, surgical, and pathological variables were collected and analyzed. The study group consisted of patients who underwent either FUS or NUS for biopsy. Results A total of 125 patients (112 adults and 13 children) underwent USGB during the study period (89 FUS and 36 NUS). NUS was used more often for deep-seated lesions (58% vs. 18% for FUS, P<0.001). The mean operating time for NUS was longer than for FUS (156 minutes vs. 124 minutes, P=0.001). Representative yield was found in 97.7% of biopsies using FUS and in 100% of biopsies using NUS (diagnostic yield, 93.6% and 91.3%, respectively). The majority of lesions (89%) were high-grade gliomas or lymphomas. Postoperative complications were more common in the NUS group (8.3% vs. 1.2%), but were related to the tumour location (deep). Conclusion Despite the longer operating time and higher rate of postoperative complications, NUS has the benefit of being suitable for biopsies of deep-seated supratentorial lesions, while FUS remains valuable for superficial lesions.
Collapse
Affiliation(s)
- Aditya D Patil
- Division of Neurosurgery, Department of Surgical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Vikas Singh
- Division of Neurosurgery, Department of Surgical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Vivek Sukumar
- Division of Neurosurgery, Department of Surgical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Prakash M Shetty
- Division of Neurosurgery, Department of Surgical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Aliasgar V Moiyadi
- Division of Neurosurgery, Department of Surgical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
13
|
Paštyková V, Novotný J, Veselský T, Urgošík D, Liščák R, Vymazal J. Assessment of MR stereotactic imaging and image co-registration accuracy for 3 different MR scanners by 3 different methods/phantoms: phantom and patient study. J Neurosurg 2018; 129:125-132. [DOI: 10.3171/2018.7.gks181527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/31/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVEThe aim of this study was to compare 3 different methods to assess the geometrical distortion of two 1.5-T and one 3-T magnetic resonance (MR) scanners and to evaluate co-registration accuracy. The overall uncertainty of each particular method was also evaluated.METHODSThree different MR phantoms were used: 2 commercial CIRS skull phantoms and PTGR known target phantom and 1 custom cylindrical Perspex phantom made in-house. All phantoms were fixed in the Leksell stereotactic frame and examined by a Siemens Somatom CT unit, two 1.5-T Siemens (Avanto and Symphony) MRI systems, and one 3-T Siemens (Skyra) MRI system. The images were evaluated using Leksell GammaPlan software, and geometrical deviation of the selected points from the reference values were determined. The deviations were further investigated for both definitions including fiducial-based and co-registration–based in the case of the CIRS phantom images. The same co-registration accuracy assessment was also performed for a clinical case. Patient stereotactic imaging was done on 3-T Skyra, 1.5-T Avanto, and CT scanners.RESULTSThe accuracy of the CT scanner was determined as 0.10, 0.30, and 0.30 mm for X, Y, and Z coordinates, respectively. The total estimated uncertainty in distortion measurement in one coordinate was determined to be 0.32 mm and 0.14 mm, respectively, for methods using and not using CT as reference imaging. Slightly more significant distortions were observed when using the 3-T than either 1.5-T MR units. However, all scanners were comparable within the estimated measurement error. Observed deviation/distortion for individual X, Y, and Z stereotactic coordinates was typically within 0.50 mm for all 3 scanners and all 3 measurement methods employed. The total radial deviation/distortion was typically within 1.00 mm. Maximum total radial distortion was observed when the CIRS phantom was used; 1.08 ± 0.49 mm, 1.15 ± 0.48 mm, and 1.35 ± 0.49 mm for Symphony, Avanto, and Skyra, respectively. The co-registration process improved image stereotactic definition in a clinical case in which fiducial-based stereotactic definition was not accurate; this was demonstrated for 3-T stereotactic imaging in this study. The best results were shown for 3-T MR image co-registration with CT images improving image stereotactic definition by about 0.50 mm. The results obtained with patient data provided a similar trend of improvement in stereotactic definition by co-registration.CONCLUSIONSAll 3 methods/phantoms used were evaluated as satisfactory for the image distortion measurement. The method using the PTGR phantom had the lowest uncertainty as no reference CT imaging was needed. Image co-registration can improve stereotactic image definition when fiducial-based definition is not accurate.
Collapse
Affiliation(s)
| | | | | | | | | | - Josef Vymazal
- 3Radiodiagnostics, Na Homolce Hospital, Prague, Czech Republic
| |
Collapse
|
14
|
Tavares WM, Tustumi F, da Costa Leite C, Gamarra LF, Junior EA, Texeira MJ, Araujo de França S, Fonoff ET. Distortion Correction Protocol for 3T Stereotactic Magnetic Resonance Imaging: A Clinical Study. World Neurosurg 2018; 122:e690-e699. [PMID: 30394358 DOI: 10.1016/j.wneu.2018.10.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND With application of 3T magnetic resonance imaging (MRI) to functional neurosurgery procedures and given the inherent requirement of millimetric precision, the need to develop a method for correction of geometric image distortion emerged. The aim of this study was to demonstrate clinical safety and practical viability of a correction protocol in patients scheduled to undergo stereotactic procedures using 3T MRI. METHODS This prospective study comprised 20 patients scheduled to undergo computed tomography (CT) stereotactic functional procedures or encephalic brain lesion biopsies. The CT images were references for MRI geometric accuracy calculations. For each scan, 2 images were obtained: normal and reversed images. Eight distinct points on CT and MRI were selected summing 152 points that were based on a power analysis calculation value >0.999. One patient was excluded because of the inability to find reliable common landmark points on CT and MRI. RESULTS The distortion range was 0-5.6 mm and increased proportionally with stereotactic isocenter distance, meaning the distortion was greater in the periphery. After correction, the minimum and maximum distortion found was 0 mm and 3.5 mm, respectively. There was no significant difference between CT and MRI corrected x-coordinates (P > 0.05). CONCLUSIONS The proposed method can satisfactorily correct geometric distortions in clinical 3T MRI studies. Clinical use of the technique can be practical and efficient after software automation of the process. The method can be applied to all spin-echo MRI sequences.
Collapse
Affiliation(s)
- Wagner Malagó Tavares
- Division of Functional Neurosurgery, Institute of Neurology, University of São Paulo, São Paulo, Brazil; Instituto Paulista de Saúde para a Alta Complexidade, Santo Andre, Brazil
| | - Francisco Tustumi
- Division of Functional Neurosurgery, Institute of Neurology, University of São Paulo, São Paulo, Brazil
| | - Claudia da Costa Leite
- Department of Radiology, Institute of Radiology, University of São Paulo, São Paulo, Brazil
| | - Lionel Fernel Gamarra
- Department of Radiology, Institute of Radiology, University of São Paulo, São Paulo, Brazil; Albert Einstein Israelita Hospital, São Paulo, Brazil
| | - Edson Amaro Junior
- Department of Radiology, Institute of Radiology, University of São Paulo, São Paulo, Brazil
| | - Manoel Jacobsen Texeira
- Division of Functional Neurosurgery, Institute of Neurology, University of São Paulo, São Paulo, Brazil
| | | | - Erich Talamoni Fonoff
- Division of Functional Neurosurgery, Institute of Neurology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Nowacki A, Nguyen TAK, Tinkhauser G, Petermann K, Debove I, Wiest R, Pollo C. Accuracy of different three-dimensional subcortical human brain atlases for DBS -lead localisation. Neuroimage Clin 2018; 20:868-874. [PMID: 30282063 PMCID: PMC6169097 DOI: 10.1016/j.nicl.2018.09.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/17/2018] [Accepted: 09/25/2018] [Indexed: 11/05/2022]
Abstract
BACKGROUND Accurate interindividual comparability of deep brain stimulation (DBS) lead locations in relation to the surrounding anatomical structures is of eminent importance to define and understand effective stimulation areas. The objective of the current work is to compare the accuracy of the DBS lead localisation relative to the STN in native space with four recently developed three-dimensional subcortical brain atlases in the MNI template space. Accuracy is reviewed by anatomical and volumetric analysis as well as intraoperative electrophysiological data. METHODS Postoperative lead localisations of 10 patients (19 hemispheres) were analysed in each individual patient based on Brainlab software (native space) and after normalization into the MNI space and application of 4 different human brain atlases using Lead-DBS toolbox within Matlab (template space). Each patient's STN was manually segmented and the relation between the reconstructed lead and the STN was compared to the 4 atlas-based STN models by applying the Dice coefficient. The length of intraoperative electrophysiological STN activity along different microelectrode recording tracks was measured and compared to reconstructions in native and template space. Descriptive non-parametric statistical tests were used to calculate differences between the 4 different atlases. RESULTS The mean STN volume of the study cohort was 153.3 ± 40.3 mm3 (n = 19). This is similar to the STN volume of the DISTAL atlas (166 mm3; p = .22), but significantly larger compared to the other atlases tested in this study. The anatomical overlap of the lead-STN-reconstruction was highest for the DISTAL atlas (0.56 ± 0.18) and lowest for the PD25 atlas (0.34 ± 0.17). A total number of 47 MER trajectories through the STN were analysed. There was a statistically significant discrepancy of the electrophysiogical STN activity compared to the reconstructed STN of all four atlases (p < .0001). CONCLUSION Lead reconstruction after normalization into the MNI template space and application of four different atlases led to different results in terms of the DBS lead position relative to the STN. Based on electrophysiological and imaging data, the DISTAL atlas led to the most accurate display of the reconstructed DBS lead relative to the DISTAL-based STN.
Collapse
Affiliation(s)
- Andreas Nowacki
- Department of Neurosurgery, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland.
| | - T A-K Nguyen
- Department of Neurosurgery, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland
| | - Gerd Tinkhauser
- Department of Neurology, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland; Medical Research Council Brain Network Dynamics Unit and Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Katrin Petermann
- Department of Neurology, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland
| | - Roland Wiest
- Department of diagnostic and interventional Neuroradiology, Inselspital, University Hospital Bernand University of Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Mohyeldin A, Elder JB. Stereotactic Biopsy Platforms with Intraoperative Imaging Guidance. Neurosurg Clin N Am 2017; 28:465-475. [DOI: 10.1016/j.nec.2017.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Nowacki A, Debove I, Fiechter M, Rossi F, Oertel MF, Wiest R, Schüpbach M, Pollo C. Targeting Accuracy of the Subthalamic Nucleus in Deep Brain Stimulation Surgery: Comparison Between 3 T T2-Weighted Magnetic Resonance Imaging and Microelectrode Recording Results. Oper Neurosurg (Hagerstown) 2017; 15:66-71. [DOI: 10.1093/ons/opx175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/06/2017] [Indexed: 11/13/2022] Open
Abstract
Abstract
BACKGROUND
Targeting accuracy in deep brain stimulation (DBS) surgery can be defined as the level of accordance between selected and anatomic real target reflected by characteristic electrophysiological results of microelectrode recording (MER).
OBJECTIVE
To determine the correspondence between the preoperative predicted target based on modern 3-T magnetic resonance imaging (MRI) and intraoperative MER results separately on the initial and consecutive second side of surgery.
METHODS
Retrospective cohort study of 86 trajectories of DBS electrodes implanted into the subthalamic nucleus (STN) of patients with Parkinson's disease. The entrance point of the electrode into the STN and the length of the electrode trajectory crossing the STN were determined by intraoperative MER findings and 3 T T2-weighted magnetic resonance images with 1-mm slice thickness.
RESULTS
Average difference between MRI- and MER-based trajectory lengths crossing the STN was 0.28 ± 1.02 mm (95% CI: −0.51 to −0.05 mm). There was a statistically significant difference between the MRI- and MER-based entry points on the initial and second side of surgery (P = .04). Forty-three percent of the patients had a difference of more than ±1 mm of the MRI-based-predicted and the MER-based-determined entry points into the STN with values ranging from −3.0 to + 4.5 mm.
CONCLUSION
STN MRI-based targeting is accurate in the majority of cases on the first and second side of surgery. In 43% of implanted electrodes, we found a relevant deviation of more than 1 mm, supporting the concept of MER as an important tool to guide and optimize targeting and electrode placement.
Collapse
Affiliation(s)
- Andreas Nowacki
- Department of Neurosurgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Michael Fiechter
- Department of Neurosurgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Frédéric Rossi
- Department of Neurosurgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Markus Florian Oertel
- Department of Neurosurgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Michael Schüpbach
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Abstract
A cost-effective regularly structured three-dimensional (3D) printed grid phantom was developed to enable the quantification of machine-related magnetic resonance (MR) distortion. This phantom contains reference features, “point-like” objects, or vertices, which resulted from the intersection of mesh edges in 3D space. 3D distortions maps were computed by comparing the locations of corresponding features in both MR and computer tomography (CT) data sets using normalized cross correlation. Results are reported for six MRI scanners at both 1.5 T and 3.0 T field strengths within our institution. Mean Euclidean distance error for all MR volumes in this study, was less than 2 mm. The maximum detected error for the six scanners ranged from 2.4 mm to 6.9 mm. The conclusions in this study agree well with previous studies that indicated that MRI is quite accurate near the centre of the field but is more spatially inaccurate toward the edges of the magnetic field.
Collapse
|
19
|
Kuo AN, Verkicharla PK, McNabb RP, Cheung CY, Hilal S, Farsiu S, Chen C, Wong TY, Ikram MK, Cheng CY, Young TL, Saw SM, Izatt JA. Posterior Eye Shape Measurement With Retinal OCT Compared to MRI. Invest Ophthalmol Vis Sci 2017; 57:OCT196-203. [PMID: 27409473 PMCID: PMC4968781 DOI: 10.1167/iovs.15-18886] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Posterior eye shape assessment by magnetic resonance imaging (MRI) is used to study myopia. We tested the hypothesis that optical coherence tomography (OCT), as an alternative, could measure posterior eye shape similarly to MRI. Methods Macular spectral-domain OCT and brain MRI images previously acquired as part of the Singapore Epidemiology of Eye Diseases study were analyzed. The right eye in the MRI and OCT images was automatically segmented. Optical coherence tomography segmentations were corrected for optical and display distortions requiring biometry data. The segmentations were fitted to spheres and ellipsoids to obtain the posterior eye radius of curvature (Rc) and asphericity (Qxz). The differences in Rc and Qxz measured by MRI and OCT were tested using paired t-tests. Categorical assignments of prolateness or oblateness using Qxz were compared. Results Fifty-two subjects (67.8 ± 5.6 years old) with spherical equivalent refraction from +0.50 to −5.38 were included. The mean paired difference between MRI and original OCT posterior eye Rc was 24.03 ± 46.49 mm (P = 0.0005). For corrected OCT images, the difference in Rc decreased to −0.23 ± 2.47 mm (P = 0.51). The difference between MRI and OCT asphericity, Qxz, was −0.052 ± 0.343 (P = 0.28). However, categorical agreement was only moderate (κ = 0.50). Conclusions Distortion-corrected OCT measurements of Rc and Qxz were not statistically significantly different from MRI, although the moderate categorical agreement suggests that individual differences remained. This study provides evidence that with distortion correction, noninvasive office-based OCT could potentially be used instead of MRI for the study of posterior eye shape.
Collapse
Affiliation(s)
- Anthony N Kuo
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | | | - Ryan P McNabb
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Carol Y Cheung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Saima Hilal
- Memory Aging & Cognition Centre and Department of Pharmacology, National University of Singapore, Singapore
| | - Sina Farsiu
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States 5Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Christopher Chen
- Memory Aging & Cognition Centre and Department of Pharmacology, National University of Singapore, Singapore
| | - Tien Y Wong
- Singapore Eye Research Institute, The Academia, Singapore 6Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore 7Singapore National Eye Centre, Singapore, Singapore
| | - M Kamran Ikram
- Memory Aging & Cognition Centre and Department of Pharmacology, National University of Singapore, Singapore 8Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ching Y Cheng
- Singapore Eye Research Institute, The Academia, Singapore 6Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
| | - Terri L Young
- Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore 9University of Wisconsin-Madison, Department of Ophthalmology and Visual Sciences, Madison, Wisconsin, United States
| | - Seang M Saw
- Singapore Eye Research Institute, The Academia, Singapore 6Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
| | - Joseph A Izatt
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States 5Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| |
Collapse
|
20
|
Markowitz D, Lin D, Salas S, Kohn N, Schulder M. Compact Intraoperative MRI: Stereotactic Accuracy and Future Directions. Stereotact Funct Neurosurg 2017; 95:197-204. [PMID: 28614824 DOI: 10.1159/000475673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/05/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Intraoperative imaging must supply data that can be used for accurate stereotactic navigation. This information should be at least as accurate as that acquired from diagnostic imagers. OBJECTIVES The aim of this study was to compare the stereotactic accuracy of an updated compact intraoperative MRI (iMRI) device based on a 0.15-T magnet to standard surgical navigation on a 1.5-T diagnostic scan MRI and to navigation with an earlier model of the same system. METHODS The accuracy of each system was assessed using a water-filled phantom model of the brain. Data collected with the new system were compared to those obtained in a previous study assessing the older system. The accuracy of the new iMRI was measured against standard surgical navigation on a 1.5-T MRI using T1-weighted (W) images. RESULTS The mean error with the iMRI using T1W images was lower than that based on images from the 1.5-T scan (1.24 vs. 2.43 mm). T2W images from the newer iMRI yielded a lower navigation error than those acquired with the prior model (1.28 vs. 3.15 mm). CONCLUSIONS Improvements in magnet design can yield progressive increases in accuracy, validating the concept of compact, low-field iMRI. Avoiding the need for registration between image and surgical space increases navigation accuracy.
Collapse
Affiliation(s)
- Daniel Markowitz
- Department of Neurosurgery, Northwell Health, Manhasset, NY, USA
| | | | | | | | | |
Collapse
|
21
|
Lau JC, Khan AR, Zeng TY, MacDougall KW, Parrent AG, Peters TM. Quantification of local geometric distortion in structural magnetic resonance images: Application to ultra-high fields. Neuroimage 2017; 168:141-151. [PMID: 28069539 DOI: 10.1016/j.neuroimage.2016.12.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022] Open
Abstract
Ultra-high field magnetic resonance imaging (MRI) provides superior visualization of brain structures compared to lower fields, but images may be prone to severe geometric inhomogeneity. We propose to quantify local geometric distortion at ultra-high fields in in vivo datasets of human subjects scanned at both ultra-high field and lower fields. By using the displacement field derived from nonlinear image registration between images of the same subject, focal areas of spatial uncertainty are quantified. Through group and subject-specific analysis, we were able to identify regions systematically affected by geometric distortion at air-tissue interfaces prone to magnetic susceptibility, where the gradient coil non-linearity occurs in the occipital and suboccipital regions, as well as with distance from image isocenter. The derived displacement maps, quantified in millimeters, can be used to prospectively evaluate subject-specific local spatial uncertainty that should be taken into account in neuroimaging studies, and also for clinical applications like stereotactic neurosurgery where accuracy is critical. Validation with manual fiducial displacement demonstrated excellent correlation and agreement. Our results point to the need for site-specific calibration of geometric inhomogeneity. Our methodology provides a framework to permit prospective evaluation of the effect of MRI sequences, distortion correction techniques, and scanner hardware/software upgrades on geometric distortion.
Collapse
Affiliation(s)
- Jonathan C Lau
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada; Department of Clinical Neurological Sciences, Western University and London Health Sciences Centre, London, Ontario, Canada.
| | - Ali R Khan
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Tony Y Zeng
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Keith W MacDougall
- Department of Clinical Neurological Sciences, Western University and London Health Sciences Centre, London, Ontario, Canada
| | - Andrew G Parrent
- Department of Clinical Neurological Sciences, Western University and London Health Sciences Centre, London, Ontario, Canada
| | - Terry M Peters
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
22
|
Meerschaert R, Nalichowski A, Burmeister J, Paul A, Miller S, Hu Z, Zhuang L. A comprehensive evaluation of adaptive daily planning for cervical cancer HDR brachytherapy. J Appl Clin Med Phys 2016; 17:323-333. [PMID: 27929505 PMCID: PMC5690507 DOI: 10.1120/jacmp.v17i6.6408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/06/2016] [Accepted: 08/29/2016] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to evaluate adaptive daily planning for cervical cancer patients who underwent high‐dose‐rate intracavitary brachytherapy (HDR‐BT) using comprehensive interfractional organ motion measurements. This study included 22 cervical cancer patients who underwent 5 fractions of HDR‐BT. Regions of interest (ROIs) including high‐risk clinical tumor volume (HR‐CTV) and organs at risk (OARs) were manually contoured on daily CT images. All patients were clinically treated with adaptive daily plans (ADP), which involved ROI delineation and dose optimization at each treatment fraction. Single treatment plans (SP) were retrospectively generated by applying the first treatment fraction's dwell times adjusted for decay and dwell positions of the applicator to subsequent treatment fractions. Various existing similarity metrics were calculated for the ROIs to quantify interfractional organ variations. A novel similarity (JRARM) score was established, which combined both volumetric overlap metrics (DSC, JSC, and RVD) and distance metrics (ASD, MSD, and RMSD). Linear regression was performed to determine a relationship between interfractional organ variations of various similarity metrics and D2cc variations from both plans. Wilcoxon signed‐rank tests were used to assess ADP and SP by comparing EQD2D2cc(α/β=3) for OARs. For interfractional organ variations, the sigmoid demonstrated the greatest variations based on the JRARM, DSC, and RMSD metrics. Comparisons between paired ROIs showed differences in metrics at each treatment fraction. RVD, MSD, and RMSD were found to be significantly correlated to D2cc variations for bladder and sigmoid. The comparison between plans found ADP provided lower EQD2 D2cc of OARs than SP. Specifically, the sigmoid demonstrated statistically significant dose variations (p=0.015). Substantial interfractional organ motion occurs during HDR‐BT based on comprehensive measurements and may significantly affect D2cc of OARs. Adaptive daily planning provides improved dose sparing for OARs compared to single planning with the extent of sparing being different among OARs. PACS number(s): 87.55.D, 87.55.de, 87.55.kh, 87.57.nj
Collapse
|
23
|
Sammartino F, Krishna V, King NKK, Bruno V, Kalia S, Hodaie M, Marras C, Lozano AM, Fasano A. Sequence of electrode implantation and outcome of deep brain stimulation for Parkinson's disease. J Neurol Neurosurg Psychiatry 2016; 87:859-63. [PMID: 26354942 DOI: 10.1136/jnnp-2015-311426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/17/2015] [Indexed: 11/03/2022]
Abstract
INTRODUCTION The effect of the variability of electrode placement on outcomes after bilateral deep brain stimulation of subthalamic nucleus has not been sufficiently studied, especially with respect to the sequence of hemisphere implantation. METHODOLOGY We retrospectively analysed the clinical and radiographic data of all the consecutive patients with Parkinson's disease who underwent surgery at our centre and completed at least 1 year follow-up. The dispersion in electrode location was calculated by the square of deviation from population mean, and the direction of deviation was analysed by comparing the intended and final implantation coordinates. Linear regression analysis was performed to analyse the predictors of postoperative improvement of the motor condition, also controlling for the sequence of implanted hemisphere. RESULTS 76 patients (mean age 58±7.2 years) were studied. Compared with the first side, the second side electrode tip had significantly higher dispersion as an overall effect (5.6±21.6 vs 2.2±4.9 mm(2), p=0.04), or along the X-axis (4.1±15.6 vs 1.4±2.4 mm(2), p=0.03) and Z-axis (4.9±11.5 vs 2.9±3.6 mm(2), p=0.02); the second side stimulation was also associated with a lower threshold for side effects (contact 0, p<0.001 and contact 3, p=0.004). In the linear regression analysis, the significant predictors of outcome were baseline activities of daily living (p=0.010) and dispersion of electrode on the second side (p=0.005). CONCLUSIONS We observed a higher dispersion for the electrode on the second implanted side, which also resulted to be a significant predictor of motor outcome at 1 year.
Collapse
Affiliation(s)
- Francesco Sammartino
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Vibhor Krishna
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Nicolas Kon Kam King
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Veronica Bruno
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital - UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Suneil Kalia
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Connie Marras
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital - UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital - UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Zachiu C, Denis de Senneville B, Moonen C, Ries M. A framework for the correction of slow physiological drifts during MR-guided HIFU therapies: Proof of concept. Med Phys 2016; 42:4137-48. [PMID: 26133614 DOI: 10.1118/1.4922403] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE While respiratory motion compensation for magnetic resonance (MR)-guided high intensity focused ultrasound (HIFU) interventions has been extensively studied, the influence of slow physiological motion due to, for example, peristaltic activity, has so far been largely neglected. During lengthy interventions, the magnitude of the latter can exceed acceptable therapeutic margins. The goal of the present study is to exploit the episodic workflow of these therapies to implement a motion correction strategy for slow varying drifts of the target area and organs at risk over the entire duration of the intervention. METHODS The therapeutic workflow of a MR-guided HIFU intervention is in practice often episodic: Bursts of energy delivery are interleaved with periods of inactivity, allowing the effects of the beam on healthy tissues to recede and/or during which the plan of the intervention is reoptimized. These periods usually last for at least several minutes. It is at this time scale that organ drifts due to slow physiological motion become significant. In order to capture these drifts, the authors propose the integration of 3D MR scans in the therapy workflow during the inactivity intervals. Displacements were estimated using an optical flow algorithm applied on the 3D acquired images. A preliminary study was conducted on ten healthy volunteers. For each volunteer, 3D MR images of the abdomen were acquired at regular intervals of 10 min over a total duration of 80 min. Motion analysis was restricted to the liver and kidneys. For validating the compatibility of the proposed motion correction strategy with the workflow of a MR-guided HIFU therapy, an in vivo experiment on a porcine liver was conducted. A volumetric HIFU ablation was completed over a time span of 2 h. A 3D image was acquired before the first sonication, as well as after each sonication. RESULTS Following the volunteer study, drifts larger than 8 mm for the liver and 5 mm for the kidneys prove that slow physiological motion can exceed acceptable therapeutic margins. In the animal experiment, motion tracking revealed an initial shift of up to 4 mm during the first 10 min and a subsequent continuous shift of ∼2 mm/h until the end of the intervention. This leads to a continuously increasing mismatch of the initial shot planning, the thermal dose measurements, and the true underlying anatomy. The estimated displacements allowed correcting the planned sonication cell cluster positions to the true target position, as well as the thermal dose estimates during the entire intervention and to correct the nonperfused volume measurement. A spatial coherence of all three is particularly important to assure a confluent ablation volume and to prevent remaining islets of viable malignant tissue. CONCLUSIONS This study proposes a motion correction strategy for displacements resulting from slowly varying physiological motion that might occur during a MR-guided HIFU intervention. The authors have shown that such drifts can lead to a misalignment between interventional planning, energy delivery, and therapeutic validation. The presented volunteer study and in vivo experiment demonstrate both the relevance of the problem for HIFU therapies and the compatibility of the proposed motion compensation framework with the workflow of a HIFU intervention under clinical conditions.
Collapse
Affiliation(s)
- Cornel Zachiu
- Imaging Division, UMC Utrecht, Heidelberglaan 100, Utrecht 3584 CX, Netherlands
| | - Baudouin Denis de Senneville
- Imaging Division, UMC Utrecht, Heidelberglaan 100, Utrecht 3584 CX, NetherlandsMathematical Institute of Bordeaux, University of Bordeaux, Talence Cedex 33405, France
| | - Chrit Moonen
- Imaging Division, UMC Utrecht, Heidelberglaan 100, Utrecht 3584 CX, Netherlands
| | - Mario Ries
- Imaging Division, UMC Utrecht, Heidelberglaan 100, Utrecht 3584 CX, Netherlands
| |
Collapse
|
25
|
Hyam JA, Akram H, Foltynie T, Limousin P, Hariz M, Zrinzo L. What You See Is What You Get: Lead Location Within Deep Brain Structures Is Accurately Depicted by Stereotactic Magnetic Resonance Imaging. Neurosurgery 2016; 11 Suppl 3:412-9; discussion 419. [PMID: 26087006 DOI: 10.1227/neu.0000000000000848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI)-verified deep brain stimulation relies on the correct interpretation of stereotactic imaging documenting lead location in relation to visible anatomic target. However, it has been suggested that local signal distortion from the lead itself renders its depiction on MRI unreliable. OBJECTIVE To compare lead location on stereotactic MRI with subsequent location of its brain track after removal. METHODS Patients underwent deep brain stimulation with the use of MRI-guided and MRI-verified Leksell frame approach. Infection or suboptimal efficacy required lead removal and subsequent reimplantation by using the same technique. Postimplantation stereotactic MR images were analyzed. Lateral (x) and anteroposterior (y) distances from midcommissural point to center of the lead hypointensity were recorded at the anterior commissure-posterior commissure plane (pallidal electrode) or z = -4 (subthalamic electrode). Stereotactic MRI before the second procedure, x and y distances from the center of the visible lead track hypointensity to midcommissural point were independently recorded. Vectorial distance from center of the lead hypointensity to the center of its track was calculated. RESULTS Sixteen electrode tracks were studied in 10 patients. Mean differences between lead artifact location and lead track location were: x coordinate 0.4 mm ± 0.2; y coordinate 0.6 mm ± 0.3. Mean vectorial distance was 0.7 mm ± 0.2. CONCLUSION Stereotactic distance between lead location and subsequent brain track location on MRI was small. The mean discrepancy was approximately half the deep brain stimulation lead width. This suggests that lead hypointensity seen on postimplantation MRI is indeed an accurate representation of its real location within deep brain structures.
Collapse
Affiliation(s)
- Jonathan A Hyam
- *Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom; ‡Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom; §Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
26
|
Godenschweger F, Kägebein U, Stucht D, Yarach U, Sciarra A, Yakupov R, Lüsebrink F, Schulze P, Speck O. Motion correction in MRI of the brain. Phys Med Biol 2016; 61:R32-56. [PMID: 26864183 DOI: 10.1088/0031-9155/61/5/r32] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Subject motion in MRI is a relevant problem in the daily clinical routine as well as in scientific studies. Since the beginning of clinical use of MRI, many research groups have developed methods to suppress or correct motion artefacts. This review focuses on rigid body motion correction of head and brain MRI and its application in diagnosis and research. It explains the sources and types of motion and related artefacts, classifies and describes existing techniques for motion detection, compensation and correction and lists established and experimental approaches. Retrospective motion correction modifies the MR image data during the reconstruction, while prospective motion correction performs an adaptive update of the data acquisition. Differences, benefits and drawbacks of different motion correction methods are discussed.
Collapse
Affiliation(s)
- F Godenschweger
- Biomedical Magnetic Resonance, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yarach U, Luengviriya C, Stucht D, Godenschweger F, Schulze P, Speck O. Correction of B 0-induced geometric distortion variations in prospective motion correction for 7T MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:319-32. [PMID: 26861047 DOI: 10.1007/s10334-015-0515-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Prospective motion correction can effectively fix the imaging volume of interest. For large motion, this can lead to relative motion of coil sensitivities, distortions associated with imaging gradients and B 0 field variations. This work accounts for the B 0 field change due to subject movement, and proposes a method for correcting tissue magnetic susceptibility-related distortion in prospective motion correction. MATERIALS AND METHODS The B 0 field shifts at the different head orientations were characterized. A volunteer performed large motion with prospective motion correction enabled. The acquired data were divided into multiple groups according to the object positions. The correction of B 0-related distortion was applied to each group of data individually via augmented sensitivity encoding with additionally integrated gradient nonlinearity correction. RESULTS The relative motion of the gradients, B 0 field and coil sensitivities in prospective motion correction results in residual spatial distortion, blurring, and coil artifacts. These errors can be mitigated by the proposed method. Moreover, iterative conjugate gradient optimization with regularization provided superior results with smaller RMSE in comparison to standard conjugate gradient. CONCLUSION The combined correction of B 0-related distortion and gradient nonlinearity leads to a reduction of residual motion artifacts in prospective motion correction data.
Collapse
Affiliation(s)
- Uten Yarach
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Leipziger Str. 44 (Haus 65), 39120, Magdeburg, Germany. .,Department of Radiological Technology, Chiangmai University, Chiang Mai, Thailand.
| | | | - Daniel Stucht
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Leipziger Str. 44 (Haus 65), 39120, Magdeburg, Germany
| | - Frank Godenschweger
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Leipziger Str. 44 (Haus 65), 39120, Magdeburg, Germany
| | - Peter Schulze
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Leipziger Str. 44 (Haus 65), 39120, Magdeburg, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Site Magdeburg, Magdeburg, Germany
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Leipziger Str. 44 (Haus 65), 39120, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Site Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
28
|
Neumann JO, Giese H, Biller A, Nagel AM, Kiening K. Spatial Distortion in MRI-Guided Stereotactic Procedures: Evaluation in 1.5-, 3- and 7-Tesla MRI Scanners. Stereotact Funct Neurosurg 2015; 93:380-6. [PMID: 26671683 DOI: 10.1159/000441233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) is replacing computed tomography (CT) as the main imaging modality for stereotactic transformations. MRI is prone to spatial distortion artifacts, which can lead to inaccuracy in stereotactic procedures. OBJECTIVE Modern MRI systems provide distortion correction algorithms that may ameliorate this problem. This study investigates the different options of distortion correction using standard 1.5-, 3- and 7-tesla MRI scanners. METHODS A phantom was mounted on a stereotactic frame. One CT scan and three MRI scans were performed. At all three field strengths, two 3-dimensional sequences, volumetric interpolated breath-hold examination (VIBE) and magnetization-prepared rapid acquisition with gradient echo, were acquired, and automatic distortion correction was performed. Global stereotactic transformation of all 13 datasets was performed and two stereotactic planning workflows (MRI only vs. CT/MR image fusion) were subsequently analysed. RESULTS Distortion correction on the 1.5- and 3-tesla scanners caused a considerable reduction in positional error. The effect was more pronounced when using the VIBE sequences. By using co-registration (CT/MR image fusion), even a lower positional error could be obtained. In ultra-high-field (7 T) MR imaging, distortion correction introduced even higher errors. However, the accuracy of non-corrected 7-tesla sequences was comparable to CT/MR image fusion 3-tesla imaging. CONCLUSION MRI distortion correction algorithms can reduce positional errors by up to 60%. For stereotactic applications of utmost precision, we recommend a co-registration to an additional CT dataset.
Collapse
Affiliation(s)
- Jan-Oliver Neumann
- Division of Stereotactic Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
29
|
Mohyeldin A, Lonser RR, Elder JB. Real-time magnetic resonance imaging-guided frameless stereotactic brain biopsy: technical note. J Neurosurg 2015; 124:1039-46. [PMID: 26495951 DOI: 10.3171/2015.5.jns1589] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The object of this study was to assess the feasibility, accuracy, and safety of real-time MRI-compatible frameless stereotactic brain biopsy. METHODS Clinical, imaging, and histological data in consecutive patients who underwent stereotactic brain biopsy using a frameless real-time MRI system were analyzed. RESULTS Five consecutive patients (4 males, 1 female) were included in this study. The mean age at biopsy was 45.8 years (range 29-60 years). Real-time MRI permitted concurrent display of the biopsy cannula trajectory and tip during placement at the target. The mean target depth of biopsied lesions was 71.3 mm (range 60.4-80.4 mm). Targeting accuracy analysis revealed a mean radial error of 1.3 ± 1.1 mm (mean ± standard deviation), mean depth error of 0.7 ± 0.3 mm, and a mean absolute tip error of 1.5 ± 1.1 mm. There was no correlation between target depth and absolute tip error (Pearson product-moment correlation coefficient, r = 0.22). All biopsy cannulae were placed at the target with a single penetration and resulted in a diagnostic specimen in all cases. Histopathological evaluation of biopsy samples revealed dysembryoplastic neuroepithelial tumor (1 case), breast carcinoma (1 case), and glioblastoma multiforme (3 cases). CONCLUSIONS The ability to place a biopsy cannula under real-time imaging guidance permits on-the-fly alterations in the cannula trajectory and/or tip placement. Real-time imaging during MRI-guided brain biopsy provides precise safe targeting of brain lesions.
Collapse
Affiliation(s)
- Ahmed Mohyeldin
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio
| | - Russell R Lonser
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio
| | - J Bradley Elder
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, The Ohio State University Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio
| |
Collapse
|
30
|
Bot M, van den Munckhof P, Bakay R, Sierens D, Stebbins G, Verhagen Metman L. Analysis of Stereotactic Accuracy in Patients Undergoing Deep Brain Stimulation Using Nexframe and the Leksell Frame. Stereotact Funct Neurosurg 2015; 93:316-25. [DOI: 10.1159/000375178] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022]
|
31
|
Barnaure I, Pollak P, Momjian S, Horvath J, Lovblad KO, Boëx C, Remuinan J, Burkhard P, Vargas MI. Evaluation of electrode position in deep brain stimulation by image fusion (MRI and CT). Neuroradiology 2015; 57:903-8. [PMID: 26022355 DOI: 10.1007/s00234-015-1547-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Imaging has an essential role in the evaluation of correct positioning of electrodes implanted for deep brain stimulation (DBS). Although MRI offers superior anatomic visualization of target sites, there are safety concerns in patients with implanted material; imaging guidelines are inconsistent and vary. The fusion of postoperative CT with preoperative MRI images can be an alternative for the assessment of electrode positioning. The purpose of this study was to assess the accuracy of measurements realized on fused images (acquired without a stereotactic frame) using a manufacturer-provided software. METHODS Data from 23 Parkinson's disease patients who underwent bilateral electrode placement for subthalamic nucleus (STN) DBS were acquired. Preoperative high-resolution T2-weighted sequences at 3 T, and postoperative CT series were fused using a commercially available software. Electrode tip position was measured on the obtained images in three directions (in relation to the midline, the AC-PC line and an AC-PC line orthogonal, respectively) and assessed in relation to measures realized on postoperative 3D T1 images acquired at 1.5 T. RESULTS Mean differences between measures carried out on fused images and on postoperative MRI lay between 0.17 and 0.97 mm. CONCLUSION Fusion of CT and MRI images provides a safe and fast technique for postoperative assessment of electrode position in DBS.
Collapse
Affiliation(s)
- I Barnaure
- Department of Neuroradiology, Geneva University Hospital, Gabrielle Perret Gentil, 4, 1211, Geneva 14, Switzerland
| | - P Pollak
- Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - S Momjian
- Department of Neurosurgery, Geneva University Hospital, Geneva, Switzerland
| | - J Horvath
- Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - K O Lovblad
- Department of Neuroradiology, Geneva University Hospital, Gabrielle Perret Gentil, 4, 1211, Geneva 14, Switzerland
| | - C Boëx
- Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - J Remuinan
- Department of Radiology, Geneva University Hospital, Geneva, Switzerland
| | - P Burkhard
- Department of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - M I Vargas
- Department of Neuroradiology, Geneva University Hospital, Gabrielle Perret Gentil, 4, 1211, Geneva 14, Switzerland.
| |
Collapse
|
32
|
Glide-Hurst CK, Wen N, Hearshen D, Kim J, Pantelic M, Zhao B, Mancell T, Levin K, Movsas B, Chetty IJ, Siddiqui MS. Initial clinical experience with a radiation oncology dedicated open 1.0T MR-simulation. J Appl Clin Med Phys 2015; 16:5201. [PMID: 26103190 PMCID: PMC5690096 DOI: 10.1120/jacmp.v16i2.5201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to describe our experience with 1.0T MR-SIM including characterization, quality assurance (QA) program, and features necessary for treatment planning. Staffing, safety, and patient screening procedures were developed. Utilization of an external laser positioning system (ELPS) and MR-compatible couchtop were illustrated. Spatial and volumetric analyses were conducted between CT-SIM and MR-SIM using a stereotactic QA phantom with known landmarks and volumes. Magnetic field inhomogeneity was determined using phase difference analysis. System-related, in-plane distortion was evaluated and temporal changes were assessed. 3D distortion was characterized for regions of interest (ROIs) 5-20 cm away from isocenter. American College of Radiology (ACR) recommended tests and impact of ELPS on image quality were analyzed. Combined ultrashort echotime Dixon (UTE/Dixon) sequence was evaluated. Amplitude-triggered 4D MRI was implemented using a motion phantom (2-10 phases, ~ 2 cm excursion, 3-5 s periods) and a liver cancer patient. Duty cycle, acquisition time, and excursion were evaluated between maximum intensity projection (MIP) datasets. Less than 2% difference from expected was obtained between CT-SIM and MR-SIM volumes, with a mean distance of < 0.2 mm between landmarks. Magnetic field inhomogeneity was < 2 ppm. 2D distortion was < 2 mm over 28.6-33.6 mm of isocenter. Within 5 cm radius of isocenter, mean 3D geometric distortion was 0.59 ± 0.32 mm (maximum = 1.65 mm) and increased 10-15 cm from isocenter (mean = 1.57 ± 1.06 mm, maximum = 6.26 mm). ELPS interference was within the operating frequency of the scanner and was characterized by line patterns and a reduction in signal-to-noise ratio (4.6-12.6% for TE = 50-150 ms). Image quality checks were within ACR recommendations. UTE/Dixon sequences yielded detectability between bone and air. For 4D MRI, faster breathing periods had higher duty cycles than slow (50.4% (3 s) and 39.4% (5 s), p < 0.001) and ~fourfold acquisition time increase was measured for ten-phase versus two-phase. Superior-inferior object extent was underestimated 8% (6 mm) for two-phase as compared to ten-phase MIPs, although < 2% difference was obtained for ≥ 4 phases. 4D MRI for a patient demonstrated acceptable image quality in ~ 7 min. MR-SIM was integrated into our workflow and QA procedures were developed. Clinical applicability was demonstrated for 4D MRI and UTE imaging to support MR-SIM for single modality treatment planning.
Collapse
|
33
|
van Gorp JS, Bakker CJG, Bouwman JG, Smink J, Zijlstra F, Seevinck PR. Geometrically undistorted MRI in the presence of field inhomogeneities using compressed sensing accelerated broadband 3D phase encoded turbo spin-echo imaging. Phys Med Biol 2014; 60:615-31. [DOI: 10.1088/0031-9155/60/2/615] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Tadic T, Jaffray DA, Stanescu T. Harmonic analysis for the characterization and correction of geometric distortion in MRI. Med Phys 2014; 41:112303. [DOI: 10.1118/1.4898582] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
35
|
Karaiskos P, Moutsatsos A, Pappas E, Georgiou E, Roussakis A, Torrens M, Seimenis I. A simple and efficient methodology to improve geometric accuracy in gamma knife radiation surgery: implementation in multiple brain metastases. Int J Radiat Oncol Biol Phys 2014; 90:1234-41. [PMID: 25442348 DOI: 10.1016/j.ijrobp.2014.08.349] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/02/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE To propose, verify, and implement a simple and efficient methodology for the improvement of total geometric accuracy in multiple brain metastases gamma knife (GK) radiation surgery. METHODS AND MATERIALS The proposed methodology exploits the directional dependence of magnetic resonance imaging (MRI)-related spatial distortions stemming from background field inhomogeneities, also known as sequence-dependent distortions, with respect to the read-gradient polarity during MRI acquisition. First, an extra MRI pulse sequence is acquired with the same imaging parameters as those used for routine patient imaging, aside from a reversal in the read-gradient polarity. Then, "average" image data are compounded from data acquired from the 2 MRI sequences and are used for treatment planning purposes. The method was applied and verified in a polymer gel phantom irradiated with multiple shots in an extended region of the GK stereotactic space. Its clinical impact in dose delivery accuracy was assessed in 15 patients with a total of 96 relatively small (<2 cm) metastases treated with GK radiation surgery. RESULTS Phantom study results showed that use of average MR images eliminates the effect of sequence-dependent distortions, leading to a total spatial uncertainty of less than 0.3 mm, attributed mainly to gradient nonlinearities. In brain metastases patients, non-eliminated sequence-dependent distortions lead to target localization uncertainties of up to 1.3 mm (mean: 0.51 ± 0.37 mm) with respect to the corresponding target locations in the "average" MRI series. Due to these uncertainties, a considerable underdosage (5%-32% of the prescription dose) was found in 33% of the studied targets. CONCLUSIONS The proposed methodology is simple and straightforward in its implementation. Regarding multiple brain metastases applications, the suggested approach may substantially improve total GK dose delivery accuracy in smaller, outlying targets.
Collapse
Affiliation(s)
- Pantelis Karaiskos
- Medical Physics Laboratory, Medical School, University of Athens, Greece; Gamma Knife Department, Hygeia Hospital, Athens, Greece.
| | - Argyris Moutsatsos
- Medical Physics Laboratory, Medical School, University of Athens, Greece
| | - Eleftherios Pappas
- Medical Physics Laboratory, Medical School, University of Athens, Greece
| | - Evangelos Georgiou
- Medical Physics Laboratory, Medical School, University of Athens, Greece
| | | | | | - Ioannis Seimenis
- Medical Physics Laboratory, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
36
|
Choudhri AF, Chin EM, Klimo P, Boop FA. Spatial distortion due to field inhomogeneity in 3.0 tesla intraoperative MRI. Neuroradiol J 2014; 27:387-92. [PMID: 25196608 DOI: 10.15274/nrj-2014-10081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 07/14/2014] [Indexed: 11/12/2022] Open
Abstract
We describe a 14-year-old boy with a pilocytic astrocytoma of the left caudate head. Preoperative localization MR imaging (MRI) was performed in the operating room, and spatial distortion was noted felt to be related to head positioning relative to the isocenter of the magnetic field. The distortion artifact was subtle enough to be difficult to detect, but large enough to change the location of the lesion potentially leading to a non-diagnostic stereotactic biopsy. Repeat imaging after changing the head position to allow scanning closer to the isocenter of the magnetic field showed decreased distortion, an improvement greater than that using the manufacturer's distortion correction algorithm on the initial images. Intraoperative MRI, and its requisite limitations in positioning, requires vigilance to detect possible distortion that could alter surgical outcomes if not identified and corrected prospectively.
Collapse
Affiliation(s)
- Asim F Choudhri
- Department of Radiology, University of Tennessee Health Science Center; Memphis, TN, USA - Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital; Memphis, TN, USA -
| | - Eric M Chin
- College of Medicine, University of Tennessee Health Science Center; Memphis, TN, USA
| | - Paul Klimo
- Department of Neurosurgery, University of Tennessee Health Science Center; Memphis, TN, USA - Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital; Memphis, TN, USA
| | - Frederick A Boop
- Department of Neurosurgery, University of Tennessee Health Science Center; Memphis, TN, USA - Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital; Memphis, TN, USA
| |
Collapse
|
37
|
Lu Y, Yeung C, Radmanesh A, Wiemann R, Black PM, Golby AJ. Comparative effectiveness of frame-based, frameless, and intraoperative magnetic resonance imaging-guided brain biopsy techniques. World Neurosurg 2014; 83:261-8. [PMID: 25088233 DOI: 10.1016/j.wneu.2014.07.043] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 02/09/2014] [Accepted: 07/29/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To compare the diagnostic yield and safety profiles of intraoperative magnetic resonance imaging (MRI)-guided needle brain biopsy with 2 traditional brain biopsy methods: frame-based and frameless stereotactic brain biopsy. METHODS A retrospective analysis was performed of 288 consecutive needle brain biopsies in 277 patients undergoing stereotactic brain biopsy with any of the 3 biopsy methods at Brigham and Women's Hospital from 2000-2008. Variables including age, sex, history of radiation and previous surgery, pathology results, complications, and postoperative length of hospital stay were analyzed. RESULTS Over the course of 8 years, 288 brain biopsies were performed. Of these, 253 (87.8%) biopsies yielded positive diagnostic tissue. Young age (<40 years old) and history of brain radiation or surgery were significant negative predictors for a positive biopsy diagnostic yield. Excluding patients with prior radiation or surgeries, no significant difference in diagnostic yield was detected among the 3 groups, with frame-based biopsies yielding 96.9%, frameless biopsies yielding 91.8%, and intraoperative MRI-guided needle biopsies yielding 89.9% positive diagnostic yield. Serious adverse events occurred 19 biopsies (6.6%). Intraoperative MRI-guided brain biopsies were associated with less serious adverse events and the shortest postoperative hospital stay. CONCLUSIONS Frame-based, frameless stereotactic, and intraoperative MRI-guided brain needle biopsy techniques have comparable diagnostic yield for patients with no prior treatments (either radiation or surgery). Intraoperative MRI-guided brain biopsy is associated with fewer serious adverse events and shorter hospital stay.
Collapse
Affiliation(s)
- Yi Lu
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Cecil Yeung
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alireza Radmanesh
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Wiemann
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter M Black
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandra J Golby
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Yarach U, Luengviriya C, Danishad A, Stucht D, Godenschweger F, Schulze P, Speck O. Correction of gradient nonlinearity artifacts in prospective motion correction for 7T MRI. Magn Reson Med 2014; 73:1562-9. [PMID: 24798889 DOI: 10.1002/mrm.25283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/07/2014] [Accepted: 04/15/2014] [Indexed: 11/11/2022]
Abstract
PURPOSE To demonstrate the effect of gradient nonlinearity and develop a method for correction of gradient nonlinearity artifacts in prospective motion correction (Mo-Co). METHODS Nonlinear gradients can induce geometric distortions in magnetic resonance imaging, leading to pixel shifts with errors of up to several millimeters, thereby interfering with precise localization of anatomical structures. Prospective Mo-Co has been extended by conventional gradient warp correction applied to individual phase encoding steps/groups during the reconstruction. The gradient-related displacements are approximated using spherical harmonic functions. In addition, the combination of this method with a retrospective correction of the changes in the coil sensitivity profiles relative to the object (augmented sensitivity encoding (SENSE) reconstruction) was evaluated in simulation and experimental data. RESULTS Prospective Mo-Co under gradient fields and coils sensitivity inconsistencies results in residual blurring, spatial distortion, and coil sensitivity mismatch artifacts. These errors can be considerably mitigated by the proposed method. High image quality with very little remaining artifacts was achieved after a few iterations. The relative image errors decreased from 25.7% to below 17.3% after 10 iterations. CONCLUSION The combined correction of gradient nonlinearity and sensitivity map variation leads to a pronounced reduction of residual motion artifacts in prospectively motion-corrected data.
Collapse
Affiliation(s)
- Uten Yarach
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Department of Radiological Technology, Chiangmai University, Chiang Mai, Thailand
| | | | | | | | | | | | | |
Collapse
|
39
|
Moutsatsos A, Karaiskos P, Petrokokkinos L, Sakelliou L, Pantelis E, Georgiou E, Torrens M, Seimenis I. Assessment and characterization of the total geometric uncertainty in Gamma Knife radiosurgery using polymer gels. Med Phys 2013; 40:031704. [PMID: 23464299 DOI: 10.1118/1.4789922] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This work proposes and implements an experimental methodology, based on polymer gels, for assessing the total geometric uncertainty and characterizing its contributors in Gamma Knife (GK) radiosurgery. METHODS A treatment plan consisting of 26, 4-mm GK single shot dose distributions, covering an extended region of the Leksell stereotactic space, was prepared and delivered to a polymer gel filled polymethyl methacrylate (PMMA) head phantom (16 cm diameter) used to accurately reproduce every link in the GK treatment chain. The center of each shot served as a "control point" in the assessment of the GK total geometric uncertainty, which depends on (a) the spatial dose delivery uncertainty of the PERFEXION GK unit used in this work, (b) the spatial distortions inherent in MR images commonly used for target delineation, and (c) the geometric uncertainty contributor associated with the image registration procedure performed by the Leksell GammaPlan (LGP) treatment planning system (TPS), in the case that registration is directly based on the apparent fiducial locations depicted in each MR image by the N-shaped rods on the Leksell localization box. The irradiated phantom was MR imaged at 1.5 T employing a T2-weighted pulse sequence. Four image series were acquired by alternating the frequency encoding axis and reversing the read gradient polarity, thus allowing the characterization of the MR-related spatial distortions. RESULTS MR spatial distortions stemming from main field (B0) inhomogeneity as well as from susceptibility and chemical shift phenomena (also known as sequence dependent distortions) were found to be of the order of 0.5 mm, while those owing to gradient nonlinearities (also known as sequence independent distortions) were found to increase with distance from the MR scanner isocenter extending up to 0.47 mm at an Euclidean distance of 69.6 mm. Regarding the LGP image registration procedure, the corresponding average contribution to the total geometric uncertainty ranged from 0.34 to 0.80 mm. The average total geometric uncertainty, which also includes the GK spatial dose delivery uncertainty, was found equal to (0.88 ± 0.16), (0.88 ± 0.26), (1.02 ± 0.09), and (1.15 ± 0.24) mm for the MR image series acquired with the read gradient polarity (direction) set toward right, left, posterior, and anterior, respectively. CONCLUSIONS The implemented methodology seems capable of assessing the total geometric uncertainty, as well as of characterizing its contributors, ascribed to the entire GK treatment delivery (i.e., from MR imaging to GK dose delivery) for an extended region of the Leksell stereotactic space. Results obtained indicate that the selection of both the frequency encoding axis and the read gradient polarity during MRI acquisition may affect the magnitude as well as the spatial components of the total geometric uncertainty.
Collapse
Affiliation(s)
- A Moutsatsos
- Medical Physics Laboratory, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Thani NB, Bala A, Swann GB, Lind CRP. Accuracy of postoperative computed tomography and magnetic resonance image fusion for assessing deep brain stimulation electrodes. Neurosurgery 2013; 69:207-14; discussion 214. [PMID: 21792120 DOI: 10.1227/neu.0b013e318218c7ae] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Knowledge of the anatomic location of the deep brain stimulation (DBS) electrode in the brain is essential in quality control and judicious selection of stimulation parameters. Postoperative computed tomography (CT) imaging coregistered with preoperative magnetic resonance imaging (MRI) is commonly used to document the electrode location safely. The accuracy of this method, however, depends on many factors, including the quality of the source images, the area of signal artifact created by the DBS lead, and the fusion algorithm. OBJECTIVE To calculate the accuracy of determining the location of active contacts of the DBS electrode by coregistering postoperative CT image to intraoperative MRI. METHODS Intraoperative MRI with a surrogate marker (carbothane stylette) was digitally coregistered with postoperative CT with DBS electrodes in 8 consecutive patients. The location of the active contact of the DBS electrode was calculated in the stereotactic frame space, and the discrepancy between the 2 images was assessed. RESULTS The carbothane stylette significantly reduces the signal void on the MRI to a mean diameter of 1.4 ± 0.1 mm. The discrepancy between the CT and MRI coregistration in assessing the active contact location of the DBS lead is 1.6 ± 0.2 mm, P < .001 with iPlan (BrainLab AG, Erlangen, Germany) and 1.5 ± 0.2 mm, P < .001 with Framelink (Medtronic, Minneapolis, Minnesota) software. CONCLUSION CT/MRI coregistration is an acceptable method of identifying the anatomic location of DBS electrode and active contacts.
Collapse
Affiliation(s)
- Nova B Thani
- West Australian Neurosurgical Service, Sir Charles Gairdner Hospital, Perth, Australia
| | | | | | | |
Collapse
|
41
|
Muthuraman M, Paschen S, Hellriegel H, Groppa S, Deuschl G, Raethjen J. Locating the STN-DBS electrodes and resolving their subsequent networks using coherent source analysis on EEG. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:3970-3. [PMID: 23366797 DOI: 10.1109/embc.2012.6346836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The deep brain stimulation (DBS) of the subthalamic nucleus (STN) is the most effective surgical therapy for Parkinson's disease (PD). The first aim of the study was to locate the STN-DBS electrode by applying source analysis on EEG. Secondly, to identify tremor related areas which are associated with the STN. The Dynamic imaging of coherent sources (DICS) was used to find the coherent sources in the brain. The capability of the source analysis to detect deep sources like STN in the brain using EEG data was tested with two model dipole simulations. The simulations were concentrated on two aspects, the angle of the dipole orientation and the disturbance of the cortical areas on locating subcortical regions. In all the DBS treated Parkinsonian tremor patients the power spectrum showed a clear peak at the stimulated frequency and followed by there harmonics. The DBS stimulated frequency constituted a network of primary sensory motor cortex, supplementary motor area, prefrontal cortex, diencephalon, cerebellum and brainstem. Thus the STN was located in the region of the diencephalon. The resolved network may give better understanding to the pathophysiology of the effected tremor network in PD patients with STN-DBS.
Collapse
Affiliation(s)
- M Muthuraman
- Department of Neurology, Christian Albrechts university Kiel, 24105 Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Savas A, Bozkurt M, Akbostancı C. A comparison between stereotactic targeting methods of the subthalamic nucleus in cases with Parkinson's disease. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 117:35-41. [PMID: 23652654 DOI: 10.1007/978-3-7091-1482-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
BACKGROUND Several methods are used for targeting of the subthalamic nucleus (STN) for the surgical treatment of Parkinson's disease (PD). The goal of this study is to determine the most suitable morphological method for localizing the STN in order to perform deep brain stimulation (DBS) in the treatment of PD. METHODS Twelve cases with PD underwent bilateral STN-DBS and followed up for 5 years. Indirect calculation of the STN using AC-PC coordinates, and direct targeting of the STN using stereotactic CT/MRI fusion, were used for targeting. A microelectrode recording method was used to localize the STN. RESULTS Direct targeting of the STN using CT/MRI fusion was very precise in every case, based upon evaluation of the intraoperative microelectrode recordings, postoperative MRI scans, and clinical follow-up of the cases. The coordinate differences obtained from these two methods were statistically significant. CONCLUSION Direct targeting method of the STN using CT/MRI fusion provided higher precision than the indirect calculation method. This method may be used as a standard targeting technique, and may obviate the need for using complicated technologies such as microelectrode recording, which may sometimes be risky and counterproductive.
Collapse
Affiliation(s)
- Ali Savas
- School of Medicine, Department of Neurosurgery, Ankara University, PK 243 Kavaklidere, Ankara, 06100, Turkey,
| | | | | |
Collapse
|
43
|
Simon E, Perrot X, Linne M, Afif A, Becq G, Mertens P. Morphometry and localization of the temporal transverse Heschl's gyrus in magnetic resonance imaging: a guide for cortical stimulation of chronic tinnitus. Surg Radiol Anat 2012; 35:115-24. [PMID: 22918474 DOI: 10.1007/s00276-012-1008-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 08/04/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Subjective tinnitus is considered a phantom auditory phenomenon. Recent studies show that electrical or magnetic stimulation of the cortex can alleviate some tinnitus. The usual target of the stimulation is the primary auditory cortex (PAC) on Heschl's gyrus (HG). The objective of this study was to specify the anatomy of HG by magnetic resonance imaging (MRI). METHODS Cerebral MRI of 60 patients with chronic tinnitus, carried out before neuronavigated repetitive transcranial magnetic stimulation targeting the auditory cortex, were included. 3D-T1 MRI was reformatted in Talairach-Tournoux's stereotactic space, then the following steps were performed: morphometry of HG, localization of the probabilistic center of the PAC (pcPAC) chosen at the junction between the medial third and the lateral two-thirds of HG, relative to external and cortical landmarks, and identification of its coordinates relative to the bicommissural line (AC-PC). RESULTS In relation to external landmarks, the pcPAC was identified around 5 cm above the root of the helix of the ear in the direction of a point on the vertex located 4 cm behind the coronal suture, for both sides. In Talairach-Tournoux's stereotactic space with the anterior commissure as the origin, the pcPAC coordinates were x = 43, y = -20, z = 6.8 on the right side, and x = -42.5, y = -21.5, and z = 6.5 on the left. Probabilistic maps of the presence of HG pointed to a relative contraction of data in space, despite inter- and intraindividual differences. CONCLUSION The choice of our stimulation target was established in the middle of the theoretical position of the PAC. MRI allows a reliable identification of the target structure.
Collapse
Affiliation(s)
- Emile Simon
- Department of Anatomy, Claude Bernard-Lyon1 University, 8 Avenue Rockefeller, 69008, Lyon, France.
| | | | | | | | | | | |
Collapse
|
44
|
Dhaliwal PP, Hurlbert RJ, Sutherland GS. Intraoperative Magnetic Resonance Imaging and Neuronavigation for Transoral Approaches to Upper Cervical Pathology. World Neurosurg 2012; 78:164-9. [DOI: 10.1016/j.wneu.2011.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 07/28/2011] [Accepted: 09/04/2011] [Indexed: 10/15/2022]
|
45
|
Lotterie JA, Duthil P, Januel AC, Redon A, Menegalli D, Blond S, Latorzeff I. [Stereotactic and diagnostic imaging in radiosurgery]. Cancer Radiother 2012; 16 Suppl:S10-25. [PMID: 22592146 DOI: 10.1016/j.canrad.2011.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 09/09/2011] [Accepted: 09/29/2011] [Indexed: 10/28/2022]
Abstract
Constant progress in medical imaging and particularly magnetic resonance imaging has profound impact in planning for stereotactic radiosurgery and radiotherapy. The purpose of this paper is to discuss the integration of medical imaging modalities in the planning process. Principles of generic algorithms to calculate stereotactic coordinates are treated for tomographic imaging and digital substraction angiography, and their accuracies are analyzed in a review of the literature. The algorithmic foundations and performance of automatic intermodality co-registration methods are developed. Finally, the MRI sequences useful in planning and follow-up are discussed and the role of MR angiographic sequences compared to conventional X-ray angiography in the particular case of the arteriovenous malformation planning.
Collapse
Affiliation(s)
- J-A Lotterie
- Centre régional de radiochirurgie, hôpital Rangueil, CHU de Toulouse, 1 avenue du Professeur-Jean-Poulhès,Toulouse, France .
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Precision is the ultimate aim of stereotactic technique. Demands on stereotactic precision reach a pinnacle in stereotactic functional neurosurgery. Pitfalls are best avoided by possessing in-depth knowledge of the techniques employed and the equipment used. The engineering principles of arc-centered stereotactic frames maximize surgical precision at the target, irrespective of the surgical trajectory, and provide the greatest degree of surgical precision in current clinical practice. Stereotactic magnetic resonance imaging (MRI) provides a method of visualizing intracranial structures and fiducial markers on the same image without introducing significant errors during an image fusion process. Although image distortion may potentially limit the utility of stereotactic MRI, near-complete distortion correction can be reliably achieved with modern machines. Precision is dependent on minimizing errors at every step of the stereotactic procedure. These steps are considered in turn and include frame application, image acquisition, image manipulation, surgical planning of target and trajectory, patient positioning and the surgical procedure itself. Audit is essential to monitor and improve performance in clinical practice. The level of stereotactic precision is best analyzed by routine postoperative stereotactic MRI. This allows the stereotactic and anatomical location of the intervention to be compared with the anatomy and coordinates of the intended target, avoiding significant image fusion errors.
Collapse
Affiliation(s)
- Ludvic Zrinzo
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, United Kingdom
| |
Collapse
|
47
|
Discrepancies between the MRI- and the electrophysiologically defined subthalamic nucleus. Acta Neurochir (Wien) 2011; 153:2307-18. [PMID: 21744142 DOI: 10.1007/s00701-011-1081-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 06/22/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND The aim of our study was to evaluate discrepancies between the electrophysiologically and MRI-defined subthalamic nucleus (STN) in order to contribute to the ongoing debate of whether or not microelectrode recording (MER) provides additional information to image-guided targeting in deep brain stimulation. METHODS Forty-four STNs in 22 patients with Parkinson's disease were investigated. The three-dimensional MRI-defined STN was derived from segmentations of axial and coronal T2-weighted images. The electrophysiological STNs were generated from intraoperative MERs in 1,487 locations. The stereotactical coordinates of positive and negative STN recordings were re-imported to the planning software, where a three-dimensional reconstruction of the electrophysiological STN was performed and fused to the MRI data set. The estimated borders of the MRI- and MER-STN were compared. For statistical analysis Student's t, Mann-Whitney rank sum and Fisher's exact tests were used. RESULTS MER-STN volumes, which were found outside the MRI-STN, ranged from 0 mm(3) to 87 mm(3) (mean: 45 mm(3)). A mean of 44% of the MER-STN volumes exceeded the MRI-STN (maximum: 85.1%; minimum: 15.1 %); 53.4% (n = 793) of the microelectrode recordings were concordant and 46.6% (n = 694) discordant with the MRI-defined anatomical STN. Regarding the dorsal borders, we found discrepancies between the MER- and MRI-STN of 0.27 mm (= mean; SD: 0.51 mm) on the first operated side and 1.51 mm (SD: 1.5 mm) on the second (p = 0.010, t-test). CONCLUSIONS MER provides additional information to high-resolution anatomical MR images and may help to detect the amount and direction of brain shift.
Collapse
|
48
|
Thani NB, Bala A, Lind CRP. Accuracy of magnetic resonance imaging-directed frame-based stereotaxis. Neurosurgery 2011; 70:114-23; discussion 123-4. [PMID: 21849920 DOI: 10.1227/neu.0b013e3182320bd6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Accurate placement of a probe to the deep regions of the brain is an important part of neurosurgery. In the modern era, magnetic resonance image (MRI)-based target planning with frame-based stereotaxis is the most common technique. OBJECTIVE To quantify the inaccuracy in MRI-guided frame-based stereotaxis and to assess the relative contributions of frame movements and MRI distortion. METHODS The MRI-directed implantable guide-tube technique was used to place carbothane stylettes before implantation of the deep brain stimulation electrodes. The coordinates of target, dural entry point, and other brain landmarks were compared between preoperative and intraoperative MRIs to determine the inaccuracy. RESULTS The mean 3-dimensional inaccuracy of the stylette at the target was 1.8 mm (95% confidence interval [CI], 1.5-2.1. In deep brain stimulation surgery, the accuracy in the x and y (axial) planes is important; the mean axial inaccuracy was 1.4 mm (95% CI, 1.1-1.8). The maximal mean deviation of the head frame compared with brain over 24.1 ± 1.8 hours was 0.9 mm (95% CI, 0.5-1.1). The mean 3-dimensional inaccuracy of the dural entry point of the stylette was 1.8 mm (95% CI, 1.5-2.1), which is identical to that of the target. CONCLUSION Stylette positions did deviate from the plan, albeit by 1.4 mm in the axial plane and 1.8 mm in 3-dimensional space. There was no difference between the accuracies at the dura and the target approximately 70 mm deep in the brain, suggesting potential feasibility for accurate planning along the whole trajectory.
Collapse
Affiliation(s)
- Nova B Thani
- West Australian Neurosurgical Service, Sir Charles Gairdner Hospital, Perth, Australia
| | | | | |
Collapse
|
49
|
Kiryu S, Inoue Y, Masutani Y, Haishi T, Yoshikawa K, Watanabe M, Ohtomo K. Distortion correction in whole-body imaging of live mice using a 1-Tesla compact magnetic resonance imaging system. Jpn J Radiol 2011; 29:353-60. [DOI: 10.1007/s11604-010-0553-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 12/14/2010] [Indexed: 12/25/2022]
|
50
|
Ruge MI, Suchorska B, Maarouf M, Runge M, Treuer H, Voges J, Sturm V. Stereotactic 125Iodine Brachytherapy for the Treatment of Singular Brain Metastases: Closing a Gap? Neurosurgery 2011; 68:1209-18; discussion 1218-9. [DOI: 10.1227/neu.0b013e31820b526a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Brain metastases represent the most common intracranial tumors and are associated with very poor prognosis.
OBJECTIVE:
To investigate the feasibility, survival, and cerebral disease control of patients with singular brain metastases treated with stereotactic 125iodine brachytherapy (SBT), to identify prognostic factors, and to compare results with other local treatment methods.
METHODS:
Complications, survival (overall and separated by recursive partitioning analysis [RPA] classes), and local and distant disease control were evaluated retrospectively in 90 patients. Prognostic factors were identified by forming subgroups of patients based on age, Karnofsky Performance Status, status of extracranial disease, interval since initial diagnosis, absence/presence of prior whole-brain radiation therapy, localization, morphology, and tumor volume.
RESULTS:
There was no treatment-related mortality, and morbidity was transient and low (3.3%). Median survival was 8.5 months overall and 18.1 months for RPA class 1 patients. After 1 year, the actuarial incidence of local and distant cerebral relapse was 5.4% and 46.4%, respectively. Karnofsky Performance Status ≥ 70 (P < .002), stable systemic disease (P < .02), RPA class 1 (P < .02), and a prolonged (> 12 month) interval between initial diagnosis and SBT (P < .05) significantly improved survival. No significant influence of previous whole-brain radiation therapy on survival or cerebral disease relapse was found.
CONCLUSION:
SBT represents a safe, minimally invasive, and, compared with SRS and microsurgery, a similarly effective local treatment option in terms of survival and cerebral disease control. It allows histological (re-)evaluation and treatment within 1 stereotactic operation. Because it is less restricted by tumor localization or size, it greatly advances local treatment options, and on the basis of its favorable biological irradiation effect, SBT does not limit additional irradiation treatment in the event of disease relapse.
Collapse
Affiliation(s)
- Maximilian I. Ruge
- Department of Stereotactic and Functional Neurosurgery, Albertus Magnus University of Cologne, Otto v. Guericke University, Magdeburg, Germany; and
| | - Bogdana Suchorska
- Department of Stereotactic Neurosurgery, Otto v. Guericke University, Magdeburg, Germany
| | - Mohammad Maarouf
- Department of Stereotactic and Functional Neurosurgery, Albertus Magnus University of Cologne, Otto v. Guericke University, Magdeburg, Germany; and
| | - Matthias Runge
- Department of Stereotactic and Functional Neurosurgery, Albertus Magnus University of Cologne, Otto v. Guericke University, Magdeburg, Germany; and
| | - Harald Treuer
- Department of Stereotactic and Functional Neurosurgery, Albertus Magnus University of Cologne, Otto v. Guericke University, Magdeburg, Germany; and
| | - Jurgen Voges
- Department of Stereotactic Neurosurgery, Otto v. Guericke University, Magdeburg, Germany
| | - Volker Sturm
- Department of Stereotactic and Functional Neurosurgery, Albertus Magnus University of Cologne, Otto v. Guericke University, Magdeburg, Germany; and
| |
Collapse
|