1
|
Iuffrida L, Spezzano R, Trapella G, Cinti N, Parma L, De Marco A, Palladino G, Bonaldo A, Candela M, Franzellitti S. Physiological plasticity and life history traits affect Chamelea gallina acclimatory responses during a marine heatwave. ENVIRONMENTAL RESEARCH 2024; 263:120287. [PMID: 39491606 DOI: 10.1016/j.envres.2024.120287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The striped venus clam (Chamelea gallina) is a relevant economic resource in the Adriatic Sea. This study explored the physiological status of C. gallina at four sites selected along a gradient from high to low incidence of recorded historical mortality events and low to high productivity in the Northwestern Adriatic Sea. Investigations were performed during the marine heatwave in 2022 (from July to November). The optimal temperature range for C. gallina was exceeded in July and September, exacerbating stress conditions and a poor nutritional status, particularly at the low productivity sites. Transcriptional profiles assessed in digestive glands showed that clams from the low productivity sites up-regulated transcripts related to feeding/digestive functions as a possible compensatory mechanism to withstand adverse environmental conditions. Clams from the high productivity sites, that in a previous study showed enrichment of health-promoting microbiome components, displayed a healthier metabolic makeup (IDH up-regulation) and induction of protective antioxidant and immune responses. These features are hallmarks of putative enhanced resilience of the species towards environmental stress. Despite the well-known high sensitivity of C. gallina to environmental variations and its narrow window of acclimatory potential, results highlight that local conditions may influence physiological plasticity of this clam species and shape either positively or negatively its response capabilities to environmental changes. The identification of health-promoting endogenous mechanisms both from the animal (this study) and from its associated microbiome may provide the foundation for developing novel tools and strategies to improve clam health and production in low productivity areas or under adverse environmental conditions.
Collapse
Affiliation(s)
- Letizia Iuffrida
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, 48123, Ravenna, Italy
| | - Rachele Spezzano
- Ocean EcoSystems Biology Unit, Marine Biological Laboratory, Woods Hole, 02543, Massachussets, United States
| | - Giulia Trapella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126, Bologna, Italy
| | - Nicolo Cinti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126, Bologna, Italy
| | - Luca Parma
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano Emilia, Italy
| | - Antonina De Marco
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano Emilia, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126, Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032, Fano, Italy
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano Emilia, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032, Fano, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126, Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032, Fano, Italy
| | - Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, 48123, Ravenna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032, Fano, Italy.
| |
Collapse
|
2
|
Rankins D, Connor KM, Bryant EE, Lopez J, Nieves DL, Moran M, Wehrle BA. Digestive Enzyme Activities in Mussel Mytilus californianus Endure Acute Heat Exposure in Air. Integr Comp Biol 2024; 64:414-423. [PMID: 38857883 DOI: 10.1093/icb/icae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
The mussel Mytilus californianus is an ecosystem engineer forming beds along the coastlines of Northeastern Pacific shores. As sessile organisms, they modulate their energy balance through valve movements, feeding, and digestive functionality. A recent study observed that activity of the digestive enzyme cellulase was higher than predicted in mussels high on the shore, where temperatures are characteristically high and food availability is limited compared to low-shore habitats. In the current study, we predicted that this scavenging behavior is induced to mitigate energy losses related to heat-shock responses-that cellulase and amylase will display hyperactivity for limited recourses in the face of aerial heating. In the laboratory, we acclimated mussels to three complex diets that differed in starch and cellulose composition, followed by two acute heat shocks (+8°C) in the laboratory. Results showed no hyperactivity of amylase and cellulase in heated mussels. These results differ from previous studies that showed lowered amylase activity following heat acclimation. This difference in amylase activity across heat-stress exposure time is important when analyzing mussel bed disturbances following heat waves that compromise energy balance or cause death within adult populations.
Collapse
Affiliation(s)
- Daniel Rankins
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Kwasi M Connor
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Emily E Bryant
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Jonathan Lopez
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Diana L Nieves
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Matthew Moran
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Beck A Wehrle
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| |
Collapse
|
3
|
Vriesman VP, Bean JR, Palmer HM, Banker RMW. Interpreting life-history traits, seasonal cycles, and coastal climate from an intertidal mussel species: Insights from 9000 years of synthesized stable isotope data. PLoS One 2024; 19:e0302945. [PMID: 38776326 PMCID: PMC11111024 DOI: 10.1371/journal.pone.0302945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
Understanding past coastal variability is valuable for contextualizing modern changes in coastal settings, yet existing Holocene paleoceanographic records for the North American Pacific Coast commonly originate from offshore marine sediments and may not represent the dynamic coastal environment. A potential archive of eastern Pacific Coast environmental variability is the intertidal mussel species Mytilus californianus. Archaeologists have collected copious stable isotopic (δ18O and δ13C) data from M. californianus shells to study human history at California's Channel Islands. When analyzed together, these isotopic data provide windows into 9000 years of Holocene isotopic variability and M. californianus life history. Here we synthesize over 6000 δ18O and δ13C data points from 13 published studies to investigate M. californianus shell isotopic variability across ontogenetic, geographic, seasonal, and millennial scales. Our analyses show that M. californianus may grow and record environmental information more irregularly than expected due to the competing influences of calcification, ontogeny, metabolism, and habitat. Stable isotope profiles with five or more subsamples per shell recorded environmental information ranging from seasonal to millennial scales, depending on the number of shells analyzed and the resolution of isotopic subsampling. Individual shell profiles contained seasonal cycles and an accurate inferred annual temperature range of ~ 5°C, although ontogenetic growth reduction obscured seasonal signals as organisms aged. Collectively, the mussel shell record reflected millennial-scale climate variability and an overall 0.52‰ depletion in δ18Oshell from 8800 BP to the present. The archive also revealed local-scale oceanographic variability in the form of a warmer coastal mainland δ18Oshell signal (-0.32‰) compared to a cooler offshore islands δ18Oshell signal (0.33‰). While M. californianus is a promising coastal archive, we emphasize the need for high-resolution subsampling from multiple individuals to disentangle impacts of calcification, metabolism, ontogeny, and habitat and more accurately infer environmental and biological patterns recorded by an intertidal species.
Collapse
Affiliation(s)
- Veronica Padilla Vriesman
- Department of Geosciences, Oberlin College, Oberlin, Ohio, United States of America
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, United States of America
| | - Jessica R. Bean
- University of California Museum of Paleontology, University of California, Berkeley, Berkeley, California, United States of America
| | - Hannah M. Palmer
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, United States of America
| | - Roxanne M. W. Banker
- Department of Geoscience, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| |
Collapse
|
4
|
Elevated aerial temperature modulates digestive enzyme activities in Mytilus californianus. Comp Biochem Physiol B Biochem Mol Biol 2023; 265:110825. [PMID: 36572236 DOI: 10.1016/j.cbpb.2022.110825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The marine intertidal mussel Mytilus californianus aggregates to form beds along the Pacific shores of North America. As a sessile organism it must cope with fluctuations in temperature during low-tide aerial exposure, which elevates maintenance costs and negatively affects its overall energy budget. The function of its digestive gland is to release enzymes that break apart ingested polymers for subsequent nutrient absorption. The effects of elevated aerial warming acclimation on the functioning of digestive gland enzymes are not well studied. In this study we asked whether digestive gland carbohydases and proteases could be overstimulated in warm condition to possibly mitigate the costs related to the heat-shock response. We compared mussels acclimated to a + 9 °C heat-shock during daily low-tide aerial exposure to mussels acclimated to isothermal tidal conditions in a simulated intertidal system. The results showed fairly consistent activities of cellulase, trypsin, and amino-peptidase across tidal variation and between thermal treatments; however, amylase activity was lower in warmed versus cool mussels across low and high-tide. We also observed the expression of heat-shock genes in gill tissue during warm tidal conditions, suggestive that moderate temperatures during aerial exposure can induce a stress response.
Collapse
|
5
|
Frederick AR, Lee AM, Wehrle BA, Catabay CC, Rankins DR, Clements KD, German DP. Abalone under moderate heat stress have elevated metabolic rates and changes to digestive enzyme activities. Comp Biochem Physiol A Mol Integr Physiol 2022; 270:111230. [PMID: 35537602 DOI: 10.1016/j.cbpa.2022.111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Abalone around the world are subject to increasing frequency of marine heatwaves, yet we have a limited understanding of how acute high temperature events impact the physiology of these commercially and ecologically important species. This study examines the impact of a 5 °C temperature increase over ambient conditions for six weeks on the metabolic rates, digestive enzyme activities in the digestive gland, and digestive efficiency of Red Abalone (Haliotis rufescens) and Pāua (H. iris) on their natural diets. We test the hypothesis that abalone digestive function can keep pace with this increased metabolic demand in two separate experiments, one for each species. H. iris had higher food intake in the heat treatment. Both species had higher metabolic rates in the heat treatment with Q10 = 1.73 and Q10 = 2.46 for H. rufescens and H. iris, respectively. Apparent organic matter digestibility, protein digestibility, and carbohydrate digestibility did not differ between the heat treatment and the ambient (control) treatment in either experiment. H. rufescens exhibited higher maltase, alanine-aminopeptidase, and leucine-aminopeptidase activities in the heat treatment. Amylase, β-glucosidase, trypsin, and alkaline phosphatase activities in the digestive gland tissue did not differ between temperature treatments. H. iris exhibited lower amylase and β-glucosidase activities in the heat treatment, while maltase, trypsin, leucine-aminopeptidase, and alkaline phosphatase activities did not differ between treatments. We conclude that over six weeks of moderate heat stress both abalone species were able to maintain digestive function, but achieved this maintenance in species-specific ways.
Collapse
Affiliation(s)
- Alyssa R Frederick
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.
| | - Ariana M Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.
| | - Beck A Wehrle
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| | - Caitlyn C Catabay
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| | - Daniel R Rankins
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.
| | - Kendall D Clements
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Donovan P German
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.
| |
Collapse
|
6
|
Hydrolysate from Mussel Mytilus galloprovincialis Meat: Enzymatic Hydrolysis, Optimization and Bioactive Properties. Molecules 2021; 26:molecules26175228. [PMID: 34500661 PMCID: PMC8434563 DOI: 10.3390/molecules26175228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Mussel production generates losses and waste since their commercialisation must be aligned with target market criteria. Since mussels are rich in proteins, their meat can be explored as a source of bioactive hydrolysates. Thus, the main objective of this study was to establish the optimal production conditions through two Box–Behnken designs to produce, by enzymatic hydrolysis (using subtilisin and corolase), hydrolysates rich in proteins and with bioactive properties. The factorial design allowed for the evaluation of the effects of three factors (hydrolysis temperature, enzyme ratio, and hydrolysis time) on protein/peptides release as well as antioxidant and anti-hypertensive properties of the hydrolysates. The hydrolysates produced using the optimised conditions using the subtilisin protease showed 45.0 ± 0.38% of protein, antioxidant activity via ORAC method of 485.63 ± 60.65 µmol TE/g of hydrolysate, and an IC50 for the inhibition of ACE of 1.0 ± 0.56 mg of protein/mL. The hydrolysates produced using corolase showed 46.35 ± 1.12% of protein, antioxidant activity of 389.48 ± 0.21 µmol TE/g of hydrolysate, and an IC50 for the inhibition of ACE of 3.7 ± 0.33 mg of protein/mL. Mussel meat losses and waste can be used as a source of hydrolysates rich in peptides with relevant bioactive properties, and showing potential for use as ingredients in different industries, such as food and cosmetics, contributing to a circular economy and reducing world waste.
Collapse
|
7
|
Trestrail C, Walpitagama M, Miranda A, Nugegoda D, Shimeta J. Microplastics alter digestive enzyme activities in the marine bivalve, Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146418. [PMID: 33744572 DOI: 10.1016/j.scitotenv.2021.146418] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Microplastics are eaten by many invertebrates, particularly filter-feeding organisms like mussels. Since microplastics can be retained in the digestive system for extended periods, there is ample opportunity for them to interact with the functions of digestive enzymes. This study determined how the polymer type, size and concentration of ingested spherical microplastics affects the activities of seven key digestive enzymes in the digestive gland of Mytilus galloprovincialis, a common marine mussel. Polymer type significantly affected the activities of carbohydrase enzymes: polystyrene reduced amylase and xylanase activities, and increased cellulase activity. High concentrations of microplastics (5 × 104 microplastics L-1) caused a 2.5-fold increase in total protease activity. The activities of laminarinase, lipases and lipolytic esterases were unaffected by the polymer type, size or concentration of microplastics. Microplastics-induced changes to digestive enzyme activities can affect mussels' ability to acquire energy from food and reduce their energy reserves.
Collapse
Affiliation(s)
- Charlene Trestrail
- Ecotoxicology Research Group, RMIT University, Bundoora West Campus, VIC, Australia; School of Science, RMIT University, Bundoora West Campus, VIC, Australia.
| | - Milanga Walpitagama
- School of Science, RMIT University, Bundoora West Campus, VIC, Australia; Aquatic Environmental Stress research group (AQUEST), RMIT University, Bundoora West Campus, VIC, Australia
| | - Ana Miranda
- Aquatic Environmental Stress research group (AQUEST), RMIT University, Bundoora West Campus, VIC, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, RMIT University, Bundoora West Campus, VIC, Australia; Aquatic Environmental Stress research group (AQUEST), RMIT University, Bundoora West Campus, VIC, Australia
| | - Jeff Shimeta
- School of Science, RMIT University, Bundoora West Campus, VIC, Australia
| |
Collapse
|
8
|
O’Brien CJ, Hong HC, Bryant EE, Connor KM. The observation of starch digestion in blue mussel Mytilus galloprovincialis exposed to microplastic particles under varied food conditions. PLoS One 2021; 16:e0253802. [PMID: 34228739 PMCID: PMC8259976 DOI: 10.1371/journal.pone.0253802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022] Open
Abstract
Microplastic continues to be an environmental concern, especially for filter feeding bivalves known to ingest these particles. It is important to understand the effects of microplastic particles on the physiological performance of these bivalves and many studies have investigated their impact on various physiological processes. This study investigated the effects of microplastic (10 μm) on digestive enzyme (amylase) activity of Mytilus galloprovincialis at 55,000 and 110,000 microplastic particles/L under laboratory conditions. Additionally, our study measured the expression of an isoform of Hsp70 in the gills to assess whether or not these particles may cause protein denaturation. Results revealed that this regime negatively affect the ability of M. galloprovincialis to digest starch under high food conditions but not low food conditions. Exposure to extreme levels of microplastic raised amylase activity. Furthermore, Hsp70 transcript abundance was not elevated in treatment mussels. These results show that mussels may be resilient to current microplastic pollution levels in nature.
Collapse
Affiliation(s)
- C. J. O’Brien
- Department of Biology, California Lutheran University, Thousand Oaks, California, United States of America
| | - Helen C. Hong
- Department of Biology, University of California, Irvine, California, United States of America
| | - Emily E. Bryant
- Department of Biology, University of California, Irvine, California, United States of America
| | - Kwasi M. Connor
- Department of Biology, University of California, Irvine, California, United States of America
| |
Collapse
|
9
|
Nunes B, Simões MI, Navarro JC, Castro BB. First ecotoxicological characterization of paraffin microparticles: a biomarker approach in a marine suspension-feeder, Mytilus sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41946-41960. [PMID: 32705546 DOI: 10.1007/s11356-020-10055-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Microplastics are one of the main environmental pollutants in marine ecosystems, and their presence in seawater is a consequence of the widespread use of plastic materials in modern commodities. This wide usage of plastics includes the employment of microspheres in common personal care products, which end up being ultimately released into the aquatic compartment. Known ecotoxicological effects of microplastics favoured the search for technologically viable and environmentally safer alternatives, such as paraffin wax microparticles, whose ecotoxicological risks have not been entirely characterized. To address this gap, the present study exposed mussels (Mytilus sp.) for 96 h to three densities (5 mg/L, 20 mg/L and 80 mg/L) of four size ranges (100-300 μm, 300-500 μm, 400-850 μm, and 800-1200 μm) of paraffin wax particles. Toxicological endpoints were the activities of four enzymes involved in key cellular processes, including antioxidant defence (catalase (CAT), glutathione reductase (GRed) and glutathione peroxidase (GPx)) and phase II metabolism (glutathione S-transferases (GSTs)), as well as lipid content and fatty acid profiles of the digestive gland. Significant interactions between the presence/absence of food and paraffin particle density were found, as food sometimes worked as a confounding factor in the analysed biomarkers. Despite this uncertainty, some overall patterns emerged. In general, smaller paraffin wax particles (100-300 μm) caused little effects on the activity of the four enzymes tested, whereas larger particles (800-1200 μm) caused significant effects on almost all biomarkers. CAT activity was enhanced in animals exposed to larger paraffin particles, whilst GPx activity was depressed; GRed activity was not affected by the exposure to paraffin particles. The activity of GSTs was enhanced, but only in one tested condition. No effects were observed in terms of the total lipid content and fatty acids of exposed animals. Overall, data obtained in this work suggest that, at densities of paraffin wax particles comparable to the levels found in the environment for microplastic beads, no toxicity is expected to occur in the tested mussel species, by measuring the here-assessed toxicological endpoints.
Collapse
Affiliation(s)
- Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM - Laboratório Associado), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Maria Inês Simões
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Juan Carlos Navarro
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain
| | - Bruno Branco Castro
- Centre of Molecular and Environmental Biology (CBMA) & Department of Biology, University of Minho, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| |
Collapse
|
10
|
Sforzini S, Oliveri C, Orrù A, Chessa G, Pacchioni B, Millino C, Jha AN, Viarengo A, Banni M. Application of a new targeted low density microarray and conventional biomarkers to evaluate the health status of marine mussels: A field study in Sardinian coast, Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:319-328. [PMID: 29444484 DOI: 10.1016/j.scitotenv.2018.01.293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 06/08/2023]
Abstract
In the present study, we investigated the health status of marine mussels (Mytilus galloprovincialis) caged and deployed at three different sites on the Sardinian coastline characterized by different levels of contamination: Fornelli (F, the reference site), Cala Real (CR), and Porto Torres (PT). A new low density oligonucleotide microarray was used to investigate global gene expression in the digestive gland of mussels. Target genes were selected to cover most of the biological processes involved in the stress response in bivalve mollusks (e.g. DNA metabolism, translation, immune response, cytoskeleton organization). A battery of classical biomarkers was also employed to complement the gene expression analyses. Chemical analysis revealed higher loads of heavy metals (Pb and Cu) and total polycyclic aromatic hydrocarbons (PAHs) at PT compared to the other sites. In mussels deployed at CR, functional genomics analysis of the microarray data rendered 78 differentially expressed genes (DEGs) involved in 11 biological processes. Animals exposed at PT had 105 DEGs that were characterized by the regulation of 14 biological processes, including mitochondrial activity, adhesion to substrate, DNA metabolism, translation, metal resistance, and cytoskeleton organization. Biomarker data (lysosomal membrane stability, lysosomal/cytoplasm volume ratio, lipofuscin accumulation, metallothionein content, micronucleus frequency, and cytoskeleton alteration) were in trend with transcriptomic output. Biomarker data were integrated using the Mussel Expert System (MES), allowing defining the area in which the presence of chemicals is toxic for mussels. Our study provides the opportunity to adopt a new approach of integrating transcriptomic (microarray) results with classical biomarkers to assess the impact of pollutants on marine mussels in biomonitoring programs.
Collapse
Affiliation(s)
- Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of EnvironmentalChemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy.
| | - Caterina Oliveri
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy
| | - Andrea Orrù
- Istituto Zooprofilattico Sperimentale della Sardegna, Via F.lli Kennedy 2, 08100 Nuoro, Italy
| | - Giannina Chessa
- Istituto Zooprofilattico Sperimentale della Sardegna, Via F.lli Kennedy 2, 08100 Nuoro, Italy
| | | | | | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Aldo Viarengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of EnvironmentalChemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Mohamed Banni
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, Sousse, Tunisia.
| |
Collapse
|
11
|
McCue MD, Passement CA, Meyerholz DK. Maintenance of Distal Intestinal Structure in the Face of Prolonged Fasting: A Comparative Examination of Species From Five Vertebrate Classes. Anat Rec (Hoboken) 2017; 300:2208-2219. [PMID: 28941363 PMCID: PMC5767472 DOI: 10.1002/ar.23691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/16/2017] [Accepted: 07/10/2017] [Indexed: 12/24/2022]
Abstract
It was recently shown that fasting alters the composition of microbial communities residing in the distal intestinal tract of animals representing five classes of vertebrates [i.e., fishes (tilapia), amphibians (toads), reptiles (leopard geckos), birds (quail), and mammals (mice)]. In this study, we tested the hypothesis that the extent of tissue reorganization in the fasted distal intestine was correlated with the observed changes in enteric microbial diversity. Segments of intestine adjacent to those used for the microbiota study were examined histologically to quantify cross-sectional and mucosal surface areas and thicknesses of mucosa, submucosa, and tunica muscularis. We found no fasting-induced differences in the morphology of distal intestines of the mice (3 days), quail (7 days), or geckos (28 days). The toads, which exhibited a general increase in phylogenetic diversity of their enteric microbiota with fasting, also exhibited reduced mucosal circumference at 14 and 21 days of fasting. Tilapia showed increased phylogenetic diversity of their enteric microbiota, and showed a thickened tunica muscularis at 21 days of fasting; but this morphological change was not related to microbial diversity or absorptive surface area, and thus, is unlikely to functionally match the changes in their microbiome. Given that fasting caused significant increases and reductions in the enteric microbial diversity of mice and quail, respectively, but no detectable changes in distal intestine morphology, we conclude that reorganization is not the primary factor shaping changes in microbial diversity within the fasted colon, and the observed modest structural changes are more related to the fasted state. Anat Rec, 300:2208-2219, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|