1
|
Tillery MML, Zheng C, Zheng Y, Megraw TL. Ninein domains required for its localization, association with partners dynein and ensconsin, and microtubule organization. Mol Biol Cell 2024; 35:ar116. [PMID: 39024292 PMCID: PMC11449388 DOI: 10.1091/mbc.e23-06-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Ninein (Nin) is a microtubule (MT) anchor at the subdistal appendages of mother centrioles and the pericentriolar material (PCM) of centrosomes that also functions to organize MTs at noncentrosomal MT-organizing centers (ncMTOCs). In humans, the NIN gene is mutated in Seckel syndrome, an inherited developmental disorder. Here, we dissect the protein domains involved in Nin's localization and interactions with dynein and ensconsin (ens/MAP7) and show that the association with ens cooperatively regulates MT assembly in Drosophila fat body cells. We define domains of Nin responsible for its localization to the ncMTOC on the fat body cell nuclear surface, localization within the nucleus, and association with Dynein light intermediate chain (Dlic) and ens, respectively. We show that Nin's association with ens synergistically regulates MT assembly. Together, these findings reveal novel features of Nin function and its regulation of a ncMTOC.
Collapse
Affiliation(s)
- Marisa M. L. Tillery
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, 32306-4300
| | - Chunfeng Zheng
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, 32306-4300
| | - Yiming Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China, 361102
- Shenzhen Research Institute of Xiamen University, Shenzhen, China, 518057
| | - Timothy L. Megraw
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, 32306-4300
| |
Collapse
|
2
|
Gilbert T, Gorlt C, Barbier M, Duployer B, Plozza M, Dufrancais O, Martet LE, Dalbard E, Segot L, Tenailleau C, Haren L, Vérollet C, Bierkamp C, Merdes A. Loss of ninein interferes with osteoclast formation and causes premature ossification. eLife 2024; 13:e93457. [PMID: 38836552 PMCID: PMC11175614 DOI: 10.7554/elife.93457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024] Open
Abstract
Ninein is a centrosome protein that has been implicated in microtubule anchorage and centrosome cohesion. Mutations in the human NINEIN gene have been linked to Seckel syndrome and to a rare form of skeletal dysplasia. However, the role of ninein in skeletal development remains unknown. Here, we describe a ninein knockout mouse with advanced endochondral ossification during embryonic development. Although the long bones maintain a regular size, the absence of ninein delays the formation of the bone marrow cavity in the prenatal tibia. Likewise, intramembranous ossification in the skull is more developed, leading to a premature closure of the interfrontal suture. We demonstrate that ninein is strongly expressed in osteoclasts of control mice, and that its absence reduces the fusion of precursor cells into syncytial osteoclasts, whereas the number of osteoblasts remains unaffected. As a consequence, ninein-deficient osteoclasts have a reduced capacity to resorb bone. At the cellular level, the absence of ninein interferes with centrosomal microtubule organization, reduces centrosome cohesion, and provokes the loss of centrosome clustering in multinucleated mature osteoclasts. We propose that centrosomal ninein is important for osteoclast fusion, to enable a functional balance between bone-forming osteoblasts and bone-resorbing osteoclasts during skeletal development.
Collapse
Affiliation(s)
- Thierry Gilbert
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Camille Gorlt
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
- Institut de Pharmacologie et de Biologie Structurale, UMR5089, CNRS & Université Paul SabatierToulouseFrance
| | - Merlin Barbier
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | | | - Marianna Plozza
- Institut de Pharmacologie et de Biologie Structurale, UMR5089, CNRS & Université Paul SabatierToulouseFrance
| | - Ophélie Dufrancais
- Institut de Pharmacologie et de Biologie Structurale, UMR5089, CNRS & Université Paul SabatierToulouseFrance
| | - Laure-Elene Martet
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Elisa Dalbard
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Loelia Segot
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | | | - Laurence Haren
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Christel Vérollet
- Institut de Pharmacologie et de Biologie Structurale, UMR5089, CNRS & Université Paul SabatierToulouseFrance
- International Research Project CNRS “MAC-TB/HIV”ToulouseFrance
| | - Christiane Bierkamp
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Andreas Merdes
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| |
Collapse
|
3
|
Inwood SN, Harrop TWR, Shields MW, Goldson SL, Dearden PK. Immune system modulation & virus transmission during parasitism identified by multi-species transcriptomics of a declining insect biocontrol system. BMC Genomics 2024; 25:311. [PMID: 38532315 DOI: 10.1186/s12864-024-10215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The Argentine stem weevil (ASW, Listronotus bonariensis) is a significant pasture pest in Aotearoa New Zealand, primarily controlled by the parasitoid biocontrol agent Microctonus hyperodae. Despite providing effective control of ASW soon after release, M. hyperodae parasitism rates have since declined significantly, with ASW hypothesised to have evolved resistance to its biocontrol agent. While the parasitism arsenal of M. hyperodae has previously been investigated, revealing many venom components and an exogenous novel DNA virus Microctonus hyperodae filamentous virus (MhFV), the effects of said arsenal on gene expression in ASW during parasitism have not been examined. In this study, we performed a multi-species transcriptomic analysis to investigate the biology of ASW parasitism by M. hyperodae, as well as the decline in efficacy of this biocontrol system. RESULTS The transcriptomic response of ASW to parasitism by M. hyperodae involves modulation of the weevil's innate immune system, flight muscle components, and lipid and glucose metabolism. The multispecies approach also revealed continued expression of venom components in parasitised ASW, as well as the transmission of MhFV to weevils during parasitism and some interrupted parasitism attempts. Transcriptomics did not detect a clear indication of parasitoid avoidance or other mechanisms to explain biocontrol decline. CONCLUSIONS This study has expanded our understanding of interactions between M. hyperodae and ASW in a biocontrol system of critical importance to Aotearoa-New Zealand's agricultural economy. Transmission of MhFV to ASW during successful and interrupted parasitism attempts may link to a premature mortality phenomenon in ASW, hypothesised to be a result of a toxin-antitoxin system. Further research into MhFV and its potential role in ASW premature mortality is required to explore whether manipulation of this viral infection has the potential to increase biocontrol efficacy in future.
Collapse
Affiliation(s)
- Sarah N Inwood
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Thomas W R Harrop
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, New Zealand
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Morgan W Shields
- BioProtection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Stephen L Goldson
- Biocontrol and Biosecurity Group, AgResearch Limited, Lincoln, Aotearoa, New Zealand
| | - Peter K Dearden
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
4
|
He L, van Beem L, Snel B, Hoogenraad CC, Harterink M. PTRN-1 (CAMSAP) and NOCA-2 (NINEIN) are required for microtubule polarity in Caenorhabditis elegans dendrites. PLoS Biol 2022; 20:e3001855. [PMID: 36395330 PMCID: PMC9714909 DOI: 10.1371/journal.pbio.3001855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/01/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
The neuronal microtubule cytoskeleton is key to establish axon-dendrite polarity. Dendrites are characterized by the presence of minus-end out microtubules. However, the mechanisms that organize these microtubules with the correct orientation are still poorly understood. Using Caenorhabditis elegans as a model system for microtubule organization, we characterized the role of 2 microtubule minus-end related proteins in this process, the microtubule minus-end stabilizing protein calmodulin-regulated spectrin-associated protein (CAMSAP/PTRN-1), and the NINEIN homologue, NOCA-2 (noncentrosomal microtubule array). We found that CAMSAP and NINEIN function in parallel to mediate microtubule organization in dendrites. During dendrite outgrowth, RAB-11-positive vesicles localized to the dendrite tip to nucleate microtubules and function as a microtubule organizing center (MTOC). In the absence of either CAMSAP or NINEIN, we observed a low penetrance MTOC vesicles mislocalization to the cell body, and a nearly fully penetrant phenotype in double mutant animals. This suggests that both proteins are important for localizing the MTOC vesicles to the growing dendrite tip to organize microtubules minus-end out. Whereas NINEIN localizes to the MTOC vesicles where it is important for the recruitment of the microtubule nucleator γ-tubulin, CAMSAP localizes around the MTOC vesicles and is cotranslocated forward with the MTOC vesicles upon dendritic growth. Together, these results indicate that microtubule nucleation from the MTOC vesicles and microtubule stabilization are both important to localize the MTOC vesicles distally to organize dendritic microtubules minus-end out.
Collapse
Affiliation(s)
- Liu He
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Lotte van Beem
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Casper C. Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Department of Neuroscience, Genentech, Inc., South San Francisco, California, United States of America
| | - Martin Harterink
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
5
|
Subcellular spatial transcriptomics identifies three mechanistically different classes of localizing RNAs. Nat Commun 2022; 13:6355. [PMID: 36289223 PMCID: PMC9606379 DOI: 10.1038/s41467-022-34004-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/03/2022] [Indexed: 12/25/2022] Open
Abstract
Intracellular RNA localization is a widespread and dynamic phenomenon that compartmentalizes gene expression and contributes to the functional polarization of cells. Thus far, mechanisms of RNA localization identified in Drosophila have been based on a few RNAs in different tissues, and a comprehensive mechanistic analysis of RNA localization in a single tissue is lacking. Here, by subcellular spatial transcriptomics we identify RNAs localized in the apical and basal domains of the columnar follicular epithelium (FE) and we analyze the mechanisms mediating their localization. Whereas the dynein/BicD/Egl machinery controls apical RNA localization, basally-targeted RNAs require kinesin-1 to overcome a default dynein-mediated transport. Moreover, a non-canonical, translation- and dynein-dependent mechanism mediates apical localization of a subgroup of dynein-activating adaptor-encoding RNAs (BicD, Bsg25D, hook). Altogether, our study identifies at least three mechanisms underlying RNA localization in the FE, and suggests a possible link between RNA localization and dynein/dynactin/adaptor complex formation in vivo.
Collapse
|
6
|
Vineethakumari C, Lüders J. Microtubule Anchoring: Attaching Dynamic Polymers to Cellular Structures. Front Cell Dev Biol 2022; 10:867870. [PMID: 35309944 PMCID: PMC8927778 DOI: 10.3389/fcell.2022.867870] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 01/01/2023] Open
Abstract
Microtubules are dynamic, filamentous polymers composed of α- and β-tubulin. Arrays of microtubules that have a specific polarity and distribution mediate essential processes such as intracellular transport and mitotic chromosome segregation. Microtubule arrays are generated with the help of microtubule organizing centers (MTOC). MTOCs typically combine two principal activities, the de novo formation of microtubules, termed nucleation, and the immobilization of one of the two ends of microtubules, termed anchoring. Nucleation is mediated by the γ-tubulin ring complex (γTuRC), which, in cooperation with its recruitment and activation factors, provides a template for α- and β-tubulin assembly, facilitating formation of microtubule polymer. In contrast, the molecules and mechanisms that anchor newly formed microtubules at MTOCs are less well characterized. Here we discuss the mechanistic challenges underlying microtubule anchoring, how this is linked with the molecular activities of known and proposed anchoring factors, and what consequences defective microtubule anchoring has at the cellular and organismal level.
Collapse
|
7
|
Bergalet J, Patel D, Legendre F, Lapointe C, Benoit Bouvrette LP, Chin A, Blanchette M, Kwon E, Lécuyer E. Inter-dependent Centrosomal Co-localization of the cen and ik2 cis-Natural Antisense mRNAs in Drosophila. Cell Rep 2021; 30:3339-3352.e6. [PMID: 32160541 DOI: 10.1016/j.celrep.2020.02.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/24/2019] [Accepted: 02/10/2020] [Indexed: 11/30/2022] Open
Abstract
Overlapping genes are prevalent in most genomes, but the extent to which this organization influences regulatory events operating at the post-transcriptional level remains unclear. Studying the cen and ik2 genes of Drosophila melanogaster, which are convergently transcribed as cis-natural antisense transcripts (cis-NATs) with overlapping 3' UTRs, we found that their encoded mRNAs strikingly co-localize to centrosomes. These transcripts physically interact in a 3' UTR-dependent manner, and the targeting of ik2 requires its 3' UTR sequence and the presence of cen mRNA, which serves as the main driver of centrosomal co-localization. The cen transcript undergoes localized translation in proximity to centrosomes, and its localization is perturbed by polysome-disrupting drugs. By interrogating global fractionation-sequencing datasets generated from Drosophila and human cellular models, we find that RNAs expressed as cis-NATs tend to co-localize to specific subcellular fractions. This work suggests that post-transcriptional interactions between RNAs with complementary sequences can dictate their localization fate in the cytoplasm.
Collapse
Affiliation(s)
- Julie Bergalet
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Dhara Patel
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire and Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Félix Legendre
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire and Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Catherine Lapointe
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Louis Philip Benoit Bouvrette
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire and Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Ashley Chin
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | | | - Eunjeong Kwon
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire and Programme de Biologie Moléculaire, Université de Montréal, Montréal, QC, Canada; Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
8
|
Hall NA, Hehnly H. A centriole's subdistal appendages: contributions to cell division, ciliogenesis and differentiation. Open Biol 2021; 11:200399. [PMID: 33561384 PMCID: PMC8061701 DOI: 10.1098/rsob.200399] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The centrosome is a highly conserved structure composed of two centrioles surrounded by pericentriolar material. The mother, and inherently older, centriole has distal and subdistal appendages, whereas the daughter centriole is devoid of these appendage structures. Both appendages have been primarily linked to functions in cilia formation. However, subdistal appendages present with a variety of potential functions that include spindle placement, chromosome alignment, the final stage of cell division (abscission) and potentially cell differentiation. Subdistal appendages are particularly interesting in that they do not always display a conserved ninefold symmetry in appendage organization on the mother centriole across eukaryotic species, unlike distal appendages. In this review, we aim to differentiate both the morphology and role of the distal and subdistal appendages, with a particular focus on subdistal appendages.
Collapse
Affiliation(s)
- Nicole A Hall
- Department of Biology, Syracuse University, Syracuse NY, USA
| | - Heidi Hehnly
- Department of Biology, Syracuse University, Syracuse NY, USA
| |
Collapse
|
9
|
Ryder PV, Lerit DA. Quantitative analysis of subcellular distributions with an open-source, object-based tool. Biol Open 2020; 9:bio055228. [PMID: 32973081 PMCID: PMC7595693 DOI: 10.1242/bio.055228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023] Open
Abstract
The subcellular localization of objects, such as organelles, proteins, or other molecules, instructs cellular form and function. Understanding the underlying spatial relationships between objects through colocalization analysis of microscopy images is a fundamental approach used to inform biological mechanisms. We generated an automated and customizable computational tool, the SubcellularDistribution pipeline, to facilitate object-based image analysis from three-dimensional (3D) fluorescence microcopy images. To test the utility of the SubcellularDistribution pipeline, we examined the subcellular distribution of mRNA relative to centrosomes within syncytial Drosophila embryos. Centrosomes are microtubule-organizing centers, and RNA enrichments at centrosomes are of emerging importance. Our open-source and freely available software detected RNA distributions comparably to commercially available image analysis software. The SubcellularDistribution pipeline is designed to guide the user through the complete process of preparing image analysis data for publication, from image segmentation and data processing to visualization.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Pearl V Ryder
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dorothy A Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Yasuda Y, Sakai A, Ito S, Sasai K, Ishizaki A, Okano Y, Kawahara S, Jitsumori Y, Yamamoto H, Matsubara N, Shimizu K, Katayama H. Human NINEIN polymorphism at codon 1111 is associated with the risk of colorectal cancer. Biomed Rep 2020; 13:45. [PMID: 32934817 DOI: 10.3892/br.2020.1352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/07/2020] [Indexed: 01/11/2023] Open
Abstract
NINEIN serves an essential role in centrosome function as a microtubule organizing center, and in the reformation of the interphase centrosome architecture following mitosis. In the present study, the association between NINEIN Pro1111Ala (rs2236316), a missense single nucleotide polymorphism, and the risk of colorectal cancer (CRC), related to smoking and alcohol consumption habits in 200 patients with CRC and 1,141 cancer-free control participants were assessed in a case-control study performed in Japan. The results showed that the NINEIN Ala/Ala genotype compared with the Pro/Pro genotype was significantly more associated with an increased risk of CRC, and the males with the Ala/Ala genotype exhibited a significantly increased risk of CRC compared with those with Pro/Pro and Pro/Ala genotypes. Stratified analyses of the Ala/Ala genotype with CRC risk further showed an increased association in never/light drinkers (<23 g of ethanol/day), in male never/light drinkers and in male patients with rectal cancer. These findings suggest that the genetic variant of the NINEIN Pro1111Ala polymorphism has a significant effect on CRC susceptibility in the Japanese population.
Collapse
Affiliation(s)
- Yukiko Yasuda
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Akiko Sakai
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Sachio Ito
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kaori Sasai
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Akisada Ishizaki
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yoshiya Okano
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Seito Kawahara
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yoshimi Jitsumori
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Nagahide Matsubara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kenji Shimizu
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroshi Katayama
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
11
|
Chaudhuri A, Das S, Das B. Localization elements and zip codes in the intracellular transport and localization of messenger RNAs in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1591. [PMID: 32101377 DOI: 10.1002/wrna.1591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
Intracellular trafficking and localization of mRNAs provide a mechanism of regulation of expression of genes with excellent spatial control. mRNA localization followed by localized translation appears to be a mechanism of targeted protein sorting to a specific cell-compartment, which is linked to the establishment of cell polarity, cell asymmetry, embryonic axis determination, and neuronal plasticity in metazoans. However, the complexity of the mechanism and the components of mRNA localization in higher organisms prompted the use of the unicellular organism Saccharomyces cerevisiae as a simplified model organism to study this vital process. Current knowledge indicates that a variety of mRNAs are asymmetrically and selectively localized to the tip of the bud of the daughter cells, to the vicinity of endoplasmic reticulum, mitochondria, and nucleus in this organism, which are connected to diverse cellular processes. Interestingly, specific cis-acting RNA localization elements (LEs) or RNA zip codes play a crucial role in the localization and trafficking of these localized mRNAs by providing critical binding sites for the specific RNA-binding proteins (RBPs). In this review, we present a comprehensive account of mRNA localization in S. cerevisiae, various types of localization elements influencing the mRNA localization, and the RBPs, which bind to these LEs to implement a number of vital physiological processes. Finally, we emphasize the significance of this process by highlighting their connection to several neuropathological disorders and cancers. This article is categorized under: RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Anusha Chaudhuri
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
12
|
Zheng Y, Buchwalter RA, Zheng C, Wight EM, Chen JV, Megraw TL. A perinuclear microtubule-organizing centre controls nuclear positioning and basement membrane secretion. Nat Cell Biol 2020; 22:297-309. [PMID: 32066907 PMCID: PMC7161059 DOI: 10.1038/s41556-020-0470-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022]
Abstract
Non-centrosomal microtubule-organizing centres (ncMTOCs) have a variety of roles presumed to serve the diverse functions of the range of cell types in which they are found. ncMTOCs are diverse in their composition, subcellular localization, and function. Here we report a perinuclear MTOC in Drosophila fat body cells that is anchored by Msp300/Nesprin at the cytoplasmic surface of the nucleus. Msp300 recruits the MT minus-end protein Patronin/CAMSAP, which functions redundantly with Ninein to further recruit the MT polymerase Msps/XMAP215 to assemble non-centrosomal MTs and does so independently of the widespread MT nucleation factor γ-tubulin. Functionally, the fat body ncMTOC and the radial MT arrays it organizes is essential for nuclear positioning and for secretion of basement membrane components via retrograde dynein-dependent endosomal trafficking that restricts plasma membrane growth. Together, this study identifies a perinuclear ncMTOC with unique architecture and MT regulation properties that serves vital functions.
Collapse
Affiliation(s)
- Yiming Zheng
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA.
| | - Rebecca A Buchwalter
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Chunfeng Zheng
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Elise M Wight
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Jieyan V Chen
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA.,Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
13
|
Berihulay H, Li Y, Gebrekidan B, Gebreselassie G, Liu X, Jiang L, Ma Y. Whole Genome Resequencing Reveals Selection Signatures Associated With Important Traits in Ethiopian Indigenous Goat Populations. Front Genet 2019; 10:1190. [PMID: 31850061 PMCID: PMC6892828 DOI: 10.3389/fgene.2019.01190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Ethiopia is considered as the main gateway for the introduction of livestock species, including goat, to the African continent. Ethiopian goats are characterized by their unique adaptive ability, and different physical characteristics in terms of morphology, body size, coat colors, and other important traits. The comparative population genomic analysis provides useful genomic information associated with important traits. Whole-genome resequencing of 44 Ethiopian indigenous goats produced 16 million single-nucleotide polymorphisms (SNPs) as well as 123,577 insertions and deletions. Specifically, 11,137,576, 10,760,581, 10,833,847, 12,229,657 and 10,749,996 putative SNPs were detected in Abergelle, Afar, Begait, Central Highland and Meafure goat populations, respectively. In this study, we used population differentiation (FST) and pooled heterozygosity (HP) Cbased approaches. From the FST analysis, we identified 480 outlier windows. The HP approach detected 108 and 205 outlier windows for Abergelle, and Begait, respectively. About 11 and 5 genes under selective signals were common for both approaches that were associated with important traits. After genome annotation, we found 41 Gene ontology (GO) terms (12 in biological processes, 8 in cellular components and 11 in the molecular function) and 10 Kyoto Encyclopedia of Genes and Genomes pathways. Several of the candidate genes are involved in the reproduction, body weight, fatty acids, and disease related traits. Our investigation contributes to deliver valuable genetic information and paves the way to design conservation strategy, breed management, genetic improvement, and utilization programs. The genomic resources generated in the study will offer an opportunity for further investigations.
Collapse
Affiliation(s)
- Haile Berihulay
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Veterinary Science, Mekelle University, Mekelle, Ethiopia
| | - Yefang Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Berihu Gebrekidan
- College of Veterinary Science, Mekelle University, Mekelle, Ethiopia
| | | | - Xuexue Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Salva-Pastor N, Chávez-Tapia NC, Uribe M, Nuño-Lámbarri N. Understanding the association of polycystic ovary syndrome and non-alcoholic fatty liver disease. J Steroid Biochem Mol Biol 2019; 194:105445. [PMID: 31381969 DOI: 10.1016/j.jsbmb.2019.105445] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among reproductive-age women. Patients with non-alcoholic fatty liver disease (NAFLD) often suffer from metabolic syndrome, atherosclerosis, ischemic heart disease, and extrahepatic tumors, conferring a lower survival than the general population; therefore it is crucial to study the association between NAFLD and PCOS since it remains poorly understood. Insulin resistance (IR) plays a central role in the pathogenesis of NAFLD and PCOS; also, hyperandrogenism enhances IR in these patients. IR, present in the NAFLD-PCOS association could decrease the hepatic production of sex hormone-binding globulin through a possible regulation mediated by hepatocyte nuclear factor 4 alpha. On the other hand, apoptotic processes initiated by androgens actively contribute to the progression of NAFLD. Considering the association between the two conditions, the screening of women with PCOS for the presence of NAFLD appears reasonable. The pathophysiological mechanisms of PCOS-NAFLD association and the initial approach will be reviewed here.
Collapse
Affiliation(s)
- Nicolás Salva-Pastor
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico; School of Medicine, Benemérita Universidad Autónoma de Puebla, 13 Sur 2702, Los Volcanes, Z.C. 72420, Puebla, Mexico.
| | - Norberto C Chávez-Tapia
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico; Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico.
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico.
| | - Natalia Nuño-Lámbarri
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra Tlalpan, Z.C. 14050, Mexico City, Mexico.
| |
Collapse
|
15
|
Abstract
Microtubules are cytoskeletal filaments essential for numerous aspects of cell physiology. They are polarized polymeric tubes with a fast growing plus end and a slow growing minus end. In this Cell Science at a Glance article and the accompanying poster, we review the current knowledge on the dynamics and organization of microtubule minus ends. Several factors, including the γ-tubulin ring complex, CAMSAP/Patronin, ASPM/Asp, SPIRAL2 (in plants) and the KANSL complex recognize microtubule minus ends and regulate their nucleation, stability and interactions with partners, such as microtubule severing enzymes, microtubule depolymerases and protein scaffolds. Together with minus-end-directed motors, these microtubule minus-end targeting proteins (-TIPs) also control the formation of microtubule-organizing centers, such as centrosomes and spindle poles, and mediate microtubule attachment to cellular membrane structures, including the cell cortex, Golgi complex and the cell nucleus. Structural and functional studies are starting to reveal the molecular mechanisms by which dynamic -TIP networks control microtubule minus ends.
Collapse
Affiliation(s)
- Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland .,University of Basel, Biozentrum, CH-4056 Basel, Switzerland
| |
Collapse
|
16
|
Lecland N, Hsu CY, Chemin C, Merdes A, Bierkamp C. Epidermal development requires ninein for spindle orientation and cortical microtubule organization. Life Sci Alliance 2019; 2:2/2/e201900373. [PMID: 30923192 PMCID: PMC6441496 DOI: 10.26508/lsa.201900373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
In the epidermis, ninein affects spindle orientation of progenitor cells, as well as cortical microtubule organization, desmosome assembly, and lamellar body secretion in differentiating cells. In mammalian skin, ninein localizes to the centrosomes of progenitor cells and relocates to the cell cortex upon differentiation of keratinocytes, where cortical arrays of microtubules are formed. To examine the function of ninein in skin development, we use epidermis-specific and constitutive ninein-knockout mice to demonstrate that ninein is necessary for maintaining regular protein levels of the differentiation markers filaggrin and involucrin, for the formation of desmosomes, for the secretion of lamellar bodies, and for the formation of the epidermal barrier. Ninein-deficient mice are viable but develop a thinner skin with partly impaired epidermal barrier. We propose two underlying mechanisms: first, ninein contributes to spindle orientation during the division of progenitor cells, whereas its absence leads to misoriented cell divisions, altering the pool of progenitor cells. Second, ninein is required for the cortical organization of microtubules in differentiating keratinocytes, and for the cortical re-localization of microtubule-organizing proteins, and may thus affect any mechanisms that depend on localized microtubule-dependent transport.
Collapse
Affiliation(s)
- Nicolas Lecland
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - Chiung-Yueh Hsu
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - Cécile Chemin
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - Andreas Merdes
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - Christiane Bierkamp
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| |
Collapse
|
17
|
Rosen JN, Azevedo M, Soffar DB, Boyko VP, Brendel MB, Schulman VK, Baylies MK. The Drosophila Ninein homologue Bsg25D cooperates with Ensconsin in myonuclear positioning. J Cell Biol 2019; 218:524-540. [PMID: 30626718 PMCID: PMC6363458 DOI: 10.1083/jcb.201808176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023] Open
Abstract
Rosen et al. identify a role for the centrosomal protein Bsg25D/Ninein in nuclear positioning and microtubule organization in Drosophila muscle fibers. Genetic, cell biological, and atomic force microscopy analyses demonstrate that complex interactions between Bsg25D and the microtubule-associated protein Ensconsin govern myonuclear positioning in Drosophila. Skeletal muscle consists of multinucleated cells in which the myonuclei are evenly spaced throughout the cell. In Drosophila, this pattern is established in embryonic myotubes, where myonuclei move via microtubules (MTs) and the MT-associated protein Ensconsin (Ens)/MAP7, to achieve their distribution. Ens regulates multiple aspects of MT biology, but little is known about how Ens itself is regulated. We find that Ens physically interacts and colocalizes with Bsg25D, the Drosophila homologue of the centrosomal protein Ninein. Bsg25D loss enhances myonuclear positioning defects in embryos sensitized by partial Ens loss. Bsg25D overexpression causes severe positioning defects in immature myotubes and fully differentiated myofibers, where it forms ectopic MT organizing centers, disrupts perinuclear MT arrays, reduces muscle stiffness, and decreases larval crawling velocity. These studies define a novel relationship between Ens and Bsg25D. At endogenous levels, Bsg25D positively regulates Ens activity during myonuclear positioning, but excess Bsg25D disrupts Ens localization and MT organization, with disastrous consequences for myonuclear positioning and muscle function.
Collapse
Affiliation(s)
- Jonathan N Rosen
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mafalda Azevedo
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY.,Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - David B Soffar
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vitaly P Boyko
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY.,Molecular Cytology Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Matthew B Brendel
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY.,Molecular Cytology Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Victoria K Schulman
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY.,Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY
| | - Mary K Baylies
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY .,Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY
| |
Collapse
|
18
|
Bioinformatics Approaches to Gain Insights into cis-Regulatory Motifs Involved in mRNA Localization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:165-194. [PMID: 31811635 DOI: 10.1007/978-3-030-31434-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Messenger RNA (mRNA) is a fundamental intermediate in the expression of proteins. As an integral part of this important process, protein production can be localized by the targeting of mRNA to a specific subcellular compartment. The subcellular destination of mRNA is suggested to be governed by a region of its primary sequence or secondary structure, which consequently dictates the recruitment of trans-acting factors, such as RNA-binding proteins or regulatory RNAs, to form a messenger ribonucleoprotein particle. This molecular ensemble is requisite for precise and spatiotemporal control of gene expression. In the context of RNA localization, the description of the binding preferences of an RNA-binding protein defines a motif, and one, or more, instance of a given motif is defined as a localization element (zip code). In this chapter, we first discuss the cis-regulatory motifs previously identified as mRNA localization elements. We then describe motif representation in terms of entropy and information content and offer an overview of motif databases and search algorithms. Finally, we provide an outline of the motif topology of asymmetrically localized mRNA molecules.
Collapse
|
19
|
Coming into Focus: Mechanisms of Microtubule Minus-End Organization. Trends Cell Biol 2018; 28:574-588. [PMID: 29571882 DOI: 10.1016/j.tcb.2018.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/17/2018] [Accepted: 02/27/2018] [Indexed: 11/22/2022]
Abstract
Microtubule organization has a crucial role in regulating cell architecture. The geometry of microtubule arrays strongly depends on the distribution of sites responsible for microtubule nucleation and minus-end attachment. In cycling animal cells, the centrosome often represents a dominant microtubule-organizing center (MTOC). However, even in cells with a radial microtubule system, many microtubules are not anchored at the centrosome, but are instead linked to the Golgi apparatus or other structures. Non-centrosomal microtubules predominate in many types of differentiated cell and in mitotic spindles. In this review, we discuss recent advances in understanding how the organization of centrosomal and non-centrosomal microtubule networks is controlled by proteins involved in microtubule nucleation and specific factors that recognize free microtubule minus ends and regulate their localization and dynamics.
Collapse
|
20
|
Microtubule-Organizing Centers: Towards a Minimal Parts List. Trends Cell Biol 2017; 28:176-187. [PMID: 29173799 DOI: 10.1016/j.tcb.2017.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022]
Abstract
Despite decades of molecular analysis of the centrosome, an important microtubule-organizing center (MTOC) of animal cells, the molecular basis of microtubule organization remains obscure. A major challenge is the sheer complexity of the interplay of the hundreds of proteins that constitute the centrosome. However, this complexity owes not only to the centrosome's role as a MTOC but also to the requirements of its duplication cycle and to various other functions such as the formation of cilia, the integration of various signaling pathways, and the organization of actin filaments. Thus, rather than using the parts lists to reconstruct the centrosome, we propose to identify the subset of proteins minimally needed to assemble a MTOC and to study this process at non-centrosomal sites.
Collapse
|
21
|
Abstract
Cells are highly organized entities that rely on intricate addressing mechanisms to sort their constituent molecules to precise subcellular locations. These processes are crucial for cells to maintain their proper organization and carry out specialized functions in the body, consequently genetic perturbations that clog up these addressing systems can contribute to disease aetiology. The trafficking of RNA molecules represents an important layer in the control of cellular organization, a process that is both highly prevalent and for which features of the regulatory machineries have been deeply conserved evolutionarily. RNA localization is commonly driven by trans-regulatory factors, including RNA binding proteins at the core, which recognize specific cis-acting zipcode elements within the RNA transcripts. Here, we first review the functions and biological benefits of intracellular RNA trafficking, from the perspective of both coding and non-coding RNAs. Next, we discuss the molecular mechanisms that modulate this localization, emphasizing the diverse features of the cis- and trans-regulators involved, while also highlighting emerging technologies and resources that will prove instrumental in deciphering RNA targeting pathways. We then discuss recent findings that reveal how co-transcriptional regulatory mechanisms operating in the nucleus can dictate the downstream cytoplasmic localization of RNAs. Finally, we survey the growing number of human diseases in which RNA trafficking pathways are impacted, including spinal muscular atrophy, Alzheimer's disease, fragile X syndrome and myotonic dystrophy. Such examples highlight the need to further dissect RNA localization mechanisms, which could ultimately pave the way for the development of RNA-oriented diagnostic and therapeutic strategies. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Ashley Chin
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada
| | - Eric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, Quebec, Canada.
| |
Collapse
|