1
|
Sarkar T, Patro N, Patro IK. Perinatal exposure to synergistic multiple stressors lead to cellular and behavioral deficits mimicking Schizophrenia like pathology. Biol Open 2022; 11:274201. [PMID: 35107124 PMCID: PMC8918990 DOI: 10.1242/bio.058870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
Protein malnourishment and immune stress are potent perinatal stressors, encountered by children born under poor socioeconomic conditions. Thus, it is necessary to investigate how such stressors synergistically contribute towards developing neurological disorders in affected individuals. Pups from Wistar females, maintained on normal (high-protein, HP:20%) and low-protein (LP:8%) diets were used. Single and combined exposures of Poly I:C (viral mimetic: 5 mg/kg body weight) and Lipopolysaccharide (LPS; bacterial endotoxin: 0.3 mg/kg body weight) were injected to both HP and LP pups at postnatal days (PND) 3 and 9 respectively, creating eight groups: HP (control); HP+Poly I:C; HP+LPS; HP+Poly I:C+LPS; LP; LP+Poly I:C; LP+LPS; LP+Poly I:C+LPS (multi-hit). The effects of stressors on hippocampal cytoarchitecture and behavioral abilities were studied at PND 180. LP animals were found to be more vulnerable to immune stressors than HP animals and symptoms like neuronal damage, spine loss, downregulation of Egr 1 and Arc proteins, gliosis and behavioral deficits were maximum in the multi-hit group. Thus, from these findings it is outlined that cellular and behavioral changes that occur following multi-hit exposure may predispose individuals to developing Schizophrenia-like pathologies during adulthood. Summary: This study reports that exposure to perinatal multi-hit stress (protein malnourishment and immune stress) causes changes in the hippocampal cells alongside behavioral deficits which are also observed in Schizophrenic condition.
Collapse
Affiliation(s)
- Tiyasha Sarkar
- School of Studies in Neuroscience, Jiwaji University, Gwalior-474011, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior-474011, India
| | - Ishan Kumar Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior-474011, India
| |
Collapse
|
2
|
Almeida Barros WM, de Sousa Fernandes MS, Silva RKP, da Silva KG, da Silva Souza AP, Rodrigues Marques Silva M, da Silva ABJ, Jurema Santos GC, Dos Santos MERA, do Carmo TS, de Souza SL, de Oliveira Nogueira Souza V. Does the enriched environment alter memory capacity in malnourished rats by modulating BDNF expression? J Appl Biomed 2021; 19:125-132. [PMID: 34907761 DOI: 10.32725/jab.2021.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/03/2021] [Indexed: 11/05/2022] Open
Abstract
Environmental factors interfere in the neural plasticity processes. Among these, malnutrition in the early stages of life stands out as one of the main non-genetic factors that can interfere in the morphofunctional development of the nervous system. Furthermore, sensory stimulation from enriched environments (EE) also interferes with neural development. These two factors can modify areas related to memory and learning as the hippocampus, through mechanisms related to the gene expression of brain-derived neurotrophic factor (BDNF). The BDNF may interfere in synaptic plasticity processes, such as memory. In addition, these changes in early life may affect the functioning of the hippocampus during adulthood through mechanisms mediated by BDNF. Therefore, this study aims to conduct a literature review on the effects of early malnutrition on memory and the relationship between the underlying mechanisms of EE, BDNF gene expression, and memory. In addition, there are studies that demonstrate the effect of EE reversal on exposure to changes in the functioning of hippocampal malnutrition in adult rats that were prematurely malnourished. Thereby, evidence from the scientific literature suggests that the mechanisms of synaptic plasticity in the hippocampus of adult animals are influenced by malnutrition and EE, and these alterations may involve the participation of BDNF as a key regulator in memory processes in the adult animal hippocampus.
Collapse
Affiliation(s)
- Waleska Maria Almeida Barros
- Universidade Federal de Pernambuco, Programa de Pos-graduacao em Neuropsiquiatria e Ciencias do Comportamento, Recife, Brasil.,Centro Universitario Facol / Centro Integrado de Tecnologias em Neurociencia (CITENC), Vitoria de Santo Antao, Brasil
| | | | - Roberta Karlize Pereira Silva
- Centro Universitario Facol / Centro Integrado de Tecnologias em Neurociencia (CITENC), Vitoria de Santo Antao, Brasil
| | - Karollainy Gomes da Silva
- Centro Universitario Facol / Centro Integrado de Tecnologias em Neurociencia (CITENC), Vitoria de Santo Antao, Brasil
| | - Ana Patricia da Silva Souza
- Universidade Federal de Pernambuco, Programa de Pos-graduacao em Neuropsiquiatria e Ciencias do Comportamento, Recife, Brasil.,Centro Universitario Facol / Centro Integrado de Tecnologias em Neurociencia (CITENC), Vitoria de Santo Antao, Brasil
| | - Mariluce Rodrigues Marques Silva
- Universidade Federal de Pernambuco, Programa de Pos-graduacao em Neuropsiquiatria e Ciencias do Comportamento, Recife, Brasil.,Centro Universitario Facol / Centro Integrado de Tecnologias em Neurociencia (CITENC), Vitoria de Santo Antao, Brasil
| | - Ana Beatriz Januario da Silva
- Universidade Federal de Pernambuco, Programa de Pos-graduacao em Neuropsiquiatria e Ciencias do Comportamento, Recife, Brasil.,Centro Universitario Facol / Centro Integrado de Tecnologias em Neurociencia (CITENC), Vitoria de Santo Antao, Brasil
| | | | | | - Taciane Silva do Carmo
- Centro Universitario Facol / Centro Integrado de Tecnologias em Neurociencia (CITENC), Vitoria de Santo Antao, Brasil
| | - Sandra Lopes de Souza
- Universidade Federal de Pernambuco, Programa de Pos-graduacao em Neuropsiquiatria e Ciencias do Comportamento, Recife, Brasil
| | | |
Collapse
|
3
|
Potiris A, Manousopoulou A, Zouridis A, Sarli PM, Pervanidou P, Eliades G, Perrea DN, Deligeoroglou E, Garbis SD, Eleftheriades M. The Effect of Prenatal Food Restriction on Brain Proteome in Appropriately Grown and Growth Restricted Male Wistar Rats. Front Neurosci 2021; 15:665354. [PMID: 33935642 PMCID: PMC8079747 DOI: 10.3389/fnins.2021.665354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background Fetal growth restriction (FGR) has been associated with a higher risk of developing adverse perinatal outcomes and distinct neurodevelopmental and neurobehavioral disorders. The aim of the present study was to investigate the impact of prenatal food restriction on the brain proteome in both FGR and appropriately grown rats and to identify potential pathways connecting maternal malnutrition with altered brain development. Methods Ten time-dated pregnant Wistar rats were housed individually at their 12th day of gestation. On the 15th day of gestation, the rats were randomly divided into two groups, namely the food restricted one (n = 6) and the control group (n = 4). From days 15 to 21 the control group had unlimited access to food and the food restricted group was given half the amount of food that was on average consumed by the control group, based on measurements taken place the day before. On the 21st day of gestation, all rats delivered spontaneously and after birth all newborn pups of the food restricted group were weighed and matched as appropriately grown (non-FGR) or growth restricted (FGR) and brain tissues were immediately collected. A multiplex experiment was performed analyzing brain tissues from 4 FGR, 4 non-FGR, and 3 control male offspring. Differentially expressed proteins (DEPs) were subjected to bioinformatics analysis in order to identify over-represented processes. Results Proteomic analysis resulted in the profiling of 3,964 proteins. Gene ontology analysis of the common DEPs using DAVID (https://david.ncifcrf.gov/) showed significant enrichment for terms related to cellular morphology, learning, memory and positive regulation of NF-kappaB signaling. Ingenuity Pathway Analysis showed significant induction of inflammation in FGR pups, whereas significant induction of cell migration and cell spreading were observed in non-FGR pups. Conclusion This study demonstrated that in both FGR and non-FGR neonates, a range of adaptive neurodevelopmental processes takes place, which may result in altered cellular morphology, chronic stress, poor memory and learning outcomes. Furthermore, this study highlighted that not only FGR, but also appropriately grown pups, which have been exposed to prenatal food deprivation may be at increased risk for impaired cognitive and developmental outcomes.
Collapse
Affiliation(s)
- Anastasios Potiris
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antigoni Manousopoulou
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Andreas Zouridis
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Polyxeni-Maria Sarli
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiota Pervanidou
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Eliades
- Biomaterials Laboratory, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina N Perrea
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthymios Deligeoroglou
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spiros D Garbis
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Cresto N, Pillet LE, Billuart P, Rouach N. Do Astrocytes Play a Role in Intellectual Disabilities? Trends Neurosci 2019; 42:518-527. [PMID: 31300246 DOI: 10.1016/j.tins.2019.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/31/2019] [Indexed: 11/29/2022]
Abstract
Neurodevelopmental disorders, including those involving intellectual disability, are characterized by abnormalities in formation and functions of synaptic circuits. Traditionally, research on synaptogenesis and synaptic transmission in health and disease focused on neurons, however, a growing number of studies have highlighted the role of astrocytes in this context. Tight structural and functional interactions of astrocytes and synapses indeed play important roles in brain functions, and the repertoire of astroglial regulations of synaptic circuits is large and complex. Recently, genetic studies of intellectual disabilities have underscored potential contributions of astrocytes in the pathophysiology of these disorders. Here we review how alterations of astrocyte functions in disease may interfere with neuronal excitability and the balance of excitatory and inhibitory transmission during development, and contribute to intellectual disabilities.
Collapse
Affiliation(s)
- Noémie Cresto
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, 75005 Paris, France; Université de Paris, Institut de Psychiatrie et de Neuroscience de Paris, INSERM U1266, Paris, France
| | - Laure-Elise Pillet
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, 75005 Paris, France; Université de Paris, Institut de Psychiatrie et de Neuroscience de Paris, INSERM U1266, Paris, France; Doctoral School N°562, Paris Descartes University, Paris 75006, France
| | - Pierre Billuart
- Université de Paris, Institut de Psychiatrie et de Neuroscience de Paris, INSERM U1266, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, 75005 Paris, France.
| |
Collapse
|
5
|
Abbink MR, van Deijk ALF, Heine VM, Verheijen MH, Korosi A. The involvement of astrocytes in early-life adversity induced programming of the brain. Glia 2019; 67:1637-1653. [PMID: 31038797 PMCID: PMC6767561 DOI: 10.1002/glia.23625] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022]
Abstract
Early‐life adversity (ELA) in the form of stress, inflammation, or malnutrition, can increase the risk of developing psychopathology or cognitive problems in adulthood. The neurobiological substrates underlying this process remain unclear. While neuronal dysfunction and microglial contribution have been studied in this context, only recently the role of astrocytes in early‐life programming of the brain has been appreciated. Astrocytes serve many basic roles for brain functioning (e.g., synaptogenesis, glutamate recycling), and are unique in their capacity of sensing and integrating environmental signals, as they are the first cells to encounter signals from the blood, including hormonal changes (e.g., glucocorticoids), immune signals, and nutritional information. Integration of these signals is especially important during early development, and therefore we propose that astrocytes contribute to ELA induced changes in the brain by sensing and integrating environmental signals and by modulating neuronal development and function. Studies in rodents have already shown that ELA can impact astrocytes on the short and long term, however, a critical review of these results is currently lacking. Here, we will discuss the developmental trajectory of astrocytes, their ability to integrate stress, immune, and nutritional signals from the early environment, and we will review how different types of early adversity impact astrocytes.
Collapse
Affiliation(s)
- Maralinde R Abbink
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Lieke F van Deijk
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Vivi M Heine
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Mark H Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Sarkar T, Patro N, Patro IK. Cumulative multiple early life hits- a potent threat leading to neurological disorders. Brain Res Bull 2019; 147:58-68. [DOI: 10.1016/j.brainresbull.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
|
7
|
Sinha S, Patro N, Patro IK. Maternal Protein Malnutrition: Current and Future Perspectives of Spirulina Supplementation in Neuroprotection. Front Neurosci 2018; 12:966. [PMID: 30618587 PMCID: PMC6305321 DOI: 10.3389/fnins.2018.00966] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/03/2018] [Indexed: 12/30/2022] Open
Abstract
Malnutrition has been widely recognized as a grave burden restricting the progress of underdeveloped and developing countries. Maternal, neonatal and postnatal nutritional immunity provides an effective approach to decrease the risk of malnutrition associated stress in adulthood. Particularly, maternal nutritional status is a critical contributor for determining the long-term health aspects of an offspring. Maternal malnutrition leads to increased risk of life, poor immune system, delayed motor development and cognitive dysfunction in the children. An effective immunomodulatory intervention using nutraceutical could be used to enhance immunity against infections. The immune system in early life possesses enormous dynamic capacity to manage both genetic and environment driven processes and can adapt to rapidly changing environmental exposures. These immunomodulatory stimuli or potent nutraceutical strategy can make use of early life plasticity to target pathways of immune ontogeny, which in turn could increase the immunity against infectious diseases arising from malnutrition. This review provides appreciable human and animal data showing enduring effects of protein deprivation on CNS development, oxidative stress and inflammation and associated behavioral and cognitive impairments. Relevant studies on nutritional supplementation and rehabilitation using Spirulina as a potent protein source and neuroprotectant against protein malnutrition (PMN) induced deleterious changes have also been discussed. However, there are many futuristic issues that need to be resolved for proper modulation of these therapeutic interventions to prevent malnutrition.
Collapse
Affiliation(s)
- Shrstha Sinha
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India.,School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India.,School of Studies in Zoology, Jiwaji University, Gwalior, India
| |
Collapse
|
8
|
Developmental Changes in Oligodendrocyte Genesis, Myelination, and Associated Behavioral Dysfunction in a Rat Model of Intra-generational Protein Malnutrition. Mol Neurobiol 2018; 56:595-610. [PMID: 29752656 DOI: 10.1007/s12035-018-1065-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/05/2018] [Indexed: 10/16/2022]
Abstract
Impairments in oligodendrocyte development and resultant myelination deficits appear as a common denominator to all neurological diseases. An optimal in utero environment is obligatory for normal fetal brain development and later life brain functioning. Late embryonic and early postnatal brains from F1 rat born to protein malnourished mothers were studied through a combination of immunocytochemical and quantitative PCR assay for analyzing the relative expression of platelet-derived growth factor receptor-α (PDGFRα), myelin-associated glycoprotein (MAG), proteolipid protein (PLP), and myelin oligodendrocyte glycoprotein (MOG) to determine oligodendrocyte genesis, differentiation, maturation, and myelination. Myelin integrity and corpus callosum caliber was assessed by Luxol fast blue (LFB) staining, whereas grip strength test and open field activity monitoring for behavioral evaluation in F1 rats. We demonstrate that intra-generational protein deprivation results in drastically low PDGFRα+ oligodendrocyte precursor (OPC) population and significantly reduced expression of myelin protein genes resulting in poor pre-myelinating and mature myelinating oligodendrocyte number, hypo-myelination, and misaligned myelinated fibers. LFB staining and MOG immunolabeling precisely revealed long-term changes in corpus callosum (CC) caliber and demyelination lesions in LP brain supporting the behavioral and cognitive changes at early adolescence and adulthood following maternal protein malnutrition (PMN). Thus, intra-generational PMN negatively affects the oligodendrocyte development and maturation resulting in myelination impairments and associated with behavioral deficits typically mimicking clinical hallmarks of neuropsychiatric disorders. Our results further strengthen and augment the hypothesis "Impaired gliogenesis is a big hit for neuropsychiatric phenotype."
Collapse
|
9
|
Isaac AR, da Silva EAN, de Matos RJB, Augusto RL, Moreno GMM, Mendonça IP, de Souza RF, Cabral-Filho PE, Rodrigues CG, Gonçalves-Pimentel C, Rodrigues MCA, da Silveira Andrade-da-Costa BL. Low omega-6/omega-3 ratio in a maternal protein-deficient diet promotes histone-3 changes in progeny neural cells and favors leukemia inhibitory factor genetranscription. J Nutr Biochem 2018; 55:229-242. [PMID: 29573696 DOI: 10.1016/j.jnutbio.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 12/14/2017] [Accepted: 02/06/2018] [Indexed: 01/08/2023]
Abstract
Omega-3 (n-3) fatty acids modulate epigenetic changes critical to genesis and differentiation of neural cells. Conversely, maternal protein-malnutrition can negatively modify these changes. This study investigated whether a low n-6/n-3 ratio in a maternal diet could favor histone-3 (H3) modifications, gene transcription and differentiation in the offspring neural cells even under protein-deficiency. Female rats fed a control (Ct), or 3 types of multideficient diets differing in protein levels or linoleic/alpha-linolenic fatty acid ratios (RBD, RBD-C, RBD-SO) from 30 days prior to mating and during pregnancy. Cerebral cortex tissue and cortical cultures of progeny embryonic neurons and postnatal astrocytes were analyzed. H3K9 acetylation and H3K27 or H3K4 di-methylation levels were assessed by flow cytometry and/or immunocytochemistry. In astrocyte cultures and cortical tissue, the GFAP protein levels were assessed. Glial derived neurotrophic factor (GDNF) and leukemia inhibitory factor (LIF) gene expression were evaluated in the cortical tissue. GFAP levels were similar in astrocytes of Ct, RBD and RBD-C, but 65% lower in RBD-SO group. Higher levels of H3K9Ac were found in the neurons and H3K4Me2 in the astrocytes of the RBD group. No intergroup difference in the cortical GDNF mRNA expression or the H3K27Me2 levels in astrocytes was detected. LIF mRNA levels were higher in the RDB (P=.002) or RBD-C (P=.004) groups than in the control. The findings indicate the importance of dietary n-3 availability for the brain, even under a protein-deficient condition, inducing Histone modifications and increasing LIF gene transcription, involved in neural cell differentiation and reactivity.
Collapse
Affiliation(s)
- Alinny Rosendo Isaac
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Emerson Alexandre Neves da Silva
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Ricielle Lopes Augusto
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Giselle Machado Magalhães Moreno
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Ingrid Prata Mendonça
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Raphael Fabrício de Souza
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Paulo Euzébio Cabral-Filho
- Departamento de Biofísica e Radiobiologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Cláudio Gabriel Rodrigues
- Departamento de Biofísica e Radiobiologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Catarina Gonçalves-Pimentel
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Marcelo Cairrão Araujo Rodrigues
- Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | |
Collapse
|