1
|
Lim JH, Kim MJ. Considerations for the Use of Stereotactic Radiosurgery to Treat Large Arteriovenous Malformations. Biomedicines 2024; 12:2003. [PMID: 39335517 PMCID: PMC11428206 DOI: 10.3390/biomedicines12092003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Stereotactic radiosurgery (SRS) is an effective treatment strategy for cerebral arteriovenous malformations (AVMs). Aggressive treatment achieving complete obliteration is necessary to prevent further intracranial hemorrhage and neurological deficits. However, SRS treatment of large AVMs (>10 cm3) is challenging. To prevent toxicity in the normal brain tissue, it is imperative to reduce the radiation dose as the lesion volume increases; however, this also reduces the rate of obliteration. In this study, we review the various radiosurgical approaches for treating large AVMs and their outcomes, and suggest ways to improve treatment outcomes during SRS for large AVMs.
Collapse
Affiliation(s)
- Jong Hyun Lim
- Department of Neurosurgery, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan 15355, Gyeonggi-do, Republic of Korea
| | - Myung Ji Kim
- Department of Neurosurgery, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan 15355, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Dulamea AO, Lupescu IC. Cerebral cavernous malformations - An overview on genetics, clinical aspects and therapeutic strategies. J Neurol Sci 2024; 461:123044. [PMID: 38749279 DOI: 10.1016/j.jns.2024.123044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
Cerebral cavernous malformations (CCMs) are abnormally packed blood vessels lined with endothelial cells, that do not exhibit intervening tight junctions, lack muscular and elastic layers and are usually surrounded by hemosiderin and gliosis. CCMs may be sporadic or familial autosomal dominant (FCCMs) caused by loss of function mutations in CCM1 (KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10) genes. In the FCCMs, patients have multiple CCMs, different family members are affected, and developmental venous anomalies are absent. CCMs may be asymptomatic or may manifest with focal neurological deficits with or without associated hemorrhage andseizures. Recent studies identify a digenic "triple-hit" mechanism involving the aquisition of three distinct genetic mutations that culminate in phosphatidylinositol-3-kinase (PIK3CA) gain of function, as the basis for rapidly growing and clinically symptomatic CCMs. The pathophysiology of CCMs involves signaling aberrations in the neurovascular unit, including proliferative dysangiogenesis, blood-brain barrier hyperpermeability, inflammation and immune mediated processes, anticoagulant vascular domain, and gut microbiome-driven mechanisms. Clinical trials are investigating potential therapies, magnetic resonance imaging and plasma biomarkers for hemorrhage and CCMs-related epilepsy, as well as different techniques of neuronavigation and neurosonology to guide surgery in order to minimize post-operatory morbidity and mortality. This review addresses the recent data about the natural history, genetics, neuroimaging and therapeutic approaches for CCMs.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; Fundeni Clinical Institute, Department of Neurology, 258 Fundeni Street, 022328 Bucharest, Romania.
| | - Ioan Cristian Lupescu
- Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; Fundeni Clinical Institute, Department of Neurology, 258 Fundeni Street, 022328 Bucharest, Romania
| |
Collapse
|
3
|
Hu X, Diao Y, Hao Z, Hao M, Xie M, Rong H, Zhu T. Histopathological analysis of the wall enhancement of the spinal dural arteriovenous fistulae's draining veins. Acta Neurol Belg 2024; 124:927-934. [PMID: 38430359 DOI: 10.1007/s13760-024-02483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
OBJECTIVE The mechanism behind SDAVF is still unclear. We discovered that the vessel wall of the SDAVF-DV occasionally showed enhancement in MRI, and this study assessed the relationship between the enhancement of the draining vein's wall and its histology. METHODS For histopathologic analysis, 16 draining vein samples from 16 patients with SDAVF were included, 3 normal arteries and 3 normal veins were chosen as comparison. We assessed the imaging and microscopic characteristics of the draining veins in SDAVF patients. The former included the presence of significant enhancement of the wall of the draining vein in MRI, and the latter included the adherence, aggregation, infiltration of pro-inflammatory factors and inflammatory cells. Immuno-histochemical staining was performed using IL-1β, IL-8, TGF-β as well as MPO and MMP-9, and positive results were counted. Multiple logistic regression analysis was used to determine whether the infiltration of inflammatory cells was connected to vessel wall enhancement in the SDAVF-DV. RESULTS Infiltration of inflammatory cells was significantly higher in SDAVF-DV compared to normal vessels, 7 out of 16 patients significantly had enhancement of the vessel wall of SDAVF-DV, and logistic regression analysis showed that samples with more infiltration of inflammatory cells were more likely to show enhancement of the SDAVF-DV walls. CONCLUSION There was considerable inflammatory cells infiltration in SDAVF-DV, and this may explain why their vessel wall had such a significant enhancement in MRI.
Collapse
Affiliation(s)
- Xiaojun Hu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuhang Diao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenghao Hao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingyu Hao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Minghao Xie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongtao Rong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
4
|
Ricciardelli AR, Robledo A, Fish JE, Kan PT, Harris TH, Wythe JD. The Role and Therapeutic Implications of Inflammation in the Pathogenesis of Brain Arteriovenous Malformations. Biomedicines 2023; 11:2876. [PMID: 38001877 PMCID: PMC10669898 DOI: 10.3390/biomedicines11112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Brain arteriovenous malformations (bAVMs) are focal vascular lesions composed of abnormal vascular channels without an intervening capillary network. As a result, high-pressure arterial blood shunts directly into the venous outflow system. These high-flow, low-resistance shunts are composed of dilated, tortuous, and fragile vessels, which are prone to rupture. BAVMs are a leading cause of hemorrhagic stroke in children and young adults. Current treatments for bAVMs are limited to surgery, embolization, and radiosurgery, although even these options are not viable for ~20% of AVM patients due to excessive risk. Critically, inflammation has been suggested to contribute to lesion progression. Here we summarize the current literature discussing the role of the immune system in bAVM pathogenesis and lesion progression, as well as the potential for targeting inflammation to prevent bAVM rupture and intracranial hemorrhage. We conclude by proposing that a dysfunctional endothelium, which harbors the somatic mutations that have been shown to give rise to sporadic bAVMs, may drive disease development and progression by altering the immune status of the brain.
Collapse
Affiliation(s)
- Ashley R. Ricciardelli
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ariadna Robledo
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada;
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Peter T. Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Tajie H. Harris
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joshua D. Wythe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
5
|
Ma L, Zhu X, Tang C, Pan P, Yadav A, Liang R, Press K, Su H. CNS resident macrophages enhance dysfunctional angiogenesis and circulating monocytes infiltration in brain arteriovenous malformation. RESEARCH SQUARE 2023:rs.3.rs-2899768. [PMID: 37214790 PMCID: PMC10197785 DOI: 10.21203/rs.3.rs-2899768/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Myeloid immune cells present abundantly in both ruptured and unruptured brain arteriovenous malformations (bAVMs). The role of central nervous system (CNS) resident and circulating monocyte-derived macrophages in bAVM pathogenesis has not been fully understood. RNA sequencing using cultured cells and bAVM samples revealed that downregulation of activin-like kinase 1 (ALK1) or endoglin (two bAVM causative genes) increased pro-angiogenic, endothelial inflammation and innate immune signaling, which provided endogenous underpinnings of the active inflammation in bAVM. To further understand the role of CNS resident macrophages in bAVM development and hemorrhage, we administrated a colony-stimulating factor 1 receptor (CSF1R) inhibitor to bAVM mice with endothelial Alk1 deletion. Transient depletion of CNS resident macrophages at early stage of bAVM development remarkably mitigated the subsequent phenotype severity of bAVM. This therapeutic effect exhibited a prolonged inhibition of angiogenesis, dysplastic vasculature formation, and infiltration of CNS resident and circulating monocyte-derived macrophages during bAVM development. Transient depletion of CNS resident macrophages also reduced the dysplasia vessels and improved the integrity of endothelial tight junctions in established bAVMs. Administration of CSF1R inhibitor also prevented severe hemorrhage of bAVMs. Thus, endothelial AVM causative gene mutation can activate CNS resident macrophages promoting bAVM progression. CNS resident macrophages could be specific targets to mitigate the development and severity of bAVMs.
Collapse
Affiliation(s)
- Li Ma
- University of California, San Francisco
| | | | | | | | | | | | | | - Hua Su
- University of California, San Francisco
| |
Collapse
|
6
|
Karthika CL, Venugopal V, Sreelakshmi BJ, Krithika S, Thomas JM, Abraham M, Kartha CC, Rajavelu A, Sumi S. Oscillatory shear stress modulates Notch-mediated endothelial mesenchymal plasticity in cerebral arteriovenous malformations. Cell Mol Biol Lett 2023; 28:22. [PMID: 36934253 PMCID: PMC10024393 DOI: 10.1186/s11658-023-00436-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/06/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Cerebral arteriovenous malformations (cAVM) are a significant cause of intracranial hemorrhagic stroke and brain damage. The arteriovenous junctions in AVM nidus are known to have hemodynamic disturbances such as altered shear stress, which could lead to endothelial dysfunction. The molecular mechanisms coupling shear stress and endothelial dysfunction in cAVMs are poorly understood. We speculated that disturbed blood flow in artery-vein junctions activates Notch receptors and promotes endothelial mesenchymal plasticity during cAVM formation. METHODS We investigated the expression profile of endothelial mesenchymal transition (EndMT) and cell adhesion markers, as well as activated Notch receptors, in 18 human cAVM samples and 15 control brain tissues, by quantitative real-time PCR (qRT-PCR) and immunohistochemical evaluation. Employing a combination of a microfluidic system, qRT-PCR, immunofluorescence, as well as invasion and inhibitor assays, the effects of various shear stress conditions on Notch-induced EndMT and invasive potential of human cerebral microvascular endothelial cells (hCMEC/d3) were analyzed. RESULTS We found evidence for EndMT and enhanced expression of activated Notch intracellular domain (NICD3 and NICD4) in human AVM nidus samples. The expression of transmembrane adhesion receptor integrin α9/β1 is significantly reduced in cAVM nidal vessels. Cell-cell adhesion proteins such as VE-cadherin and N-cadherin were differentially expressed in AVM nidus compared with control brain tissues. Using well-characterized hCMECs, we show that altered fluid shear stress steers Notch3 nuclear translocation and promotes SNAI1/2 expression and nuclear localization. Oscillatory flow downregulates integrin α9/β1 and VE-cadherin expression, while N-cadherin expression and endothelial cell invasiveness are augmented. Gamma-secretase inhibitor RO4929097, and to a lesser level DAPT, prevent the mesenchymal transition and invasiveness of cerebral microvascular endothelial cells exposed to oscillatory fluid flow. CONCLUSIONS Our study provides, for the first time, evidence for the role of oscillatory shear stress in mediating the EndMT process and dysregulated expression of cell adhesion molecules, especially multifunctional integrin α9/β1 in human cAVM nidus. Concomitantly, our findings indicate the potential use of small-molecular inhibitors such as RO4929097 in the less-invasive therapeutic management of cAVMs.
Collapse
Affiliation(s)
- C L Karthika
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Vani Venugopal
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - B J Sreelakshmi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - S Krithika
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Jaya Mary Thomas
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Mathew Abraham
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - C C Kartha
- Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Arumugam Rajavelu
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India
| | - S Sumi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
7
|
State of the Art in the Role of Endovascular Embolization in the Management of Brain Arteriovenous Malformations-A Systematic Review. J Clin Med 2022; 11:jcm11237208. [PMID: 36498782 PMCID: PMC9739246 DOI: 10.3390/jcm11237208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
As a significant cause of intracerebral hemorrhages, seizures, and neurological decline, brain arteriovenous malformations (bAVMs) are a rare group of complex vascular lesions with devastating implications for patients' quality of life. Although the concerted effort of the scientific community has improved our understanding of bAVM biology, the exact mechanism continues to be elucidated. Furthermore, to this day, due to the high heterogeneity of bAVMs as well as the lack of objective data brought by the lack of evaluative and comparative studies, there is no clear consensus on the treatment of this life-threatening and dynamic disease. As a consequence, patients often fall short of obtaining the optimal treatment. Endovascular embolization is an inherent part of multidisciplinary bAVM management that can be used in various clinical scenarios, each with different objectives. Well-trained neuro-interventional centers are proficient at curing bAVMs that are smaller than 3 cm; are located superficially in noneloquent areas; and have fewer, larger, and less tortuous feeding arteries. The transvenous approach is an emerging effective and safe technique that potentially offers a chance to cure previously untreatable bAVMs. This review provides the state of the art in all aspects of endovascular embolization in the management of bAVMs.
Collapse
|
8
|
Vetiska S, Wälchli T, Radovanovic I, Berhouma M. Molecular and genetic mechanisms in brain arteriovenous malformations: new insights and future perspectives. Neurosurg Rev 2022; 45:3573-3593. [PMID: 36219361 DOI: 10.1007/s10143-022-01883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 10/17/2022]
Abstract
Brain arteriovenous malformations (bAVMs) are rare vascular lesions made of shunts between cerebral arteries and veins without the interposition of a capillary bed. The majority of bAVMs are asymptomatic, but some may be revealed by seizures and potentially life-threatening brain hemorrhage. The management of unruptured bAVMs remains a matter of debate. Significant progress in the understanding of their pathogenesis has been made during the last decade, particularly using genome sequencing and biomolecular analysis. Herein, we comprehensively review the recent molecular and genetic advances in the study of bAVMs that not only allow a better understanding of the genesis and growth of bAVMs, but also open new insights in medical treatment perspectives.
Collapse
Affiliation(s)
- Sandra Vetiska
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Thomas Wälchli
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Moncef Berhouma
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France. .,CREATIS Lab, CNRS UMR 5220, INSERM U1294, Lyon 1, University, Lyon, France.
| |
Collapse
|
9
|
Winkler EA, Pacult MA, Catapano JS, Scherschinski L, Srinivasan VM, Graffeo CS, Oh SP, Lawton MT. Emerging pathogenic mechanisms in human brain arteriovenous malformations: a contemporary review in the multiomics era. Neurosurg Focus 2022; 53:E2. [DOI: 10.3171/2022.4.focus2291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/18/2022] [Indexed: 11/06/2022]
Abstract
A variety of pathogenic mechanisms have been described in the formation, maturation, and rupture of brain arteriovenous malformations (bAVMs). While the understanding of bAVMs has largely been formulated based on animal models of rare hereditary diseases in which AVMs form, a new era of “omics” has permitted large-scale examinations of contributory genetic variations in human sporadic bAVMs. New findings regarding the pathogenesis of bAVMs implicate changes to endothelial and mural cells that result in increased angiogenesis, proinflammatory recruitment, and breakdown of vascular barrier properties that may result in hemorrhage; a greater diversity of cell populations that compose the bAVM microenvironment may also be implicated and complicate traditional models. Genomic sequencing of human bAVMs has uncovered inherited, de novo, and somatic activating mutations, such as KRAS, which contribute to the pathogenesis of bAVMs. New droplet-based, single-cell sequencing technologies have generated atlases of cell-specific molecular derangements. Herein, the authors review emerging genomic and transcriptomic findings underlying pathologic cell transformations in bAVMs derived from human tissues. The application of multiple sequencing modalities to bAVM tissues is a natural next step for researchers, although the potential therapeutic benefits or clinical applications remain unknown.
Collapse
Affiliation(s)
- Ethan A. Winkler
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Mark A. Pacult
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Joshua S. Catapano
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Lea Scherschinski
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Visish M. Srinivasan
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Christopher S. Graffeo
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - S. Paul Oh
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
- Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona
| | - Michael T. Lawton
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| |
Collapse
|
10
|
Genetics and Emerging Therapies for Brain Arteriovenous Malformations. World Neurosurg 2022; 159:327-337. [PMID: 35255632 DOI: 10.1016/j.wneu.2021.10.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022]
Abstract
Brain arteriovenous malformations (AVMs) are characterized by a high-pressure, low-resistance vascular nidus created by direct shunting of blood from feeding arteries into arterialized veins, bypassing intervening capillaries. AVMs pose a risk of spontaneous rupture because the vessel walls are continuously exposed to increased shear stress and abnormal flow phenomena, which lead to vessel wall inflammation and distinct morphologic changes. The annual rupture rate is estimated at 2%, and once an AVM ruptures, the risk of rerupture increases 5-fold. The ability of AVMs to grow, regress, recur, and undergo remodeling shows their dynamic nature. Identifying the underlying cellular and molecular pathways of AVMs not only helps us understand their natural physiology but also allows us to directly block vital pathways, thus preventing AVM development and progression. Management of AVMs is challenging and often necessitates a multidisciplinary approach, including neurosurgical, endovascular, and radiosurgical expertise. Because many of these procedures are invasive, carry a risk of inciting hemorrhage, or are controversial, the demand for pharmacologic treatment options is increasing. In this review, we introduce novel findings of cellular and molecular AVM physiology and highlight key signaling mediators that are potential targets for AVM treatment. Furthermore, we give an overview of syndromes associated with hereditary and nonhereditary AVM formation and discuss causative genetic alterations.
Collapse
|
11
|
Genetics and Vascular Biology of Brain Vascular Malformations. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Pan P, Weinsheimer S, Cooke D, Winkler E, Abla A, Kim H, Su H. Review of treatment and therapeutic targets in brain arteriovenous malformation. J Cereb Blood Flow Metab 2021; 41:3141-3156. [PMID: 34162280 PMCID: PMC8669284 DOI: 10.1177/0271678x211026771] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022]
Abstract
Brain arteriovenous malformations (bAVM) are an important cause of intracranial hemorrhage (ICH), especially in younger patients. The pathogenesis of bAVM are largely unknown. Current understanding of bAVM etiology is based on studying genetic syndromes, animal models, and surgically resected specimens from patients. The identification of activating somatic mutations in the Kirsten rat sarcoma viral oncogene homologue (KRAS) gene and other mitogen-activated protein kinase (MAPK) pathway genes has opened up new avenues for bAVM study, leading to a paradigm shift to search for somatic, de novo mutations in sporadic bAVMs instead of focusing on inherited genetic mutations. Through the development of new models and understanding of pathways involved in maintaining normal vascular structure and functions, promising therapeutic targets have been identified and safety and efficacy studies are underway in animal models and in patients. The goal of this paper is to provide a thorough review or current diagnostic and treatment tools, known genes and key pathways involved in bAVM pathogenesis to summarize current treatment options and potential therapeutic targets uncovered by recent discoveries.
Collapse
Affiliation(s)
- Peipei Pan
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| | - Shantel Weinsheimer
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| | - Daniel Cooke
- Department of Radiology, University of California, San Francisco, USA
| | - Ethan Winkler
- Department of Neurosurgery, University of California, San Francisco, USA
| | - Adib Abla
- Department of Neurosurgery, University of California, San Francisco, USA
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| | - Hua Su
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, USA
| |
Collapse
|
13
|
Wang M, Jiao Y, Zeng C, Zhang C, He Q, Yang Y, Tu W, Qiu H, Shi H, Zhang D, Kang D, Wang S, Liu AL, Jiang W, Cao Y, Zhao J. Chinese Cerebrovascular Neurosurgery Society and Chinese Interventional & Hybrid Operation Society, of Chinese Stroke Association Clinical Practice Guidelines for Management of Brain Arteriovenous Malformations in Eloquent Areas. Front Neurol 2021; 12:651663. [PMID: 34177760 PMCID: PMC8219979 DOI: 10.3389/fneur.2021.651663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: The aim of this guideline is to present current and comprehensive recommendations for the management of brain arteriovenous malformations (bAVMs) located in eloquent areas. Methods: An extended literature search on MEDLINE was performed between Jan 1970 and May 2020. Eloquence-related literature was further screened and interpreted in different subcategories of this guideline. The writing group discussed narrative text and recommendations through group meetings and online video conferences. Recommendations followed the Applying Classification of Recommendations and Level of Evidence proposed by the American Heart Association/American Stroke Association. Prerelease review of the draft guideline was performed by four expert peer reviewers and by the members of Chinese Stroke Association. Results: In total, 809 out of 2,493 publications were identified to be related to eloquent structure or neurological functions of bAVMs. Three-hundred and forty-one publications were comprehensively interpreted and cited by this guideline. Evidence-based guidelines were presented for the clinical evaluation and treatment of bAVMs with eloquence involved. Topics focused on neuroanatomy of activated eloquent structure, functional neuroimaging, neurological assessment, indication, and recommendations of different therapeutic managements. Fifty-nine recommendations were summarized, including 20 in Class I, 30 in Class IIa, 9 in Class IIb, and 2 in Class III. Conclusions: The management of eloquent bAVMs remains challenging. With the evolutionary understanding of eloquent areas, the guideline highlights the assessment of eloquent bAVMs, and a strategy for decision-making in the management of eloquent bAVMs.
Collapse
Affiliation(s)
- Mingze Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Chaoqi Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Wenjun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Hancheng Qiu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Dezhi Kang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - A-Li Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Gamma Knife Center, Beijing Neurosurgical Institute, Beijing, China
| | - Weijian Jiang
- Department of Vascular Neurosurgery, Chinese People's Liberation Army Rocket Army Characteristic Medical Center, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Gu SY, Cao XJ, Feng Y, Wei QQ, Liang JQ, Xie LM, Liu YL, Feng HY, Guo XG. Identification of hub genes and signaling pathways related to gastric cells infected by Helicobacter pylori. Microb Pathog 2021; 156:104932. [PMID: 33964417 DOI: 10.1016/j.micpath.2021.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Helicobacter pylori is a pathogen involved in several gastroduodenal diseases, whose infection mechanisms have not been completely confirmed. To study the specific mechanism of gastropathy caused by H. pylori, we analyzed the gene microarray of gastric mucosa and gastric cells infected by H. pylori through bioinformatics analysis. METHODS We downloaded GSE60427 and GSE74492 from the Gene Expression Omnibus (GEO) database, screened differentially expressed genes (DEGs), and identified the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) through R software. The Search Tool for the Retrieval of Interacting Genes (STRING) was applied to establish a protein-protein interaction (PPI) network and Cytoscape was used to identify the top seven hub genes. Besides, we also constructed the gene-microRNA(gene-miRNA) interaction through the miRTarBase v8.0 database by using the NetworkAnalyst tool. RESULTS One hundred and fifteen DEGs were screened out, with 54 genes up-regulated and 61 genes down-regulated, among which seven hub genes, including "IGF1R," "APOE," "IRS1," "ATF3," "LCN2," "IL2RG," and "PI3," were considered as the main regulatory proteins in gastric cells when infected by H. pylori. CONCLUSION In this study, hub genes and related signal enrichment pathways of gastropathy infected by H. pylori were analyzed through bioinformatics analysis based on the GSE60427 and GSE74492 datasets.
Collapse
Affiliation(s)
- Shi-Yuan Gu
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xun-Jie Cao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi Feng
- Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Qing-Qian Wei
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Qi Liang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Li-Min Xie
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ye-Ling Liu
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Hui-Yin Feng
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
15
|
Huizer K, Zhu C, Chirifi I, Krist B, Zorgman D, van der Weiden M, van den Bosch TPP, Dumas J, Cheng C, Kros JM, Mustafa DA. Periostin Is Expressed by Pericytes and Is Crucial for Angiogenesis in Glioma. J Neuropathol Exp Neurol 2021; 79:863-872. [PMID: 32647861 DOI: 10.1093/jnen/nlaa067] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/12/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
The expression of the matricellular protein periostin has been associated with glioma progression. In previous work we found an association of periostin with glioma angiogenesis. Here, we screen gliomas for POSTN expression and identify the cells that express periostin in human gliomas. In addition, we study the role of periostin in an in vitro model for angiogenesis. The expression of periostin was investigated by RT-PCR and by immunohistochemistry. In addition, we used double labeling and in situ RNA techniques to identify the expressing cells. To investigate the function of periostin, we silenced POSTN in a 3D in vitro angiogenesis model. Periostin expression was elevated in pilocytic astrocytoma and glioblastoma, but not in grade II/III astrocytomas and oligodendrogliomas. The expression of periostin colocalized with PDGFRβ+ cells, but not with OLIG2+/SOX2+ glioma stem cells. Silencing of periostin in pericytes in coculture experiments resulted in attenuation of the numbers and the length of the vessels formation and in a decrease in endothelial junction formation. We conclude that pericytes are the main source of periostin in human gliomas and that periostin plays an essential role in the growth and branching of blood vessels. Therefore, periostin should be explored as a novel target for developing anti-angiogenic therapy for glioma.
Collapse
Affiliation(s)
- Karin Huizer
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Changbin Zhu
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ihsan Chirifi
- Laboratory for Experimental Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bart Krist
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Denise Zorgman
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marcel van der Weiden
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thierry P P van den Bosch
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jasper Dumas
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline Cheng
- Laboratory for Experimental Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johan M Kros
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dana A Mustafa
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Raper DMS, Winkler EA, Rutledge WC, Cooke DL, Abla AA. An Update on Medications for Brain Arteriovenous Malformations. Neurosurgery 2021; 87:871-878. [PMID: 32433738 DOI: 10.1093/neuros/nyaa192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Despite a variety of treatment options for brain arteriovenous malformations (bAVMs), many lesions remain challenging to treat and present significant ongoing risk for hemorrhage. In Vitro investigations have recently led to a greater understanding of the formation, growth, and rupture of bAVMs. This has, in turn, led to the development of therapeutic targets for medications for bAVMs, some of which have begun testing in clinical trials in humans. These include bevacizumab, targeting the vascular endothelial growth factor driven angiogenic pathway; thalidomide or lenalidomide, targeting blood-brain barrier impairment; and doxycycline, targeting matrix metalloproteinase overexpression. A variety of other medications appear promising but either requires adaptation from other disease states or development from early bench studies into the clinical realm. This review aims to provide an overview of the current state of development of medications targeting bAVMs and to highlight their likely applications in the future.
Collapse
Affiliation(s)
- Daniel M S Raper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Ethan A Winkler
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - W Caleb Rutledge
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Daniel L Cooke
- Department of Radiology and Biomedical Engineering, University of California, San Francisco, San Francisco, California
| | - Adib A Abla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
17
|
Krithika S, Sumi S. Neurovascular inflammation in the pathogenesis of brain arteriovenous malformations. J Cell Physiol 2020; 236:4841-4856. [PMID: 33345330 DOI: 10.1002/jcp.30226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/11/2020] [Accepted: 12/08/2020] [Indexed: 11/11/2022]
Abstract
Brain arteriovenous malformations (bAVM) arise as congenital or sporadic focal lesions with a significant risk for intracerebral hemorrhage (ICH). A wide range of interindividual differences is present in the onset, progression, and severity of bAVM. A growing body of gene expression and polymorphism-based research studies support the involvement of localized inflammation in bAVM disease progression and rupture. In this review article, we analyze the altered responses of neural, vascular, and immune cell types that contribute to the inflammatory process, which exacerbates the pathophysiological progression of vascular dysmorphogenesis in bAVM lesions. The cumulative effect of inflammation in bAVM development is orchestrated by various genetic moderators and inflammatory mediators. We also discuss the potential therapies for the treatment of brain AVM by targeting the inflammatory processes and mediators. Elucidating the precise role of inflammation in the bAVM growth and hemorrhage would open novel avenues for noninvasive and effectual causal therapy that may complement the current therapeutic strategies.
Collapse
Affiliation(s)
- S Krithika
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - S Sumi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
18
|
Shoemaker LD, McCormick AK, Allen BM, Chang SD. Evidence for endothelial-to-mesenchymal transition in human brain arteriovenous malformations. Clin Transl Med 2020; 10:e99. [PMID: 32564509 PMCID: PMC7403663 DOI: 10.1002/ctm2.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Brain arteriovenous malformations (AVMs) are rare, potentially devastating cerebrovascular lesions that can occur in both children and adults. AVMs are largely sporadic and the basic disease biology remains unclear, limiting advances in both detection and treatment. This study aimed to investigate human brain AVMs for endothelial-to-mesenchymal transition (EndMT), a process recently implicated in cerebral cavernous malformations (CCMs). METHODS We used 29 paraffin-embedded and 13 fresh/frozen human brain AVM samples to profile expression of panels of EndMT-associated proteins and RNAs. CCMs, a cerebrovascular disease also characterized by abnormal vasculature, were used as a primary comparison, given that EndMT specifically contributes to CCM disease biology. AVM-derived cell lines were isolated from three fresh, surgical AVM samples and characterized by protein expression. RESULTS We observed high collagen deposition, high PAI-1 expression, and expression of EndMT-associated transcription factors such as KLF4, SNAI1, and SNAI2 and mesenchymal-associated markers such as VIM, ACTA2, and S100A4. SMAD-dependent TGF-β signaling was not strongly activated in AVMs and this pathway may be only partially involved in mediating EndMT. Using serum-free culture conditions, we isolated myofibroblast-like cell populations from AVMs that expressed a unique range of proteins associated with mature cell types and with EndMT. Conditioned medium from these cells led to increased proliferation of HUVECs and SMCs. CONCLUSIONS Collectively, our results suggest a role for EndMT in AVM disease. This may lead to new avenues for disease models to further our understanding of disease mechanisms, and to the development of improved diagnostics and therapeutics.
Collapse
Affiliation(s)
- Lorelei D. Shoemaker
- Stanford Neuromolecular Innovation ProgramDepartment of NeurosurgeryStanford UniversityStanfordCalifornia
| | - Aaron K. McCormick
- Stanford Neuromolecular Innovation ProgramDepartment of NeurosurgeryStanford UniversityStanfordCalifornia
| | - Breanna M. Allen
- Department of Microbiology & ImmunologyUniversity of CaliforniaSan FranciscoCalifornia
| | - Steven D. Chang
- Stanford Neuromolecular Innovation ProgramDepartment of NeurosurgeryStanford UniversityStanfordCalifornia
| |
Collapse
|
19
|
Ota T, Komiyama M. Pathogenesis of non-hereditary brain arteriovenous malformation and therapeutic implications. Interv Neuroradiol 2020; 26:244-253. [PMID: 32024399 DOI: 10.1177/1591019920901931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Brain arteriovenous malformations have a high risk of intracranial hemorrhage, which is a substantial cause of morbidity and mortality in patients with brain arteriovenous malformations. Although a variety of genetic factors leading to hereditary brain arteriovenous malformations have been extensively investigated, their pathogenesis is still not well elucidated, especially in sporadic brain arteriovenous malformations. The authors have reviewed the updated data of not only the genetic aspects of sporadic brain arteriovenous malformations, but also the architecture of microvasculature, the roles of the angiogenic factors, and the signaling pathways. This knowledge may allow us to infer the pathogenesis of sporadic brain arteriovenous malformations and develop pre-emptive treatments for them.
Collapse
Affiliation(s)
- Takahiro Ota
- Department of Neurosurgery, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Masaki Komiyama
- Department of Neurointervention, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
20
|
Hauer AJ, Kleinloog R, Giuliani F, Rinkel GJ, de Kort GA, Berkelbach van der Sprenkel JW, van der Zwan A, Gosselaar PH, van Rijen PC, de Boer-Bergsma JJ, Deelen P, Swertz MA, De Muynck L, Van Damme P, Veldink JH, Ruigrok YM, Klijn CJ. RNA-Sequencing Highlights Inflammation and Impaired Integrity of the Vascular Wall in Brain Arteriovenous Malformations. Stroke 2020; 51:268-274. [DOI: 10.1161/strokeaha.119.025657] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Interventional treatment of unruptured brain arteriovenous malformations (BAVMs) has become increasingly controversial. Because medical therapy is still lacking, we aimed to obtain insight into the disease mechanisms implicated in BAVMs and to identify potential targets for medical treatment to prevent rupture of a BAVM.
Methods—
We used next-generation RNA sequencing to identify differential expression on a transcriptome-wide level comparing tissue samples of 12 BAVMs to 16 intracranial control arteries. We identified differentially expressed genes by negative binominal generalized log-linear regression (false discovery rate corrected
P
<0.05). We selected 10 genes for validation using droplet digital polymerase chain reaction. We performed functional pathway analysis accounting for potential gene-length bias, to establish enhancement of biological pathways involved in BAVMs. We further assessed which Gene Ontology terms were enriched.
Results—
We found 736 upregulated genes in BAVMs including genes implicated in the cytoskeletal machinery and cell-migration and genes encoding for inflammatory cytokines and secretory products of neutrophils and macrophages. Furthermore, we found 498 genes downregulated including genes implicated in extracellular matrix composition, the binary angiopoietin-TIE system, and TGF (transforming growth factor)-β signaling. We confirmed the differential expression of top 10 ranked genes. Functional pathway analysis showed enrichment of the protein digestion and absorption pathway (false discovery rate-adjusted
P
=1.70×10
−2
). We identified 47 enriched Gene Ontology terms (false discovery rate-adjusted
P
<0.05) implicated in cytoskeleton network, cell-migration, endoplasmic reticulum, transmembrane transport, and extracellular matrix composition.
Conclusions—
Our genome-wide RNA-sequencing study points to involvement of inflammatory mediators, loss of cerebrovascular quiescence, and impaired integrity of the vascular wall in the pathophysiology of BAVMs. Our study may lend support to potential receptivity of BAVMs to medical therapeutics, including those promoting vessel maturation, and anti-inflammatory and immune-modifying drugs.
Collapse
Affiliation(s)
- Allard J. Hauer
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Rachel Kleinloog
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Fabrizio Giuliani
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Gabriël J.E. Rinkel
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Gerard A. de Kort
- Brain Center Rudolf Magnus and Department of Radiology (G.A.d.K.), University Medical Center Utrecht, the Netherlands
| | - Jan Willem Berkelbach van der Sprenkel
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Albert van der Zwan
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Peter H. Gosselaar
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Peter C. van Rijen
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Jelkje J. de Boer-Bergsma
- Department of Genetics (J.J.d.B.-B., P.D., M.A.S.), University Medical Center Groningen, the Netherlands
- Genomics Coordination Center (J.J.d.B.-B., P.D., M.A.S.), University Medical Center Groningen, the Netherlands
| | - Patrick Deelen
- Department of Genetics (J.J.d.B.-B., P.D., M.A.S.), University Medical Center Groningen, the Netherlands
- Genomics Coordination Center (J.J.d.B.-B., P.D., M.A.S.), University Medical Center Groningen, the Netherlands
| | - Morris A. Swertz
- Department of Genetics (J.J.d.B.-B., P.D., M.A.S.), University Medical Center Groningen, the Netherlands
- Genomics Coordination Center (J.J.d.B.-B., P.D., M.A.S.), University Medical Center Groningen, the Netherlands
| | - Louis De Muynck
- Department of Neurology, University Hospital Leuven and Laboratory of Neurobiology, Center for Brain & Disease Research, VIB and KU Leuven, Belgium (L.D.M., P.V.D.)
| | - Philip Van Damme
- Department of Neurology, University Hospital Leuven and Laboratory of Neurobiology, Center for Brain & Disease Research, VIB and KU Leuven, Belgium (L.D.M., P.V.D.)
| | - Jan H. Veldink
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Ynte M. Ruigrok
- From the Department of Neurology and Neurosurgery (A.J.H., R.K., F.G., G.J.E.R., J.W.B.v.d.S., A.v.d.Z., P.H.G., P.C.v.R., J.H.V., Y.M.R., C.J.M.K.), University Medical Center Utrecht, the Netherlands
| | - Catharina J.M. Klijn
- Department of Neurology, Donders Institute of Brain Cognition & Behaviour, Center for Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands (C.J.M.K.)
| |
Collapse
|
21
|
Kato Y, Dong VH, Chaddad F, Takizawa K, Izumo T, Fukuda H, Hara T, Kikuta K, Nakai Y, Endo T, Kurita H, Xu B, Beneš V, Christian R, Pavesi G, Hodaie M, Sharma RK, Agarwal H, Mohan K, Liew BS. Expert Consensus on the Management of Brain Arteriovenous Malformations. Asian J Neurosurg 2019; 14:1074-1081. [PMID: 31903343 PMCID: PMC6896626 DOI: 10.4103/ajns.ajns_234_19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Brain arteriovenous malformations (bAVMs) are complex, heterogeneous, and uncommon intracranial lesions. They can be treated by one or a combination of the following treatment modalities, namely embolization, radiosurgery, or microsurgical resection. In Spetzler-Martin Grade 4 and 5 arteriovenous malformations (AVMs), conservative management may be the best option. A group of experts in the management of AVMs of different disciplines gathered in January 2019 in Hanoi to compile the “Expert Consensus on the Management of Brain Arteriovenous Malformations”.
Collapse
Affiliation(s)
- Yoko Kato
- Department of Neurosurgery, Fujita Health University Bantane Hospital, Nagoya, Japan
| | - Van He Dong
- Department of Neurosurgery, VietDuc University Hospital, Hoan Kiem, Hanoi, Vietnam
| | - Feres Chaddad
- Department of Neurosurgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Katsumi Takizawa
- Department of Neurosurgery, Japanese Red Cross Asahikawa Hospital, Asahikawa, Japan
| | - Tsuyoshi Izumo
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | - Hitoshi Fukuda
- Department of Neurosurgery, Kochi University Hospital, Nankoku, Kochi, Japan
| | - Takayuki Hara
- Department of Neurosurgery, Toranomon Hospital, MinatoKu, Tokyo, Japan
| | | | - Yasunobu Nakai
- Department of Neurosurgery, Tsukuba Medical Center Hospital, Tsukuba, Ibaraki, Japan
| | - Toshiki Endo
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo Aoba, Sendai, Japan
| | - Hiroki Kurita
- Department of Cerebrovascular Surgery, International Medical Center, Saitama Medical University, Hidaka, Japan
| | - Bin Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Vladimír Beneš
- Department of Neurosurgery and Neurooncology, First Faculty of Medicine, Charles University, Military University Hospital, Prague, Czech Republic
| | - Raftopoulos Christian
- Department of Neurosurgery, Cliniques Universitaires SaintLuc Bruxelles, Brussels, Belgium
| | - Giacomo Pavesi
- Department of Neurosurgery, Sant'Agostino Estense Hospital, Modena, Italy
| | - Mojgan Hodaie
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Rajan Kumar Sharma
- Department of Neurosurgery, Bir Hospital, National Academy of Medical Sciences, Kathmandu, Nepal
| | | | - Krishna Mohan
- Department of Neurosurgery, SVIMS, Tirupathi, Andhra Pradesh, India
| | - Boon Seng Liew
- Department of Neurosurgery, Hospital Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
22
|
Barbosa Do Prado L, Han C, Oh SP, Su H. Recent Advances in Basic Research for Brain Arteriovenous Malformation. Int J Mol Sci 2019; 20:ijms20215324. [PMID: 31731545 PMCID: PMC6862668 DOI: 10.3390/ijms20215324] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Arteriovenous malformations (AVMs) are abnormal connections of vessels that shunt blood directly from arteries into veins. Rupture of brain AVMs (bAVMs) can cause life-threatening intracranial bleeding. Even though the majority of bAVM cases are sporadic without a family history, some cases are familial. Most of the familial cases of bAVMs are associated with a genetic disorder called hereditary hemorrhagic telangiectasia (HHT). The mechanism of bAVM formation is not fully understood. The most important advances in bAVM basic science research is the identification of somatic mutations of genes in RAS-MAPK pathways. However, the mechanisms by which mutations of these genes lead to AVM formation are largely unknown. In this review, we summarized the latest advance in bAVM studies and discussed some pathways that play important roles in bAVM pathogenesis. We also discussed the therapeutic implications of these pathways.
Collapse
Affiliation(s)
- Leandro Barbosa Do Prado
- Center for Cerebrovascular Research, Department of Anesthesia, University of California, San Francisco, CA 94143, USA;
| | - Chul Han
- Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute/Dignity Health, Phoenix, AZ 85013, USA; (C.H.); (S.P.O.)
| | - S. Paul Oh
- Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute/Dignity Health, Phoenix, AZ 85013, USA; (C.H.); (S.P.O.)
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia, University of California, San Francisco, CA 94143, USA;
- Correspondence: ; Tel.: +01-415-206-3162
| |
Collapse
|
23
|
Zou X, Wu Z, Huang J, Liu P, Qin X, Chen L, Zhu W, Zhao Y, Li P, Song J, Yang GY, Mao Y. The Role of Matrix Metalloproteinase-3 in the Doxycycline Attenuation of Intracranial Venous Hypertension-Induced Angiogenesis. Neurosurgery 2019; 83:1317-1327. [PMID: 29462373 DOI: 10.1093/neuros/nyx633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/22/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The molecular mechanism of brain arteriovenous malformation (BAVM) is largely unknown. Intracranial venous hypertension (VH) may enhance focal angiogenesis and promote BAVM development and progression. A rat VH model effectively simulates the hemodynamic microenvironment of this disease. OBJECTIVE To explore the effect of doxycycline in VH-related angiogenesis, as well as the role of matrix metalloproteinase-3 (MMP-3) and other molecular factors. METHODS A rat VH model was generated by common carotid artery and distal external jugular vein anastomosis. Microvessel density (MVD) in the perisinus area and expression of MMP-3/2/9, VEGF, TIMP-1, TGF-β, and HIF-1α were examined, with and without daily doxycycline treatment for 4 wk. The effects of doxycycline were verified in Vitro using human brain microvascular endothelial cells (HBMECs). MMP-3 overexpression or knockdown in HBMECs was used to confirm the role of MMP-3 in cell functions. RESULTS MVD in the perisinus cortex was greatly increased after VH. Doxycycline decreased MVD, suppressed MMP-3 overexpression, and reduced VEGF, TGF-β, and TIMP-1 levels compared with the controls (P < .05). In Vitro, doxycycline decreased HBMEC migration, tube formation, and the mRNA, protein, and enzymatic activity levels of MMP-3. MMP-3 overexpression in HBMECs promoted migration, while knockdown of MMP-3 significantly attenuated proliferation, migration, and tube formation (P < .05). CONCLUSION Our findings indicate that MMP-3 plays an important role in VH-related angiogenesis and the promotion of vascular remodeling. Suppression of MMP-3 overexpression by doxycycline may provide a potential strategy for inhibiting BAVM development.
Collapse
Affiliation(s)
- Xiang Zou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zehan Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Huang
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.,The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peixi Liu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuanfeng Qin
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yao Zhao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peiliang Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianping Song
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guo-Yuan Yang
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Bioengineering an Artificial Human Blood⁻Brain Barrier in Rodents. Bioengineering (Basel) 2019; 6:bioengineering6020038. [PMID: 31052208 PMCID: PMC6630638 DOI: 10.3390/bioengineering6020038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
Our group has recently created a novel in-vivo human brain organoid vascularized with human iPSC-derived endothelial cells. In this review article, we discuss the challenges of creating a perfused human brain organoid model in an immunosuppressed rodent host and discuss potential applications for neurosurgical disease modeling.
Collapse
|
25
|
Winkler EA, Lu AY, Raygor KP, Linzey JR, Jonzzon S, Lien BV, Rutledge WC, Abla AA. Defective vascular signaling & prospective therapeutic targets in brain arteriovenous malformations. Neurochem Int 2019; 126:126-138. [PMID: 30858016 DOI: 10.1016/j.neuint.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/08/2023]
Abstract
The neurovascular unit is composed of endothelial cells, vascular smooth muscle cells, pericytes, astrocytes and neurons. Through tightly regulated multi-directional cell signaling, the neurovascular unit is responsible for the numerous functionalities of the cerebrovasculature - including the regulation of molecular and cellular transport across the blood-brain barrier, angiogenesis, blood flow responses to brain activation and neuroinflammation. Historically, the study of the brain vasculature focused on endothelial cells; however, recent work has demonstrated that pericytes and vascular smooth muscle cells - collectively known as mural cells - play critical roles in many of these functions. Given this emerging data, a more complete mechanistic understanding of the cellular basis of brain vascular malformations is needed. In this review, we examine the integrated functions and signaling within the neurovascular unit necessary for normal cerebrovascular structure and function. We then describe the role of aberrant cell signaling within the neurovascular unit in brain arteriovenous malformations and identify how these pathways may be targeted therapeutically to eradicate or stabilize these lesions.
Collapse
Affiliation(s)
- Ethan A Winkler
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Alex Y Lu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kunal P Raygor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joseph R Linzey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Soren Jonzzon
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Brian V Lien
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - W Caleb Rutledge
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Adib A Abla
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
26
|
Quantitative protein profiling and pathway analysis of spinal arteriovenous malformations. Microvasc Res 2018; 120:47-54. [DOI: 10.1016/j.mvr.2018.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/09/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022]
|
27
|
Wang K, Zhao S, Liu B, Zhang Q, Li Y, Liu J, Shen Y, Ding X, Lin J, Wu Y, Yan Z, Chen J, Li X, Song X, Niu Y, Liu J, Chen W, Ming Y, Du R, Chen C, Long B, Zhang Y, Tong X, Zhang S, Posey JE, Zhang B, Wu Z, Wythe JD, Liu P, Lupski JR, Yang X, Wu N. Perturbations of BMP/TGF-β and VEGF/VEGFR signalling pathways in non-syndromic sporadic brain arteriovenous malformations (BAVM). J Med Genet 2018; 55:675-684. [PMID: 30120215 PMCID: PMC6161649 DOI: 10.1136/jmedgenet-2017-105224] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 11/03/2022]
Abstract
BACKGROUND Brain arteriovenous malformations (BAVM) represent a congenital anomaly of the cerebral vessels with a prevalence of 10-18/100 000. BAVM is the leading aetiology of intracranial haemorrhage in children. Our objective was to identify gene variants potentially contributing to disease and to better define the molecular aetiology underlying non-syndromic sporadic BAVM. METHODS We performed whole-exome trio sequencing of 100 unrelated families with a clinically uniform BAVM phenotype. Pathogenic variants were then studied in vivo using a transgenic zebrafish model. RESULTS We identified four pathogenic heterozygous variants in four patients, including one in the established BAVM-related gene, ENG, and three damaging variants in novel candidate genes: PITPNM3, SARS and LEMD3, which we then functionally validated in zebrafish. In addition, eight likely pathogenic heterozygous variants (TIMP3, SCUBE2, MAP4K4, CDH2, IL17RD, PREX2, ZFYVE16 and EGFR) were identified in eight patients, and 16 patients carried one or more variants of uncertain significance. Potential oligogenic inheritance (MAP4K4 with ENG, RASA1 with TIMP3 and SCUBE2 with ENG) was identified in three patients. Regulation of sma- and mad-related proteins (SMADs) (involved in bone morphogenic protein (BMP)/transforming growth factor beta (TGF-β) signalling) and vascular endothelial growth factor (VEGF)/vascular endotheliual growth factor recepter 2 (VEGFR2) binding and activity (affecting the VEGF signalling pathway) were the most significantly affected biological process involved in the pathogenesis of BAVM. CONCLUSIONS Our study highlights the specific role of BMP/TGF-β and VEGF/VEGFR signalling in the aetiology of BAVM and the efficiency of intensive parallel sequencing in the challenging context of genetically heterogeneous paradigm.
Collapse
Affiliation(s)
- Kun Wang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sen Zhao
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bowen Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qianqian Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaqi Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaqi Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Breast Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Shen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xinghuan Ding
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiachen Lin
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zihui Yan
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Chen
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weisheng Chen
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Ming
- PET-CT Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Cong Chen
- PET-CT Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Long
- Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Shuyang Zhang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Joshua D Wythe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA.,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nan Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Nikolaev SI, Vetiska S, Bonilla X, Boudreau E, Jauhiainen S, Rezai Jahromi B, Khyzha N, DiStefano PV, Suutarinen S, Kiehl TR, Mendes Pereira V, Herman AM, Krings T, Andrade-Barazarte H, Tung T, Valiante T, Zadeh G, Tymianski M, Rauramaa T, Ylä-Herttuala S, Wythe JD, Antonarakis SE, Frösen J, Fish JE, Radovanovic I. Somatic Activating KRAS Mutations in Arteriovenous Malformations of the Brain. N Engl J Med 2018; 378:250-261. [PMID: 29298116 PMCID: PMC8161530 DOI: 10.1056/nejmoa1709449] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Sporadic arteriovenous malformations of the brain, which are morphologically abnormal connections between arteries and veins in the brain vasculature, are a leading cause of hemorrhagic stroke in young adults and children. The genetic cause of this rare focal disorder is unknown. METHODS We analyzed tissue and blood samples from patients with arteriovenous malformations of the brain to detect somatic mutations. We performed exome DNA sequencing of tissue samples of arteriovenous malformations of the brain from 26 patients in the main study group and of paired blood samples from 17 of those patients. To confirm our findings, we performed droplet digital polymerase-chain-reaction (PCR) analysis of tissue samples from 39 patients in the main study group (21 with matching blood samples) and from 33 patients in an independent validation group. We interrogated the downstream signaling pathways, changes in gene expression, and cellular phenotype that were induced by activating KRAS mutations, which we had discovered in tissue samples. RESULTS We detected somatic activating KRAS mutations in tissue samples from 45 of the 72 patients and in none of the 21 paired blood samples. In endothelial cell-enriched cultures derived from arteriovenous malformations of the brain, we detected KRAS mutations and observed that expression of mutant KRAS (KRASG12V) in endothelial cells in vitro induced increased ERK (extracellular signal-regulated kinase) activity, increased expression of genes related to angiogenesis and Notch signaling, and enhanced migratory behavior. These processes were reversed by inhibition of MAPK (mitogen-activated protein kinase)-ERK signaling. CONCLUSIONS We identified activating KRAS mutations in the majority of tissue samples of arteriovenous malformations of the brain that we analyzed. We propose that these malformations develop as a result of KRAS-induced activation of the MAPK-ERK signaling pathway in brain endothelial cells. (Funded by the Swiss Cancer League and others.).
Collapse
Affiliation(s)
- Sergey I Nikolaev
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Sandra Vetiska
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Ximena Bonilla
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Emilie Boudreau
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Suvi Jauhiainen
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Behnam Rezai Jahromi
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Nadiya Khyzha
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Peter V DiStefano
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Santeri Suutarinen
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Tim-Rasmus Kiehl
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Vitor Mendes Pereira
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Alexander M Herman
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Timo Krings
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Hugo Andrade-Barazarte
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Takyee Tung
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Taufik Valiante
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Gelareh Zadeh
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Mike Tymianski
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Tuomas Rauramaa
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Seppo Ylä-Herttuala
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Joshua D Wythe
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Stylianos E Antonarakis
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Juhana Frösen
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Jason E Fish
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| | - Ivan Radovanovic
- From the Department of Genetic Medicine and Development, University of Geneva Medical School (S.I.N., X.B., S.E.A.), Service of Genetic Medicine, University Hospitals of Geneva (S.I.N., S.E.A.), and iGE3, Institute of Genetics and Genomics of Geneva (S.E.A.) - all in Geneva; the Department of Fundamental Neurobiology, Krembil Research Institute (S.V., M.T., I.R.), Toronto General Hospital Research Institute (E.B., N.K., P.V.D., J.E.F.), the Department of Pathology (T.-R.K.), the Division of Neurosurgery, Department of Surgery (V.M.P., T.K., H.A.-B., T.T., T.V., G.Z., M.T., I.R.), and the Joint Division of Medical Imaging, Department of Medical Imaging (V.M.P., T.K.), Toronto Western Hospital, University Health Network, the Department of Laboratory Medicine and Pathobiology, University of Toronto (E.B., N.K., P.V.D., T.-R.K., J.E.F.), and the Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (E.B., N.K., P.V.D., J.E.F.) - all in Toronto; the Department of Molecular Medicine, AIV Institute, University of Eastern Finland (S.J., B.R.J., S.S., S.Y.-H., J.F.), and the Hemorrhagic Brain Pathology Research Group, Department of Neurosurgery and NeuroCenter (S.J., B.R.J., S.S., T.R., J.F.), and the Department of Pathology (T.R.), Kuopio University Hospital - all in Kuopio, Finland; and the Cardiovascular Research Institute and the Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston (A.M.H., J.D.W.)
| |
Collapse
|
29
|
Huang J, Song J, Qu M, Wang Y, An Q, Song Y, Yan W, Wang B, Wang X, Zhang S, Chen X, Zhao B, Liu P, Xu T, Zhang Z, Greenberg DA, Wang Y, Gao P, Zhu W, Yang GY. MicroRNA-137 and microRNA-195* inhibit vasculogenesis in brain arteriovenous malformations. Ann Neurol 2017; 82:371-384. [PMID: 28802071 DOI: 10.1002/ana.25015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 08/06/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Brain arteriovenous malformations (AVMs) are the most common cause of nontraumatic intracerebral hemorrhage in young adults. The genesis of brain AVM remains enigmatic. We investigated microRNA (miRNA) expression and its contribution to the pathogenesis of brain AVMs. METHODS We used a large-scale miRNA analysis of 16 samples including AVMs, hemangioblastoma, and controls to identify a distinct AVM miRNA signature. AVM smooth muscle cells (AVMSMCs) were isolated and identified by flow cytometry and immunohistochemistry, and candidate miRNAs were then tested in these cells. Migration, tube formation, and CCK-8-induced proliferation assays were used to test the effect of the miRNAs on phenotypic properties of AVMSMCs. A quantitative proteomics approach was used to identify protein expression changes in AVMSMCs treated with miRNA mimics. RESULTS A distinct AVM miRNA signature comprising a large portion of lowly expressed miRNAs was identified. Among these miRNAs, miR-137 and miR-195* levels were significantly decreased in AVMs and constituent AVMSMCs. Experimentally elevating the level of these microRNAs inhibited AVMSMC migration, tube formation, and survival in vitro and the formation of vascular rings in vivo. Proteomics showed the protein expression signature of AVMSMCs and identified downstream proteins regulated by miR-137 and miR-195* that were key signaling proteins involved in vessel development. INTERPRETATION Our results indicate that miR-137 and miR-195* act as vasculogenic suppressors in AVMs by altering phenotypic properties of AVMSMCs, and that the absence of miR-137 and miR-195* expression leads to abnormal vasculogenesis. Ann Neurol 2017;82:371-384.
Collapse
Affiliation(s)
- Jun Huang
- Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianping Song
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Meijie Qu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qingzhu An
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Song
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Yan
- Department of Biostatistics, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bingshun Wang
- Institute of Systemic Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojin Wang
- Institute of Systemic Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Song Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xi Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Bing Zhao
- Emergency Department, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peixi Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tongyi Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pingjin Gao
- Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Rujijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Derdeyn CP, Zipfel GJ, Albuquerque FC, Cooke DL, Feldmann E, Sheehan JP, Torner JC. Management of Brain Arteriovenous Malformations: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2017. [DOI: 10.1161/str.0000000000000134] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Thomas JM, Surendran S, Abraham M, Rajavelu A, Kartha CC. Genetic and epigenetic mechanisms in the development of arteriovenous malformations in the brain. Clin Epigenetics 2016; 8:78. [PMID: 27453762 PMCID: PMC4957361 DOI: 10.1186/s13148-016-0248-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/12/2016] [Indexed: 12/05/2022] Open
Abstract
Vascular malformations are developmental congenital abnormalities of the vascular system which may involve any segment of the vascular tree such as capillaries, veins, arteries, or lymphatics. Arteriovenous malformations (AVMs) are congenital vascular lesions, initially described as “erectile tumors,” characterized by atypical aggregation of dilated arteries and veins. They may occur in any part of the body, including the brain, heart, liver, and skin. Severe clinical manifestations occur only in the brain. There is absence of normal vascular structure at the subarteriolar level and dearth of capillary bed resulting in aberrant arteriovenous shunting. The causative factor and pathogenic mechanisms of AVMs are unknown. Importantly, no marker proteins have been identified for AVM. AVM is a high flow vascular malformation and is considered to develop because of variability in the hemodynamic forces of blood flow. Altered local hemodynamics in the blood vessels can affect cellular metabolism and may trigger epigenetic factors of the endothelial cell. The genes that are recognized to be associated with AVM might be modulated by various epigenetic factors. We propose that AVMs result from a series of changes in the DNA methylation and histone modifications in the genes connected to vascular development. Aberrant epigenetic modifications in the genome of endothelial cells may drive the artery or vein to an aberrant phenotype. This review focuses on the molecular pathways of arterial and venous development and discusses the role of hemodynamic forces in the development of AVM and possible link between hemodynamic forces and epigenetic mechanisms in the pathogenesis of AVM.
Collapse
Affiliation(s)
- Jaya Mary Thomas
- Cardiovascular Disease Biology Program, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud, Thiruvananthapuram, Kerala India
| | - Sumi Surendran
- Cardiovascular Disease Biology Program, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud, Thiruvananthapuram, Kerala India
| | - Mathew Abraham
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala India
| | - Arumugam Rajavelu
- Cardiovascular Disease Biology Program, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud, Thiruvananthapuram, Kerala India ; Tropical Disease Biology Program, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud, Thiruvananthapuram, Kerala India
| | - Chandrasekharan C Kartha
- Cardiovascular Disease Biology Program, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud, Thiruvananthapuram, Kerala India
| |
Collapse
|
32
|
Zhang R, Han Z, Degos V, Shen F, Choi EJ, Sun Z, Kang S, Wong M, Zhu W, Zhan L, Arthur HM, Oh SP, Faughnan ME, Su H. Persistent infiltration and pro-inflammatory differentiation of monocytes cause unresolved inflammation in brain arteriovenous malformation. Angiogenesis 2016; 19:451-461. [PMID: 27325285 DOI: 10.1007/s10456-016-9519-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/08/2016] [Indexed: 01/12/2023]
Abstract
An abnormally high number of macrophages are present in human brain arteriovenous malformations (bAVM) with or without evidence of prior hemorrhage, causing unresolved inflammation that may enhance abnormal vascular remodeling and exacerbate the bAVM phenotype. The reasons for macrophage accumulation at the bAVM sites are not known. We tested the hypothesis that persistent infiltration and pro-inflammatory differentiation of monocytes in angiogenic tissues increase the macrophage burden in bAVM using two mouse models and human monocytes. Mouse bAVM was induced through deletion of AVM causative genes, Endoglin (Eng) globally or Alk1 focally, plus brain focal angiogenic stimulation. An endothelial cell and vascular smooth muscle cell co-culture system was used to analyze monocyte differentiation in the angiogenic niche. After angiogenic stimulation, the Eng-deleted mice had fewer CD68(+) cells at 2 weeks (P = 0.02), similar numbers at 4 weeks (P = 0.97), and more at 8 weeks (P = 0.01) in the brain angiogenic region compared with wild-type (WT) mice. Alk1-deficient mice also had a trend toward more macrophages/microglia 8 weeks (P = 0.064) after angiogenic stimulation and more RFP(+) bone marrow-derived macrophages than WT mice (P = 0.01). More CD34(+) cells isolated from peripheral blood of patients with ENG or ALK1 gene mutation differentiated into macrophages than those from healthy controls (P < 0.001). These data indicate that persistent infiltration and pro-inflammatory differentiation of monocytes might contribute to macrophage accumulation in bAVM. Blocking macrophage homing to bAVM lesions should be tested as a strategy to reduce the severity of bAVM.
Collapse
Affiliation(s)
- Rui Zhang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Zhenying Han
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Degos
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA.,INSERM, U676, Hôpital Robert Debré, Paris, France
| | - Fanxia Shen
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Eun-Jung Choi
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Zhengda Sun
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | - Shuai Kang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Wong
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Wan Zhu
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Lei Zhan
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Helen M Arthur
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle, United Kingdom
| | - S Paul Oh
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Marie E Faughnan
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
33
|
Hermanto Y, Takagi Y, Yoshida K, Ishii A, Kikuchi T, Funaki T, Mineharu Y, Miyamoto S. Histopathological Features of Brain Arteriovenous Malformations in Japanese Patients. Neurol Med Chir (Tokyo) 2016; 56:340-4. [PMID: 27053330 PMCID: PMC4908077 DOI: 10.2176/nmc.oa.2016-0032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Clinical features of high risk brain arteriovenous malformations (BAVMs) are well characterized. However, pathological evidences about the differences that are possessed by high risk patients are still lacking. We reviewed archived routine hematoxylin-eosin specimens from a total of 54 surgical treated BAVMs. The histopathological features in nidus were semi-quantitatively analyzed. We obtained the pathological differences of BAVMs nidus between several clinical features. Among the analyzed pathological features, the significant differences were observed in degree of venous enlargement and intimal hyperplasia. Juvenile, female, diffuse nidus, high Spetzler-Martin grade, and low flow patients had a lesser degree of those parameters compared to adult, male, compact nidus, low Spetzler-Martin grade and high flow patients. High risk profiles of BAVMs patients were well-reflected in the nidus pathology. Therefore, juvenile, female, diffuse nidus, and low flow in Japanese BAVMs patients might have different vascular remodeling process that predispose to higher tendency of hemorrhage.
Collapse
Affiliation(s)
- Yulius Hermanto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Surgical Management of Cranial and Spinal Arteriovenous Malformations. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Kim H, Pawlikowska L, Su H, Young WL. Genetics and Vascular Biology of Angiogenesis and Vascular Malformations. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00012-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Nielsen CM, Huang L, Murphy PA, Lawton MT, Wang RA. Mouse Models of Cerebral Arteriovenous Malformation. Stroke 2015; 47:293-300. [PMID: 26351360 DOI: 10.1161/strokeaha.115.002869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/11/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Corinne M Nielsen
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.)
| | - Lawrence Huang
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.)
| | - Patrick A Murphy
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.)
| | - Michael T Lawton
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.)
| | - Rong A Wang
- From the Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery (C.M.N., L.H., P.A.M., R.A.W.) and Department of Neurosurgery (M.T.L.), University of California, San Francisco; and Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge (P.A.M.).
| |
Collapse
|
37
|
Ma L, Guo Y, Zhao YL, Su H. The Role of Macrophage in the Pathogenesis of Brain Arteriovenous Malformation. ACTA ACUST UNITED AC 2015; 1:52-56. [PMID: 26495437 DOI: 10.17554/j.issn.2409-3548.2015.01.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Brain arteriovenous malformation (BAVM) is an important risk factor for intracranial hemorrhage, especially in children and young adults. Inflammation has been implicated in BAVM lesion progression. Among various inflammatory components, macrophage is one of the major inflammatory cells present in human ruptured and unruptured BAVM and in the BAVM lesions of animal models. The role of macrophage in BAVM pathogenesis is not fully understood. In this review, we summarize recent studies on macrophages and introduce a non-invasive imaging protocol as a potential tool for detecting macrophage in BAVM and predicting the risk of BAVM rupture.
Collapse
Affiliation(s)
- Li Ma
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America ; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Guo
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America ; Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Yuan-Li Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China ; China National Clinical Research Center for Neurological Diseases, Beijing, China ; Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China ; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
38
|
Rangel-Castilla L, Russin JJ, Martinez-Del-Campo E, Soriano-Baron H, Spetzler RF, Nakaji P. Molecular and cellular biology of cerebral arteriovenous malformations: a review of current concepts and future trends in treatment. Neurosurg Focus 2015; 37:E1. [PMID: 25175428 DOI: 10.3171/2014.7.focus14214] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Arteriovenous malformations (AVMs) are classically described as congenital static lesions. However, in addition to rupturing, AVMs can undergo growth, remodeling, and regression. These phenomena are directly related to cellular, molecular, and physiological processes. Understanding these relationships is essential to direct future diagnostic and therapeutic strategies. The authors performed a search of the contemporary literature to review current information regarding the molecular and cellular biology of AVMs and how this biology will impact their potential future management. METHODS A PubMed search was performed using the key words "genetic," "molecular," "brain," "cerebral," "arteriovenous," "malformation," "rupture," "management," "embolization," and "radiosurgery." Only English-language papers were considered. The reference lists of all papers selected for full-text assessment were reviewed. RESULTS Current concepts in genetic polymorphisms, growth factors, angiopoietins, apoptosis, endothelial cells, pathophysiology, clinical syndromes, medical treatment (including tetracycline and microRNA-18a), radiation therapy, endovascular embolization, and surgical treatment as they apply to AVMs are discussed. CONCLUSIONS Understanding the complex cellular biology, physiology, hemodynamics, and flow-related phenomena of AVMs is critical for defining and predicting their behavior, developing novel drug treatments, and improving endovascular and surgical therapies.
Collapse
Affiliation(s)
- Leonardo Rangel-Castilla
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | | | | | | | | | | |
Collapse
|
39
|
Kremer PHC, Koeleman BPC, Pawlikowska L, Weinsheimer S, Bendjilali N, Sidney S, Zaroff JG, Rinkel GJE, van den Berg LH, Ruigrok YM, de Kort GAP, Veldink JH, Kim H, Klijn CJM. Evaluation of genetic risk loci for intracranial aneurysms in sporadic arteriovenous malformations of the brain. J Neurol Neurosurg Psychiatry 2015; 86:524-9. [PMID: 25053769 PMCID: PMC4302044 DOI: 10.1136/jnnp-2013-307276] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 07/01/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND In genome-wide association studies (GWAS) five putative risk loci are associated with intracranial aneurysm. As brain arteriovenous malformations (AVM) and intracranial aneurysms are both intracranial vascular diseases and AVMs often have associated aneurysms, we investigated whether these loci are also associated with sporadic brain AVM. METHODS We included 506 patients (168 Dutch, 338 American) and 1548 controls, all Caucasians. Controls had been recruited as part of previous GWAS. Dutch patients were genotyped by KASPar assay and US patients by Affymetrix SNP 6.0 array. Associations in each cohort were tested by univariable logistic regression modelling, with subgroup analysis in 205 American cases with aneurysm data. Meta-analysis was performed by a Mantel-Haenszel fixed-effect method. RESULTS In the Dutch cohort none of the single nucleotide polymorphisms (SNPs) were associated with AVMs. In the American cohort, genotyped SNPs near SOX-17 (OR 0.74; 95% CI 0.56-0.98), RBBP8 (OR 0.76; 95% CI 0.62-0.94) and an imputed SNP near CDKN2B-AS1 (OR 0.79; 95% CI 0.64-0.98) were significantly associated with AVM. The association with SNPs near SOX-17 and CDKN2B-AS1 but not RBBP8 were strongest in patients with AVM with associated aneurysms. In the meta-analysis we found no significant associations between allele frequencies and AVM occurrence, but rs9298506, near SOX-17 approached statistical significance (OR 0.77; 95% CI 0.57-1.03, p=0.08). CONCLUSIONS Our meta-analysis of two Caucasian cohorts did not show an association between five aneurysm-associated loci and sporadic brain AVM. Possible involvement of SOX-17 and RBBP8, genes involved in cell cycle progression, deserves further investigation.
Collapse
Affiliation(s)
- P H C Kremer
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - B P C Koeleman
- Department of Biomedical Genetics and Complex Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L Pawlikowska
- Department of Anesthesia, Center for Cerebrovascular Research, University of California-San Francisco, San Francisco, California, USA Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - S Weinsheimer
- Department of Anesthesia, Center for Cerebrovascular Research, University of California-San Francisco, San Francisco, California, USA
| | - N Bendjilali
- Department of Anesthesia, Center for Cerebrovascular Research, University of California-San Francisco, San Francisco, California, USA
| | - S Sidney
- Division of Research, Kaiser Permanente of Northern California, Oakland, California, USA
| | - J G Zaroff
- Division of Research, Kaiser Permanente of Northern California, Oakland, California, USA
| | - G J E Rinkel
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L H van den Berg
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Y M Ruigrok
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - G A P de Kort
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J H Veldink
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Kim
- Department of Anesthesia, Center for Cerebrovascular Research, University of California-San Francisco, San Francisco, California, USA Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - C J M Klijn
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
40
|
Mouchtouris N, Jabbour PM, Starke RM, Hasan DM, Zanaty M, Theofanis T, Ding D, Tjoumakaris SI, Dumont AS, Ghobrial GM, Kung D, Rosenwasser RH, Chalouhi N. Biology of cerebral arteriovenous malformations with a focus on inflammation. J Cereb Blood Flow Metab 2015; 35:167-75. [PMID: 25407267 PMCID: PMC4426734 DOI: 10.1038/jcbfm.2014.179] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/05/2014] [Accepted: 09/22/2014] [Indexed: 01/01/2023]
Abstract
Cerebral arteriovenous malformations (AVMs) entail a significant risk of intracerebral hemorrhage owing to the direct shunting of arterial blood into the venous vasculature without the dissipation of the arterial blood pressure. The mechanisms involved in the growth, progression and rupture of AVMs are not clearly understood, but a number of studies point to inflammation as a major contributor to their pathogenesis. The upregulation of proinflammatory cytokines induces the overexpression of cell adhesion molecules in AVM endothelial cells, resulting in enhanced recruitment of leukocytes. The increased leukocyte-derived release of metalloproteinase-9 is known to damage AVM walls and lead to rupture. Inflammation is also involved in altering the AVM angioarchitecture via the upregulation of angiogenic factors that affect endothelial cell proliferation, migration and apoptosis. The effects of inflammation on AVM pathogenesis are potentiated by certain single-nucleotide polymorphisms in the genes of proinflammatory cytokines, increasing their protein levels in the AVM tissue. Furthermore, studies on metalloproteinase-9 inhibitors and on the involvement of Notch signaling in AVMs provide promising data for a potential basis for pharmacological treatment of AVMs. Potential therapeutic targets and areas requiring further investigation are highlighted.
Collapse
Affiliation(s)
- Nikolaos Mouchtouris
- Division of Neurovascular Surgery and Endovascular Neurosurgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Pascal M Jabbour
- Division of Neurovascular Surgery and Endovascular Neurosurgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Robert M Starke
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - David M Hasan
- Department of Neurosurgery, University of Iowa, Iowa City, Iowa, USA
| | - Mario Zanaty
- 1] Division of Neurovascular Surgery and Endovascular Neurosurgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA [2] Department of Neurosurgery, University of Iowa, Iowa City, Iowa, USA
| | - Thana Theofanis
- Division of Neurovascular Surgery and Endovascular Neurosurgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Dale Ding
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Stavropoula I Tjoumakaris
- Division of Neurovascular Surgery and Endovascular Neurosurgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Aaron S Dumont
- Department of Neurological Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - George M Ghobrial
- Division of Neurovascular Surgery and Endovascular Neurosurgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - David Kung
- Division of Neurovascular Surgery and Endovascular Neurosurgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Robert H Rosenwasser
- Division of Neurovascular Surgery and Endovascular Neurosurgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| | - Nohra Chalouhi
- Division of Neurovascular Surgery and Endovascular Neurosurgery, Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
De novo cerebral arteriovenous malformations: is epileptic seizure a potential trigger? Childs Nerv Syst 2014; 30:1277-81. [PMID: 24714803 DOI: 10.1007/s00381-014-2413-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
MATERIAL AND METHODS The pathogenesis of cerebral arteriovenous malformations (cAVMs) is still not well understood. Generally, cAVMs are thought to be congenital lesions originating prenatally. We report a 7-year-old boy diagnosed with a de novo cAVM after 3 years of recurrent epileptic seizures. RESULTS MR imaging at 4 years of age was normal. Follow-up MR imaging 3 years later demonstrated a de novo 2-cm cAVM in the right occipital lobe, confirmed by conventional angiography. We reviewed five previously reported cases of de novo cAVMs who did not have a previous neurovascular abnormality. Including our case, recurrent epileptic seizures are the major presentation (83.3 %) before de novo cAVM occurrence. CONCLUSION We suggest that epileptic seizure is a potential trigger of de novo cAVMs.
Collapse
|
42
|
Rutledge WC, Ko NU, Lawton MT, Kim H. Hemorrhage rates and risk factors in the natural history course of brain arteriovenous malformations. Transl Stroke Res 2014; 5:538-42. [PMID: 24930128 DOI: 10.1007/s12975-014-0351-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 12/31/2022]
Abstract
Brain arteriovenous malformations (AVMs) are abnormal connections of arteries and veins, resulting in arteriovenous shunting of blood. Primary medical therapy is lacking; treatment options include surgery, radiosurgery, and embolization, often in combination. Judicious selection of AVM patients for treatment requires balancing risk of treatment complications against the risk of hemorrhage in the natural history course. This review focuses on the epidemiology, hemorrhage risk, and factors influencing risk of hemorrhage in the untreated natural course associated with sporadic brain AVM.
Collapse
Affiliation(s)
- W Caleb Rutledge
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
43
|
Brain arteriovenous malformation modeling, pathogenesis, and novel therapeutic targets. Transl Stroke Res 2014; 5:316-29. [PMID: 24723256 DOI: 10.1007/s12975-014-0343-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 02/07/2023]
Abstract
Patients harboring brain arteriovenous malformation (bAVM) are at life-threatening risk of rupture and intracranial hemorrhage (ICH). The pathogenesis of bAVM has not been completely understood. Current treatment options are invasive, and ≈ 20 % of patients are not offered interventional therapy because of excessive treatment risk. There are no specific medical therapies to treat bAVMs. The lack of validated animal models has been an obstacle for testing hypotheses of bAVM pathogenesis and testing new therapies. In this review, we summarize bAVM model development and bAVM pathogenesis and potential therapeutic targets that have been identified during model development.
Collapse
|
44
|
Rubin BA, Brunswick A, Riina H, Kondziolka D. Advances in Radiosurgery for Arteriovenous Malformations of the Brain. Neurosurgery 2014; 74 Suppl 1:S50-9. [DOI: 10.1227/neu.0000000000000219] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Arteriovenous malformations of the brain are a considerable source of morbidity and mortality for patients who harbor them. Although our understanding of this disease has improved, it remains in evolution. Advances in our ability to treat these malformations and the modes by which we address them have also improved substantially. However, the variety of patient clinical and disease scenarios often leads us into challenging and complex management algorithms as we balance the risks of treatment against the natural history of the disease. The goal of this article is to provide a focused review of the natural history of cerebral arteriovenous malformations, to examine the role of stereotactic radiosurgery, to discuss the role of endovascular therapy as it relates to stereotactic radiosurgery, and to look toward future advances.
Collapse
|
45
|
Weinsheimer SM, Xu H, Achrol AS, Stamova B, McCulloch CE, Pawlikowska L, Tian Y, Ko NU, Lawton MT, Steinberg GK, Chang SD, Jickling G, Ander BP, Kim H, Sharp FR, Young WL. Gene expression profiling of blood in brain arteriovenous malformation patients. Transl Stroke Res 2013; 2:575-87. [PMID: 22184505 DOI: 10.1007/s12975-011-0103-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain arteriovenous malformations (BAVMs) are an important cause of intracranial hemorrhage (ICH) in young adults. Gene expression profiling of blood has led to the identification of stroke biomarkers, and may help identify BAVM biomarkers and illuminate BAVM pathogenesis. It is unknown whether blood gene expression profiles differ between 1) BAVM patients and healthy controls, or 2) unruptured and ruptured BAVM patients at presentation. We characterized blood transcriptional profiles in 60 subjects (20 unruptured BAVM, 20 ruptured BAVM, and 20 healthy controls) using Affymetrix whole genome expression arrays. Expression differences between groups were tested by ANOVA, adjusting for potential confounders. Genes with absolute fold change ≥ 1.2 (false discovery rate corrected p ≤ 0.1) were selected as differentially expressed and evaluated for over-representation in KEGG biological pathways (p ≤ 0.05). Twenty-nine genes were differentially expressed between unruptured BAVM patients and controls, including 13 which may be predictive of BAVM. Patients with ruptured BAVM compared to unruptured BAVM differed in expression of 1490 genes, with over-representation of genes in 8 pathways including MAPK, VEGF, Wnt signaling and several inflammatory pathways. These results suggest clues to the pathogenesis of BAVM and/or BAVM rupture and point to potential biomarkers or new treatment targets.
Collapse
Affiliation(s)
- Shantel M Weinsheimer
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Takagi Y, Aoki T, Takahashi JC, Yoshida K, Ishii A, Arakawa Y, Kikuchi T, Funaki T, Miyamoto S. Differential gene expression in relation to the clinical characteristics of human brain arteriovenous malformations. Neurol Med Chir (Tokyo) 2013; 54:163-75. [PMID: 24162243 PMCID: PMC4533425 DOI: 10.2176/nmc.oa2012-0422] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Arteriovenous malformations (AVMs) of the central nervous system are considered as congenital disorders. They are composed of abnormally developed dilated arteries and veins and are characterized microscopically by the absence of a capillary network. We previously reported DNA fragmentation and increased expression of apoptosis-related factors in AVM lesions. In this article, we used microarray analysis to examine differential gene expression in relation to clinical manifestations in 11 AVM samples from Japanese patients. We categorized the genes with altered expression into four groups: death-related, neuron-related, inflammation-related, and other. The death-related differentially expressed genes were MMP9, LIF, SOD2, BCL2A1, MMP12, and HSPA6. The neuron-related genes were NPY, S100A9, NeuroD2, S100Abeta, CAMK2A, SYNPR, CHRM2, and CAMKV. The inflammation-related genes were PTX3, IL8, IL6, CXCL10, GBP1, CHRM3, CXCL1, IL1R2, CCL18, and CCL13. In addition, we compared gene expression in those with or without clinical characteristics including deep drainer, embolization, and high-flow nidus. We identified a small number of genes. Using these microarray data we are able to generate and test new hypotheses to explore AVM pathophysiology. Microarray analysis is a useful technique to study clinical specimens from patients with brain vascular malformations.
Collapse
Affiliation(s)
- Yasushi Takagi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Angiogenesis, recruitment of new blood vessels, is an essential component of the metastatic pathway. These vessels provide the principal route by which tumor cells exit the primary tumor site and enter the circulation. For many tumors, the vascular density can provide a prognostic indicator of metastatic potential, with the highly vascular primary tumors having a higher incidence of metastasis than poorly vascular tumors. The discovery and characterization of tumor-derived angiogenesis modulators greatly contributed to our understanding of how tumors regulate angiogenesis. However, although angiogenesis appears to be a rate-limiting event in tumor growth and metastatic dissemination, a direct connection between the induction of angiogenesis and the progression to tumor malignancy is less well understood. In this review, we discuss the observations concerning the modulation of angiogenesis and their implications in various neurological disorders, as well as their potential impact on cancer therapy.
Collapse
Affiliation(s)
- Göksemin Acar
- Department of Neurology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | | | | |
Collapse
|
48
|
Allelic variation of the MMP3 promoter affects transcription activity through the transcription factor C-MYB in human brain arteriovenous malformations. PLoS One 2013; 8:e57958. [PMID: 23483952 PMCID: PMC3587415 DOI: 10.1371/journal.pone.0057958] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/29/2013] [Indexed: 01/29/2023] Open
Abstract
MMPs comprise a family of proteolytic enzymes that degrade pericellular substances, which may result in the destabilization of vessels and related to the development of brain arteriovenous malformations (BAVM). MMP3 is a key member of this family, overexpressed in BAVM tissues, and a single nucleotide polymorphism within MMP3, −709A>G (rs522616), is significantly associated with the risk of BAVM. In this study, we aimed to investigate the mechanism through which the polymorphism rs522616 regulates the expression of MMP3. Our results showed that −709A led to a over 2-fold higher transcriptional activity compared with the G allele (P<0.05) and this transcriptional activity can be depressed by co-transfecting cells with competitive DNA fragments containing −709A but not −709G. Bioinformatics analyses suggested that the transcription factor C-MYB might bind to the area around rs522616. Overexpressed C-MYB significantly increased the transcriptional activity of −709A compared with −709G or controls that did not overexpress c-myb (P<0.01) in HEK293 and HUVEC cells. ChIP assays indicated that C-MYB bound to the SNP region in the two cell lines and three BAVM tissue samples. Together, these data indicated that C-MYB can bind to the −709A allele of the MMP3 promoter, activate its transcription and lead to a higher expression of this gene. This novel hypothesis, supported by molecular evidence, explains how this SNP affects MMP3 promoter function and results in a risk of BAVM development.
Collapse
|
49
|
LI XIONG, WANG RONG, WANG XUEJIANG, XUE XIAOWEI, RAN DUAN, WANG SHUO. Relevance of IL-6 and MMP-9 to cerebral arteriovenous malformation and hemorrhage. Mol Med Rep 2013; 7:1261-6. [DOI: 10.3892/mmr.2013.1332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/08/2013] [Indexed: 11/06/2022] Open
|
50
|
Sturiale CL, Puca A, Sebastiani P, Gatto I, Albanese A, Di Rocco C, Maira G, Pola R. Single nucleotide polymorphisms associated with sporadic brain arteriovenous malformations: where do we stand? Brain 2012; 136:665-81. [DOI: 10.1093/brain/aws180] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|