1
|
Li M, Wu J, Yang R, Fu Z, Yu G, Ma Z. Effects of Ammonia Concentration on Sperm Vitality, Motility Rates, and Morphology in Three Marine Bivalve Species: A Comparative Study of the Noble Scallop Mimachlamys nobilis, Chinese Pearl Oyster Pinctada fucata martensii, and Small Rock Oyster Saccostrea mordax. BIOLOGY 2024; 13:589. [PMID: 39194527 DOI: 10.3390/biology13080589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Ammonium (NH4+) plays a crucial role in the reproductive processes of key biotic groups in aquatic ecosystems-bivalves. This study aims to elucidate the effects of three different ammonium ion concentrations on sperm vitality, swimming kinematics, and morphology of Mimachlamys nobilis, Pinctada fucata martensii, and Saccostrea mordax. The results indicate that the sperm vitality and motility rates of M.nobilis and S. mordax are inversely proportional to the ammonium concentration, especially in the treatment group with an ammonium concentration of 3 mmol/L, where the decrease in sperm vitality and motility is most significant. In contrast, the sperm of P. fucata martensii reacted differently to increasing ammonium concentrations. After the addition of 2 mmol/L of ammonium, the sperm vitality and motility of P. fucata martensii reached a peak, showing a significant stimulatory effect. Additionally, as the ammonium concentration increased, the curling of the sperm flagella in M.nobilis and S. mordax increased. However, sperm flagella curling in P. fucata martensii showed no change compared to the control group. This study provides insights into the effects of ammonium concentrations on the sperm vitality and motility of three marine bivalve species and highlights the importance of sperm flagella curling as a factor affecting sperm.
Collapse
Affiliation(s)
- Minghao Li
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
- College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Jiong Wu
- College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Rui Yang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
| | - Zhengyi Fu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Gang Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| |
Collapse
|
2
|
Dai P, Zou M, Cai Z, Zeng X, Zhang X, Liang M. pH Homeodynamics and Male Fertility: A Coordinated Regulation of Acid-Based Balance during Sperm Journey to Fertilization. Biomolecules 2024; 14:685. [PMID: 38927088 PMCID: PMC11201807 DOI: 10.3390/biom14060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3- and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize in the testis, epididymis, and spermatozoa, such as HCO3- transporters (solute carrier family 4 and solute carrier family 26 transporters), carbonic anhydrases, and H+-transport channels and enzymes (e.g., Na+-H+ exchangers, monocarboxylate transporters, H+-ATPases, and voltage-gated proton channels). Hormone-mediated signals impose an influence on the production of some HCO3- or H+ transporters, such as NBCe1, SLC4A2, MCT4, etc. Additionally, ion channels including sperm-specific cationic channels for Ca2+ (CatSper) and K+ (SLO3) are directly or indirectly regulated by pH, exerting specific actions on spermatozoa. The slightly alkaline testicular pH is conducive to spermatogenesis, whereas the epididymis's low HCO3- concentration and acidic lumen are favorable for sperm maturation and storage. Spermatozoa pH increases substantially after being fused with seminal fluid to enhance motility. In the female reproductive tract, sperm are subjected to increasing concentrations of HCO3- in the uterine and fallopian tube, causing a rise in the intracellular pH (pHi) of spermatozoa, leading to hyperpolarization of sperm plasma membranes, capacitation, hyperactivation, acrosome reaction, and ultimately fertilization. The physiological regulation initiated by SLC26A3, SLC26A8, NHA1, sNHE, and CFTR localized in sperm is proven for certain to be involved in male fertility. This review intends to present the key factors and characteristics of pHi regulation in the testes, efferent duct, epididymis, seminal fluid, and female reproductive tract, as well as the associated mechanisms during the sperm journey to fertilization, proposing insights into outstanding subjects and future research trends.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| | - Min Liang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| |
Collapse
|
3
|
Hossen S, Sukhan ZP, Cho Y, Kho KH. Physiological evaluation of seasonal sperm quality in a biannual spawner, Pacific abalone: Effects on in-vitro fertilization and cryotolerance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115809. [PMID: 38086264 DOI: 10.1016/j.ecoenv.2023.115809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Pacific abalone, Haliotis discus hannai, is a highly valuable gastropod mollusk commonly found in Southeast Asia. The present study aims to analyze the seminal plasma quality, sperm quality, and cryotolerance of the Pacific abalone sperm during its reproductive season. The seminal plasma quality was evaluated by analyzing biochemical and metabolite composition, enzymatic activity (superoxide dismutase, catalase, and glutathione), and lipid peroxidation (LPO) activity. The sperm quality was evaluated by analyzing motility, concentration, volume, ATP content, acrosome integrity (AI), plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), DNA integrity, and fertilization potential. The cryotolerance capacity was evaluated by analyzing post-thaw motility, AI, PMI, MMP, and DNA integrity. Seminal plasma osmolarity was significantly higher (1123.3 ± 1.5 mOsmL-1) in May compared to other reproductive periods, with Cl- (516.8 ± 0.5 mM) and Na+ (460.2 ± 0.4 mM) as the dominant ions. The seminal plasma pH remained constant at 6.8 throughout the reproductive season. Improved enzymatic activity and lower LPO were detected in May or June. Sperm quality indicators were similar in May and June, except for sperm production. The fertilization potential (May: 93.0 ± 4.4%, June: 86.0 ± 7.2%) and hatching rate (May: 86.6 ± 5.78%, June: 82.3 ± 3.2%) of Pacific abalone were significantly higher in May or June than they were in other reproductive seasons. The motility (May: 50.19 ± 2.35%, June: 49.96 ± 1.60%), AI (May: 44.02 ± 3.46%, June: 42.16 ± 3.61%), PMI (May: 54.12 ± 3.29%, June: 52.82 ± 2.58%), and MMP (May: 44.02 ± 3.46%, June: 42.16 ± 3.61%) of the cryopreserved sperm were similar in May and June compared with those preserved in other reproductive seasons. The DNA integrity of the cryopreserved sperm was similar in May (80.3 ± 6.7%) or June (78.9 ± 7.4%) and had a higher cryotolerance than in other reproductive seasons. Hence, it can be suggested that May and/or June are suitable periods for sperm physiology experiments, artificial reproduction, and sperm cryopreservation of Pacific abalone.
Collapse
Affiliation(s)
- Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, 50 Daehak-ro, Yeosu, Jeollanam-do, South Korea
| | - Zahid Parvez Sukhan
- Department of Fisheries Science, Chonnam National University, 50 Daehak-ro, Yeosu, Jeollanam-do, South Korea
| | - Yusin Cho
- Department of Fisheries Science, Chonnam National University, 50 Daehak-ro, Yeosu, Jeollanam-do, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, 50 Daehak-ro, Yeosu, Jeollanam-do, South Korea.
| |
Collapse
|
4
|
Marchini C, Gizzi F, Pondrelli T, Moreddu L, Marisaldi L, Montori F, Lazzari V, Airi V, Caroselli E, Prada F, Falini G, Dubinsky Z, Goffredo S. Decreasing pH impairs sexual reproduction in a Mediterranean coral transplanted at a CO 2 vent. LIMNOLOGY AND OCEANOGRAPHY 2021; 66:3990-4000. [PMID: 35873528 PMCID: PMC9293323 DOI: 10.1002/lno.11937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/19/2021] [Accepted: 09/01/2021] [Indexed: 06/15/2023]
Abstract
Ocean acidification, due to the increase of carbon dioxide (CO2) concentration in the atmosphere and its absorption by the oceans, affects many aspects of marine calcifying organisms' biology, including reproduction. Most of the available studies on low pH effects on coral reproduction have been conducted on tropical species under controlled conditions, while little information is reported for either tropical or temperate species in the field. This study describes the influence of decreasing pH on sexual reproduction of the temperate non-zooxanthellate colonial scleractinian Astroides calycularis, transplanted in four sites along a natural pH gradient at the underwater volcanic crater of Panarea Island (Tyrrhenian Sea, Italy). The average pH values of each site (range: pHTS 8.07-7.40) match different scenarios of the Intergovernmental Panel on Climate Change (IPCC) for the end of the century. After 3 months under experimental conditions, the reproductive parameters of both oocytes and spermaries (abundance, gonadal index, and diameters) seem to be unaffected by low pH. However, a delay in spermary development in the pre-fertilization period and a persistence of mature oocytes in the fertilization period were observed in the most acidic site. Furthermore, no embryos were found in colonies from the two most acidic sites, suggesting a delay or an interruption of the fertilization process due to acidified conditions. These findings suggest a negative effect of low pH on A. calycularis sexual reproduction. However, long-term experiments, including the synergistic impact of pH and temperature, are needed to predict if this species will be able to adapt to climate change over the next century.
Collapse
Affiliation(s)
- Chiara Marchini
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- Fano Marine CenterThe Inter‐Institute Center for Research on Marine Biodiversity, Resources and BiotechnologiesFanoItaly
| | - Francesca Gizzi
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- MARE ‐ Marine and Environmental Sciences CentreAgência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação (ARDITI)FunchalMadeiraPortugal
| | - Thomas Pondrelli
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Lisa Moreddu
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Luca Marisaldi
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Francesco Montori
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Valentina Lazzari
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Valentina Airi
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Erik Caroselli
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- Fano Marine CenterThe Inter‐Institute Center for Research on Marine Biodiversity, Resources and BiotechnologiesFanoItaly
| | - Fiorella Prada
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- Fano Marine CenterThe Inter‐Institute Center for Research on Marine Biodiversity, Resources and BiotechnologiesFanoItaly
| | - Giuseppe Falini
- Department of Chemistry “Giacomo Ciamician”University of BolognaBolognaItaly
| | - Zvy Dubinsky
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- Fano Marine CenterThe Inter‐Institute Center for Research on Marine Biodiversity, Resources and BiotechnologiesFanoItaly
| |
Collapse
|
5
|
Herrera F, Bondarenko O, Boryshpolets S. Osmoregulation in fish sperm. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:785-795. [PMID: 34076793 DOI: 10.1007/s10695-021-00958-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
In most fish exhibiting external fertilization, spermatozoa become motile after release into water, triggered by differences between intracellular and extracellular conditions such as osmotic pressure, ion composition, and pH. The rapid change in osmolarity initiating spermatozoon motility induces osmotic pressure, resulting in active water movement across the cell membrane. Mechanisms of ion and water transport across the plasma membrane and cell volume regulation are important in maintaining structure and functional integrity of the cell. The capacity of the fish spermatozoon plasma membrane to adapt to dramatic environmental changes is an essential prerequisite for motility and successful fertilization. Adaptation to change in external osmolality may be the basis of spermatozoon function and an indicator of sperm quality. The involvement of specific water channels (aquaporins) in cell volume regulation and motility is highly likely. The goal of this review is to describe basic mechanisms of water transport and their role in fish spermatozoon physiology, focusing on osmoresistance, cell volume regulation, motility, and survival.
Collapse
Affiliation(s)
- Fabio Herrera
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Olga Bondarenko
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Sergii Boryshpolets
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
6
|
Nichols ZG, Rikard S, Alavi SMH, Walton WC, Butts IAE. Regulation of sperm motility in Eastern oyster (Crassostrea virginica) spawning naturally in seawater with low salinity. PLoS One 2021; 16:e0243569. [PMID: 33735238 PMCID: PMC7971463 DOI: 10.1371/journal.pone.0243569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/28/2020] [Indexed: 01/04/2023] Open
Abstract
Oyster aquaculture is expanding worldwide, where many farms rely on seed produced by artificial spawning. As sperm motility and velocity are key determinants for fertilization success, understanding the regulation of sperm motility and identifying optimal environmental conditions can increase fertility and seed production. In the present study, we investigated the physiological mechanisms regulating sperm motility in Eastern oyster, Crassostrea virginica. Sperm motility was activated in ambient seawater with salinity 4-32 PSU with highest motility and velocity observed at 12-24 PSU. In artificial seawater (ASW) with salinity of 20 PSU, sperm motility was activated at pH 6.5-10.5 with the highest motility and velocity recorded at pH 7.5-10.0. Sperm motility was inhibited or totally suppressed in Na+, K+, Ca2+, and Mg2+-free ASW at 20 PSU. Applications of K+ (500 μM glybenclamide and 10-50 mM 4-aminopyridine), Ca2+ (1-50 μM mibefradil and 10-200 μM verapamil), or Na+ (0.2-2.0 mM amiloride) channel blockers into ASW at 20 PSU inhibited or suppressed sperm motility and velocity. Chelating extracellular Ca2+ ions by 3.0 and 3.5 mM EGTA resulted in a significant reduction and full suppression of sperm motility by 4 to 6 min post-activation. These results suggest that extracellular K+, Ca2+, and Na+ ions are involved in regulation of ionic-dependent sperm motility in Eastern oyster. A comparison with other bivalve species typically spawning at higher salinities or in full-strength seawater shows that ionic regulation of sperm motility is physiologically conserved in bivalves. Elucidating sperm regulation in C. virginica has implications to develop artificial reproduction, sperm short-term storage, or cryopreservation protocols, and to better predict how changes in the ocean will impact oyster spawning dynamics.
Collapse
Affiliation(s)
- Zoe G. Nichols
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Scott Rikard
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
- Auburn University Shellfish Lab, Dauphin Island, Alabama, United States of America
| | | | - William C. Walton
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
- Auburn University Shellfish Lab, Dauphin Island, Alabama, United States of America
| | - Ian A. E. Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
7
|
Tallec K, Paul-Pont I, Boulais M, Le Goïc N, González-Fernández C, Le Grand F, Bideau A, Quéré C, Cassone AL, Lambert C, Soudant P, Huvet A. Nanopolystyrene beads affect motility and reproductive success of oyster spermatozoa ( Crassostrea gigas). Nanotoxicology 2020; 14:1039-1057. [PMID: 32813582 DOI: 10.1080/17435390.2020.1808104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Oysters are keystone species that use external fertilization as a sexual mode. The gametes are planktonic and face a wide range of stressors, including plastic litter. Nanoplastics are of increasing concern because their size allows pronounced interactions with biological membranes, making them a potential hazard to marine life. In the present study, oyster spermatozoa were exposed for 1 h to various doses (from 0.1 to 25 µg mL-1) of 50-nm polystyrene beads with amine (50-NH2 beads) or carboxyl (50-COOH beads) functions. Microscopy revealed adhesion of particles to the spermatozoa membranes, but no translocation of either particle type into cells. Nevertheless, the 50-NH2 beads at 10 µg mL-1 induced a high spermiotoxicity, characterized by a decrease in the percentage of motile spermatozoa (-79%) and in the velocity (-62%) compared to control spermatozoa, with an overall drop in embryogenesis success (-59%). This major reproduction failure could be linked to a homeostasis disruption in exposed spermatozoa. The 50-COOH beads hampered spermatozoa motility only when administered at 25 µg mL-1 and caused a decrease in the percentage of motile spermatozoa (-66%) and in the velocity (-38%), but did not affect embryogenesis success. Microscopy analyses indicated these effects were probably due to physical blockages by microscale aggregates formed by the 50-COOH beads in seawater. This toxicological study emphasizes that oyster spermatozoa are a useful and sensitive model for (i) deciphering the fine interactions underpinning nanoplastic toxicity and (ii) evaluating adverse effects of plastic nanoparticles on marine biota while waiting for their concentration to be known in the environment.
Collapse
Affiliation(s)
- K Tallec
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - I Paul-Pont
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - M Boulais
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - N Le Goïc
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | | | - F Le Grand
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - A Bideau
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - C Quéré
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - A-L Cassone
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - C Lambert
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - P Soudant
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - A Huvet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| |
Collapse
|
8
|
Structure and beating behavior of the sperm motility apparatus in aquatic animals. Theriogenology 2019; 135:152-163. [DOI: 10.1016/j.theriogenology.2019.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 01/03/2023]
|
9
|
Boulais M, Demoy-Schneider M, Alavi SMH, Cosson J. Spermatozoa motility in bivalves: Signaling, flagellar beating behavior, and energetics. Theriogenology 2019; 136:15-27. [PMID: 31234053 DOI: 10.1016/j.theriogenology.2019.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 11/28/2022]
Abstract
Though bivalve mollusks are keystone species and major species groups in aquaculture production worldwide, gamete biology is still largely unknown. This review aims to provide a synthesis of current knowledge in the field of sperm biology, including spermatozoa motility, flagellar beating, and energy metabolism; and to illustrate cellular signaling controlling spermatozoa motility initiation in bivalves. Serotonin (5-HT) induces hyper-motility in spermatozoa via a 5-HT receptor, suggesting a serotoninergic system in the male reproductive tract that might regulate sperm physiology. Acidic pH and high concentration of K+ are inhibitory factors of spermatozoa motility in the testis. Motility is initiated at spawning by a Na+-dependent alkalization of intracellular pH mediated by a Na+/H+ exchanger. Increase of 5-HT in the testis and decrease of extracellular K+ when sperm is released in seawater induce hyperpolarization of spermatozoa membrane potential mediated by K+ efflux and associated with an increase in intracellular Ca2+ via opening of voltage-dependent Ca2+ channels under alkaline conditions. These events activate dynein ATPases and Ca2+/calmodulin-dependent proteins resulting in flagellar beating. It may be possible that 5-HT is also involved in intracellular cAMP rise controlling cAMP-dependent protein kinase phosphorylation in the flagellum. Once motility is triggered, flagellum beats in asymmetric wave pattern leading to circular trajectories of spermatozoa. Three different flagellar wave characteristics are reported, including "full", "twitching", and "declining" propagation of wave, which are described and illustrated in the present review. Mitochondrial respiration, ATP content, and metabolic pathways producing ATP in bivalve spermatozoa are discussed. Energy metabolism of Pacific oyster spermatozoa differs from previously studied marine species since oxidative phosphorylation synthetizes a stable level of ATP throughout 24-h motility period and the end of movement is not explained by a low intracellular ATP content, revealing different strategy to improve oocyte fertilization success. Finally, our review highlights physiological mechanisms that require further researches and points out some advantages of bivalve spermatozoa to extend knowledge on mechanisms of motility.
Collapse
Affiliation(s)
- Myrina Boulais
- University of Brest, CNRS, IRD, Ifremer, LEMAR, rue Dumont d'Urville, F-29280, Plouzané, France.
| | - Marina Demoy-Schneider
- University of French Polynesia, UMR 241 EIO, BP 6570, 98702, Faa'a Aéroport, Tahiti, French Polynesia
| | | | - Jacky Cosson
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany 389 25, Czech Republic
| |
Collapse
|
10
|
Beirão J, Boulais M, Gallego V, O'Brien JK, Peixoto S, Robeck TR, Cabrita E. Sperm handling in aquatic animals for artificial reproduction. Theriogenology 2019; 133:161-178. [PMID: 31108371 DOI: 10.1016/j.theriogenology.2019.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022]
Abstract
Artificial reproduction involves collection and handling of gametes in a way that secures their quality and maximizes the fertilization outcome. In addition to initial sperm quality, numerous steps can affect the final result of fertilization, from the sperm collection process until gamete mixing (or co-incubation) when the spermatozoon enters or fuses with the oocyte. In this review, we summarize the whole process of sperm handling, from collection until fertilization for fish, penaeid shrimp, bivalve mollusks and marine mammals. To obtain sperm from captive animals, techniques vary widely across taxa, and include stripping by abdominal massage or testis surgical removal in fish, spermatophore collection in penaeid shrimps, gonadal scarification or temperature shock in bivalve mollusks, and voluntary collection via positive reinforcement in mammals. In most cases, special care is needed to avoid contamination by mucus, seawater, urine, or feces that can either activate sperm motility and/or decrease its quality. We also review techniques and extender solutions used for refrigerated storage of sperm across the aforementioned taxa. Finally, we give an overview of the different protocols for in vivo and in vitro fertilization including activation of sperm motility and methods for gamete co-incubation. The present study provides valuable information regarding breeder management either for animal production or species conservation.
Collapse
Affiliation(s)
- José Beirão
- Faculty of Biosciences and Aquaculture, Nord University, NO - 8049, Bodø, Norway.
| | - Myrina Boulais
- University of Brest, CNRS, IRD, Ifremer, LEMAR, rue Dumont d'Urville, F-29280, Plouzané, France
| | - Victor Gallego
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain
| | - Justine K O'Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society, Bradleys Head Rd, Mosman NSW, 2088, Australia
| | - Silvio Peixoto
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Brazil
| | - Todd R Robeck
- SeaWorld Species Preservation Lab, SeaWorld Parks and Entertainment, 2595 Ingraham Road, San Diego, CA, 92019, USA
| | - Elsa Cabrita
- CCMAR, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|