1
|
Sipani R, Joshi R. Hox genes collaborate with helix-loop-helix factor Grainyhead to promote neuroblast apoptosis along the anterior-posterior axis of the Drosophila larval central nervous system. Genetics 2022; 222:6632667. [DOI: 10.1093/genetics/iyac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Hox genes code for a family of a homeodomain (HD) containing transcription factors that use TALE-HD containing factors Pbx/Exd and Meis/Hth to specify the development of the anterior-posterior (AP) axis of an organism. However, the absence of TALE-HD containing factors from specific tissues emphasizes the need to identify and validate new Hox cofactors. In Drosophila central nervous system (CNS), Hox execute segment-specific apoptosis of neural stem cells (neuroblasts-NBs) and neurons. In abdominal segments of larval CNS, Hox gene Abdominal-A (AbdA) mediates NB apoptosis with the help of Exd and bHLH factor Grainyhead (Grh) using a 717 bp apoptotic enhancer. In this study, we show that this enhancer is critical for abdominal NB apoptosis and relies on two separable set of DNA binding motifs responsible for its initiation and maintenance. Our results also show that AbdA and Grh interact through their highly conserved DNA binding domains, and the DNA binding specificity of AbdA-HD is important for it to interact with Grh and essential for it to execute NB apoptosis in CNS. We also establish that Grh is required for Hox-dependent NB apoptosis in Labial and Sex Combs Reduced (Scr) expressing regions of the CNS, and it can physically interact with all the Hox proteins in vitro. Our biochemical and functional data collectively support the idea that Grh can function as a Hox cofactor and help them carry out their in vivo roles during development.
Collapse
Affiliation(s)
- Rashmi Sipani
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Inner Ring Road, Uppal, Hyderabad-500039. India
- Graduate Studies, Manipal Academy of Higher Education , Manipal 576104, India
| | - Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Inner Ring Road, Uppal, Hyderabad-500039. India
| |
Collapse
|
2
|
Joshi R, Sipani R, Bakshi A. Roles of Drosophila Hox Genes in the Assembly of Neuromuscular Networks and Behavior. Front Cell Dev Biol 2022; 9:786993. [PMID: 35071230 PMCID: PMC8777297 DOI: 10.3389/fcell.2021.786993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes have been known for specifying the anterior-posterior axis (AP) in bilaterian body plans. Studies in vertebrates have shown their importance in developing region-specific neural circuitry and diversifying motor neuron pools. In Drosophila, they are instrumental for segment-specific neurogenesis and myogenesis early in development. Their robust expression in differentiated neurons implied their role in assembling region-specific neuromuscular networks. In the last decade, studies in Drosophila have unequivocally established that Hox genes go beyond their conventional functions of generating cellular diversity along the AP axis of the developing central nervous system. These roles range from establishing and maintaining the neuromuscular networks to controlling their function by regulating the motor neuron morphology and neurophysiology, thereby directly impacting the behavior. Here we summarize the limited knowledge on the role of Drosophila Hox genes in the assembly of region-specific neuromuscular networks and their effect on associated behavior.
Collapse
Affiliation(s)
- Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Rashmi Sipani
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Asif Bakshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
Hombría JCG, García-Ferrés M, Sánchez-Higueras C. Anterior Hox Genes and the Process of Cephalization. Front Cell Dev Biol 2021; 9:718175. [PMID: 34422836 PMCID: PMC8374599 DOI: 10.3389/fcell.2021.718175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
During evolution, bilateral animals have experienced a progressive process of cephalization with the anterior concentration of nervous tissue, sensory organs and the appearance of dedicated feeding structures surrounding the mouth. Cephalization has been achieved by the specialization of the unsegmented anterior end of the body (the acron) and the sequential recruitment to the head of adjacent anterior segments. Here we review the key developmental contribution of Hox1-5 genes to the formation of cephalic structures in vertebrates and arthropods and discuss how this evolved. The appearance of Hox cephalic genes preceded the evolution of a highly specialized head in both groups, indicating that Hox gene involvement in the control of cephalic structures was acquired independently during the evolution of vertebrates and invertebrates to regulate the genes required for head innovation.
Collapse
Affiliation(s)
- James C-G Hombría
- Centro Andaluz de Biología del Desarrollo (Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide), Seville, Spain
| | - Mar García-Ferrés
- Centro Andaluz de Biología del Desarrollo (Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide), Seville, Spain
| | - Carlos Sánchez-Higueras
- Centro Andaluz de Biología del Desarrollo (Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide), Seville, Spain
| |
Collapse
|
4
|
Bakshi A, Sipani R, Ghosh N, Joshi R. Sequential activation of Notch and Grainyhead gives apoptotic competence to Abdominal-B expressing larval neuroblasts in Drosophila Central nervous system. PLoS Genet 2020; 16:e1008976. [PMID: 32866141 PMCID: PMC7485976 DOI: 10.1371/journal.pgen.1008976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/11/2020] [Accepted: 07/01/2020] [Indexed: 11/19/2022] Open
Abstract
Neural circuitry for mating and reproduction resides within the terminal segments of central nervous system (CNS) which express Hox paralogous group 9–13 (in vertebrates) or Abdominal-B (Abd-B) in Drosophila. Terminal neuroblasts (NBs) in A8-A10 segments of Drosophila larval CNS are subdivided into two groups based on expression of transcription factor Doublesex (Dsx). While the sex specific fate of Dsx-positive NBs is well investigated, the fate of Dsx-negative NBs is not known so far. Our studies with Dsx-negative NBs suggests that these cells, like their abdominal counterparts (in A3-A7 segments) use Hox, Grainyhead (Grh) and Notch to undergo cell death during larval development. This cell death also happens by transcriptionally activating RHG family of apoptotic genes through a common apoptotic enhancer in early to mid L3 stages. However, unlike abdominal NBs (in A3-A7 segments) which use increasing levels of resident Hox factor Abdominal-A (Abd-A) as an apoptosis trigger, Dsx-negative NBs (in A8-A10 segments) keep the levels of resident Hox factor Abd-B constant. These cells instead utilize increasing levels of the temporal transcription factor Grh and a rise in Notch activity to gain apoptotic competence. Biochemical and in vivo analysis suggest that Abdominal-A and Grh binding motifs in the common apoptotic enhancer also function as Abdominal-B and Grh binding motifs and maintains the enhancer activity in A8-A10 NBs. Finally, the deletion of this enhancer by the CRISPR-Cas9 method blocks the apoptosis of Dsx-negative NBs. These results highlight the fact that Hox dependent NB apoptosis in abdominal and terminal regions utilizes common molecular players (Hox, Grh and Notch), but seems to have evolved different molecular strategies to pattern CNS. Two major characteristic features of bilaterian organisms are the head to tail axis and a complex central nervous system. The Hox family of transcription factors, which are expressed segmentally along the head to tail axis, plays a critical role in determining both of these features. One of the ways by which Hox factors do this is by mediating differential programmed cell death of the neural stem cells along the head to tail axis of the developing central nervous system, thereby regulating the numerical diversity of the neurons generated along this axis. Our study with a subpopulation of neural stem cells in the most terminal region of the Drosophila larval central nervous system highlights that region-specific Hox-dependent cell death of neural stem cells in abdominal and terminal regions utilizes common molecular players (Hox, Grh and Notch), but seems to have evolved different molecular strategies to pattern the developing central nervous system.
Collapse
Affiliation(s)
- Asif Bakshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Rashmi Sipani
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Neha Ghosh
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- * E-mail: ,
| |
Collapse
|
5
|
Boyan G, Graf P, Ehrhardt E. Patterns of cell death in the embryonic antenna of the grasshopper Schistocerca gregaria. Dev Genes Evol 2018; 228:105-118. [PMID: 29511851 DOI: 10.1007/s00427-018-0607-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/22/2018] [Indexed: 12/27/2022]
Abstract
We have investigated the pattern of apoptosis in the antennal epithelium during embryonic development of the grasshopper Schistocerca gregaria. The molecular labels lachesin and annulin reveal that the antennal epithelium becomes subdivided into segment-like meristal annuli within which sensory cell clusters later differentiate. To determine whether apoptosis is involved in the development of such sensory cell clusters, we examined the expression pattern of the cell death labels acridine orange and TUNEL in the epithelium. We found stereotypic, age-dependent, wave-like patterns of cell death in the antenna. Early in embryogenesis, apoptosis is restricted to the most basal meristal annuli but subsequently spreads to encompass almost the entire antenna. Cell death then declines in more basal annuli and is only found in the tip region later in embryogenesis. Apoptosis is restricted throughout to the midregion of a given annulus and away from its border with neighboring annuli, arguing against a causal role in annular formation. Double-labeling for cell death and sensory cell differentiation reveals apoptosis occurring within bands of differentiating sensory cell clusters, matching the meristal organization of the apical antenna. Examination of the individual epithelial lineages which generate sensory cells reveals that apoptosis begins peripherally within a lineage and with age expands to encompass the differentiated sensory cell at the base. We conclude that complete lineages can undergo apoptosis and that the youngest cells in these lineages appear to die first, with the sensory neuron dying last. Lineage-based death in combination with cell death patterns in different regions of the antenna may contribute to odor-mediated behaviors in the grasshopper.
Collapse
Affiliation(s)
- George Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2 Martinsried, 82152, Planegg, Germany.
| | - Philip Graf
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20147, USA
| | - Erica Ehrhardt
- Section of Neurobiology, Department of Biology II, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2 Martinsried, 82152, Planegg, Germany
| |
Collapse
|
6
|
Khandelwal R, Sipani R, Govinda Rajan S, Kumar R, Joshi R. Combinatorial action of Grainyhead, Extradenticle and Notch in regulating Hox mediated apoptosis in Drosophila larval CNS. PLoS Genet 2017; 13:e1007043. [PMID: 29023471 PMCID: PMC5667929 DOI: 10.1371/journal.pgen.1007043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/02/2017] [Accepted: 09/26/2017] [Indexed: 01/09/2023] Open
Abstract
Hox mediated neuroblast apoptosis is a prevalent way to pattern larval central nervous system (CNS) by different Hox genes, but the mechanism of this apoptosis is not understood. Our studies with Abdominal-A (Abd-A) mediated larval neuroblast (pNB) apoptosis suggests that AbdA, its cofactor Extradenticle (Exd), a helix-loop-helix transcription factor Grainyhead (Grh), and Notch signaling transcriptionally contribute to expression of RHG family of apoptotic genes. We find that Grh, AbdA, and Exd function together at multiple motifs on the apoptotic enhancer. In vivo mutagenesis of these motifs suggest that they are important for the maintenance of the activity of the enhancer rather than its initiation. We also find that Exd function is independent of its known partner homothorax in this apoptosis. We extend some of our findings to Deformed expressing region of sub-esophageal ganglia where pNBs undergo a similar Hox dependent apoptosis. We propose a mechanism where common players like Exd-Grh-Notch work with different Hox genes through region specific enhancers to pattern respective segments of larval central nervous system. Specification of the head to tail axis of the developing central nervous system is carried out by Hox genes. Hox mediated programmed cell death of the neural progenitor cells plays an important role in specification of this axis, but the molecular mechanism of this phenomenon is not well understood. We have studied this phenomenon in abdominal and subesophageal regions of larval central nervous system of Drosophila. We find that different Hox genes use a combination of common players (Extradenticle, Grainyhead and Notch) but employ region specific enhancers to cause progenitor cell death in different segments of developing central nervous system.
Collapse
Affiliation(s)
- Risha Khandelwal
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Tuljaguda Complex, Nampally, Hyderabad, India
- Graduate Studies, Manipal University, Manipal, India
| | - Rashmi Sipani
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Tuljaguda Complex, Nampally, Hyderabad, India
- Graduate Studies, Manipal University, Manipal, India
| | - Sriivatsan Govinda Rajan
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Tuljaguda Complex, Nampally, Hyderabad, India
| | - Raviranjan Kumar
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Tuljaguda Complex, Nampally, Hyderabad, India
- Graduate Studies, Manipal University, Manipal, India
| | - Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Tuljaguda Complex, Nampally, Hyderabad, India
- * E-mail: ,
| |
Collapse
|
7
|
Chojnowski JL, Trau HA, Masuda K, Manley NR. Temporal and spatial requirements for Hoxa3 in mouse embryonic development. Dev Biol 2016; 415:33-45. [PMID: 27178667 DOI: 10.1016/j.ydbio.2016.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 01/23/2023]
Abstract
Hoxa3(null) mice have severe defects in the development of pharyngeal organs including athymia, aparathyroidism, thyroid hypoplasia, and ultimobranchial body persistence, in addition to defects of the throat cartilages and cranial nerves. Some of the structures altered in the Hoxa3(null) mutant embryos are anterior to the described Hoxa3 gene expression boundary: the thyroid, soft palate, and lesser hyoid horn. All of these structures develop over time and through the interactions of multiple cell types. To investigate the specific cellular targets for HOXA3 function in these structures across developmental time, we performed a comprehensive analysis of the temporal and tissue-specific requirements for Hoxa3, including a lineage analysis using Hoxa3(Cre). The combination of these approaches showed that HOXA3 functions in both a cell autonomous and non-cell autonomous manner during development of the 3rd and 4th arch derivatives, and functions in a neural crest cell (NCC)-specific, non-cell autonomous manner for structures that were Hoxa3-negative by lineage tracing. Our data indicate that HOXA3 is required for tissue organization and organ differentiation in endodermal cells (in the tracheal epithelium, thymus, and parathyroid), and contributes to organ migration and morphogenesis in NCCs. These data provide a detailed picture of where and when HOXA3 acts to promote the development of the diverse structures that are altered in the Hoxa3(null) mutant. Data presented here, combined with our previous studies, indicate that the regionally restricted defects in Hoxa3 mutants do not reflect a role in positional identity (establishment of cell or tissue fate), but instead indicate a wider variety of functions including controlling distinct genetic programs for differentiation and morphogenesis in different cell types during development.
Collapse
Affiliation(s)
- Jena L Chojnowski
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, 500 DW Brooks Drive, Athens, GA, 30602, USA
| | - Heidi A Trau
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, 500 DW Brooks Drive, Athens, GA, 30602, USA
| | - Kyoko Masuda
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, 500 DW Brooks Drive, Athens, GA, 30602, USA
| | - Nancy R Manley
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, 500 DW Brooks Drive, Athens, GA, 30602, USA.
| |
Collapse
|
8
|
Lovick JK, Kong A, Omoto JJ, Ngo KT, Younossi-Hartenstein A, Hartenstein V. Patterns of growth and tract formation during the early development of secondary lineages in the Drosophila larval brain. Dev Neurobiol 2015; 76:434-51. [PMID: 26178322 DOI: 10.1002/dneu.22325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 11/10/2022]
Abstract
The Drosophila brain consists of a relatively small number of invariant, genetically determined lineages which provide a model to study the relationship between gene function and neuronal architecture. In following this long-term goal, we reconstruct the morphology (projection pattern and connectivity) and gene expression patterns of brain lineages throughout development. In this article, we focus on the secondary phase of lineage morphogenesis, from the reactivation of neuroblast proliferation in the first larval instar to the time when proliferation ends and secondary axon tracts have fully extended in the late third larval instar. We have reconstructed the location and projection of secondary lineages at close (4 h) intervals and produced a detailed map in the form of confocal z-projections and digital three-dimensional models of all lineages at successive larval stages. Based on these reconstructions, we could compare the spatio-temporal pattern of axon formation and morphogenetic movements of different lineages in normal brain development. In addition to wild type, we reconstructed lineage morphology in two mutant conditions. (1) Expressing the construct UAS-p35 which rescues programmed cell death we could systematically determine which lineages normally lose hemilineages to apoptosis. (2) so-Gal4-driven expression of dominant-negative EGFR ablated the optic lobe, which allowed us to conclude that the global centrifugal movement normally affecting the cell bodies of lateral lineages in the late larva is causally related to the expansion of the optic lobe, and that the central pattern of axonal projections of these lineages is independent of the presence or absence of the optic lobe.
Collapse
Affiliation(s)
- Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Angel Kong
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Kathy T Ngo
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Amelia Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| |
Collapse
|
9
|
Hartenstein V, Younossi-Hartenstein A, Lovick JK, Kong A, Omoto JJ, Ngo KT, Viktorin G. Lineage-associated tracts defining the anatomy of the Drosophila first instar larval brain. Dev Biol 2015; 406:14-39. [PMID: 26141956 DOI: 10.1016/j.ydbio.2015.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/25/2015] [Accepted: 06/27/2015] [Indexed: 11/15/2022]
Abstract
Fixed lineages derived from unique, genetically specified neuroblasts form the anatomical building blocks of the Drosophila brain. Neurons belonging to the same lineage project their axons in a common tract, which is labeled by neuronal markers. In this paper, we present a detailed atlas of the lineage-associated tracts forming the brain of the early Drosophila larva, based on the use of global markers (anti-Neuroglian, anti-Neurotactin, inscuteable-Gal4>UAS-chRFP-Tub) and lineage-specific reporters. We describe 68 discrete fiber bundles that contain axons of one lineage or pairs/small sets of adjacent lineages. Bundles enter the neuropil at invariant locations, the lineage tract entry portals. Within the neuropil, these fiber bundles form larger fascicles that can be classified, by their main orientation, into longitudinal, transverse, and vertical (ascending/descending) fascicles. We present 3D digital models of lineage tract entry portals and neuropil fascicles, set into relationship to commonly used, easily recognizable reference structures such as the mushroom body, the antennal lobe, the optic lobe, and the Fasciclin II-positive fiber bundles that connect the brain and ventral nerve cord. Correspondences and differences between early larval tract anatomy and the previously described late larval and adult lineage patterns are highlighted. Our L1 neuro-anatomical atlas of lineages constitutes an essential step towards following morphologically defined lineages to the neuroblasts of the early embryo, which will ultimately make it possible to link the structure and connectivity of a lineage to the expression of genes in the particular neuroblast that gives rise to that lineage. Furthermore, the L1 atlas will be important for a host of ongoing work that attempts to reconstruct neuronal connectivity at the level of resolution of single neurons and their synapses.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA.
| | - Amelia Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - Angel Kong
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | - Kathy T Ngo
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Building, Los Angeles, CA 90095, USA
| | | |
Collapse
|
10
|
|
11
|
Sen S, Biagini S, Reichert H, VijayRaghavan K. Orthodenticle is required for the development of olfactory projection neurons and local interneurons in Drosophila. Biol Open 2014; 3:711-7. [PMID: 24996925 PMCID: PMC4133724 DOI: 10.1242/bio.20148524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accurate wiring of nervous systems involves precise control over cellular processes like cell division, cell fate specification, and targeting of neurons. The nervous system of Drosophila melanogaster is an excellent model to understand these processes. Drosophila neurons are generated by stem cell like precursors called neuroblasts that are formed and specified in a highly stereotypical manner along the neuroectoderm. This stereotypy has been attributed, in part, to the expression and function of transcription factors that act as intrinsic cell fate determinants in the neuroblasts and their progeny during embryogenesis. Here we focus on the lateral neuroblast lineage, ALl1, of the antennal lobe and show that the transcription factor-encoding cephalic gap gene orthodenticle is required in this lineage during postembryonic brain development. We use immunolabelling to demonstrate that Otd is expressed in the neuroblast of this lineage during postembryonic larval stages. Subsequently, we use MARCM clonal mutational methods to show that the majority of the postembryonic neuronal progeny in the ALl1 lineage undergoes apoptosis in the absence of orthodenticle. Moreover, we demonstrate that the neurons that survive in the orthodenticle loss-of-function condition display severe targeting defects in both the proximal (dendritic) and distal (axonal) neurites. These findings indicate that the cephalic gap gene orthodenticle acts as an important intrinsic determinant in the ALl1 neuroblast lineage and, hence, could be a member of a putative combinatorial code involved in specifying the fate and identity of cells in this lineage.
Collapse
Affiliation(s)
- Sonia Sen
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Silvia Biagini
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India Present address: FIRC Institute of Molecular Oncology, Via Adamello, 16-20139 Milan, Italy
| | - Heinrich Reichert
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - K VijayRaghavan
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|
12
|
Kuert PA, Hartenstein V, Bello BC, Lovick JK, Reichert H. Neuroblast lineage identification and lineage-specific Hox gene action during postembryonic development of the subesophageal ganglion in the Drosophila central brain. Dev Biol 2014; 390:102-15. [DOI: 10.1016/j.ydbio.2014.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/23/2014] [Accepted: 03/29/2014] [Indexed: 11/16/2022]
|
13
|
Boyan G, Liu Y. Timelines in the insect brain: fates of identified neural stem cells generating the central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 2014; 224:37-51. [PMID: 24343526 DOI: 10.1007/s00427-013-0462-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/02/2013] [Indexed: 11/27/2022]
Abstract
This study employs labels for cell proliferation and cell death, as well as classical histology to examine the fates of all eight neural stem cells (neuroblasts) whose progeny generate the central complex of the grasshopper brain during embryogenesis. These neuroblasts delaminate from the neuroectoderm between 25 and 30 % of embryogenesis and form a linear array running from ventral (neuroblasts Z, Y, X, and W) to dorsal (neuroblasts 1-2, 1-3, 1-4, and 1-5) along the medial border of each protocerebral hemisphere. Their stereotypic location within the array, characteristic size, and nuclear morphologies, identify these neuroblasts up to about 70 % of embryogenesis after which cell shrinkage and shape changes render progressively more cells histologically unrecognizable. Molecular labels show all neuroblasts in the array are proliferative up to 70 % of embryogenesis, but subsequently first the more ventral cells (72-75 %), and then the dorsal ones (77-80 %), cease proliferation. By contrast, neuroblasts elsewhere in the brain and optic lobe remain proliferative. Apoptosis markers label the more ventral neuroblasts first (70-72 %), then the dorsal cells (77 %), and the absence of any labeling thereafter confirms that central complex neuroblasts have exited the cell cycle via programmed cell death. Our data reveal appearance, proliferation, and cell death proceeding as successive waves from ventral to dorsal along the array of neuroblasts. The resulting timelines offer a temporal blueprint for building the neuroarchitecture of the various modules of the central complex.
Collapse
Affiliation(s)
- George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany,
| | | |
Collapse
|
14
|
Sánchez-Herrero E. Hox targets and cellular functions. SCIENTIFICA 2013; 2013:738257. [PMID: 24490109 PMCID: PMC3892749 DOI: 10.1155/2013/738257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function.
Collapse
Affiliation(s)
- Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
15
|
Wong DC, Lovick JK, Ngo KT, Borisuthirattana W, Omoto JJ, Hartenstein V. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Dev Biol 2013; 384:258-89. [PMID: 23872236 PMCID: PMC3928077 DOI: 10.1016/j.ydbio.2013.07.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 01/13/2023]
Abstract
The Drosophila central brain is largely composed of lineages, units of sibling neurons derived from a single progenitor cell or neuroblast. During the early embryonic period, neuroblasts generate the primary neurons that constitute the larval brain. Neuroblasts reactivate in the larva, adding to their lineages a large number of secondary neurons which, according to previous studies in which selected lineages were labeled by stably expressed markers, differentiate during metamorphosis, sending terminal axonal and dendritic branches into defined volumes of the brain neuropil. We call the overall projection pattern of neurons forming a given lineage the "projection envelope" of that lineage. By inducing MARCM clones at the early larval stage, we labeled the secondary progeny of each neuroblast. For the supraesophageal ganglion excluding mushroom body (the part of the brain investigated in the present work) we obtained 81 different types of clones. Based on the trajectory of their secondary axon tracts (described in the accompanying paper, Lovick et al., 2013), we assigned these clones to specific lineages defined in the larva. Since a labeled clone reveals all aspects (cell bodies, axon tracts, terminal arborization) of a lineage, we were able to describe projection envelopes for all secondary lineages of the supraesophageal ganglion. This work provides a framework by which the secondary neurons (forming the vast majority of adult brain neurons) can be assigned to genetically and developmentally defined groups. It also represents a step towards the goal to establish, for each lineage, the link between its mature anatomical and functional phenotype, and the genetic make-up of the neuroblast it descends from.
Collapse
Affiliation(s)
- Darren C. Wong
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer K. Lovick
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathy T. Ngo
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wichanee Borisuthirattana
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jaison J. Omoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Volker Hartenstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Yu HH, Awasaki T, Schroeder MD, Long F, Yang JS, He Y, Ding P, Kao JC, Wu GYY, Peng H, Myers G, Lee T. Clonal development and organization of the adult Drosophila central brain. Curr Biol 2013; 23:633-43. [PMID: 23541733 DOI: 10.1016/j.cub.2013.02.057] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/31/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND The insect brain can be divided into neuropils that are formed by neurites of both local and remote origin. The complexity of the interconnections obscures how these neuropils are established and interconnected through development. The Drosophila central brain develops from a fixed number of neuroblasts (NBs) that deposit neurons in regional clusters. RESULTS By determining individual NB clones and pursuing their projections into specific neuropils, we unravel the regional development of the brain neural network. Exhaustive clonal analysis revealed 95 stereotyped neuronal lineages with characteristic cell-body locations and neurite trajectories. Most clones show complex projection patterns, but despite the complexity, neighboring clones often coinnervate the same local neuropil or neuropils and further target a restricted set of distant neuropils. CONCLUSIONS These observations argue for regional clonal development of both neuropils and neuropil connectivity throughout the Drosophila central brain.
Collapse
Affiliation(s)
- Hung-Hsiang Yu
- Howard Hughes Medical Institute, Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|