1
|
Cunha NSC, Malvea A, Sadat S, Ibrahim GM, Fehlings MG. Pediatric Spinal Cord Injury: A Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1456. [PMID: 37761417 PMCID: PMC10530251 DOI: 10.3390/children10091456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
A spinal cord injury (SCI) can be a devastating condition in children, with profound implications for their overall health and quality of life. In this review, we aim to provide a concise overview of the key aspects associated with SCIs in the pediatric population. Firstly, we discuss the etiology and epidemiology of SCIs in children, highlighting the diverse range of causes. We explore the unique anatomical and physiological characteristics of the developing spinal cord that contribute to the specific challenges faced by pediatric patients. Next, we delve into the clinical presentation and diagnostic methods, emphasizing the importance of prompt and accurate diagnosis to facilitate appropriate interventions. Furthermore, we approach the multidisciplinary management of pediatric SCIs, encompassing acute medical care, surgical interventions, and ongoing supportive therapies. Finally, we explore emerging research as well as innovative therapies in the field, and we emphasize the need for continued advancements in understanding and treating SCIs in children to improve their functional independence and overall quality of life.
Collapse
Affiliation(s)
| | - Anahita Malvea
- Division of Neurosurgery, Krembil Neuroscience Centre, University Health Network, Toronto, ON M5T 2S8, Canada;
| | - Sarah Sadat
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - George M. Ibrahim
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada;
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Michael G. Fehlings
- Division of Neurosurgery, Krembil Neuroscience Centre, University Health Network, Toronto, ON M5T 2S8, Canada;
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
2
|
Zhou R, Li J, Chen Z, Wang R, Shen Y, Zhang R, Zhou F, Zhang Y. Pathological hemodynamic changes and leukocyte transmigration disrupt the blood-spinal cord barrier after spinal cord injury. J Neuroinflammation 2023; 20:118. [PMID: 37210532 DOI: 10.1186/s12974-023-02787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/21/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Blood-spinal cord barrier (BSCB) disruption is a key event after spinal cord injury (SCI), which permits unfavorable blood-derived substances to enter the neural tissue and exacerbates secondary injury. However, limited mechanical impact is usually followed by a large-scale BSCB disruption in SCI. How the BSCB disruption is propagated along the spinal cord in the acute period of SCI remains unclear. Thus, strategies for appropriate clinical treatment are lacking. METHODS A SCI contusion mouse model was established in wild-type and LysM-YFP transgenic mice. In vivo two-photon imaging and complementary studies, including immunostaining, capillary western blotting, and whole-tissue clearing, were performed to monitor BSCB disruption and verify relevant injury mechanisms. Clinically applied target temperature management (TTM) to reduce the core body temperature was tested for the efficacy of attenuating BSCB disruption. RESULTS Barrier leakage was detected in the contusion epicenter within several minutes and then gradually spread to more distant regions. Membrane expression of the main tight junction proteins remained unaltered at four hours post-injury. Many junctional gaps emerged in paracellular tight junctions at the small vessels from multiple spinal cord segments at 15 min post-injury. A previously unnoticed pathological hemodynamic change was observed in the venous system, which likely facilitated gap formation and barrier leakage by exerting abnormal physical force on the BSCB. Leukocytes were quickly initiated to transverse through the BSCB within 30 min post-SCI, actively facilitating gap formation and barrier leakage. Inducing leukocyte transmigration generated gap formation and barrier leakage. Furthermore, pharmacological alleviation of pathological hemodynamic changes or leukocyte transmigration reduced gap formation and barrier leakage. TTM had very little protective effects on the BSCB in the early period of SCI other than partially alleviating leukocyte infiltration. CONCLUSIONS Our data show that BSCB disruption in the early period of SCI is a secondary change, which is indicated by widespread gap formation in tight junctions. Pathological hemodynamic changes and leukocyte transmigration contribute to gap formation, which could advance our understanding of BSCB disruption and provide new clues for potential treatment strategies. Ultimately, TTM is inadequate to protect the BSCB in early SCI.
Collapse
Affiliation(s)
- Rubing Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100191, People's Republic of China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of P.R. China, Beijing, 100191, People's Republic of China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, People's Republic of China
| | - Junzhao Li
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100191, People's Republic of China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of P.R. China, Beijing, 100191, People's Republic of China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, People's Republic of China
| | - Zhengyang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Hubei, Wuhan, 430060, People's Republic of China
| | - Rong Zhang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100191, People's Republic of China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of P.R. China, Beijing, 100191, People's Republic of China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, People's Republic of China
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| | - Yong Zhang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Beijing, 100191, People's Republic of China.
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of P.R. China, Beijing, 100191, People's Republic of China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, People's Republic of China.
| |
Collapse
|
3
|
Khaing ZZ, Chen JY, Safarians G, Ezubeik S, Pedroncelli N, Duquette RD, Prasse T, Seidlits SK. Clinical Trials Targeting Secondary Damage after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:3824. [PMID: 36835233 PMCID: PMC9960771 DOI: 10.3390/ijms24043824] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Spinal cord injury (SCI) often causes loss of sensory and motor function resulting in a significant reduction in quality of life for patients. Currently, no therapies are available that can repair spinal cord tissue. After the primary SCI, an acute inflammatory response induces further tissue damage in a process known as secondary injury. Targeting secondary injury to prevent additional tissue damage during the acute and subacute phases of SCI represents a promising strategy to improve patient outcomes. Here, we review clinical trials of neuroprotective therapeutics expected to mitigate secondary injury, focusing primarily on those in the last decade. The strategies discussed are broadly categorized as acute-phase procedural/surgical interventions, systemically delivered pharmacological agents, and cell-based therapies. In addition, we summarize the potential for combinatorial therapies and considerations.
Collapse
Affiliation(s)
- Zin Z. Khaing
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sohib Ezubeik
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nicolas Pedroncelli
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca D. Duquette
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Tobias Prasse
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Department of Orthopedics and Trauma Surgery, University of Cologne, 50931 Cologne, Germany
| | - Stephanie K. Seidlits
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Sangaletti R, Tamames I, Yahn SL, Choi JS, Lee JK, King C, Rajguru SM. Mild therapeutic hypothermia protects against inflammatory and proapoptotic processes in the rat model of cochlear implant trauma. Hear Res 2023; 428:108680. [PMID: 36586170 PMCID: PMC9840707 DOI: 10.1016/j.heares.2022.108680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Mild therapeutic hypothermia (MTH) has been demonstrated to prevent residual hearing loss from surgical trauma associated with cochlear implant (CI) insertion. Here, we aimed to characterize the mechanisms of MTH-induced hearing preservation in CI in a well-established preclinical rodent model. APPROACH Rats were divided into four experimental conditions: MTH-treated and implanted cochleae, cochleae implanted under normothermic conditions, MTH only cochleae and un-operated cochleae (controls). Auditory brainstem responses (ABRs) were recorded at different time points (up to 84 days) to confirm long-term protection and safety of MTH locally applied to the cochlea for 20 min before and after implantation. Transcriptome sequencing profiling was performed on cochleae harvested 24 h post CI and MTH treatment to investigate the potential beneficial effects and underlying active gene expression pathways targeted by the temperature management. RESULTS MTH treatment preserved residual hearing up to 3 months following CI when compared to the normothermic CI group. In addition, MTH applied locally to the cochleae using our surgical approach was safe and did not affect hearing in the long-term. Results of RNA sequencing analysis highlight positive modulation of signaling pathways and gene expression associated with an activation of cellular inflammatory and immune responses against the mechanical damage caused by electrode insertion. SIGNIFICANCE These data suggest that multiple and possibly independent molecular pathways play a role in the protection of residual hearing provided by MTH against the trauma of cochlear implantation.
Collapse
Affiliation(s)
- Rachele Sangaletti
- Department of Otolaryngology, University of Miami, Miami, FL, 33136, USA
| | - Ilmar Tamames
- Department of Biomedical Engineering, University of Miami, Miami, FL, 33136, USA
| | - Stephanie Lynn Yahn
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - James Seungyeon Choi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | | | - Suhrud M Rajguru
- Department of Otolaryngology, University of Miami, Miami, FL, 33136, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
5
|
Fehlings MG, Pedro K, Hejrati N. Management of Acute Spinal Cord Injury: Where Have We Been? Where Are We Now? Where Are We Going? J Neurotrauma 2022; 39:1591-1602. [PMID: 35686453 DOI: 10.1089/neu.2022.0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Michael G Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Karlo Pedro
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Nader Hejrati
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Zhou R, Li J, Wang R, Chen Z, Zhou F. Moderate systemic therapeutic hypothermia is insufficient to protect blood-spinal cord barrier in spinal cord injury. Front Neurol 2022; 13:1041099. [DOI: 10.3389/fneur.2022.1041099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Blood–spinal cord barrier (BSCB) disruption is a pivotal event in spinal cord injury (SCI) that aggravates secondary injury but has no specific treatment. Previous reports have shown that systemic therapeutic hypothermia (TH) can protect the blood–brain barrier after brain injury. To verify whether a similar effect exists on the BSCB after SCI, moderate systemic TH at 32°C was induced for 4 h on the mice with contusion-SCI. In vivo two-photon microscopy was utilized to dynamically monitor the BSCB leakage 1 h after SCI, combined with immunohistochemistry to detect BSCB leakage at 1 and 4 h after SCI. The BSCB leakage was not different between the normothermia (NT) and TH groups at both the in vivo and postmortem levels. The expression of endothelial tight junctions was not significantly different between the NT and TH groups 4 h after SCI, as detected by capillary western blotting. The structural damage of the BSCB was examined with immunofluorescence, but the occurrence of junctional gaps was not changed by TH 4 h after SCI. Our results have shown that moderate systemic TH induced for 4 h does not have a protective effect on the disrupted BSCB in early SCI. This treatment method has a low value and is not recommended for BSCB disruption therapy in early SCI.
Collapse
|
7
|
Lima R, Monteiro A, Salgado AJ, Monteiro S, Silva NA. Pathophysiology and Therapeutic Approaches for Spinal Cord Injury. Int J Mol Sci 2022; 23:ijms232213833. [PMID: 36430308 PMCID: PMC9698625 DOI: 10.3390/ijms232213833] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Spinal cord injury (SCI) is a disabling condition that disrupts motor, sensory, and autonomic functions. Despite extensive research in the last decades, SCI continues to be a global health priority affecting thousands of individuals every year. The lack of effective therapeutic strategies for patients with SCI reflects its complex pathophysiology that leads to the point of no return in its function repair and regeneration capacity. Recently, however, several studies started to uncover the intricate network of mechanisms involved in SCI leading to the development of new therapeutic approaches. In this work, we present a detailed description of the physiology and anatomy of the spinal cord and the pathophysiology of SCI. Additionally, we provide an overview of different molecular strategies that demonstrate promising potential in the modulation of the secondary injury events that promote neuroprotection or neuroregeneration. We also briefly discuss other emerging therapies, including cell-based therapies, biomaterials, and epidural electric stimulation. A successful therapy might target different pathologic events to control the progression of secondary damage of SCI and promote regeneration leading to functional recovery.
Collapse
Affiliation(s)
- Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence:
| |
Collapse
|
8
|
Vedantam A, Jimsheleishvili G, Harrop JS, Alberga LR, Ahmad FU, Murphy RK, Jackson JB, Rodgers RB, Levi AD. A prospective multi-center study comparing the complication profile of modest systemic hypothermia versus normothermia for acute cervical spinal cord injury. Spinal Cord 2022; 60:510-515. [PMID: 35013548 DOI: 10.1038/s41393-021-00747-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Prospective multi-center trial. OBJECTIVES To characterize the complication profile associated with modest systemic hypothermia after acute cervical SCI in a prospective multi-center study. SETTING Five trauma centers in the United States. METHODS We analyzed data from a prospective, multi-center trial on the use of modest systemic hypothermia for acute cervical SCI. Patients with acute cervical SCI were assigned to receive modest systemic hypothermia (33 C) or standard of care medical treatment. Patients in the hypothermia group were cooled to 33 C and maintained at the target temperature for 48 h. Complication profile and the rate of complications within the first 6 weeks after injury were compared between the two groups. Multiple regression analysis was performed to determine risk factors for complications after injury. RESULTS Fifty patients (hypothermia: 27, control: 23) were analyzed for this study. Median age was significantly lower in the hypothermia arm (39 vs 59 years, p = 0.02). Respiratory complications were the most common (hypothermia: 55.6% vs control: 52.2%, p = 0.81). The rate of deep vein thrombosis was not significantly different between the two groups (hypothermia: 14.8% vs control 17.4%, p = 0.71). The rate of complications was not statistically different between the two groups. CONCLUSION In this prospective multi-center controlled trial, preliminary data show that modest systemic hypothermia was not associated with increased risk of complications within the first 6 weeks after acute cervical SCI. TRIAL INFORMATION The study is registered on clinicaltrials.gov NCT02991690. University of Miami IRB (Central IRB) approval No.: 20160758. Emory University IRB #IRB00093786.
Collapse
Affiliation(s)
- Aditya Vedantam
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - George Jimsheleishvili
- The Miami Project to Cure Paralysis, Miami, FL, USA.,Department of Neurological Surgery, University of Miami/Jackson Health System, Miami, FL, USA
| | - James S Harrop
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Faiz U Ahmad
- Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Rory K Murphy
- Barrow Brain and Spine and Honor Health, Phoenix, AZ, USA
| | - J Benjamin Jackson
- Department of Orthopedic Surgery, University of South Carolina, Columbia, SC, USA
| | | | - Allan D Levi
- The Miami Project to Cure Paralysis, Miami, FL, USA. .,Department of Neurological Surgery, University of Miami/Jackson Health System, Miami, FL, USA.
| |
Collapse
|
9
|
Hypothermia as a potential remedy for canine and feline acute spinal cord injury: a review. ACTA VET BRNO 2022. [DOI: 10.2754/avb202291020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Severe spinal cord injury (SCI) resulting in permanent sensory-motor and autonomic dysfunction caudal to a damaged spinal cord (SC) segment is a catastrophic event in human as well as in veterinary medicine. The situation of paraplegic/tetraplegic people or animals is further impaired by serious complications and often displays an image of permanent suffering. Therapeutic hypothermia (TH) has shown neuroprotective capacity in numerous experimental and several clinical studies or case reports. Hence, the method draws increasing attention of neuroscientists as well as health care workers. While systemic TH is a too complex procedure for veterinary practice, local application of TH with a reduced risk of the whole body temperature fluctuations and minimal side effects can become one of the therapeutic tools considered in the treatment of acute traumatic SCIs in bigger animals, especially when surgical decompression of spinal medulla and vertebral column reconstruction is indicated. Still, additional large prospective randomized studies are essential for the standardization of therapeutic protocols and the introduction of the method into therapeutic armamentarium in canine and feline spinal traumatology. The research strategy involved a PubMed, MEDLINE (Ovid), EMBASE (Ovid), and ISI Web of Science search from January 2000 to July 2021 using the terms “canine and feline spinal cord injuryˮ, “hypothermiaˮ, and “targeted temperature managementˮ in the English language literature; also references from selected studies were scanned and relevant articles included.
Collapse
|
10
|
Hypothermia Therapy for Traumatic Spinal Cord Injury: An Updated Review. J Clin Med 2022; 11:jcm11061585. [PMID: 35329911 PMCID: PMC8949322 DOI: 10.3390/jcm11061585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Although hypothermia has shown to protect against ischemic and traumatic neuronal death, its potential role in neurologic recovery following traumatic spinal cord injury (TSCI) remains incompletely understood. Herein, we systematically review the safety and efficacy of hypothermia therapy for TSCI. The English medical literature was reviewed using PRISMA guidelines to identify preclinical and clinical studies examining the safety and efficacy of hypothermia following TSCI. Fifty-seven articles met full-text review criteria, of which twenty-eight were included. The main outcomes of interest were neurological recovery and postoperative complications. Among the 24 preclinical studies, both systemic and local hypothermia significantly improved neurologic recovery. In aggregate, the 4 clinical studies enrolled 60 patients for treatment, with 35 receiving systemic hypothermia and 25 local hypothermia. The most frequent complications were respiratory in nature. No patients suffered neurologic deterioration because of hypothermia treatment. Rates of American Spinal Injury Association (AIS) grade conversion after systemic hypothermia (35.5%) were higher when compared to multiple SCI database control studies (26.1%). However, no statistical conclusions could be drawn regarding the efficacy of hypothermia in humans. These limited clinical trials show promise and suggest therapeutic hypothermia to be safe in TSCI patients, though its effect on neurological recovery remains unclear. The preclinical literature supports the efficacy of hypothermia after TSCI. Further clinical trials are warranted to conclusively determine the effects of hypothermia on neurological recovery as well as the ideal means of administration necessary for achieving efficacy in TSCI.
Collapse
|
11
|
Neuroprotective Role of Hypothermia in Acute Spinal Cord Injury. Biomedicines 2022; 10:biomedicines10010104. [PMID: 35052784 PMCID: PMC8773047 DOI: 10.3390/biomedicines10010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Even nowadays, the question of whether hypothermia can genuinely be considered therapeutic care for patients with traumatic spinal cord injury (SCI) remains unanswered. Although the mechanisms of hypothermia action are yet to be fully explored, early hypothermia for patients suffering from acute SCI has already been implemented in clinical settings. This article discusses measures for inducing various forms of hypothermia and summarizes several hypotheses describing the likelihood of hypothermia mechanisms of action. We present our objective neuro-electrophysiological results and demonstrate that early hypothermia manifests neuroprotective effects mainly during the first- and second-month post-SCI, depending on the severity of the injury, time of intervening, duration, degree, and modality of inducing hypothermia. Nevertheless, eventually, its beneficial effects gradually but consistently diminish. In addition, we report potential complications and side effects for the administration of general hypothermia with a unique referment to the local hypothermia. We also provide evidence that instead of considering early hypothermia post-SCI a therapeutic approach, it is more a neuroprotective strategy in acute and sub-acute phases of SCI that mostly delay, but not entirely avoid, the natural history of the pathophysiological events. Indeed, the most crucial rationale for inducing early hypothermia is to halt these devastating inflammatory and apoptotic events as early and as much as possible. This, in turn, creates a larger time-window of opportunity for physicians to formulate and administer a well-designed personalized treatment for patients suffering from acute traumatic SCI.
Collapse
|
12
|
A review of emerging neuroprotective and neuroregenerative therapies in traumatic spinal cord injury. Curr Opin Pharmacol 2021; 60:331-340. [PMID: 34520943 DOI: 10.1016/j.coph.2021.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
Traumatic spinal cord injuries (SCIs) have far-reaching physical, social, and financial consequences. While medical advancements have improved supportive therapeutic measures for SCI patients, no effective neuroregenerative therapeutic options exist to date. Instead, the paradigm of SCI therapy is inevitably directed towards damage control rather than the restoration of a state of functional independence. Facing a continuous increase in the prevalence of spinal cord injured patients, neuroprotective and neuroregenerative strategies have earned tremendous scientific interest. This review intends to provide a robust summary of the most promising neuroprotective and neuroregenerative therapies currently under investigation. While we highlight encouraging neuroprotective strategies as well, the focus of this review lies on neuroregenerative therapies, including neuropharmacological and cell-based approaches. We finally point to the exciting investigational areas of biomaterial scaffolds and neuromodulation therapies.
Collapse
|
13
|
Maroon JC, Faramand A, Agarwal N, Harrington AL, Agarwal V, Norwig J, Okonkwo DO. Management of thoracic spinal cord injury in a professional American football athlete: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2021; 2:CASE21206. [PMID: 36131575 PMCID: PMC9589477 DOI: 10.3171/case21206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/09/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND
A case of catastrophic thoracic spinal cord injury (SCI) sustained by a professional American football player with severe scoliosis is presented.
OBSERVATIONS
A 25-year-old professional football player sustained an axial loading injury while tackling. Examination revealed a T8 American Spinal Injury Association Impairment Scale grade A complete SCI. Methylprednisolone and hypothermia protocols were initiated. Computed tomography scan of the thoracic spine demonstrated T8 and T9 facet fractures on the left at the apex of a 42° idiopathic scoliotic deformity. Magnetic resonance imaging (MRI) demonstrated T2 spinal cord hyperintensity at T9. He regained trace movement of his right lower extremity over 12 hours, which was absent on posttrauma day 2. Repeat MRI revealed interval cord compression and worsening of T2 signal change at T7-T8 secondary to hematoma. Urgent decompression and fusion from T8 to T10 were performed. Additional treatment included high-dose omega-3 fatty acids and hyperbaric oxygen therapy. A 2-month inpatient spinal cord rehabilitation program was followed by prolonged outpatient physical therapy. He currently can run and jump with minimal residual distal left lower limb spasticity.
LESSONS
This is the first known football-related thoracic SCI with idiopathic scoliosis. Aggressive medical and surgical intervention with intensive rehabilitation formed the treatment protocol, with a favorable outcome achieved.
Collapse
Affiliation(s)
| | | | | | | | - Vikas Agarwal
- Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; and
| | - John Norwig
- Pittsburgh Steelers, Pittsburgh, Pennsylvania
| | | |
Collapse
|
14
|
Aspinall P, Harrison L, Scheuren P, Cragg JJ, Ferguson AR, Guest JD, Hsieh J, Jones L, Kirshblum S, Lammertse D, Kwon BK, Kramer JLK. A Systematic Review of Safety Reporting in Acute Spinal Cord Injury Clinical Trials: Challenges and Recommendations. J Neurotrauma 2021; 38:2047-2054. [PMID: 33899507 DOI: 10.1089/neu.2020.7540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accurate safety information in published clinical trials guides the assessment of risk-benefit, as well as the design of future clinical trials. Comprehensive reporting of adverse events, toxicity, and discontinuations from acute spinal cord injury clinical trials is an essential step in this process. Here, we sought to assess the degree of "satisfactoriness" of reporting in past clinical trials in spinal cord injury. A review of citations from MEDLINE and EMBASE identified eligible clinical trials in acute (within 30 days) spinal cord injury. English language studies, published between 1980 and 2020, with sensory, motor, or autonomic neurological assessments as the primary outcome measure were eligible for inclusion. Criteria were then established to qualify the safety reporting as satisfactory (i.e., distinguished severe/life-threatening events), partially satisfactory, or unsatisfactory (i.e., only mentioned in general statements, or reported but without distinguishing severe events). A total of 40 trials were included. Satisfactory reporting for clinical adverse events was observed in 30% of trials; partially satisfactory was achieved by 10% of the trials, and the remaining 60% were unsatisfactory. The majority of trials were determined to be unsatisfactory for the reporting of laboratory-defined toxicity (82.5%); only 17.5% were satisfactory. Discontinuations were satisfactorily reported for the majority of trials (80%), with the remaining partially satisfactory (5%) or unsatisfactory (15%). Reporting of safety in clinical trials for acute spinal cord injury is suboptimal. Due to the complexities of acute spinal cord injury (e.g., polytrauma, multiple systems affected), tailored and specific standards for tracking adverse events and safety reporting should be established.
Collapse
Affiliation(s)
- Paul Aspinall
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam Harrison
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Paulina Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jacquelyn J Cragg
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam R Ferguson
- Data Science, Brain and Spinal Injury Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
- San Francisco Veteran's Affairs Healthcare System, San Francisco, California, USA
| | - James D Guest
- Department of Neurological Surgery, University of Miami and the Miami Project to Cure Paralysis, Miami, Florida, USA
| | | | - Linda Jones
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Steven Kirshblum
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Kessler Institute for Rehabilitation, West Orange, New Jersey, USA
| | | | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Hugill Center for Anesthesiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Abstract
Neuroprotection after acute spinal cord injury is an important strategy to limit secondary injury. Animal studies have shown that systemic hypothermia is an effective neuroprotective strategy that can be combined with other therapies. Systemic hypothermia affects several processes at the cellular level to reduce metabolic activity, oxidative stress, and apoptotic neuronal cell death. Modest systemic hypothermia has been shown to be safe and feasible in the acute phase after cervical spinal cord injury. These data have provided the impetus for an active multicenter randomized controlled trial for modest systemic hypothermia in acute cervical spinal cord injury.
Collapse
|
16
|
Yao S, Wang L, Chen Q, Lu T, Pu X, Luo C. The effect of mild hypothermia plus rutin on the treatment of spinal cord injury and inflammatory factors by repressing TGF-β/smad pathway. Acta Cir Bras 2021; 36:e360307. [PMID: 33978063 PMCID: PMC8112105 DOI: 10.1590/acb360307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Purpose To probe the mechanism of mild hypothermia combined with rutin in the
treatment of spinal cord injury (SCI). Methods Thirty rats were randomized into the following groups: control, sham, model,
mild hypothermia (MH), and mild hypothermia plus rutin (MH+Rutin). We used
modified Allen’s method to injure the spinal cord (T10) in rats, and then
treated it with MH or/and rutin immediately. BBB scores were performed on
all rats. We used HE staining for observing the injured spinal cord tissue;
ELISA for assaying TNF-α, IL-1β, IL-8, Myeloperoxidase (MPO), and
Malondialdehyde (MDA) contents; Dihydroethidium (DHE) for measuring the
reactive oxygen species (ROS) content; flow cytometry for detecting
apoptosis; and both RT-qPCR and Western blot for determining the expression
levels of TGF-β/Smad pathway related proteins (TGF-β, Smad2, and Smad3). Results In comparison with model group, the BBB score of MH increased to a certain
extent and MH+Rutin group increased more than MH group (p < 0.05). After
treatment with MH and MH+Rutin, the inflammatory infiltration diminished. MH
and MH+Rutin tellingly dwindled TNF-β, MDA and ROS contents (p < 0.01),
and minified spinal cord cell apoptosis. MH and MH+Rutin could patently
diminished TGF-β1, Smad2, and Smad3 expression (p < 0.01). Conclusions MH+Rutin can suppress the activation of TGF-β/Smad pathway, hence repressing
the cellular inflammatory response after SCI.
Collapse
|
17
|
Chio JCT, Xu KJ, Popovich P, David S, Fehlings MG. Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Exp Neurol 2021; 341:113704. [PMID: 33745920 DOI: 10.1016/j.expneurol.2021.113704] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) has a complex pathophysiology. Following the initial physical trauma to the spinal cord, which may cause vascular disruption, hemorrhage, mechanical injury to neural structures and necrosis, a series of biomolecular cascades is triggered to evoke secondary injury. Neuroinflammation plays a major role in the secondary injury after traumatic SCI. To date, the administration of systemic immunosuppressive medications, in particular methylprednisolone sodium succinate, has been the primary pharmacological treatment. This medication is given as a complement to surgical decompression of the spinal cord and maintenance of spinal cord perfusion through hemodynamic augmentation. However, the impact of neuroinflammation is complex with harmful and beneficial effects. The use of systemic immunosuppressants is further complicated by the natural onset of post-injury immunosuppression, which many patients with SCI develop. It has been hypothesized that immunomodulation to attenuate detrimental aspects of neuroinflammation after SCI, while avoiding systemic immunosuppression, may be a superior approach. To accomplish this, a detailed understanding of neuroinflammation and the systemic immune responses after SCI is required. Our review will strive to achieve this goal by first giving an overview of SCI from a clinical and basic science context. The role that neuroinflammation plays in the pathophysiology of SCI will be discussed. Next, the positive and negative attributes of the innate and adaptive immune systems in neuroinflammation after SCI will be described. With this background established, the currently existing immunosuppressive and immunomodulatory therapies for treating SCI will be explored. We will conclude with a summary of topics that can be explored by neuroimmunology research. These concepts will be complemented by points to be considered by neuroscientists developing therapies for SCI and other injuries to the central nervous system.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | - Katherine Jiaxi Xu
- Human Biology Program, University of Toronto, Wetmore Hall, 300 Huron St., Room 105, Toronto, Ontario M5S 3J6, Canada.
| | - Phillip Popovich
- Department of Neuroscience, Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Neurological Institute, The Ohio State University, Wexner Medical Center, 410 W. 10(th) Ave., Columbus 43210, USA.
| | - Samuel David
- Centre for Research in Neuroscience and BRaIN Program, The Research Institute of the McGill University Health Centre, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada.
| | - Michael G Fehlings
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Fiani B, Arshad MA, Shaikh ES, Baig A, Farooqui M, Ayub MA, Zafar A, Quadri SA. Current updates on various treatment approaches in the early management of acute spinal cord injury. Rev Neurosci 2021; 32:513-530. [PMID: 33565738 DOI: 10.1515/revneuro-2020-0148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023]
Abstract
Spinal cord injury (SCI) is a debilitating condition which often leads to a severe disability and ultimately impact patient's physical, psychological, and social well-being. The management of acute SCI has evolved over the couple of decades due to improved understanding of injury mechanisms and increasing knowledge of disease. Currently, the early management of acute SCI patient includes pharmacological agents, surgical intervention and newly experimental neuroprotective strategies. However, many controversial areas are still surrounding in the current treatment strategies for acute SCI, including the optimal timing of surgical intervention, early versus delayed decompression outcome benefits, the use of methylprednisolone. Due to the lack of consensus, the optimal standard of care has been varied across treatment centres. The authors have shed a light on the current updates on early treatment approaches and neuroprotective strategies in the initial management of acute SCI in order to protect the early neurologic injury and reduce the future disability.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, 1150 N. Indian Canyon Drive, Palm Springs, CA92262, USA
| | - Mohammad Arsal Arshad
- Department of Neurosurgery, Desert Regional Medical Center, 1150 N. Indian Canyon Drive, Palm Springs, CA92262, USA
| | - Emad Salman Shaikh
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Aqsa Baig
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Mudassir Farooqui
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Muhammed Abubakar Ayub
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Atif Zafar
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Syed A Quadri
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Takami T, Shimokawa N, Parthiban J, Zileli M, Ali S. Pharmacologic and Regenerative Cell Therapy for Spinal Cord Injury: WFNS Spine Committee Recommendations. Neurospine 2020; 17:785-796. [PMID: 33401856 PMCID: PMC7788403 DOI: 10.14245/ns.2040408.204] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
This is a review article examining the pharmacologic and regenerative cell therapy for spinal cord injury. A literature search during last 10 years were conducted using key words. Case reports, experimental (nonhuman) studies, papers other than English language were excluded. Up-to-date information on the pharmacologic and regenerative cell therapy for spinal cord injury was reviewed and statements were produced to reach a consensus in 2 separate consensus meeting of WFNS Spine Committee. The statements were voted and reached a consensus using Delphi method. Pharmacologic and regenerative cell therapy for spinal cord injury have long been an interest of many experimental and clinical researches. Clinical studies with methylpredinisolone have not shown clear cut benefit. Other drugs such as Rho inhibitor, minocycline, riluzole, granulocyte colony-stimulating factor have also been tried without significant benefits. Regenerative cell therapy using different types of stem cells, different inoculation techniques, and scaffolds have undergone many trials highlighting the efficacies of cells and their limitations. This review article summarizes the current knowledge on pharmacologic and regenerative cell therapy for spinal cord injury. Unfortunately, there is a need for further experimental and human trials to recommend effective pharmacologic and regenerative cell therapy.
Collapse
Affiliation(s)
- Toshihiro Takami
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | - Jutty Parthiban
- Department of Neurosurgery, Kovai Medical Center and Hospital Coimbatore, Tamilnadu, India
| | - Mehmet Zileli
- Department of Neurosurgery, Ege University, Izmir, Turkey
| | - Sheena Ali
- Department of Neurosurgery, Kovai Medical Center and Hospital Coimbatore, Tamilnadu, India
| |
Collapse
|
20
|
Khalid SI, Nunna RS, Maasarani S, Kelly BSR, Sroussi H, Mehta AI, Adogwa O. Pharmacologic and cellular therapies in the treatment of traumatic spinal cord injuries: A systematic review. J Clin Neurosci 2020; 79:12-20. [PMID: 33070879 DOI: 10.1016/j.jocn.2020.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The objective of this review is to synthesize and consolidate the existing literature on the treatment of SCI, focusing on drugs in development and cellular therapeutics, including stem-cell treatments. METHODS Studies were identified through a systemic search of PubMed, Ovid MEDLINE, Embase and the Cochrane database from their respective inceptions through January 1, 2020. We used the keywords "spinal cord injuries", "therapeutics", "stem cells", and "pharmacology." STUDY SELECTION Studies that assessed treatment strategies for SCI were included. DATA EXTRACTION AND SYNTHESIS Data on SCIs were processed according to the Preferred Reporting Items for Systematic Reviews and meta-Analyses (PRISMA) guidelines. FINDINGS In total, 62 articles were found in the literature search and 13 clinical trials were identified and included in this study. This review article discusses the management and treatment of SCI with an emphasis on the pharmacology, molecular approaches, and the use of stem cells. Presently, none of the treatments examined has shown to be clearly effective. CONCLUSIONS Present management strategies of SCI are focused on improving spinal cord perfusion and decreasing secondary injuries such as hypoxia, inflammation, edema, excitotoxicity and disturbances of ion homeostasis. This review hopes to demonstrate the significant advances made in the field of SCI and the new methodologies and practices being employed by researchers to improve our knowledge of the pathology. Our hope is that by consolidating the past and current research, improvements can be made in the management, treatment, and outcomes for these patients and other who suffer from spinal pathologies.
Collapse
Affiliation(s)
- Syed I Khalid
- Department of Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Ravi S Nunna
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Samantha Maasarani
- Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA
| | - B S Ryan Kelly
- Georgetown University School of Medicine, Washington, D.C., USA
| | - Hannah Sroussi
- Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
| | - Ankit I Mehta
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Owoicho Adogwa
- Department of Neurological Surgery, University of Texas Southwestern Medical School, USA.
| |
Collapse
|
21
|
Perez E, Viziano A, Al-Zaghal Z, Telischi FF, Sangaletti R, Jiang W, Dietrich WD, King C, Hoffer ME, Rajguru SM. Anatomical Correlates and Surgical Considerations for Localized Therapeutic Hypothermia Application in Cochlear Implantation Surgery. Otol Neurotol 2020; 40:1167-1177. [PMID: 31318786 PMCID: PMC6750193 DOI: 10.1097/mao.0000000000002373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Application of localized, mild therapeutic hypothermia during cochlear implantation (CI) surgery is feasible for residual hearing preservation.
Collapse
Affiliation(s)
| | - Andrea Viziano
- Department of Otolaryngology.,Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | - Weitao Jiang
- Department of Biomedical Engineering, University of Miami, Miami, Florida
| | - William Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, Florida
| | | | | | - Suhrud M Rajguru
- Department of Otolaryngology.,Department of Biomedical Engineering, University of Miami, Miami, Florida
| |
Collapse
|
22
|
Eichberg DG, Komotar RJ, Urakov TM. Commentary: Spinal Arteriovenous Fistula: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown) 2020; 18:E227-E228. [PMID: 32243536 DOI: 10.1093/ons/opaa063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daniel G Eichberg
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Timur M Urakov
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
23
|
Dugan EA, Bennett C, Tamames I, Dietrich WD, King CS, Prasad A, Rajguru SM. Therapeutic hypothermia reduces cortical inflammation associated with utah array implants. J Neural Eng 2020; 17:026035. [PMID: 32240985 DOI: 10.1088/1741-2552/ab85d2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Neuroprosthetics hold tremendous promise to restore function through brain-computer interfaced devices. However, clinical applications of implantable microelectrodes remain limited given the challenges of maintaining neuronal signals for extended periods of time and with multiple biological mechanisms negatively affecting electrode performance. Acute and chronic inflammation, oxidative stress, and blood brain barrier disruption contribute to inconsistent electrode performance. We hypothesized that therapeutic hypothermia (TH) applied at the microelectrode insertion site will positively modulate both inflammatory and apoptotic pathways, promoting neuroprotection and improved performance in the long-term. APPROACH A custom device and thermoelectric system were designed to deliver controlled TH locally to the cortical implant site at the time of microelectrode array insertion and immediately following surgery. The TH paradigm was derived from in vivo cortical temperature measurements and finite element modeling of temperature distribution profiles in the cortex. Male Sprague-Dawley rats were implanted with non-functional Utah microelectrodes arrays (UMEA) consisting of 4 × 4 grid of 1.5 mm long parylene-coated silicon shanks. In one group, TH was applied to the implant site for two hours following the UMEA implantation, while the other group was implanted under normothermic conditions without treatment. At 48 h, 72 h, 7 d and 14 d post-implantation, mRNA expression levels for genes associated with inflammation and apoptosis were compared between normothermic and hypothermia-treated groups. MAIN RESULTS The custom system delivered controlled TH to the cortical implant site and the numerical models confirmed that the temperature decrease was confined locally. Furthermore, a one-time application of TH post UMEA insertion significantly reduced the acute inflammatory response with a reduction in the expression of inflammatory regulating cytokines and chemokines. SIGNIFICANCE This work provides evidence that acutely applied hypothermia is effective in significantly reducing acute inflammation post intracortical electrode implantation.
Collapse
Affiliation(s)
- Elizabeth A Dugan
- Department of Biomedical Engineering, University of Miami, FL, United States of America
| | | | | | | | | | | | | |
Collapse
|
24
|
Singh J, Barrett J, Sangaletti R, Dietrich WD, Rajguru SM. Additive Protective Effects of Delayed Mild Therapeutic Hypothermia and Antioxidants on PC12 Cells Exposed to Oxidative Stress. Ther Hypothermia Temp Manag 2020; 11:77-87. [PMID: 32302519 DOI: 10.1089/ther.2019.0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mild therapeutic hypothermia is protective against several cellular stresses, but the mechanisms underlying this protection are not completely resolved. In the present study, we used an in vitro model to investigate whether therapeutic hypothermia at 33°C applied following a peroxide-induced oxidative stress would protect PC12 cells. A 1-hour exposure to tert-butyl peroxide increased cell death measured 24 hours later. This cell death was dose-dependent in the range of 100-1000 μM tert-butyl peroxide with ∼50% cell death observed at 24 hours from 500 μM peroxide exposure. Cell survival/death was measured with an alamarBlue viability assay, and propidium iodide/Hoechst imaging for counts of living and dead cells. Therapeutic hypothermia at 33°C applied for 2 hours postperoxide exposure significantly increased cell survival measured 24 hours postperoxide-induced stress. This protection was present even when delayed hypothermia, 15 minutes after the peroxide washout, was applied. Addition of any of the three FDA-approved antioxidants (Tempol, EUK134, Edaravone at 100 μM) in combination with hypothermia improved cell survival. With the therapeutic hypothermia treatment, a significant downregulation of caspases-3 and -8 and tumor necrosis factor-α was observed at 3 and 24 hours poststress. Consistent with this, a cell-permeable pan-caspase inhibitor Z-VAD-FMK applied in combination with hypothermia significantly increased cell survival. Overall, these results suggest that the antioxidants quenching of reactive oxygen species likely works with hypothermia to reduce mitochondrial damage and/or apoptotic mechanisms. Further studies are required to confirm and extend these results to other cell types, including neuronal cells, and other forms of oxidative stress as well as to optimize the critical parameters of hypothermia treatment such as target temperature and duration.
Collapse
Affiliation(s)
- Jayanti Singh
- Department of Otolaryngology, University of Miami, Miami, Florida, USA
| | - John Barrett
- Department of Physiology and Biophysics, University of Miami, Miami, Florida, USA
| | | | - W Dalton Dietrich
- Department of Biomedical Engineering, University of Miami, Miami, Florida, USA.,Department of Neurological Surgery, University of Miami, Miami, Florida, USA
| | - Suhrud M Rajguru
- Department of Otolaryngology, University of Miami, Miami, Florida, USA.,Department of Biomedical Engineering, University of Miami, Miami, Florida, USA
| |
Collapse
|
25
|
Eichberg DG, Komotar RJ, Urakov TM. Commentary: Posterior C2-6 Laminoplasty for Resection of Arteriovenous Malformation: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown) 2020; 18:E140-E141. [PMID: 32047933 DOI: 10.1093/ons/opaa006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/15/2019] [Indexed: 11/15/2022] Open
Affiliation(s)
- Daniel G Eichberg
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Timur M Urakov
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
26
|
Dunshee LC, Sullivan MO, Kiick KL. Manipulation of the dually thermoresponsive behavior of peptide-based vesicles through modification of collagen-like peptide domains. Bioeng Transl Med 2020; 5:e10145. [PMID: 31989034 PMCID: PMC6971430 DOI: 10.1002/btm2.10145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022] Open
Abstract
Materials that respond to temporally defined exogenous cues continue to be an active pursuit of research toward on-demand nanoparticle drug delivery applications, and using one or more exogenous temperature stimuli could significantly expand the application of nanoparticle-based drug delivery formulations under both hyperthermal and hypothermal conditions. Previously we have reported the development of a biocompatible and thermoresponsive elastin-b-collagen-like polypeptide (ELP-CLP) conjugate that is capable of self-assembling into vesicles and encapsulating small molecule therapeutics that can be delivered at different rates via a single temperature stimulus. Herein we report the evaluation of multiple ELP-CLP conjugates, demonstrating that the inverse transition temperature (T t) of the ELP-CLPs can be manipulated by modifying the melting temperature (T m) of the CLP domain, and that the overall hydrophilicity of the ELP-CLP conjugate also may alter the T t. Based on these design parameters, we demonstrate that the ELP-CLP sequence (VPGFG)6-(GPO)7GG can self-assemble into stable vesicles at 25°C and dissociate at elevated temperatures by means of the unfolding of the CLP domain above its T m. We also demonstrate here for the first time the ability of this ELP-CLP vesicle to dissociate via a hypothermic temperature stimulus by means of exploiting the inverse transition temperature (T t) phenomena found in ELPs. The development of design rules for manipulating the thermal properties of these bioconjugates will enable future modifications to either the ELP or CLP sequences to more finely tune the transitions of the conjugates for specific biomedical applications.
Collapse
Affiliation(s)
- Lucas C Dunshee
- Department of Chemical and Biomolecular Engineering University of Delaware Newark Delaware
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering University of Delaware Newark Delaware
- Department of Biomedical Engineering University of Delaware Newark Delaware
| | - Kristi L Kiick
- Department of Materials Science and Engineering University of Delaware Newark Delaware
| |
Collapse
|
27
|
Kafka J, Lukacova N, Sulla I, Maloveska M, Vikartovska Z, Cizkova D. Hypothermia in the course of acute traumatic spinal cord injury. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Badhiwala JH, Wilson JR, Kwon BK, Casha S, Fehlings MG. A Review of Clinical Trials in Spinal Cord Injury Including Biomarkers. J Neurotrauma 2019; 35:1906-1917. [PMID: 29888678 DOI: 10.1089/neu.2018.5935] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute traumatic spinal cord injury (SCI) entered the arena of prospective, randomized clinical trials almost 40 years ago, with the undertaking of the National Acute Spinal Cord Study (NASCIS) I trial. Since then, a number of clinical trials have been conducted in the field, spurred by the devastating physical, social, and economic consequences of acute SCI for patients, families, and society at large. Many of these have been controversial and attracted criticism. The current review provides a critical summary of select past and current clinical trials in SCI, focusing in particular on the findings of prospective, randomized controlled trials, the challenges and barriers encountered, and the valuable lessons learned that can be applied to future trials.
Collapse
Affiliation(s)
- Jetan H Badhiwala
- 1 Division of Neurosurgery, Department of Surgery, University of Toronto , Toronto, Ontario, Canada
| | - Jefferson R Wilson
- 1 Division of Neurosurgery, Department of Surgery, University of Toronto , Toronto, Ontario, Canada
| | - Brian K Kwon
- 2 Vancouver Spine Surgery Institute, Department of Orthopedics, University of British Columbia , Vancouver, British Columbia, Canada
| | - Steven Casha
- 3 Section of Neurosurgery, Department of Clinical Neurosciences, University of Calgary , Calgary, Alberta, Canada
| | - Michael G Fehlings
- 1 Division of Neurosurgery, Department of Surgery, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
29
|
Hypothermia in the Neurocritical Care Unit: Physiology and Applications. Neurocrit Care 2019. [DOI: 10.1017/9781107587908.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Management of the Spinal Cord Injury in the Neurocritical Care Unit. Neurocrit Care 2019. [DOI: 10.1017/9781107587908.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Jorge A, Fish EJ, Dixon CE, Hamilton KD, Balzer J, Thirumala P. The Effect of Prophylactic Hypothermia on Neurophysiological and Functional Measures in the Setting of Iatrogenic Spinal Cord Impact Injury. World Neurosurg 2019; 129:e607-e613. [PMID: 31158549 DOI: 10.1016/j.wneu.2019.05.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Iatrogenic spinal cord injury (iSCI) during spinal corrective surgery can result in devastating complications, such as paraplegia or paraparesis. Perioperatively, iSCI often occurs as a direct injury during spinal cord instrumentation placement. Currently, treatment of iSCI remains limited to posttraumatic hypothermia, which has demonstrated some value in recent clinical trials. Here we report the outcomes of preinjury hypothermia initiated preprocedurally and maintained for a considerable time after iSCI. METHODS Twenty-six female Sprague-Dawley rats were assigned at random to either a normothermic group (36 °C) or a hypothermic group (32 °C) and then underwent a laminectomy procedure at the T8 level. Each group was further divided at random to receive a 200-kdyn force contusive spinal cord injury or a sham impact. Hypothermic rats were then rewarmed after 2 hours of hypothermic treatment. Behavioral scores, temperature profiles, weights, and somatosensory evoked potentials were obtained at baseline and at specified time points after the procedure. RESULTS The median survival was 42 days for the iSCI hypothermic group and 11 days for the iSCI normothermic group (hazard ratio, 3.82; 95% confidence interval, 1.52-9.57). The probability of survival was significantly higher in the iSCI hypothermic group compared with the iSCI normothermic group (χ2 = 4.18; P = 0.040). The hypothermic group exhibited a higher Basso, Beattie and Bresnahan (BBB) locomotor rating scale score (17 vs. 14; P < 0.01), lower normalized latencies (1.06 ± 0.16 seconds vs. 1.34 ± 0.17 seconds; P = 0.04), and higher peak-to-peak amplitudes (0.32 ± 0.10 μV vs. 0.12 ± 0.09 μV; P = 0.005). CONCLUSIONS The use of prophylactic hypothermia before iSCI was significantly associated with an increased survival rate, higher BBB scores, and improved neurophysiological measures.
Collapse
Affiliation(s)
- Ahmed Jorge
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | - Erika J Fish
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - C Edward Dixon
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kojo D Hamilton
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jeffrey Balzer
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Parthasarathy Thirumala
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
32
|
Theoretical Evaluation and Experimental Validation of Localized Therapeutic Hypothermia Application to Preserve Residual Hearing After Cochlear Implantation. Ear Hear 2019; 39:712-719. [PMID: 29240567 DOI: 10.1097/aud.0000000000000529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cochlear implantation surgery has been shown to result in trauma to inner ear sensory structures, resulting in loss of residual hearing. Localized therapeutic hypothermia has been shown in clinical care to be a neuroprotective intervention. Previously, we have shown in an experimental model that localized hypothermia protects cochlear hair cells and residual hearing function against surgical and cochlear implantation trauma. Using experimental temperature measurements carried out in human cadaver temporal bones and a finite element model of the inner ear, the present study examined the temperature distribution of a custom-designed hypothermia delivery system in the human inner ear organs. DESIGN The efficacy of the hypothermia probe and resulting heat distribution across human cochlea and surrounding tissues were modeled in three-dimensional in COMSOL. The geometry and dimensions of inner ear and temporal bones were derived from computed tomographic and magnetic resonance imaging images. Model predictions were compared with experimental observations from five human temporal bones. RESULTS In both the modeling and experimental studies, the cochlear temperature was lowered by 4 to 6 °C on the round window from a baseline of 37 °C within 16 to 18 minutes. The model simulations showed uniformly distributed cooling across the cochlea. This study provides insight for design, operation, and protocols for efficacious delivery of mild therapeutic hypothermia to the human cochlea that may significantly benefit patients undergoing surgical cochlear implantation by preserving residual hearing. CONCLUSION There was a close correlation between the results of the numerical simulations and experimental observations in this study. Our custom-designed system is capable of effectively providing mild therapeutic hypothermia locally to the human cochlea. When combined with results from in vivo animal experiments, the present study suggests that the application of localized therapeutic hypothermia may hold potential for patients with an aim to preserve residual hearing after cochlear implantation.
Collapse
|
33
|
Arnaez J, Miranda M, Riñones E, García-Alix A. Whole-Body Cooling and Erythropoietin in Neonatal Cervical Spine Injury. Ther Hypothermia Temp Manag 2019; 9:159-162. [PMID: 30614764 DOI: 10.1089/ther.2018.0042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is mounting experimental evidence that therapeutic hypothermia (TH) mitigates secondary mechanisms of spinal cord injury (SCI). There is a potential synergistic neuroprotective effect for SCI through the combination of TH and other promising therapies. The treatment of TH for SCI has promising results in adults, but its use is anecdotal in newborns with SCI. SCI is a rare, serious, and often fatal complication of instrumental delivery. For the first time, we describe the case of a male newborn infant with upper SCI who was born at term age and was offered whole-body cooling and erythropoietin treatment with unsuccessful outcome. There are still many unresolved issues related to TH in the SCI, some of them specific to the neonatal patient. Accurately establishing the diagnosis and its severity is crucial to redirect care for SCI and to indicate potential neuroprotective therapies. Considering the lack of therapeutic options, the extremely poor outcomes associated with acute SCI, and the extensive experience in safe use of whole-body cooling in newborn infants, we feel that moderate whole-body cooling should be offered as soon as possible after birth to the newborn infant with SCI.
Collapse
Affiliation(s)
- Juan Arnaez
- 1 Neonatal Unit, Hospital Universitario de Burgos, Burgos, Spain.,2 Fundación NeNe, Spain
| | - María Miranda
- 1 Neonatal Unit, Hospital Universitario de Burgos, Burgos, Spain
| | - Ester Riñones
- 3 Neuroradiology Department, Hospital Universitario de Burgos, Burgos, Spain
| | - Alfredo García-Alix
- 2 Fundación NeNe, Spain.,4 Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain.,5 Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Badhiwala JH, Ahuja CS, Fehlings MG. Time is spine: a review of translational advances in spinal cord injury. J Neurosurg Spine 2019; 30:1-18. [PMID: 30611186 DOI: 10.3171/2018.9.spine18682] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 11/06/2022]
Abstract
Acute traumatic spinal cord injury (SCI) is a devastating event with far-reaching physical, emotional, and economic consequences for patients, families, and society at large. Timely delivery of specialized care has reduced mortality; however, long-term neurological recovery continues to be limited. In recent years, a number of exciting neuroprotective and regenerative strategies have emerged and have come under active investigation in clinical trials, and several more are coming down the translational pipeline. Among ongoing trials are RISCIS (riluzole), INSPIRE (Neuro-Spinal Scaffold), MASC (minocycline), and SPRING (VX-210). Microstructural MRI techniques have improved our ability to image the injured spinal cord at high resolution. This innovation, combined with serum and cerebrospinal fluid (CSF) analysis, holds the promise of providing a quantitative biomarker readout of spinal cord neural tissue injury, which may improve prognostication and facilitate stratification of patients for enrollment into clinical trials. Given evidence of the effectiveness of early surgical decompression and growing recognition of the concept that "time is spine," infrastructural changes at a systems level are being implemented in many regions around the world to provide a streamlined process for transfer of patients with acute SCI to a specialized unit. With the continued aging of the population, central cord syndrome is soon expected to become the most common form of acute traumatic SCI; characterization of the pathophysiology, natural history, and optimal treatment of these injuries is hence a key public health priority. Collaborative international efforts have led to the development of clinical practice guidelines for traumatic SCI based on robust evaluation of current evidence. The current article provides an in-depth review of progress in SCI, covering the above areas.
Collapse
Affiliation(s)
- Jetan H Badhiwala
- 1Division of Neurosurgery, Department of Surgery, and
- 2Institute of Medical Science, University of Toronto; and
| | - Christopher S Ahuja
- 1Division of Neurosurgery, Department of Surgery, and
- 2Institute of Medical Science, University of Toronto; and
- 3Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael G Fehlings
- 1Division of Neurosurgery, Department of Surgery, and
- 2Institute of Medical Science, University of Toronto; and
- 3Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Liu X, Liu N, Zhou M, Lu Y, Li F. Bibliometric analysis of global research on the rehabilitation of spinal cord injury in the past two decades. Ther Clin Risk Manag 2018; 15:1-14. [PMID: 30588000 PMCID: PMC6301731 DOI: 10.2147/tcrm.s163881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose We aimed to build a model to qualitatively and quantitatively evaluate publications of research of spinal cord injury rehabilitation from 1997 to 2016. Methods Data were obtained from the Web of Science Core Collection on October 6, 2017. We conducted a qualitative and quantitative analysis of publication outputs, journals, authors, institutions, countries, cited references, keywords, and terms by bibliometric methods and bibliometric software packages. Results We identified 5,607 publications on rehabilitation of spinal cord injury from 1997 to 2016, and found that the annual publication rate increased with time. The Archives of Physical Medicine and Rehabilitation published the largest number of literature, the most active country was USA, the most active institution was University of Washington, and Post MWM was the leading author. Keyword analysis indicated that life satisfaction, muscle strength, wheelchair training, walking, gait, and others were the hot spots of these research studies, whereas classification, exoskeleton, plasticity, and old adult were research frontiers. Conclusion This bibliometric study revealed that research on rehabilitation of spinal cord injury is a well-developed and promising research field. Global scientific research cooperation is close. However, higher quality research is needed. Our findings provide valuable information for researchers to identify better perspectives and develop the future research direction.
Collapse
Affiliation(s)
- Xiaoxie Liu
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China,
| | - Nan Liu
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China,
| | - Mouwang Zhou
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China,
| | - Yao Lu
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China,
| | - Fang Li
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China,
| |
Collapse
|
36
|
Zavodska M, Galik J, Marsala M, Papcunova S, Pavel J, Racekova E, Martoncikova M, Sulla I, Gajdos M, Lukac I, Kafka J, Ledecky V, Sulla I, Reichel P, Trbolova A, Capik I, Bimbova K, Bacova M, Stropkovska A, Kisucka A, Miklisova D, Lukacova N. Hypothermic treatment after computer-controlled compression in minipig: A preliminary report on the effect of epidural vs. direct spinal cord cooling. Exp Ther Med 2018; 16:4927-4942. [PMID: 30542449 PMCID: PMC6257352 DOI: 10.3892/etm.2018.6831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/29/2018] [Indexed: 11/24/2022] Open
Abstract
The aim of the present study was to investigate the therapeutic efficacy of local hypothermia (beginning 30 min post-injury persisting for 5 h) on tissue preservation along the rostro-caudal axis of the spinal cord (3 cm cranially and caudally from the lesion site), and the prevention of injury-induced functional loss in a newly developed computer-controlled compression model in minipig (force of impact 18N at L3 level), which mimics severe spinal cord injury (SCI). Minipigs underwent SCI with two post-injury modifications (durotomy vs. intact dura mater) followed by hypothermia through a perfusion chamber with cold (epidural t≈15°C) saline, DMEM/F12 or enriched DMEM/F12 (SCI/durotomy group) and with room temperature (t≈24°C) saline (SCI-only group). Minipigs treated with post-SCI durotomy demonstrated slower development of spontaneous neurological improvement at the early postinjury time points, although the outcome at 9 weeks of survival did not differ significantly between the two SCI groups. Hypothermia with saline (t≈15°C) applied after SCI-durotomy improved white matter integrity in the dorsal and lateral columns in almost all rostro-caudal segments, whereas treatment with medium/enriched medium affected white matter integrity only in the rostral segments. Furthermore, regeneration of neurofilaments in the spinal cord after SCI-durotomy and hypothermic treatments indicated an important role of local saline hypothermia in the functional outcome. Although saline hypothermia (24°C) in the SCI-only group exhibited a profound histological outcome (regarding the gray and white matter integrity and the number of motoneurons) and neurofilament protection in general, none of the tested treatments resulted in significant improvement of neurological status. The findings suggest that clinically-proven medical treatments for SCI combined with early 5 h-long saline hypothermia treatment without opening the dural sac could be more beneficial for tissue preservation and neurological outcome compared with hypothermia applied after durotomy.
Collapse
Affiliation(s)
- Monika Zavodska
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Jan Galik
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Martin Marsala
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia.,Department of Anesthesiology, Neuroregeneration Laboratory, University of California-San Diego, San Diego, CA 92093, USA
| | - Stefania Papcunova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Jaroslav Pavel
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Eniko Racekova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Marcela Martoncikova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Igor Sulla
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia.,Hospital of Slovak Railways, 040 01 Košice, Slovakia
| | - Miroslav Gajdos
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Imrich Lukac
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Jozef Kafka
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Valent Ledecky
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Igor Sulla
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Peter Reichel
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alexandra Trbolova
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Igor Capik
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Katarina Bimbova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Maria Bacova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Andrea Stropkovska
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Alexandra Kisucka
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Dana Miklisova
- Department of Vector-borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Nadezda Lukacova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| |
Collapse
|
37
|
Zhang Y, Lv Y, Ji W, Zhou R, Gao S, Zhou F. Therapeutic hypothermia effectively reduces elevated extracellular ascorbate concentrations caused by acute spinal cord injury. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 47:22-29. [PMID: 30526134 DOI: 10.1080/21691401.2018.1541136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In recent years, systemic hypothermia has taken the spotlight for its use in spinal cord injury (SCI) research fields, but detailed molecular mechanisms are still not fully understood. In this study, we use an online-electrochemical system (OECS) to in vivo continuously monitor the ascorbate of the rats' spinal cord. We find that the basal level of ascorbate in rat spinal cord is 1.85 ± 0.88 μmol L-1 (n = 20). It increased immediately after SCI and reached 2.36 ± 0.65 μmol L-1 (164.90% ± 7.99% of the basal level) (n = 5) at 60 min after the injury. The SCI-induced extracellular ascorbate increase is obviously attenuated by therapeutic hypothermia (28 °C) after injury and ascorbate returns to 3.01 ± 0.59 μmol L-1 (100.24% ± 5.02% of the basal level) (n = 5), at 60 min after SCI. These results substantially manifest that the OECS for ascorbate detection could be employed as a platform for understanding the pathological changes during spinal cord injury. This study provides experimental evidence for the essential roles of ascorbate in SCI which could serve as a biomarker for SCI. Our findings also raise the possibility that therapeutic hypothermia can effectively exert neuroprotection in the acute phase of SCI.
Collapse
Affiliation(s)
- Yawen Zhang
- a Department of Orthopedics , Peking University Third Hospital , Beijing , China
| | - Yang Lv
- a Department of Orthopedics , Peking University Third Hospital , Beijing , China
| | - Wenliang Ji
- b Department of Chemistry , Renmin University of China , Beijing , China
| | - Rubing Zhou
- a Department of Orthopedics , Peking University Third Hospital , Beijing , China
| | - Shan Gao
- a Department of Orthopedics , Peking University Third Hospital , Beijing , China
| | - Fang Zhou
- a Department of Orthopedics , Peking University Third Hospital , Beijing , China
| |
Collapse
|
38
|
Levi AD, Anderson KD, Okonkwo DO, Park P, Bryce TN, Kurpad SN, Aarabi B, Hsieh J, Gant K. Clinical Outcomes from a Multi-Center Study of Human Neural Stem Cell Transplantation in Chronic Cervical Spinal Cord Injury. J Neurotrauma 2018; 36:891-902. [PMID: 30180779 DOI: 10.1089/neu.2018.5843] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human neural stem cell transplantation (HuCNS-SC®) is a promising central nervous system (CNS) tissue repair strategy in patients with stable neurological deficits from chronic spinal cord injury (SCI). These immature human neural cells have been demonstrated to survive when transplanted in vivo, extend neural processes, form synaptic contacts, and improve functional outcomes after experimental SCI. A phase II single blind, randomized proof-of-concept study of the safety and efficacy of HuCNS-SC transplantation into the cervical spinal cord was undertaken in patients with chronic C5-7 tetraplegia, 4-24 months post-injury. In Cohort I (n = 6) dose escalation from 15,000,000 to 40,000,000 cells was performed to determine the optimum dose. In Cohort II an additional six participants were transplanted at target dose (40,000,000) and compared with four untreated controls. Within the transplant group, there were nine American Spinal Injury Association Impairment Scale (AIS) B and three AIS A participants with a median age at transplant of 28 years with an average time to transplant post-injury of 1 year. Immunosuppression was continued for 6 months post-transplant, and immunosuppressive blood levels of tacrolimus were achieved and well tolerated. At 1 year post-transplantation, there was no evidence of additional spinal cord damage, new lesions, or syrinx formation on magnetic resonance (MR) imaging. In summary, the incremental dose escalation design established surgical safety, tolerability, and feasibility in Cohort I. Interim analysis of Cohorts I and II demonstrated a trend toward Upper Extremity Motor Score (UEMS) and Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP) motor gains in the treated participants, but at a magnitude below the required clinical efficacy threshold set by the sponsor to support further development resulting in early study termination.
Collapse
Affiliation(s)
- Allan D Levi
- 1 Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - Kim D Anderson
- 1 Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - David O Okonkwo
- 2 Department of Neurosurgery, University of Pittsburgh, Pennsylvania
| | - Paul Park
- 3 Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Thomas N Bryce
- 4 Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shekar N Kurpad
- 5 Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bizhan Aarabi
- 6 Department of Neurosurgery, University of Maryland, Baltimore, Maryland
| | | | - Katie Gant
- 1 Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
39
|
Pelletier JH, Mann CH, German BT, Williams JG, Piehl M. Therapeutic systemic hypothermia for a pediatric patient with an isolated cervical spinal cord injury. J Spinal Cord Med 2018; 43:264-267. [PMID: 30231216 PMCID: PMC7054913 DOI: 10.1080/10790268.2018.1520524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Context: While uncommon, spinal cord injuries most frequently occur in adolescent and young adult males. Established treatment options are limited and focused on supportive care. Therapeutic systemic hypothermia is an emerging experimental treatment currently undergoing clinical trials in adults.Findings: Here we report a case of a 13-year-old male with an American Spinal Injury Association Impairment Scale grade C traumatic cervical spinal cord injury treated with 48 hours of therapeutic systemic hypothermia who made a complete neurological recovery. To our knowledge, this is the youngest such case report.Clinical relevance: This case suggests that consideration should be given to including pediatric patients in future clinical trials of therapeutic hypothermia for spinal cord injury.
Collapse
Affiliation(s)
- Jonathan H. Pelletier
- Department of Pediatrics, Duke University Hospital, Durham, North Carolina, USA,Correspondence to: Jonathan H. Pelletier, Department of Pediatrics, Duke University Hospital, Durham, NC, USA.
| | - Courtney H. Mann
- WakeMed Health and Hospitals, Raleigh, North Carolina, USA,Department of Emergency Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Benjamin T. German
- WakeMed Health and Hospitals, Raleigh, North Carolina, USA,Department of Emergency Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Jefferson G. Williams
- Department of Emergency Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA,Wake County Department of Emergency Medical Services, Raleigh, North Carolina, USA
| | - Mark Piehl
- WakeMed Health and Hospitals, Raleigh, North Carolina, USA,Department of Emergency Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
40
|
Abstract
Evidence from animal models indicates that lowering temperature by a few degrees can produce substantial neuroprotection. In humans, hypothermia has been found to be neuroprotective with a significant impact on mortality and long-term functional outcome only in cardiac arrest and neonatal hypoxic-ischemic encephalopathy. Clinical trials have explored the potential role of maintaining normothermia and treating fever in critically ill brain injured patients. This review concentrates on basic concepts to understand the physiologic interactions of thermoregulation, effects of thermal modulation in critically ill patients, proposed mechanisms of action of temperature modulation, and practical aspects of targeted temperature management.
Collapse
|
41
|
Abstract
Evidence from animal models indicates that lowering temperature by a few degrees can produce substantial neuroprotection. In humans, hypothermia has been found to be neuroprotective with a significant impact on mortality and long-term functional outcome only in cardiac arrest and neonatal hypoxic-ischemic encephalopathy. Clinical trials have explored the potential role of maintaining normothermia and treating fever in critically ill brain injured patients. This review concentrates on basic concepts to understand the physiologic interactions of thermoregulation, effects of thermal modulation in critically ill patients, proposed mechanisms of action of temperature modulation, and practical aspects of targeted temperature management.
Collapse
Affiliation(s)
- Fred Rincon
- Division of Critical Care and Neurotrauma, Department of Neurology, Sidney-Kimmel College of Medicine, Thomas Jefferson University, 909 Walnut Street, 3rd Floor, Philadelphia, PA 19107, USA; Division of Critical Care and Neurotrauma, Department of Neurological Surgery, Sidney-Kimmel College of Medicine, Thomas Jefferson University, 909 Walnut Street, 3rd Floor, Philadelphia, PA 19107, USA.
| |
Collapse
|
42
|
Abstract
Traumatic spinal cord injury (SCI) results in impaired neurologic function that for many individuals is permanent and significantly impacts health, function, quality of life, and life expectancy. Many efforts have been taken to develop effective treatments for SCI; nevertheless, proven therapies targeting neurologic regeneration and functional recovery have been limited. Existing therapeutic approaches, including early surgery, strict blood pressure control, and consideration of treatment with steroids, remain debated and largely focus on mitigating secondary injury after the primary trauma has occurred. Today, there is more research being performed in SCI than ever before. Current clinical trials are exploring pharmacologic, cell-based, physiologic, and rehabilitation approaches to reduce secondary injury and also overcome barriers to neurorecovery. In the future, it is likely that tailored treatments combining many of these strategies will offer significant benefits for persons with SCI. This article aims to review key past, current and emerging neurologic and rehabilitation therapeutic approaches for adults with traumatic SCI.
Collapse
Affiliation(s)
- Jayne Donovan
- Kessler Institute for Rehabilitation, 1199 Pleasant Valley Way, West Orange, New Jersey, 07052, USA.
- Rutgers New Jersey Medical School, 183 South Orange Avenue, Newark, New Jersey, 07101, USA.
| | - Steven Kirshblum
- Kessler Institute for Rehabilitation, 1199 Pleasant Valley Way, West Orange, New Jersey, 07052, USA
- Rutgers New Jersey Medical School, 183 South Orange Avenue, Newark, New Jersey, 07101, USA
- The Kessler Foundation, 1199 Pleasant Valley Way, West Orange, New Jersey, 07052, USA
| |
Collapse
|
43
|
Stem Cells Therapy for Spinal Cord Injury. Int J Mol Sci 2018; 19:ijms19041039. [PMID: 29601528 PMCID: PMC5979319 DOI: 10.3390/ijms19041039] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/26/2022] Open
Abstract
Spinal cord injury (SCI), a serious public health issue, most likely occurs in previously healthy young adults. Current therapeutic strategies for SCI includes surgical decompression and pharmacotherapy, however, there is still no gold standard for the treatment of this devastating condition. Inefficiency and adverse effects of standard therapy indicate that novel therapeutic strategies are required. Because of their neuroregenerative and neuroprotective properties, stem cells are a promising tool for the treatment of SCI. Herein, we summarize and discuss the promising therapeutic potential of human embryonic stem cells (hESC), induced pluripotent stem cells (iPSC) and ependymal stem/progenitor cells (epSPC) for SCI.
Collapse
|
44
|
Zhu L. Hypothermia Used in Medical Applications for Brain and Spinal Cord Injury Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:295-319. [PMID: 30315552 DOI: 10.1007/978-3-319-96445-4_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite more than 80 years of animal experiments and clinical practice, efficacy of hypothermia in improving treatment outcomes in patients suffering from cell and tissue damage caused by ischemia is still ongoing. This review will first describe the history of utilizing cooling in medical treatment, followed by chemical and biochemical mechanisms of cooling that can lead to neuroprotection often observed in animal studies and some clinical studies. The next sections will be focused on current cooling approaches/devices, as well as cooling parameters recommended by researchers and clinicians. Animal and clinical studies of implementing hypothermia to spinal cord and brain tissue injury patients are presented next. This section will review the latest outcomes of hypothermia in treating patients suffering from traumatic brain injury (TBI), spinal cord injury (SCI), stroke, cardiopulmonary surgery, and cardiac arrest, followed by a summary of available evidence regarding both demonstrated neuroprotection and potential risks of hypothermia. Contributions from bioengineers to the field of hypothermia in medical treatment will be discussed in the last section of this review. Overall, an accumulating body of clinical evidence along with several decades of animal research and mathematical simulations has documented that the efficacy of hypothermia is dependent on achieving a reduced temperature in the target tissue before or soon after the injury-precipitating event. Mild hypothermia with temperature reduction of several degrees Celsius is as effective as modest or deep hypothermia in providing therapeutic benefit without introducing collateral/systemic complications. It is widely demonstrated that the rewarming rate must be controlled to be lower than 0.5 °C/h to avoid mismatch between local blood perfusion and metabolism. In the past several decades, many different cooling methods and devices have been designed, tested, and used in medical treatments with mixed results. Accurately designing treatment protocols to achieve specific cooling outcomes requires collaboration among engineers, researchers, and clinicians. Although this problem is quite challenging, it presents a major opportunity for bioengineers to create methods and devices that quickly and safely produce hypothermia in targeted tissue regions without interfering with routine medical treatment.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
45
|
Cobas MA, Vera-Arroyo A. Hypothermia: Update on Risks and Therapeutic and Prophylactic Applications. Adv Anesth 2017; 35:25-45. [PMID: 29103575 DOI: 10.1016/j.aan.2017.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Miguel A Cobas
- Department of Anesthesiology and Perioperative Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Arnaldo Vera-Arroyo
- Department of Anesthesiology and Perioperative Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
46
|
Ulndreaj A, Badner A, Fehlings MG. Promising neuroprotective strategies for traumatic spinal cord injury with a focus on the differential effects among anatomical levels of injury. F1000Res 2017; 6:1907. [PMID: 29152227 PMCID: PMC5664995 DOI: 10.12688/f1000research.11633.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition of motor, sensory, and autonomic dysfunction. The significant cost associated with the management and lifetime care of patients with SCI also presents a major economic burden. For these reasons, there is a need to develop and translate strategies that can improve outcomes following SCI. Given the challenges in achieving regeneration of the injured spinal cord, neuroprotection has been at the forefront of clinical translation. Yet, despite many preclinical advances, there has been limited translation into the clinic apart from methylprednisolone (which remains controversial), hypertensive therapy to maintain spinal cord perfusion, and early decompressive surgery. While there are several factors related to the limited translational success, including the clinical and mechanistic heterogeneity of human SCI, the misalignment between animal models of SCI and clinical reality continues to be an important factor. Whereas most clinical cases are at the cervical level, only a small fraction of preclinical research is conducted in cervical models of SCI. Therefore, this review highlights the most promising neuroprotective and neural reparative therapeutic strategies undergoing clinical assessment, including riluzole, hypothermia, granulocyte colony-stimulating factor, glibenclamide, minocycline, Cethrin (VX-210), and anti-Nogo-A antibody, and emphasizes their efficacy in relation to the anatomical level of injury. Our hope is that more basic research will be conducted in clinically relevant cervical SCI models in order to expedite the transition of important laboratory discoveries into meaningful treatment options for patients with SCI.
Collapse
Affiliation(s)
- Antigona Ulndreaj
- Institute of Medical Science, University of Toronto, Toronto, Canada.,University of Toronto Spine Program, Toronto, Canada.,Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Anna Badner
- Institute of Medical Science, University of Toronto, Toronto, Canada.,University of Toronto Spine Program, Toronto, Canada.,Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Michael G Fehlings
- Institute of Medical Science, University of Toronto, Toronto, Canada.,University of Toronto Spine Program, Toronto, Canada.,Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Canada
| |
Collapse
|
47
|
Collis J. Therapeutic hypothermia in acute traumatic spinal cord injury. J ROY ARMY MED CORPS 2017; 164:214-220. [PMID: 29025962 DOI: 10.1136/jramc-2017-000792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/29/2017] [Accepted: 08/11/2017] [Indexed: 01/21/2023]
Abstract
Therapeutic hypothermia is already widely acknowledged as an effective neuroprotective intervention, especially within the acute care setting in relation to conditions such as cardiac arrest and neonatal encephalopathy. Its multifactorial mechanisms of action, including lowering metabolic rate and reducing acute inflammatory cellular processes, ultimately provide protection for central nervous tissue from continuing injury following ischaemic or traumatic insult. Its clinical application within acute traumatic spinal cord injury would therefore seem very plausible, it having the potential to combat the pathophysiological secondary injury processes that can develop in the proceeding hours to days following the initial injury. As such it could offer invaluable assistance to lessen subsequent sensory, motor and autonomic dysfunction for an individual affected by this devastating condition. Yet research surrounding this intervention's applicability in this field is somewhat lacking, the majority being experimental. Despite a recent resurgence of interest, which in turn has produced encouraging results, there is a real possibility that this potentially transformational intervention for treating traumatic spinal cord injury could remain an experimental therapy and never reach clinical implementation.
Collapse
Affiliation(s)
- James Collis
- Acute/Emergency Medicine, St Richards Hospital, Western Sussex Hospitals NHS Trust, Chichester, West Sussex PO19 6SE, UK
| |
Collapse
|
48
|
Abstract
Traumatic spinal cord injury (SCI) has devastating consequences for the physical, social and vocational well-being of patients. The demographic of SCIs is shifting such that an increasing proportion of older individuals are being affected. Pathophysiologically, the initial mechanical trauma (the primary injury) permeabilizes neurons and glia and initiates a secondary injury cascade that leads to progressive cell death and spinal cord damage over the subsequent weeks. Over time, the lesion remodels and is composed of cystic cavitations and a glial scar, both of which potently inhibit regeneration. Several animal models and complementary behavioural tests of SCI have been developed to mimic this pathological process and form the basis for the development of preclinical and translational neuroprotective and neuroregenerative strategies. Diagnosis requires a thorough patient history, standardized neurological physical examination and radiographic imaging of the spinal cord. Following diagnosis, several interventions need to be rapidly applied, including haemodynamic monitoring in the intensive care unit, early surgical decompression, blood pressure augmentation and, potentially, the administration of methylprednisolone. Managing the complications of SCI, such as bowel and bladder dysfunction, the formation of pressure sores and infections, is key to address all facets of the patient's injury experience.
Collapse
|
49
|
Galeiras Vázquez R, Ferreiro Velasco ME, Mourelo Fariña M, Montoto Marqués A, Salvador de la Barrera S. Update on traumatic acute spinal cord injury. Part 1. Med Intensiva 2017; 41:237-247. [PMID: 28161028 DOI: 10.1016/j.medin.2016.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/30/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022]
Abstract
Traumatic spinal cord injury requires a multidisciplinary approach both for specialized treatment of the acute phase and for dealing with the secondary complications. A suspicion or diagnosis of spinal cord injury is the first step for a correct management. A review is made of the prehospital management and characteristics of the acute phase of spinal cord injury. Respiratory monitoring for early selective intubation, proper identification and treatment of neurogenic shock are essential for the prevention of secondary spinal cord injury. The use of corticosteroids is currently not a standard practice in neuroprotective treatment, and hemodynamic monitoring and early surgical decompression constitute the cornerstones of adequate management. Traumatic spinal cord injury usually occurs as part of multiple trauma, and this can make diagnosis difficult. Neurological examination and correct selection of radiological exams prevent delayed diagnosis of spinal cord injuries, and help to establish the prognosis.
Collapse
Affiliation(s)
- R Galeiras Vázquez
- Unidad de Cuidados Intensivos, Complexo Hospitalario Universitario de A Coruña, A Coruña, España.
| | - M E Ferreiro Velasco
- Unidad de Lesionados Medulares, Complexo Hospitalario Universitario de A Coruña, A Coruña, España
| | - M Mourelo Fariña
- Unidad de Cuidados Intensivos, Complexo Hospitalario Universitario de A Coruña, A Coruña, España
| | - A Montoto Marqués
- Unidad de Lesionados Medulares, Complexo Hospitalario Universitario de A Coruña, A Coruña, España; Departamento de Medicina, Universidad de A Coruña, A Coruña, España
| | - S Salvador de la Barrera
- Unidad de Lesionados Medulares, Complexo Hospitalario Universitario de A Coruña, A Coruña, España
| |
Collapse
|
50
|
Martirosyan NL, Patel AA, Carotenuto A, Kalani MYS, Bohl MA, Preul MC, Theodore N. The role of therapeutic hypothermia in the management of acute spinal cord injury. Clin Neurol Neurosurg 2017; 154:79-88. [PMID: 28131967 DOI: 10.1016/j.clineuro.2017.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 12/18/2022]
Abstract
This review paper investigates the history, efficacy, and administration of systemic and local hypothermia for spinal cord injury (SCI). It summarizes the published experimental and clinical evidence on hypothermia for SCI and analyzes the potential for further research. Early experimental animal research showed that local hypothermia improved recovery and gain of function after acute SCI. However, in the early 1970s, clinical research findings did not coincide with results of these animal trials, which led to a loss of interest in local hypothermia. Since the 1980s, systemic hypothermia has been successfully used to treat SCI in both animals and humans. An abundance of positive evidence suggests that clinical trials are needed to determine the effectiveness of hypothermia for SCI. As a first step, we investigated the published clinical and experimental evidence on the use of hypothermia for SCI patients, who have few available treatment options. We searched PubMed for English-language reports published from 1940 to 2016 containing terms related to SCI treatment using hypothermia. We reviewed all articles on local hypothermia and acute SCI or on systemic hypothermia and acute SCI. Bibliographies of retrieved publications were also screened for additional citations. Ninety-six papers were selected. The clinical use of hypothermia is most successful if applied according to certain optimized parameters (e.g., duration, temperature, time from injury to initiation of cooling, and rewarming time). Preliminary data suggest that modest systemic hypothermia applied for 48h provides the best therapeutic value, but the parameters for use of local hypothermia vary greatly. Experimental evidence and some clinical evidence suggest that both local hypothermia and systemic hypothermia are beneficial for acute SCI. Future research should focus on defining the optimal levels of parameters. Large, multicenter, controlled clinical trials are needed to investigate its therapeutic potential.
Collapse
Affiliation(s)
- Nikolay L Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States; Division of Neurosurgery, University of Arizona, Tucson, AZ, United States
| | - Arpan A Patel
- College of Medicine, University of Arizona, Tucson, AZ, United States
| | | | - M Yashar S Kalani
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Michael A Bohl
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States; Division of Neurosurgery, University of Arizona, Tucson, AZ, United States; College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Nicholas Theodore
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States.
| |
Collapse
|