1
|
Agha Gholizadeh M, Behjati F, Ghasemi Firouzabadi S, Heidari E, Razmara E, Almadani N, Sharifi Zarchi A, Garshasbi M. Novel splicing variant and gonadal mosaicism in DYRK1A gene identified by whole-genome sequencing in multiplex autism spectrum disorder families. Neurogenetics 2024; 25:377-391. [PMID: 38976082 DOI: 10.1007/s10048-024-00768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with considerable genetic heterogeneity. The disorder is clinically diagnosed based on DSM-5 criteria, featuring deficits in social communication and interaction, along with restricted and repetitive behaviours. Here, we performed whole-genome sequencing (WGS) on four individuals with ASD from two multiplex families (MPX), where more than one individual is affected, to identify potential single nucleotide variants (SNVs) and structural variants (SVs) in coding and non-coding regions. A rigorous bioinformatics pipeline was employed for variant detection, followed by segregation analysis. Our investigation revealed an unreported splicing variant in the DYRK1A gene (c.-77 + 2T > C; IVS1 + 2T > C; NM_001396.5), in heterozygote form in two affected children in one of the families (family B), which was absent in the healthy parents and siblings. This finding suggests the presence of gonadal mosaicism in one of the parents, representing the first documented instance of such inheritance for a variant in the DYRK1A gene associated with ASD. Furthermore, we identified a 50 bp deletion in intron 9 of the DLG2 gene in two affected patients from the same family, confirmed by PCR and Sanger sequencing. In Family A, we identified potential candidate variants associated with ASD shared by the two patients. These findings enhance our understanding of the genetic landscape of ASD, particularly in MPX families, and highlight the utility of WGS in uncovering novel genetic contributions to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Mehdi Agha Gholizadeh
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Jalah-Al Ahmad Hwy, Tehran, 14117-1316, Iran
| | - Farkhondeh Behjati
- Genetics Research Centre, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Erfan Heidari
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Jalah-Al Ahmad Hwy, Tehran, 14117-1316, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Jalah-Al Ahmad Hwy, Tehran, 14117-1316, Iran
| | - Navid Almadani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ali Sharifi Zarchi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Jalah-Al Ahmad Hwy, Tehran, 14117-1316, Iran.
| |
Collapse
|
2
|
Johnson HK, Wahl SE, Sesay F, Litovchick L, Dickinson AJ. Dyrk1a is required for craniofacial development in Xenopus laevis. Dev Biol 2024; 511:63-75. [PMID: 38621649 DOI: 10.1016/j.ydbio.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Loss of function variations in the dual specificity tyrosine-phosphorylation-regulated kinase 1 A (DYRK1A) gene are associated with craniofacial malformations in humans. Here we characterized the effects of deficient DYRK1A in craniofacial development using a developmental model, Xenopus laevis. Dyrk1a mRNA and protein were expressed throughout the developing head and both were enriched in the branchial arches which contribute to the face and jaw. Consistently, reduced Dyrk1a function, using dyrk1a morpholinos and pharmacological inhibitors, resulted in orofacial malformations including hypotelorism, altered mouth shape, slanted eyes, and narrower face accompanied by smaller jaw cartilage and muscle. Inhibition of Dyrk1a function resulted in misexpression of key craniofacial regulators including transcription factors and members of the retinoic acid signaling pathway. Two such regulators, sox9 and pax3 are required for neural crest development and their decreased expression corresponds with smaller neural crest domains within the branchial arches. Finally, we determined that the smaller size of the faces, jaw elements and neural crest domains in embryos deficient in Dyrk1a could be explained by increased cell death and decreased proliferation. This study is the first to provide insight into why craniofacial birth defects might arise in humans with variants of DYRK1A.
Collapse
Affiliation(s)
| | - Stacey E Wahl
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Fatmata Sesay
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, USA
| | - Larisa Litovchick
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, USA; Massey Comprehensive Cancer Center, Richmond, VA, USA
| | | |
Collapse
|
3
|
Detro-Dassen S, Sternberg A, Lehmann SM, Schwandt K, Düsterhöft S, Becker W. Functional characterization of two DYRK1B variants causative of AOMS3. Orphanet J Rare Dis 2024; 19:233. [PMID: 38867326 PMCID: PMC11167895 DOI: 10.1186/s13023-024-03183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/30/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Two new missense variants (K68Q and R252H) of the protein kinase DYRK1B were recently reported to cause a monogenetic form of metabolic syndrome with autosomal dominant inheritance (AOMS3). RESULTS Our in vitro functional analysis reveals that neither of these substitutions eliminates or enhances the catalytic activity of DYRK1B. DYRK1B-K68Q displays reduced nuclear translocation. CONCLUSION The pathogenicity of DYRK1B variants does not necessarily correlate with the gain or loss of catalytic activity, but can be due to altered non-enzymatic characteristics such as subcellular localization.
Collapse
Affiliation(s)
- Silvia Detro-Dassen
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Anna Sternberg
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Sonja Maria Lehmann
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Katharina Schwandt
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
4
|
Hudac CM, Friedman NR, Ward VR, Estreicher RE, Dorsey GC, Bernier RA, Kurtz-Nelson EC, Earl RK, Eichler EE, Neuhaus E. Characterizing Sensory Phenotypes of Subgroups with a Known Genetic Etiology Pertaining to Diagnoses of Autism Spectrum Disorder and Intellectual Disability. J Autism Dev Disord 2024; 54:2386-2401. [PMID: 37031308 PMCID: PMC10083138 DOI: 10.1007/s10803-023-05897-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 04/10/2023]
Abstract
We aimed to identify unique constellations of sensory phenotypes for genetic etiologies associated with diagnoses of autism spectrum disorder (ASD) and intellectual disability (ID). Caregivers reported on sensory behaviors via the Sensory Profile for 290 participants (younger than 25 years of age) with ASD and/or ID diagnoses, of which ~ 70% have a known pathogenic genetic etiology. Caregivers endorsed poor registration (i.e., high sensory threshold, passive behaviors) for all genetic subgroups relative to an "idiopathic" comparison group with an ASD diagnosis and without a known genetic etiology. Genetic profiles indicated prominent sensory seeking in ADNP, CHD8, and DYRK1A, prominent sensory sensitivities in SCN2A, and fewer sensation avoidance behaviors in GRIN2B (relative to the idiopathic ASD comparison group).
Collapse
Affiliation(s)
- Caitlin M Hudac
- Department of Psychology, University of South Carolina, 1800 Gervais Street, Columbia, SC, 29201, USA.
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA.
- Carolina Autism and Neurodevelopment Research Center, University of South Carolina, Columbia, SC, USA.
| | - Nicole R Friedman
- Center for Youth Development and Intervention, University of Alabama, Tuscaloosa, AL, USA
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Victoria R Ward
- Center for Youth Development and Intervention, University of Alabama, Tuscaloosa, AL, USA
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Rachel E Estreicher
- Center for Youth Development and Intervention, University of Alabama, Tuscaloosa, AL, USA
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Grace C Dorsey
- Center for Youth Development and Intervention, University of Alabama, Tuscaloosa, AL, USA
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | - Rachel K Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Emily Neuhaus
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
5
|
Johnson HK, Wahl SE, Sesay F, Litovchick L, Dickinson AJ. Dyrk1a is required for craniofacial development in Xenopus laevis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.13.575394. [PMID: 38260562 PMCID: PMC10802584 DOI: 10.1101/2024.01.13.575394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Loss of function mutations in the dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) gene are associated with craniofacial malformations in humans. Here we characterized the effects of deficient DYRK1A in craniofacial development using a developmental model, Xenopus laevis . Dyrk1a mRNA and protein was expressed throughout the developing head and was enriched in the branchial arches which contribute to the face and jaw. Consistently, reduced Dyrk1a function, using dyrk1a morpholinos and pharmacological inhibitors, resulted in orofacial malformations including hypotelorism, altered mouth shape, slanted eyes, and narrower face accompanied by smaller jaw cartilage and muscle. Inhibition of Dyrk1a function resulted in misexpression of key craniofacial regulators including transcription factors and members of the retinoic acid signaling pathway. Two such regulators, sox9 and pax3 are required for neural crest development and their decreased expression corresponds with smaller neural crest domains within the branchial arches. Finally, we determined that the smaller size of the faces, jaw elements and neural crest domains in embryos deficient in Dyrk1a could be explained by increased cell death and decreased proliferation. This study is the first to provide insight into why craniofacial birth defects might arise in humans with DYRK1A mutations.
Collapse
|
6
|
Huang C, Luo H, Zeng B, Feng C, Chen J, Yuan H, Huang S, Yang B, Zou Y, Liu Y. Identification of two novel and one rare mutation in DYRK1A and prenatal diagnoses in three Chinese families with intellectual Disability-7. Front Genet 2023; 14:1290949. [PMID: 38179410 PMCID: PMC10765505 DOI: 10.3389/fgene.2023.1290949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Background and purpose: Intellectual disability-7 (MRD7) is a subtype disorder of intellectual disability (MRD) involving feeding difficulties, hypoactivity, and febrile seizures at an age of early onset, then progressive intellectual and physical development deterioration. We purposed to identify the underlying causative genetic factors of three individuals in each Chinese family who presented with symptoms of intellectual disability and facial dysmorphic features. We provided prenatal diagnosis for the three families and genetic counseling for the prevention of this disease. Methods: We collected retrospective clinical diagnostic evidence for the three probands in our study, which included magnetic resonance imaging (MRI), computerized tomography (CT), electroencephalogram (EEG), and intelligence tests for the three probands in our study. Genetic investigation of the probands and their next of kin was performed by Trio-whole exome sequencing (WES). Sanger sequencing or quantitative PCR technologies were then used as the next step to verify the variants confirmed with Trio-WES for the three families. Moreover, we performed amniocentesis to explore the state of the three pathogenic variants in the fetuses by prenatal molecular genetic diagnosis at an appropriate gestational period for the three families. Results: The three probands and one fetus were clinically diagnosed with microcephaly and exhibited intellectual developmental disability, postnatal feeding difficulties, and facial dysmorphic features. Combining probands' clinical manifestations, Trio-WES uncovered the three heterozygous variants in DYRK1A: a novel variant exon3_exon4del p.(Gly4_Asn109del), a novel variant c.1159C>T p.(Gln387*), and a previously presented but rare pathogenic variant c.1309C>T p.(Arg437*) (NM_001396.5) in three families, respectively. In light of the updated American College of Medical Genetic and Genomics (ACMG) criterion, the variant of exon3_exon4del and c.1159C>T were both classified as likely pathogenic (PSV1+PM6), while c1309C>T was identified as pathogenic (PVS1+PS2_Moderate+PM2). Considering clinical features and molecular testimony, the three probands were confirmed diagnosed with MRD7. These three discovered variants were considered as the three causal mutations for MRD7. Prenatal diagnosis detected the heterozygous dominant variant of c.1159C>T p.(Gln387*) in one of the fetuses, indicating a significant probability of MRD7, subsequently the gestation was intervened by the parents' determination and professional obstetrical operation. On the other side, prenatal molecular genetic testing revealed wild-type alleles in the other two fetuses, and their parents both decided to sustain the gestation. Conclusion: We identified two novel and one rare mutation in DYRK1A which has broadened the spectrum of DYRK1A and provided evidence for the diagnosis of MRD7 at the molecular level. Besides, this study has supported the three families with MRD7 to determine the causative genetic factors efficiently and provide concise genetic counseling for the three families by using Trio-WES technology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bicheng Yang
- Department of Medical Genetics, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yongyi Zou
- Department of Medical Genetics, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yanqiu Liu
- Department of Medical Genetics, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Kurtz-Nelson EC, Rea HM, Petriceks AC, Hudac CM, Wang T, Earl RK, Bernier RA, Eichler EE, Neuhaus E. Characterizing the autism spectrum phenotype in DYRK1A-related syndrome. Autism Res 2023; 16:1488-1500. [PMID: 37497568 PMCID: PMC10530559 DOI: 10.1002/aur.2995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Likely gene-disrupting (LGD) variants in DYRK1A are causative of DYRK1A syndrome and associated with autism spectrum disorder (ASD) and intellectual disability (ID). While many individuals with DYRK1A syndrome are diagnosed with ASD, they may present with a unique profile of ASD traits. We present a comprehensive characterization of the ASD profile in children and young adults with LGDs in DYRK1A. Individuals with LGD variants in DYRK1A (n = 29) were compared to children who had ASD with no known genetic cause, either with low nonverbal IQ (n = 14) or average or above nonverbal IQ (n = 41). ASD was assessed using the ADOS-2, ADI-R, SRS-2, SCQ, and RBS-R. Quantitative score comparisons were conducted, as were qualitative analyses of clinicians' behavioral observations. Diagnosis of ASD was confirmed in 85% and ID was confirmed in 89% of participants with DYRK1A syndrome. Individuals with DYRK1A syndrome showed broadly similar social communication behaviors to children with idiopathic ASD and below-average nonverbal IQ, with specific challenges noted in social reciprocity and nonverbal communication. Children with DYRK1A syndrome also showed high rates of sensory-seeking behaviors. Phenotypic characterization of individuals with DYRK1A syndrome may provide additional information on mechanisms contributing to co-occurring ASD and ID and contribute to the identification of genetic predictors of specific ASD traits.
Collapse
Affiliation(s)
| | - Hannah M. Rea
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Aiva C. Petriceks
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Caitlin M. Hudac
- Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
- Carolina Autism and Neurodevelopment Research Center, Columbia, South Carolina, USA
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University; Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
- Autism Research Center, Peking University Health Science Center, Beijing, China
| | - Rachel K. Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Emily Neuhaus
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
8
|
Muacevic A, Adler JR, Toyoshima I. Whole-Exome Sequencing Identified a Novel DYRK1A Variant in a Patient With Intellectual Developmental Disorder, Autosomal Dominant 7. Cureus 2023; 15:e33379. [PMID: 36628390 PMCID: PMC9822525 DOI: 10.7759/cureus.33379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 01/06/2023] Open
Abstract
Intellectual developmental disorder, autosomal dominant 7 (MRD7; OMIM 614104) is a rare disease characterized by microcephaly, intellectual disability, speech delay, feeding difficulties, and facial dysmorphisms. This disorder is caused by pathogenic/likely pathogenic variants of the DYRK1A gene, which encodes dual-specificity tyrosine-phosphorylation-regulated kinase 1A. Here, we report a case of MRD7 that was diagnosed using Face2Gene and whole-exome sequencing (WES). A 22-year-old man presented with microcephaly, intellectual disability, slender body, long slender fingers, and facial dysmorphisms. He was previously diagnosed with Cornelia de Lange syndrome (CdLS) at four years of age. However, his CdLS clinical diagnostic score was low at 22 years of age. The Face2Gene application introduced several candidate diseases including MRD7. Finally, by utilizing WES and Sanger sequencing analysis of cloned cDNA, we identified a novel heterozygous duplication variant (c.848dup, p.(Asn283LysfsTer6)) in the DYRK1A gene, which introduces a premature stop codon. This report provides more information about the phenotypic spectrum of a young adult patient with MRD7. Face2Gene helped us introduce candidate diseases of the patient. Registering further genetically confirmed cases with MRD7 will improve the accuracy of the diagnostic recommendations in Face2Gene. Moreover, WES is a powerful tool for diagnosing rare genetic diseases, such as MRD7.
Collapse
|
9
|
Embryonic organizer formation disorder leads to multiorgan dysplasia in Down syndrome. Cell Death Dis 2022; 13:1054. [PMID: 36535930 PMCID: PMC9763398 DOI: 10.1038/s41419-022-05517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Despite the high prevalence of Down syndrome (DS) and early identification of the cause (trisomy 21), its molecular pathogenesis has been poorly understood and specific treatments have consequently been practically unavailable. A number of medical conditions throughout the body associated with DS have prompted us to investigate its molecular etiology from the viewpoint of the embryonic organizer, which can steer the development of surrounding cells into specific organs and tissues. We established a DS zebrafish model by overexpressing the human DYRK1A gene, a highly haploinsufficient gene located at the "critical region" within 21q22. We found that both embryonic organizer and body axis were significantly impaired during early embryogenesis, producing abnormalities of the nervous, heart, visceral, and blood systems, similar to those observed with DS. Quantitative phosphoproteome analysis and related assays demonstrated that the DYRK1A-overexpressed zebrafish embryos had anomalous phosphorylation of β-catenin and Hsp90ab1, resulting in Wnt signaling enhancement and TGF-β inhibition. We found an uncovered ectopic molecular mechanism present in amniocytes from fetuses diagnosed with DS and isolated hematopoietic stem cells (HSCs) of DS patients. Importantly, the abnormal proliferation of DS HSCs could be recovered by switching the balance between Wnt and TGF-β signaling in vitro. Our findings provide a novel molecular pathogenic mechanism in which ectopic Wnt and TGF-β lead to DS physical dysplasia, suggesting potential targeted therapies for DS.
Collapse
|
10
|
Morison LD, Braden RO, Amor DJ, Brignell A, van Bon BWM, Morgan AT. Social motivation a relative strength in DYRK1A syndrome on a background of significant speech and language impairments. Eur J Hum Genet 2022; 30:800-811. [PMID: 35437318 PMCID: PMC9259653 DOI: 10.1038/s41431-022-01079-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
Speech and language impairments are commonly reported in DYRK1A syndrome. Yet, speech and language abilities have not been systematically examined in a prospective cohort study. Speech, language, social behaviour, feeding, and non-verbal communication skills were assessed using standardised tools. The broader health and medical phenotype was documented using caregiver questionnaires, interviews and confirmation with medical records. 38 individuals with DYRK1A syndrome (23 male, median age 8 years 3 months, range 1 year 7 months to 25 years) were recruited. Moderate to severe intellectual disability (ID), autism spectrum disorder (ASD), vision, motor and feeding impairments were common, alongside epilepsy in a third of cases. Speech and language was disordered in all participants. Many acquired some degree of verbal communication, yet few (8/38) developed sufficient oral language skills to rely solely on verbal communication. Speech was characterised by severe apraxia and dysarthria in verbal participants, resulting in markedly poor intelligibility. Those with limited verbal language (30/38) used a combination of sign and graphic augmentative and alternative communication (AAC) systems. Language skills were low across expressive, receptive, and written domains. Most had impaired social behaviours (25/29). Restricted and repetitive interests were most impaired, whilst social motivation was a relative strength. Few individuals with DYRK1A syndrome use verbal speech as their sole means of communication, and hence, all individuals need early access to tailored, graphic AAC systems to support their communication. For those who develop verbal speech, targeted therapy for apraxia and dysarthria should be considered to improve intelligibility and, consequently, communication autonomy.
Collapse
Affiliation(s)
- Lottie D Morison
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Ruth O Braden
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - David J Amor
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
- Royal Children's Hospital, Melbourne, VIC, Australia
| | - Amanda Brignell
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Monash University, Melbourne, VIC, Australia
- Australian Catholic University, Melbourne, VIC, Australia
| | | | - Angela T Morgan
- Murdoch Children's Research Institute, Melbourne, VIC, Australia.
- The University of Melbourne, Melbourne, VIC, Australia.
- Royal Children's Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Papenfuss M, Lützow S, Wilms G, Babendreyer A, Flaßhoff M, Kunick C, Becker W. Differential maturation and chaperone dependence of the paralogous protein kinases DYRK1A and DYRK1B. Sci Rep 2022; 12:2393. [PMID: 35165364 PMCID: PMC8844047 DOI: 10.1038/s41598-022-06423-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
The HSP90/CDC37 chaperone system not only assists the maturation of many protein kinases but also maintains their structural integrity after folding. The interaction of mature kinases with the HSP90/CDC37 complex is governed by the conformational stability of the catalytic domain, while the initial folding of the protein kinase domain is mechanistically less well characterized. DYRK1A (Dual-specificity tyrosine (Y)-phosphorylation Regulated protein Kinase 1A) and DYRK1B are closely related protein kinases with discordant HSP90 client status. DYRK kinases stoichiometrically autophosphorylate on a tyrosine residue immediately after folding, which served us as a traceable marker of successful maturation. In the present study, we used bacterial expression systems to compare the capacity of autonomous maturation of DYRK1A and DYRK1B in the absence of eukaryotic cofactors or chaperones. Under these conditions, autophosphorylation of human DYRK1B was severely compromised when compared with DYRK1A or DYRK1B orthologs from zebrafish and Xenopus. Maturation of human DYRK1B could be restored by bacterial expression at lower temperatures, suggesting that folding was not absolutely dependent on eukaryotic chaperones. The differential folding properties of DYRK1A and DYRK1B were largely due to divergent sequences of the C-terminal lobes of the catalytic domain. Furthermore, the mature kinase domain of DYRK1B featured lower thermal stability than that of DYRK1A when exposed to heat challenge in vitro or in living cells. In summary, our study enhances the mechanistic understanding of the differential thermodynamic properties of two closely related protein kinases during initial folding and as mature kinases.
Collapse
Affiliation(s)
- Marco Papenfuss
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Svenja Lützow
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, RWTH Aachen University, 52074, Aachen, Germany
| | - Maren Flaßhoff
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
12
|
Tahtouh T, Durieu E, Villiers B, Bruyère C, Nguyen TL, Fant X, Ahn KH, Khurana L, Deau E, Lindberg MF, Sévère E, Miege F, Roche D, Limanton E, L'Helgoual'ch JM, Burgy G, Guiheneuf S, Herault Y, Kendall DA, Carreaux F, Bazureau JP, Meijer L. Structure-Activity Relationship in the Leucettine Family of Kinase Inhibitors. J Med Chem 2021; 65:1396-1417. [PMID: 34928152 DOI: 10.1021/acs.jmedchem.1c01141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The protein kinase DYRK1A is involved in Alzheimer's disease, Down syndrome, diabetes, viral infections, and leukemia. Leucettines, a family of 2-aminoimidazolin-4-ones derived from the marine sponge alkaloid Leucettamine B, have been developed as pharmacological inhibitors of DYRKs (dual specificity, tyrosine phosphorylation regulated kinases) and CLKs (cdc2-like kinases). We report here on the synthesis and structure-activity relationship (SAR) of 68 Leucettines. Leucettines were tested on 11 purified kinases and in 5 cellular assays: (1) CLK1 pre-mRNA splicing, (2) Threonine-212-Tau phosphorylation, (3) glutamate-induced cell death, (4) autophagy and (5) antagonism of ligand-activated cannabinoid receptor CB1. The Leucettine SAR observed for DYRK1A is essentially identical for CLK1, CLK4, DYRK1B, and DYRK2. DYRK3 and CLK3 are less sensitive to Leucettines. In contrast, the cellular SAR highlights correlations between inhibition of specific kinase targets and some but not all cellular effects. Leucettines deserve further development as potential therapeutics against various diseases on the basis of their molecular targets and cellular effects.
Collapse
Affiliation(s)
- Tania Tahtouh
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France.,CNRS, 'Protein Phosphorylation and Human Disease' Group, Station Biologique De Roscoff, Place G. Teissier, Bp 74, 29682 Roscoff, Bretagne, France.,College Of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Emilie Durieu
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France.,CNRS, 'Protein Phosphorylation and Human Disease' Group, Station Biologique De Roscoff, Place G. Teissier, Bp 74, 29682 Roscoff, Bretagne, France
| | - Benoît Villiers
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Céline Bruyère
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Thu Lan Nguyen
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France.,Institut De Génétique Et De Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, Université de Strasbourg, CNRS UMR7104 & INSERM U964, 67400 Illkirch, France.,Laboratory of Molecular & Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, New York 10021-6399, United States
| | - Xavier Fant
- CNRS, 'Protein Phosphorylation and Human Disease' Group, Station Biologique De Roscoff, Place G. Teissier, Bp 74, 29682 Roscoff, Bretagne, France
| | - Kwang H Ahn
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Storrs, Connecticut 06269, United States
| | - Leepakshi Khurana
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Storrs, Connecticut 06269, United States
| | - Emmanuel Deau
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Mattias F Lindberg
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Elodie Sévère
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Frédéric Miege
- Edelris, Bâtiment Bioserra 1, 60 avenue Rockefeller, 69008 Lyon, France
| | - Didier Roche
- Edelris, Bâtiment Bioserra 1, 60 avenue Rockefeller, 69008 Lyon, France
| | - Emmanuelle Limanton
- Institut des Sciences Chimiques de Rennes ISCR-UMR CNRS 6226, Université de Rennes 1, Campus de Beaulieu, Bât. 10A, CS 74205, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Jean-Martial L'Helgoual'ch
- Institut des Sciences Chimiques de Rennes ISCR-UMR CNRS 6226, Université de Rennes 1, Campus de Beaulieu, Bât. 10A, CS 74205, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Guillaume Burgy
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France.,Institut des Sciences Chimiques de Rennes ISCR-UMR CNRS 6226, Université de Rennes 1, Campus de Beaulieu, Bât. 10A, CS 74205, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Solène Guiheneuf
- Institut des Sciences Chimiques de Rennes ISCR-UMR CNRS 6226, Université de Rennes 1, Campus de Beaulieu, Bât. 10A, CS 74205, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Yann Herault
- Institut De Génétique Et De Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, Université de Strasbourg, CNRS UMR7104 & INSERM U964, 67400 Illkirch, France
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Storrs, Connecticut 06269, United States
| | - François Carreaux
- Institut des Sciences Chimiques de Rennes ISCR-UMR CNRS 6226, Université de Rennes 1, Campus de Beaulieu, Bât. 10A, CS 74205, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Jean-Pierre Bazureau
- Institut des Sciences Chimiques de Rennes ISCR-UMR CNRS 6226, Université de Rennes 1, Campus de Beaulieu, Bât. 10A, CS 74205, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Laurent Meijer
- Manros Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| |
Collapse
|
13
|
Lindberg MF, Meijer L. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview. Int J Mol Sci 2021; 22:6047. [PMID: 34205123 PMCID: PMC8199962 DOI: 10.3390/ijms22116047] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/09/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRK1A, 1B, 2-4) and cdc2-like kinases (CLK1-4) belong to the CMGC group of serine/threonine kinases. These protein kinases are involved in multiple cellular functions, including intracellular signaling, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, homocysteine/methionine/folate regulation, body temperature regulation, endocytosis, neuronal development, synaptic plasticity, etc. Abnormal expression and/or activity of some of these kinases, DYRK1A in particular, is seen in many human nervous system diseases, such as cognitive deficits associated with Down syndrome, Alzheimer's disease and related diseases, tauopathies, dementia, Pick's disease, Parkinson's disease and other neurodegenerative diseases, Phelan-McDermid syndrome, autism, and CDKL5 deficiency disorder. DYRKs and CLKs are also involved in diabetes, abnormal folate/methionine metabolism, osteoarthritis, several solid cancers (glioblastoma, breast, and pancreatic cancers) and leukemias (acute lymphoblastic leukemia, acute megakaryoblastic leukemia), viral infections (influenza, HIV-1, HCMV, HCV, CMV, HPV), as well as infections caused by unicellular parasites (Leishmania, Trypanosoma, Plasmodium). This variety of pathological implications calls for (1) a better understanding of the regulations and substrates of DYRKs and CLKs and (2) the development of potent and selective inhibitors of these kinases and their evaluation as therapeutic drugs. This article briefly reviews the current knowledge about DYRK/CLK kinases and their implications in human disease.
Collapse
Affiliation(s)
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France;
| |
Collapse
|
14
|
Laham AJ, Saber-Ayad M, El-Awady R. DYRK1A: a down syndrome-related dual protein kinase with a versatile role in tumorigenesis. Cell Mol Life Sci 2021; 78:603-619. [PMID: 32870330 PMCID: PMC11071757 DOI: 10.1007/s00018-020-03626-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/22/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a dual kinase that can phosphorylate its own activation loop on tyrosine residue and phosphorylate its substrates on threonine and serine residues. It is the most studied member of DYRK kinases, because its gene maps to human chromosome 21 within the Down syndrome critical region (DSCR). DYRK1A overexpression was found to be responsible for the phenotypic features observed in Down syndrome such as mental retardation, early onset neurodegenerative, and developmental heart defects. Besides its dual activity in phosphorylation, DYRK1A carries the characteristic of duality in tumorigenesis. Many studies indicate its possible role as a tumor suppressor gene; however, others prove its pro-oncogenic activity. In this review, we will focus on its multifaceted role in tumorigenesis by explaining its participation in some cancer hallmarks pathways such as proliferative signaling, transcription, stress, DNA damage repair, apoptosis, and angiogenesis, and finally, we will discuss targeting DYRK1A as a potential strategy for management of cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amina Jamal Laham
- College of Medicine, University of Sharjah, Sharjah, UAE
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, UAE.
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.
| | - Raafat El-Awady
- College of Medicine, University of Sharjah, Sharjah, UAE.
- College of Pharmacy, University of Sharjah, Sharjah, UAE.
| |
Collapse
|
15
|
Bonnycastle K, Davenport EC, Cousin MA. Presynaptic dysfunction in neurodevelopmental disorders: Insights from the synaptic vesicle life cycle. J Neurochem 2020; 157:179-207. [PMID: 32378740 DOI: 10.1111/jnc.15035] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
The activity-dependent fusion, retrieval and recycling of synaptic vesicles is essential for the maintenance of neurotransmission. Until relatively recently it was believed that most mutations in genes that were essential for this process would be incompatible with life, because of this fundamental role. However, an ever-expanding number of mutations in this very cohort of genes are being identified in individuals with neurodevelopmental disorders, including autism, intellectual disability and epilepsy. This article will summarize the current state of knowledge linking mutations in presynaptic genes to neurodevelopmental disorders by sequentially covering the various stages of the synaptic vesicle life cycle. It will also discuss how perturbations of specific stages within this recycling process could translate into human disease. Finally, it will also provide perspectives on the potential for future therapy that are targeted to presynaptic function.
Collapse
Affiliation(s)
- Katherine Bonnycastle
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Lee KS, Choi M, Kwon DW, Kim D, Choi JM, Kim AK, Ham Y, Han SB, Cho S, Cheon CK. A novel de novo heterozygous DYRK1A mutation causes complete loss of DYRK1A function and developmental delay. Sci Rep 2020; 10:9849. [PMID: 32555303 PMCID: PMC7299959 DOI: 10.1038/s41598-020-66750-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/14/2020] [Indexed: 01/01/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) is essential for human development, and DYRK1A haploinsufficiency is associated with a recognizable developmental syndrome and variable clinical features. Here, we present a patient with DYRK1A haploinsufficiency syndrome, including facial dysmorphism, delayed motor development, cardiovascular system defects, and brain atrophy. Exome sequencing identified a novel de novo heterozygous mutation of the human DYRK1A gene (c.1185dup), which generated a translational termination codon and resulted in a C-terminally truncated protein (DYRK1A-E396ter). To study the molecular effect of this truncation, we generated mammalian cell and Drosophila models that recapitulated the DYRK1A protein truncation. Analysis of the structure and deformation energy of the mutant protein predicted a reduction in protein stability. Experimentally, the mutant protein was efficiently degraded by the ubiquitin-dependent proteasome pathway and was barely detectable in mammalian cells. More importantly, the mutant kinase was intrinsically inactive and had little negative impact on the wild-type protein. Similarly, the mutant protein had a minimal effect on Drosophila phenotypes, confirming its loss-of-function in vivo. Together, our results suggest that the novel heterozygous mutation of DYRK1A resulted in loss-of-function of the kinase activity of DYRK1A and may contribute to the developmental delay observed in the patient.
Collapse
Affiliation(s)
- Kyu-Sun Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Gajeong-dong, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Miri Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk, 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, 30-1 Yeonje-ri, Osong-eup, Heungduk-gu, Cheongju-si, Chungbuk, 28644, Republic of Korea
| | - Dae-Woo Kwon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Gajeong-dong, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Doyoun Kim
- Innovative Target Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Jang-dong, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jong-Moon Choi
- Green Cross Genome, Green Cross Laboratories, 107 Ihyeon-ro 30 beon-gil, Giheung-gu, Yongin-si, Gyeonggi, 16924, Republic of Korea
| | - Ae-Kyeong Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Youngwook Ham
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk, 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, 30-1 Yeonje-ri, Osong-eup, Heungduk-gu, Cheongju-si, Chungbuk, 28644, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 30-1 Yeonje-ri, Osong-eup, Heungduk-gu, Cheongju-si, Chungbuk, 28644, Republic of Korea
| | - Sungchan Cho
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk, 28116, Republic of Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Gajeong-dong, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Chong Kun Cheon
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan-si, Gyeongnam, 50612, Republic of Korea.
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan-si, Gyeongnam, 50612, Republic of Korea.
| |
Collapse
|
17
|
Blackburn ATM, Bekheirnia N, Uma VC, Corkins ME, Xu Y, Rosenfeld JA, Bainbridge MN, Yang Y, Liu P, Madan-Khetarpal S, Delgado MR, Hudgins L, Krantz I, Rodriguez-Buritica D, Wheeler PG, Al-Gazali L, Mohamed Saeed Mohamed Al Shamsi A, Gomez-Ospina N, Chao HT, Mirzaa GM, Scheuerle AE, Kukolich MK, Scaglia F, Eng C, Willsey HR, Braun MC, Lamb DJ, Miller RK, Bekheirnia MR. DYRK1A-related intellectual disability: a syndrome associated with congenital anomalies of the kidney and urinary tract. Genet Med 2019; 21:2755-2764. [PMID: 31263215 PMCID: PMC6895419 DOI: 10.1038/s41436-019-0576-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Haploinsufficiency of DYRK1A causes a recognizable clinical syndrome. The goal of this paper is to investigate congenital anomalies of the kidney and urinary tract (CAKUT) and genital defects (GD) in patients with DYRK1A variants. METHODS A large database of clinical exome sequencing (ES) was queried for de novo DYRK1A variants and CAKUT/GD phenotypes were characterized. Xenopus laevis (frog) was chosen as a model organism to assess Dyrk1a's role in renal development. RESULTS Phenotypic details and variants of 19 patients were compiled after an initial observation that one patient with a de novo pathogenic variant in DYRK1A had GD. CAKUT/GD data were available from 15 patients, 11 of whom presented with CAKUT/GD. Studies in Xenopus embryos demonstrated that knockdown of Dyrk1a, which is expressed in forming nephrons, disrupts the development of segments of embryonic nephrons, which ultimately give rise to the entire genitourinary (GU) tract. These defects could be rescued by coinjecting wild-type human DYRK1A RNA, but not with DYRK1AR205* or DYRK1AL245R RNA. CONCLUSION Evidence supports routine GU screening of all individuals with de novo DYRK1A pathogenic variants to ensure optimized clinical management. Collectively, the reported clinical data and loss-of-function studies in Xenopus substantiate a novel role for DYRK1A in GU development.
Collapse
Affiliation(s)
- Alexandria T M Blackburn
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Nasim Bekheirnia
- Renal Section, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | | | - Mark E Corkins
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA
| | - Yuxiao Xu
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew N Bainbridge
- Codified Genomics, LLC, Houston, TX, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Pengfei Liu
- Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Suneeta Madan-Khetarpal
- Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio R Delgado
- Department of neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Louanne Hudgins
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, CA, USA
| | - Ian Krantz
- Division of Human Genetics, The Children's Hospital of Philadelphia and the Department of Pediatrics, Perelman School of medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - David Rodriguez-Buritica
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Lihadh Al-Gazali
- College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | - Natalia Gomez-Ospina
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, CA, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- McNair Medical Institute at The Robert and Janice McNair Foundation, Houston, TX, USA
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Angela E Scheuerle
- Department of Pediatrics (Genetics and Metabolism), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mary K Kukolich
- Clinical Genetics, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Fernando Scaglia
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, ShaTin, Hong Kong SAR
| | - Christine Eng
- Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Helen Rankin Willsey
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Michael C Braun
- Renal Section, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Dolores J Lamb
- Department of Urology and Center for Reproductive Genomics, Weill Cornell Medicine, New York, NY, USA
| | - Rachel K Miller
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Graduate School of Biomedical Sciences, Houston, TX, USA.
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Program in Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Mir Reza Bekheirnia
- Renal Section, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Hospital, Houston, TX, USA.
- Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
Qiao F, Shao B, Wang C, Wang Y, Zhou R, Liu G, Meng L, Hu P, Xu Z. A De Novo Mutation in DYRK1A Causes Syndromic Intellectual Disability: A Chinese Case Report. Front Genet 2019; 10:1194. [PMID: 31803247 PMCID: PMC6877748 DOI: 10.3389/fgene.2019.01194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/29/2019] [Indexed: 11/29/2022] Open
Abstract
Autosomal dominant mental retardation-7 (MRD7) is a rare anomaly, characterized by severe intellectual disability, feeding difficulties, behavior abnormalities, and distinctive facial features, including microcephaly, deep-set eyes, large simple ears, and a pointed or bulbous nasal tip. Some studies show that the disorder has a close correlation with variants in DYRK1A. Herein we described a Chinese girl presenting typical clinical features diagnosed at 4 years old. Whole-exome sequencing of the familial genomic DNA identified a novel mutation c.930C > A (p.Tyr310*) in exon 7 of DYRK1A in the proband. The nonsense mutation was predicted to render the truncation of the protein. Our results suggested that the de novo heterozygous mutation in DYRK1A was responsible for the MRD7 in this Chinese family, which both extended the knowledge of mutation spectrum in MRD7 patients and highlighted the clinical application of exome sequencing.
Collapse
Affiliation(s)
- Fengchang Qiao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Binbin Shao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Chen Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ran Zhou
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Gang Liu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lulu Meng
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
19
|
Arranz J, Balducci E, Arató K, Sánchez-Elexpuru G, Najas S, Parras A, Rebollo E, Pijuan I, Erb I, Verde G, Sahun I, Barallobre MJ, Lucas JJ, Sánchez MP, de la Luna S, Arbonés ML. Impaired development of neocortical circuits contributes to the neurological alterations in DYRK1A haploinsufficiency syndrome. Neurobiol Dis 2019; 127:210-222. [PMID: 30831192 PMCID: PMC6753933 DOI: 10.1016/j.nbd.2019.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/14/2019] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorders are early onset neurodevelopmental disorders characterized by deficits in social communication and restricted repetitive behaviors, yet they are quite heterogeneous in terms of their genetic basis and phenotypic manifestations. Recently, de novo pathogenic mutations in DYRK1A, a chromosome 21 gene associated to neuropathological traits of Down syndrome, have been identified in patients presenting a recognizable syndrome included in the autism spectrum. These mutations produce DYRK1A kinases with partial or complete absence of the catalytic domain, or they represent missense mutations located within this domain. Here, we undertook an extensive biochemical characterization of the DYRK1A missense mutations reported to date and show that most of them, but not all, result in enzymatically dead DYRK1A proteins. We also show that haploinsufficient Dyrk1a+/- mutant mice mirror the neurological traits associated with the human pathology, such as defective social interactions, stereotypic behaviors and epileptic activity. These mutant mice present altered proportions of excitatory and inhibitory neocortical neurons and synapses. Moreover, we provide evidence that alterations in the production of cortical excitatory neurons are contributing to these defects. Indeed, by the end of the neurogenic period, the expression of developmental regulated genes involved in neuron differentiation and/or activity is altered. Therefore, our data indicate that altered neocortical neurogenesis could critically affect the formation of cortical circuits, thereby contributing to the neuropathological changes in DYRK1A haploinsufficiency syndrome.
Collapse
Affiliation(s)
- Juan Arranz
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Elisa Balducci
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Krisztina Arató
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Gentzane Sánchez-Elexpuru
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Department of Neuroscience, Laboratory of Neurology, IIS-Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Sònia Najas
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain
| | - Alberto Parras
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC/UAM, 28049 Madrid, Spain
| | - Elena Rebollo
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain
| | - Isabel Pijuan
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Ionas Erb
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Gaetano Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain
| | - Ignasi Sahun
- PCB-PRBB Animal Facility Alliance, 08020 Barcelona, Spain
| | - Maria J Barallobre
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - José J Lucas
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC/UAM, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marina P Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Department of Neuroscience, Laboratory of Neurology, IIS-Jiménez Díaz Foundation, 28040 Madrid, Spain
| | - Susana de la Luna
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Maria L Arbonés
- Instituto de Biología Molecular de Barcelona (IBMB), CSIC, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.
| |
Collapse
|
20
|
Guard SE, Poss ZC, Ebmeier CC, Pagratis M, Simpson H, Taatjes DJ, Old WM. The nuclear interactome of DYRK1A reveals a functional role in DNA damage repair. Sci Rep 2019; 9:6539. [PMID: 31024071 PMCID: PMC6483993 DOI: 10.1038/s41598-019-42990-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
The chromosome 21 encoded protein kinase DYRK1A is essential for normal human development. Mutations in DYRK1A underlie a spectrum of human developmental disorders, and increased dosage in trisomy 21 is implicated in Down syndrome related pathologies. DYRK1A regulates a diverse array of cellular processes through physical interactions with substrates and binding partners in various subcellular compartments. Despite recent large-scale protein-protein interaction profiling efforts, DYRK1A interactions specific to different subcellular compartments remain largely unknown, impeding progress toward understanding emerging roles for this kinase. Here, we used immunoaffinity purification and quantitative mass spectrometry to identify nuclear interaction partners of endogenous DYRK1A. This interactome was enriched in DNA damage repair factors, transcriptional elongation factors and E3 ubiquitin ligases. We validated an interaction with RNF169, a factor that promotes homology directed repair upon DNA damage, and found that DYRK1A expression and kinase activity are required for maintenance of 53BP1 expression and subsequent recruitment to DNA damage loci. Further, DYRK1A knock out conferred resistance to ionizing radiation in colony formation assays, suggesting that DYRK1A expression decreases cell survival efficiency in response to DNA damage and points to a tumor suppressive role for this kinase.
Collapse
Affiliation(s)
- Steven E Guard
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Zachary C Poss
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Christopher C Ebmeier
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Maria Pagratis
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Helen Simpson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - William M Old
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
21
|
Arbones ML, Thomazeau A, Nakano-Kobayashi A, Hagiwara M, Delabar JM. DYRK1A and cognition: A lifelong relationship. Pharmacol Ther 2019; 194:199-221. [PMID: 30268771 DOI: 10.1016/j.pharmthera.2018.09.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dosage of the serine threonine kinase DYRK1A is critical in the central nervous system (CNS) during development and aging. This review analyzes the functions of this kinase by considering its interacting partners and pathways. The role of DYRK1A in controlling the differentiation of prenatal newly formed neurons is presented separately from its role at the pre- and post-synaptic levels in the adult CNS; its effects on synaptic plasticity are also discussed. Because this kinase is positioned at the crossroads of many important processes, genetic dosage errors in this protein produce devastating effects arising from DYRK1A deficiency, such as in MRD7, an autism spectrum disorder, or from DYRK1A excess, such as in Down syndrome. Effects of these errors have been shown in various animal models including Drosophila, zebrafish, and mice. Dysregulation of DYRK1A levels also occurs in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Finally, this review describes inhibitors that have been assessed in vivo. Accurate targeting of DYRK1A levels in the brain, with either inhibitors or activators, is a future research challenge.
Collapse
Affiliation(s)
- Maria L Arbones
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain.
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jean M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
22
|
Widowati EW, Bamberg-Lemper S, Becker W. Mutational analysis of two residues in the DYRK homology box of the protein kinase DYRK1A. BMC Res Notes 2018; 11:297. [PMID: 29764512 PMCID: PMC5952693 DOI: 10.1186/s13104-018-3416-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/09/2018] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Dual specificity tyrosine phosphorylation-regulated kinases (DYRK) contain a characteristic sequence motif (DYRK homology box, DH box) that is located N-terminal of the catalytic domain and supports the autophosphorylation of a conserved tyrosine during maturation of the catalytic domain. Two missense mutations in the DH box of human DYRK1B were recently identified as causative of a rare familiar form of metabolic syndrome. We have recently shown that these amino acid exchanges impair maturation of the kinase domain. Here we report the characterization of DYRK1A point mutants (D138P, K150C) that correspond to the pathogenic DYRK1B variants (H90P, R102C). RESULTS When expressed in HeLa cells, DYRK1A-D138P and K150C showed no significant difference from wild type DYRK1A regarding the activating tyrosine autophosphorylation or catalytic activity towards exogenous substrates. However, both DYRK1A variants were underphosphorylated on tyrosine when expressed in a bacterial cell free in vitro translation system. These results suggest that D138 and K150 participate in the maturation of the catalytic domain of DYRK1A albeit the mutation of these residues is compensated under physiological conditions.
Collapse
Affiliation(s)
- Esti Wahyu Widowati
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
- Chemistry Study Program, Faculty of Science and Technology, State Islamic University (UIN) Sunan Kalijaga, Yogyakarta, Indonesia
| | | | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|