1
|
Surman M, Wilczak M, Bzowska M, Tylko G, Przybyło M. The Proangiogenic Effects of Melanoma-Derived Ectosomes Are Mediated by αvβ5 Integrin Rather than αvβ3 Integrin. Cells 2024; 13:1336. [PMID: 39195226 DOI: 10.3390/cells13161336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/28/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
Ectosomes are carriers of proangiogenic factors during cancer progression. This study investigated whether the proangiogenic effect exerted by melanoma-derived ectosomes on recipient endothelial cells is mediated by ectosomal αvβ3 and αvβ5 integrins. Ectosomes were isolated from the conditioned culture media of four melanoma cell lines and melanocytes. Changes in gene and protein expression of αvβ3 and αvβ5 integrins, as well as VEGF and TNF-α were assessed in ectosome-treated endothelial cells. To confirm the functional involvement of ectosomal integrins in functional tests (Alamar Blue, wound healing and tube formation assays), ectosomes were also pretreated with anti-integrin antibodies and integrin-blocking peptides echistatin and cilengitide. Melanoma-derived ectosomes induced changes in the expression of αvβ3 and αvβ5 integrins in recipient endothelial cells, leading to increased viability, migratory properties, and tube formation potential. The extent of proangiogenic stimulation varied depending on the types of cells releasing ectosomes and the recipient cells. The use of anti-integrin antibodies and integrin-blocking peptides revealed a more significant role for the αvβ5 integrin/VEGF than the αvβ3 integrin/TNF-α pathway in the interactions between ectosomes and endothelial cells. The study demonstrated the functional role of ectosomal αvβ3 and αvβ5 integrins. It also provided a baseline understanding of ectosome-mediated αvβ3 integrin/TNF-α and αvβ5 integrin/VEGF signaling in angiogenesis.
Collapse
Affiliation(s)
- Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
2
|
van Stalborch AMD, Clark AG, Sonnenberg A, Margadant C. Imaging and quantitative analysis of integrin-dependent cell-matrix adhesions. STAR Protoc 2023; 4:102473. [PMID: 37616164 PMCID: PMC10469561 DOI: 10.1016/j.xpro.2023.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/21/2023] [Accepted: 06/30/2023] [Indexed: 08/25/2023] Open
Abstract
Integrin-dependent cell-extracellular matrix adhesion is essential for wound healing, embryonic development, immunity, and tissue organization. Here, we present a protocol for the imaging and quantitative analysis of integrin-dependent cell-matrix adhesions. We describe steps for cell culture; virus preparation; lentiviral transduction; imaging with widefield, confocal, and total internal reflection fluorescence microscopy; and using a script for their quantitative analysis. We then detail procedures for analyzing adhesion dynamics by live-cell imaging and fluorescence recovery after photobleaching (FRAP). For complete details on the use and execution of this protocol, please refer to Margadant et al. (2012),1 van der Bijl et al. (2020),2 Amado-Azevedo et al. (2021).3.
Collapse
Affiliation(s)
| | - Andrew G Clark
- Institute of Cell Biology and Immunology, Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany; Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
| | - Arnoud Sonnenberg
- The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.
| | - Coert Margadant
- Institute of Biology, Leiden University, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
3
|
Muir V, Sagadiev S, Liu S, Holder U, Armendariz AM, Suchland E, Meitlis I, Camp N, Giltiay N, Tam JM, Garner EC, Wivagg CN, Shows D, James RG, Lacy-Hulbert A, Acharya M. Transcriptomic analysis of pathways associated with ITGAV/alpha(v) integrin-dependent autophagy in human B cells. Autophagy 2023; 19:926-942. [PMID: 36016494 PMCID: PMC9980515 DOI: 10.1080/15548627.2022.2113296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy proteins have been linked with the development of immune-mediated diseases including lupus, but the mechanisms for this are unclear due to the complex roles of these proteins in multiple immune cell types. We have previously shown that a form of noncanonical autophagy induced by ITGAV/alpha(v) integrins regulates B cell activation by viral and self-antigens, in mice. Here, we investigate the involvement of this pathway in B cells from human tissues. Our data reveal that autophagy is specifically induced in the germinal center and memory B cell subpopulations of human tonsils and spleens. Transcriptomic analysis show that the induction of autophagy is related to unique aspects of activated B cells such as mitochondrial metabolism. To understand the function of ITGAV/alpha(v) integrin-dependent autophagy in human B cells, we used CRISPR-mediated knockdown of autophagy genes. Integrating data from primary B cells and knockout cells, we found that ITGAV/alpha(v)-dependent autophagy limits activation of specific pathways related to B cell responses, while promoting others. These data provide new mechanistic links for autophagy and B-cell-mediated immune dysregulation in diseases such as lupus.
Collapse
Affiliation(s)
- Virginia Muir
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Sara Sagadiev
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Shuozhi Liu
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ursula Holder
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Andrea M Armendariz
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Emmaline Suchland
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Iana Meitlis
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nathan Camp
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Natalia Giltiay
- Departments of Rheumatology, University of Washington, Seattle, WA, USA
| | - Jenny M Tam
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ethan C Garner
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA, USA
| | - Carl N Wivagg
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA, USA
| | - Donna Shows
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Richard G James
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatric, University of Washington, Seattle, WA, USA.,Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Adam Lacy-Hulbert
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.,Department of Immunology, University of Washington, Seattle, WA, USA
| | - Mridu Acharya
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatric, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Clausen MM, Carlsen EA, Christensen C, Madsen J, Brandt-Larsen M, Klausen TL, Holm S, Loft A, Berthelsen AK, Kroman N, Knigge U, Kjaer A. First-in-Human Study of [68Ga]Ga-NODAGA-E[c(RGDyK)]2 PET for Integrin αvβ3 Imaging in Patients with Breast Cancer and Neuroendocrine Neoplasms: Safety, Dosimetry and Tumor Imaging Ability. Diagnostics (Basel) 2022; 12:diagnostics12040851. [PMID: 35453899 PMCID: PMC9027224 DOI: 10.3390/diagnostics12040851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Arginine-Glycine-Aspartate (RGD)-recognizing cell surface integrins are involved in tumor growth, invasiveness/metastases, and angiogenesis, and are therefore an attractive treatment target in cancers. The subtype integrin αvβ3 is upregulated on endothelial cells during angiogenesis and on tumor cells. In vivo assessment of integrin αvβ3 is possible with positron emission tomography (PET). Preclinical data on radiochemical properties, tumor uptake and radiation exposure identified [68Ga]Ga-NODAGA-E[c(RGDyK)]2 as a promising candidate for clinical translation. In this first-in-human phase I study, we evaluate [68Ga]Ga-NODAGA-E[c(RGDyK)]2 PET in patients with neuroendocrine neoplasms (NEN) and breast cancer (BC). The aim was to investigate safety, biodistribution and dosimetry as well as tracer uptake in tumor lesions. A total of 10 patients (5 breast cancer, 5 neuroendocrine neoplasm) received a single intravenous dose of approximately 200 MBq [68Ga]Ga-NODAGA-E[c(RGDyK)]2. Biodistribution profile and dosimetry were assessed by whole-body PET/CT performed at 10 min, 1 h and 2 h after injection. Safety assessment with vital parameters, electrocardiograms and blood tests were performed before and after injection. In vivo stability of [68Ga]Ga-NODAGA-E[c(RGDyK)]2 was determined by analysis of blood and urine. PET images were analyzed for tracer uptake in tumors and background organs. No adverse events or pharmacologic effects were observed in the 10 patients. [68Ga]Ga-NODAGA-E[c(RGDyK)]2 exhibited good in vivo stability and fast clearance, primarily by renal excretion. The effective dose was 0.022 mSv/MBq, equaling a radiation exposure of 4.4 mSv at an injected activity of 200 MBq. The tracer demonstrated stable tumor retention and good image contrast. In conclusion, this first-in-human phase I trial demonstrated safe use of [68Ga]Ga-NODAGA-E[c(RGDyK)]2 for integrin αvβ3 imaging in cancer patients, low radiation exposure and favorable uptake in tumors. Further studies are warranted to establish whether [68Ga]Ga-NODAGA-E[c(RGDyK)]2 may become a tool for early identification of patients eligible for treatments targeting integrin αvβ3 and for risk stratification of patients.
Collapse
Affiliation(s)
- Malene Martini Clausen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- Department of Oncology, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Esben Andreas Carlsen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Camilla Christensen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Jacob Madsen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Malene Brandt-Larsen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Thomas Levin Klausen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Søren Holm
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Annika Loft
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Anne Kiil Berthelsen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Niels Kroman
- Department of Breast Surgery, Copenhagen University Hospital—Herlev/Gentofte Hospital, 2730 Herlev, Denmark;
| | - Ulrich Knigge
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
- Departments of Clinical Endocrinology and Surgical Gastroenterology, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.M.C.); (E.A.C.); (C.C.); (J.M.); (M.B.-L.); (T.L.K.); (S.H.); (A.L.); (A.K.B.)
- ENETS Neuroendocrine Tumor Center of Excellence, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
- Correspondence:
| |
Collapse
|
5
|
Kummer D, Steinbacher T, Thölmann S, Schwietzer MF, Hartmann C, Horenkamp S, Demuth S, Peddibhotla SS, Brinkmann F, Kemper B, Schnekenburger J, Brandt M, Betz T, Liashkovich I, Kouzel IU, Shahin V, Corvaia N, Rottner K, Tarbashevich K, Raz E, Greune L, Schmidt MA, Gerke V, Ebnet K. A JAM-A-tetraspanin-αvβ5 integrin complex regulates contact inhibition of locomotion. J Biophys Biochem Cytol 2022; 221:213070. [PMID: 35293964 PMCID: PMC8931538 DOI: 10.1083/jcb.202105147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/16/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022] Open
Abstract
Contact inhibition of locomotion (CIL) is a process that regulates cell motility upon collision with other cells. Improper regulation of CIL has been implicated in cancer cell dissemination. Here, we identify the cell adhesion molecule JAM-A as a central regulator of CIL in tumor cells. JAM-A is part of a multimolecular signaling complex in which tetraspanins CD9 and CD81 link JAM-A to αvβ5 integrin. JAM-A binds Csk and inhibits the activity of αvβ5 integrin-associated Src. Loss of JAM-A results in increased activities of downstream effectors of Src, including Erk1/2, Abi1, and paxillin, as well as increased activity of Rac1 at cell-cell contact sites. As a consequence, JAM-A-depleted cells show increased motility, have a higher cell-matrix turnover, and fail to halt migration when colliding with other cells. We also find that proper regulation of CIL depends on αvβ5 integrin engagement. Our findings identify a molecular mechanism that regulates CIL in tumor cells and have implications on tumor cell dissemination.
Collapse
Affiliation(s)
- Daniel Kummer
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| | - Tim Steinbacher
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Sonja Thölmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Mariel Flavia Schwietzer
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Christian Hartmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Simone Horenkamp
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Sabrina Demuth
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Swetha S.D. Peddibhotla
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Frauke Brinkmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Björn Kemper
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Jürgen Schnekenburger
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Matthias Brandt
- Institute-associated Research Group “Mechanics of Cellular Systems”, Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Timo Betz
- Institute-associated Research Group “Mechanics of Cellular Systems”, Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Ivan Liashkovich
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Ivan U. Kouzel
- Sars International Centre for Marine Molecular Biology University of Bergen Thormøhlensgt, Bergen, Norway
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Nathalie Corvaia
- Centre d’Immunologie Pierre Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Klemens Rottner
- Divison of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany,Molecular Cell Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Erez Raz
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| | - Lilo Greune
- Institute of Infectiology, ZMBE, University of Münster, Münster, Germany
| | | | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| | - Klaus Ebnet
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| |
Collapse
|
6
|
Expression Analysis of α5 Integrin Subunit Reveals Its Upregulation as a Negative Prognostic Biomarker for Glioblastoma. Pharmaceuticals (Basel) 2021; 14:ph14090882. [PMID: 34577582 PMCID: PMC8465081 DOI: 10.3390/ph14090882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
Integrin α5β1 was suggested to be involved in glioblastoma (GBM) aggressiveness and treatment resistance through preclinical studies and genomic analysis in patients. However, further protein expression data are still required to confirm this hypothesis. In the present study, we investigated by immunofluorescence the expression of integrin α5 and its prognostic impact in a glioblastoma series of patients scheduled to undergo the Stupp protocol as first-line treatment for GBM. The integrin α5 protein expression level was estimated in each tumor by the mean fluorescence intensity (MFI) and allowed us to identify two subpopulations showing either a high or low expression level. The distribution of patients in both subpopulations was not significantly different according to age, gender, recursive partitioning analysis (RPA) prognostic score, molecular markers or surgical and medical treatment. A high integrin α5 protein expression level was associated with a high risk of recurrence (HR = 1.696, 95% CI 1.031-2.792, p = 0.0377) and reduced overall survival (OS), even more significant in patients who completed the Stupp protocol (median OS: 15.6 vs. 22.8 months; HR = 2.324; 95% CI 1.168-4.621, p = 0.0162). In multivariate analysis, a high integrin α5 protein expression level was confirmed as an independent prognostic factor in the subpopulation of patients who completed the temozolomide-based first-line treatment for predicting OS over age, extent of surgery, RPA score and O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation (p = 0.029). In summary, for the first time, our study validates that a high integrin α5 protein expression level is associated with poor prognosis in GBM and confirms its potential as a therapeutic target implicated in the Stupp protocol resistance.
Collapse
|
7
|
Bodero L, Parente S, Arrigoni F, Klimpel A, Neundorf I, Gazzola S, Piarulli U. Synthesis and Biological Evaluation of an
iso
DGR‐Paclitaxel Conjugate Containing a Cell‐Penetrating Peptide to Promote Cellular Uptake. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lizeth Bodero
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Sara Parente
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Federico Arrigoni
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Annika Klimpel
- University of Cologne Department of Chemistry Institute for Biochemistry Zuelpicher Str. 47a 50674 Cologne Germany
| | - Ines Neundorf
- University of Cologne Department of Chemistry Institute for Biochemistry Zuelpicher Str. 47a 50674 Cologne Germany
| | - Silvia Gazzola
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria Via Valleggio 11 22100 Como Italy
| |
Collapse
|
8
|
αvβ3 Integrin induces partial EMT independent of TGF-β signaling. Commun Biol 2021; 4:490. [PMID: 33883697 PMCID: PMC8060333 DOI: 10.1038/s42003-021-02003-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) plays a pivotal role for tumor progression. Recent studies have revealed the existence of distinct intermediate states in EMT (partial EMT); however, the mechanisms underlying partial EMT are not fully understood. Here, we demonstrate that αvβ3 integrin induces partial EMT, which is characterized by acquiring mesenchymal phenotypes while retaining epithelial markers. We found αvβ3 integrin to be associated with poor survival in patients with lung adenocarcinoma. Moreover, αvβ3 integrin-induced partial EMT promoted migration, invasion, tumorigenesis, stemness, and metastasis of lung cancer cells in a TGF-β-independent fashion. Additionally, TGF-β1 promoted EMT progression synergistically with αvβ3 integrin, while a TGF-β signaling inhibitor showed no effect on αvβ3 integrin-induced partial EMT. Meanwhile, the microRNA-200 family abolished the αvβ3 integrin-induced partial EMT by suppressing αvβ3 integrin cell surface expression. These findings indicate that αvβ3 integrin is a key inducer of partial EMT, and highlight a new mechanism for cancer progression. Kariya, Oyama et al. propose that αvβ3 can drive a partial EMT phenotype characterized by maintained E-cadherin expression and upregulation of mesenchymal markers. This hybrid EMT state is independent of TGF-β1 signaling and characterised by increased migration, invasion, tumor cell proliferation, stemness and metastatic capacity.
Collapse
|
9
|
Gayraud F, Klußmann M, Neundorf I. Recent Advances and Trends in Chemical CPP-Drug Conjugation Techniques. Molecules 2021; 26:molecules26061591. [PMID: 33805680 PMCID: PMC7998868 DOI: 10.3390/molecules26061591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
This review summarizes recent developments in conjugation techniques for the synthesis of cell-penetrating peptide (CPP)–drug conjugates targeting cancer cells. We will focus on small organic molecules as well as metal complexes that were used as cytostatic payloads. Moreover, two principle ways of coupling chemistry will be discussed direct conjugation as well as the use of bifunctional linkers. While direct conjugation of the drug to the CPP is still popular, the use of bifunctional linkers seems to gain increasing attention as it offers more advantages related to the linker chemistry. Thus, three main categories of linkers will be highlighted, forming either disulfide acid-sensitive or stimuli-sensitive bonds. All techniques will be thoroughly discussed by their pros and cons with the aim to help the reader in the choice of the optimal conjugation technique that might be used for the synthesis of a given CPP–drug conjugate
Collapse
|
10
|
Vallejo R, Gonzalez-Valdivieso J, Santos M, Rodriguez-Rojo S, Arias F. Production of elastin-like recombinamer-based nanoparticles for docetaxel encapsulation and use as smart drug-delivery systems using a supercritical anti-solvent process. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Ioannou M, Stanway G. Tropism of Coxsackie virus A9 depends on the +1 position of the RGD (arginine- glycine- aspartic acid) motif found at the C' terminus of its VP1 capsid protein. Virus Res 2020; 294:198292. [PMID: 33388395 DOI: 10.1016/j.virusres.2020.198292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/06/2020] [Accepted: 12/25/2020] [Indexed: 11/16/2022]
Abstract
An understanding of how viruses interact with their receptors is vital as this step is a major determinant of host susceptibility and disease. The enterovirus coxsackievirus A9 (CVA9) is an important pathogen responsible for respiratory infections, myocarditis, infections of the central nervous system, chronic dilated cardiomyopathy and possibly type I diabetes. CVA9 harbours an integrin- recognition motif, RGD (Arg-Gly-Asp), in the capsid protein VP1 and this motif is believed to be primarily responsible for binding to integrins αvβ6 and/or αvβ3 during cell entry. Despite the consistent conservation of RGD-flanking amino acids in multiple RGD-containing picornaviruses, the significance of these amino acids to cell tropism has not been thoroughly investigated. In this study we used 10 CVA9 mutants and a panel of cells to analyse cell tropism. We showed that CVA9 infection proceeds by either an RGD- dependent or an apparently RGD- independent pathway. Differences in the amino acid found at the +1 position of the RGD motif affect the cell tropism of CVA9 when an RGD- dependent pathway is used. Naturally occurring CVA9 isolates have either the sequence RGDM and RGDL and we found that the corresponding viruses in our panel infected cells most efficiently. There was also a strong selection pressure for RGDL in adaptation experiments. However, there was also an unexpected selection of an RGDL variant in an apparently RGD- independent cell line. There was also no simple relationship between infection of cells and expression of integrins αvβ3 and αvβ6. The results obtained have greatly improved our understanding of how CVA9 infects cells. This will be useful in the design of antivirus drugs and also gives a framework for the modification of CVA9 or other RGD containing picornaviruses for specific targeting of cancer cells for oncolytic therapy.
Collapse
Affiliation(s)
- Marina Ioannou
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom
| | - Glyn Stanway
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom.
| |
Collapse
|
12
|
Børresen B, Hansen AE, Fliedner FP, Henriksen JR, Elema DR, Brandt-Larsen M, Kristensen LK, Kristensen AT, Andresen TL, Kjær A. Noninvasive Molecular Imaging of the Enhanced Permeability and Retention Effect by 64Cu-Liposomes: In vivo Correlations with 68Ga-RGD, Fluid Pressure, Diffusivity and 18F-FDG. Int J Nanomedicine 2020; 15:8571-8581. [PMID: 33173294 PMCID: PMC7646401 DOI: 10.2147/ijn.s239172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/29/2020] [Indexed: 11/23/2022] Open
Abstract
Background The accumulation of liposome encapsulated chemotherapy in solid cancers is dependent on the presence of the enhanced permeability and retention (EPR) effect. Positron emission tomography (PET) imaging with a liposome encapsulated radioisotope, such as liposome encapsulated Cu-64 (64Cu-liposome) may help to identify tumors with high liposome accumulation, and thereby stratify patients based on expected benefit from liposomal chemotherapy. However, intravenous administration of liposomes without a cytotoxic content is complicated by the accelerated blood clearance (ABC) phenomenon for succeeding therapeutic liposome dosing. Alternative markers for assessing the tumor’s EPR level are therefore warranted. Materials and Methods To increase our understanding of EPR variations and to ultimately identify an alternative marker for the EPR effect, we investigated the correlation between 64Cu-liposome PET/CT (EPR effect) and 68Ga-RGD PET/CT (neoangiogenesis), 18F-FDG PET/CT (glycolysis), diffusion-weighted MRI (diffusivity) and interstitial fluid pressure in two experimental cancer models (CT26 and COLO 205). Results 64Cu-liposome and 68Ga-RGD SUVmax displayed a significant moderate correlation, however, none of the other parameters evaluated displayed significant correlations. These results indicate that differences in neoangiogenesis may explain some EPR variability, however, as correlations were only moderate and not observed for SUVmean, 68Ga-RGD is probably insufficient to serve as a stand-alone surrogate marker for quantifying the EPR effect and stratifying patients.
Collapse
Affiliation(s)
- Betina Børresen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C 1870, Denmark
| | - Anders Elias Hansen
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N 2200, Denmark.,DTU Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Lyngby, Kgs 2800, Denmark
| | - Frederikke Petrine Fliedner
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Jonas Rosager Henriksen
- DTU Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Lyngby, Kgs 2800, Denmark
| | - Dennis Ringkjøbing Elema
- DTU Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Lyngby, Kgs 2800, Denmark.,DTU Health Technology, The Hevesy Laboratory, Center for Nuclear Technologies, Technical University of Denmark, Roskilde, 4000, Denmark
| | - Malene Brandt-Larsen
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Copenhagen Ø 2100, Denmark
| | - Lotte Kellemann Kristensen
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N 2200, Denmark.,DTU Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Lyngby, Kgs 2800, Denmark.,DTU Health Technology, The Hevesy Laboratory, Center for Nuclear Technologies, Technical University of Denmark, Roskilde, 4000, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Copenhagen Ø 2100, Denmark.,Minerva Imaging, Copenhagen N 2200, Denmark
| | - Annemarie Thuri Kristensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C 1870, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N 2200, Denmark.,DTU Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Lyngby, Kgs 2800, Denmark.,DTU Health Technology, The Hevesy Laboratory, Center for Nuclear Technologies, Technical University of Denmark, Roskilde, 4000, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Copenhagen Ø 2100, Denmark.,Minerva Imaging, Copenhagen N 2200, Denmark
| | - Thomas Lars Andresen
- DTU Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Lyngby, Kgs 2800, Denmark
| | - Andreas Kjær
- Cluster for Molecular Imaging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N 2200, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Copenhagen Ø 2100, Denmark
| |
Collapse
|
13
|
Zhao Z, Qiu K, Liu J, Hao X, Wang J. Two-photon photodynamic ablation of tumour cells using an RGD peptide-conjugated ruthenium(ii) photosensitiser. Chem Commun (Camb) 2020; 56:12542-12545. [PMID: 32940288 DOI: 10.1039/d0cc04943c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An RGD-peptide conjugated ruthenium(ii) complex has been developed, which functions as a two-photon absorption (TPA) photodynamic therapy (PDT) agent for ablating tumours by selectively targeting the mitochondria of integrin αvβ3-rich tumour cells. This approach offers a new and effective design and application for tumour-targeting metallo-anticancer drugs via two-photon PDT.
Collapse
Affiliation(s)
- Zizhuo Zhao
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | |
Collapse
|
14
|
Ong MS, Deng S, Halim CE, Cai W, Tan TZ, Huang RYJ, Sethi G, Hooi SC, Kumar AP, Yap CT. Cytoskeletal Proteins in Cancer and Intracellular Stress: A Therapeutic Perspective. Cancers (Basel) 2020; 12:cancers12010238. [PMID: 31963677 PMCID: PMC7017214 DOI: 10.3390/cancers12010238] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Cytoskeletal proteins, which consist of different sub-families of proteins including microtubules, actin and intermediate filaments, are essential for survival and cellular processes in both normal as well as cancer cells. However, in cancer cells, these mechanisms can be altered to promote tumour development and progression, whereby the functions of cytoskeletal proteins are co-opted to facilitate increased migrative and invasive capabilities, proliferation, as well as resistance to cellular and environmental stresses. Herein, we discuss the cytoskeletal responses to important intracellular stresses (such as mitochondrial, endoplasmic reticulum and oxidative stresses), and delineate the consequences of these responses, including effects on oncogenic signalling. In addition, we elaborate how the cytoskeleton and its associated molecules present themselves as therapeutic targets. The potential and limitations of targeting new classes of cytoskeletal proteins are also explored, in the context of developing novel strategies that impact cancer progression.
Collapse
Affiliation(s)
- Mei Shan Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
| | - Clarissa Esmeralda Halim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
| | - Wanpei Cai
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
- School of Medicine, College of Medicine, National Taiwan University, No. 1 Ren Ai Road Sec. 1, Taipei City 10617, Taiwan
- Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore 119074, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence: (S.C.H.); (A.P.K.); (C.T.Y.); Tel.: +65-6516-3294 (S.C.H. & C.T.Y.); +65-6873-5456 (A.P.K.); Fax: +65-6778-8161 (S.C.H. & C.T.Y.); +65-6873-9664 (A.P.K.)
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
- Correspondence: (S.C.H.); (A.P.K.); (C.T.Y.); Tel.: +65-6516-3294 (S.C.H. & C.T.Y.); +65-6873-5456 (A.P.K.); Fax: +65-6778-8161 (S.C.H. & C.T.Y.); +65-6873-9664 (A.P.K.)
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
- Correspondence: (S.C.H.); (A.P.K.); (C.T.Y.); Tel.: +65-6516-3294 (S.C.H. & C.T.Y.); +65-6873-5456 (A.P.K.); Fax: +65-6778-8161 (S.C.H. & C.T.Y.); +65-6873-9664 (A.P.K.)
| |
Collapse
|
15
|
Tripodi AAP, Ranđelović I, Biri-Kovács B, Szeder B, Mező G, Tóvári J. In Vivo Tumor Growth Inhibition and Antiangiogenic Effect of Cyclic NGR Peptide-Daunorubicin Conjugates Developed for Targeted Drug Delivery. Pathol Oncol Res 2019; 26:1879-1892. [PMID: 31820302 PMCID: PMC7297862 DOI: 10.1007/s12253-019-00773-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023]
Abstract
Among various homing devices, peptides containing the NGR tripeptide sequence represent a promising approach to selectively recognize CD13 receptor isoforms on the surface of tumor cells. They have been successfully used for the delivery of various chemotherapeutic drugs to tumor vessels. Here, we report on the murine plasma stability, in vitro and in vivo antitumor activity of our recently described bioconjugates containing daunorubicin as payload. Furthermore, CD13 expression of KS Kaposi’s Sarcoma cell line and HT-29 human colon carcinoma cell line was investigated. Flow cytometry studies confirm the fast cellular uptake resulting in the rapid delivery of the active metabolite Dau = Aoa-Gly-OH to tumor cells. The increased in vitro antitumor effect might be explained by the faster rearrangement from NGR to isoDGR in case of conjugate 2 (Dau = Aoa-GFLGK(c[NleNGRE]-GG)-NH2) in comparison with conjugate 1 (Dau = Aoa-GFLGK(c[KNGRE]-GG)-NH2). Nevertheless, results indicated that both conjugates showed significant effect on inhibition of proliferation in the primary tumor and also on blood vessel formation making them a potential candidate for targeting angiogenesis processes in tumors where CD13 and integrins are involved.
Collapse
Affiliation(s)
- Andrea Angelo Pierluigi Tripodi
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest, Hungary.,Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Beáta Biri-Kovács
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest, Hungary.,Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Bálint Szeder
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest, Hungary.,Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
16
|
Kaeopookum P, Petrik M, Summer D, Klinger M, Zhai C, Rangger C, Haubner R, Haas H, Hajduch M, Decristoforo C. Comparison of 68Ga-labeled RGD mono- and multimers based on a clickable siderophore-based scaffold. Nucl Med Biol 2019; 78-79:1-10. [PMID: 31678781 DOI: 10.1016/j.nucmedbio.2019.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Cyclic pentapeptides containing the amino acid sequence arginine-glycine-aspartic (RGD) have been widely applied to target αvβ3 integrin, which is upregulated in various tumors during tumor-induced angiogenesis. Multimeric cyclic RGD peptides have been reported to be advantageous over monomeric counterparts for angiogenesis imaging. Here, we prepared mono-, di-, and trimeric cyclic arginine-glycine-aspartic-D-phenylalanine-lysine (c (RGDfK)) derivatives by conjugation with the natural chelator fusarinine C (FSC) using click chemistry based on copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC). The αvβ3 binding properties of 68Ga-labeled mono-, di-, and trimeric c(RGDfK) peptides were evaluated in vitro as well as in vivo and compared with the references monomeric [68Ga]GaNODAGA-c(RGDfK) and trimeric [68Ga]GaFSC(suc-c(RGDfK))3. All 68Ga-labeled c(RGDfK) peptides displayed hydrophilicity (logD = -2.96 to -3.80), low protein binding and were stable in phosphate buffered-saline (PBS) and serum up to 2 h. In vitro internalization assays with human melanoma M21 (αvβ3-positive) and M21-L (αvβ3-negative) cell lines showed specific uptake of all derivatives and increased in the series: mono- < di- < trimeric peptide. The highest tumor uptake, tumor-to-background ratios, and image contrast were found for the dimeric [68Ga]GaMAFC(c(RGDfK)aza)2. In conclusion, we developed a novel strategy for direct, straight forward preparation of mono-, di-, and trimeric c(RGDfK) conjugates based on the FSC scaffold. Interestingly, the best αvβ3 imaging properties were found for the dimeric [68Ga]GaMAFC(c(RGDfK)aza)2.
Collapse
Affiliation(s)
- Piriya Kaeopookum
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria; Research and Development Division, Thailand Institute of Nuclear Technology, Nakhon Nayok, Thailand
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Dominik Summer
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Maximilian Klinger
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Chuangyan Zhai
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria; School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Christine Rangger
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Roland Haubner
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
17
|
Panait ME, Chilug L, Negoita V, Busca A, Manda G, Niculae D, Dumitru M, Gruia MI. Biological Effects Induced by 68Ga-Conjugated Peptides in Human and Rodent Tumor Cell Lines. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Feni L, Parente S, Robert C, Gazzola S, Arosio D, Piarulli U, Neundorf I. Kiss and Run: Promoting Effective and Targeted Cellular Uptake of a Drug Delivery Vehicle Composed of an Integrin-Targeting Diketopiperazine Peptidomimetic and a Cell-Penetrating Peptide. Bioconjug Chem 2019; 30:2011-2022. [PMID: 31243977 DOI: 10.1021/acs.bioconjchem.9b00292] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell-penetrating peptides (CPPs) have emerged as powerful tools in terms of drug delivery. Those short, often cationic peptides are characterized by their usually low toxicity and their ability to transport diverse cargos inside almost any kinds of cells. Still, one major drawback is their nonselective uptake making their application in targeted cancer therapies questionable. In this work, we aimed to combine the power of a CPP (sC18) with an integrin-targeting unit (c[DKP-f3-RGD]). The latter is composed of the Arg-Gly-Asp peptide sequence cyclized via a diketopiperazine scaffold and is characterized by its high selectivity toward integrin αvβ3. The two parts were linked via copper-catalyzed alkyne-azide click reaction (CuAAC), while the CPP was additionally functionalized with either a fluorescent dye or the anticancer drug daunorubicin. Both functionalities allowed a careful biological evaluation of these novel peptide-conjugates regarding their cellular uptake mechanism, as well as cytotoxicity in αvβ3 integrin receptor expressing cells versus cells that do not express αvβ3. Our results show that the uptake follows a "kiss-and-run"-like model, in which the conjugates first target and recognize the receptor, but translocate mainly by CPP mediation. Thereby, we observed significantly more pronounced toxic effects in αvβ3 expressing U87 cells compared to HT-29 and MCF-7 cells, when the cells were exposed to the substances with only very short contact times (15 min). All in all, we present new concepts for the design of cancer selective peptide-drug conjugates.
Collapse
Affiliation(s)
- Lucia Feni
- University of Cologne , Department of Chemistry, Biochemistry , Zülpicher Strasse 47a , D-50674 Cologne , Germany
| | - Sara Parente
- Dipartimento di Scienza e Alta Tecnologia , Università degli Studi dell'Insubria , Via Valleggio 11 , 22100 , Como , Italy
| | - Clémence Robert
- Dipartimento di Scienza e Alta Tecnologia , Università degli Studi dell'Insubria , Via Valleggio 11 , 22100 , Como , Italy
| | - Silvia Gazzola
- Dipartimento di Scienza e Alta Tecnologia , Università degli Studi dell'Insubria , Via Valleggio 11 , 22100 , Como , Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM), National Research Council (CNR) , Via G.Golgi 19 , 20133 , Milan , Italy
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia , Università degli Studi dell'Insubria , Via Valleggio 11 , 22100 , Como , Italy
| | - Ines Neundorf
- University of Cologne , Department of Chemistry, Biochemistry , Zülpicher Strasse 47a , D-50674 Cologne , Germany
| |
Collapse
|
19
|
Borbély A, Figueras E, Martins A, Bodero L, Raposo Moreira Dias A, López Rivas P, Pina A, Arosio D, Gallinari P, Frese M, Steinkühler C, Gennari C, Piarulli U, Sewald N. Conjugates of Cryptophycin and RGD or isoDGR Peptidomimetics for Targeted Drug Delivery. ChemistryOpen 2019; 8:737-742. [PMID: 31275795 PMCID: PMC6587324 DOI: 10.1002/open.201900110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
RGD-cryptophycin and isoDGR-cryptophycin conjugates were synthetized by combining peptidomimetic integrin ligands and cryptophycin, a highly potent tubulin-binding antimitotic agent across lysosomally cleavable Val-Ala or uncleavable linkers. The conjugates were able to effectively inhibit binding of biotinylated vitronectin to integrin αvβ3, showing a binding affinity in the same range as that of the free ligands. The antiproliferative activity of the novel conjugates was evaluated on human melanoma cells M21 and M21-L with different expression levels of integrin αvβ3, showing nanomolar potency of all four compounds against both cell lines. Conjugates containing uncleavable linker show reduced activity compared to the corresponding cleavable conjugates, indicating efficient intracellular drug release in the case of cryptophycin-based SMDCs. However, no significant correlation between the in vitro biological activity of the conjugates and the integrin αvβ3 expression level was observed, which is presumably due to a non-integrin-mediated uptake. This reveals the complexity of effective and selective αvβ3 integrin-mediated drug delivery.
Collapse
Affiliation(s)
- Adina Borbély
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
| | - Eduard Figueras
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
| | - Ana Martins
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
- Exiris s.r.l.Via di Castel Romano 100IT-00128RomeItaly
| | - Lizeth Bodero
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'InsubriaVia Valleggio, 11IT-22100ComoItaly
| | | | - Paula López Rivas
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi, 19IT-20133MilanoItaly
| | - Arianna Pina
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi, 19IT-20133MilanoItaly
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM)CNRVia C. Golgi, 19IT-20133MilanoItaly
| | | | - Marcel Frese
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
| | | | - Cesare Gennari
- Dipartimento di ChimicaUniversità degli Studi di MilanoVia C. Golgi, 19IT-20133MilanoItaly
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta TecnologiaUniversità degli Studi dell'InsubriaVia Valleggio, 11IT-22100ComoItaly
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of ChemistryBielefeld UniversityUniversitätsstraße 25DE-33615BielefeldGermany
| |
Collapse
|
20
|
Raposo Moreira Dias A, Bodero L, Martins A, Arosio D, Gazzola S, Belvisi L, Pignataro L, Steinkühler C, Dal Corso A, Gennari C, Piarulli U. Synthesis and Biological Evaluation of RGD and isoDGR-Monomethyl Auristatin Conjugates Targeting Integrin α V β 3. ChemMedChem 2019; 14:938-942. [PMID: 30840356 PMCID: PMC6593765 DOI: 10.1002/cmdc.201900049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/26/2019] [Indexed: 11/09/2022]
Abstract
This work reports the synthesis of a series of small-molecule-drug conjugates containing the αV β3 -integrin ligand cyclo[DKP-RGD] or cyclo[DKP-isoDGR], a lysosomally cleavable Val-Ala (VA) linker or an "uncleavable" version devoid of this sequence, and monomethyl auristatin E (MMAE) or F (MMAF) as the cytotoxic agent. The conjugates were obtained via a straightforward synthetic scheme taking advantage of a copper-catalyzed azide-alkyne cycloaddition as the key step. The conjugates were tested for their binding affinity for the isolated αv β3 receptor and were shown to retain nanomolar IC50 values, in the same range as those of the free ligands. The cytotoxic activity of the conjugates was evaluated in cell viability assays with αv β3 integrin overexpressing human glioblastoma (U87) and human melanoma (M21) cells. The conjugates possess markedly lower cytotoxic activity than the free drugs, which is consistent with inefficient integrin-mediated internalization. In almost all cases the conjugates featuring isoDGR as integrin ligand exhibited higher potency than their RGD counterparts. In particular, the cyclo[DKP-isoDGR]-VA-MMAE conjugate has low nanomolar IC50 values in cell viability assays with both cancer cell lines tested (U87: 11.50±0.13 nm; M21: 6.94±0.09 nm) and is therefore a promising candidate for in vivo experiments.
Collapse
Affiliation(s)
| | - Lizeth Bodero
- Università degli Studi dell'InsubriaDipartimento di Scienza e Alta TecnologiaVia Valleggio, 1122100ComoItaly
| | - Ana Martins
- Exiris SrlVia di Castel Romano, 10000128RomeItaly
| | - Daniela Arosio
- CNRIstituto di Scienze e Tecnologie Molecolari (ISTM)Via C. Golgi, 1920133MilanItaly
| | - Silvia Gazzola
- Università degli Studi dell'InsubriaDipartimento di Scienza e Alta TecnologiaVia Valleggio, 1122100ComoItaly
| | - Laura Belvisi
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 1920133MilanItaly
- CNRIstituto di Scienze e Tecnologie Molecolari (ISTM)Via C. Golgi, 1920133MilanItaly
| | - Luca Pignataro
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 1920133MilanItaly
| | | | - Alberto Dal Corso
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 1920133MilanItaly
| | - Cesare Gennari
- Università degli Studi di MilanoDipartimento di ChimicaVia C. Golgi, 1920133MilanItaly
- CNRIstituto di Scienze e Tecnologie Molecolari (ISTM)Via C. Golgi, 1920133MilanItaly
| | - Umberto Piarulli
- Università degli Studi dell'InsubriaDipartimento di Scienza e Alta TecnologiaVia Valleggio, 1122100ComoItaly
| |
Collapse
|
21
|
Sökeland G, Schumacher U. The functional role of integrins during intra- and extravasation within the metastatic cascade. Mol Cancer 2019; 18:12. [PMID: 30657059 PMCID: PMC6337777 DOI: 10.1186/s12943-018-0937-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
Formation of distant metastases is by far the most common cause of cancer-related deaths. The process of metastasis formation is complex, and within this complex process the formation of migratory cells, the so called epithelial mesenchymal transition (EMT), which enables cancer cells to break loose from the primary tumor mass and to enter the bloodstream, is of particular importance. To break loose from the primary cancer, cancer cells have to down-regulate the cell-to-cell adhesion molecuIes (CAMs) which keep them attached to neighboring cancer cells. In contrast to this downregulation of CAMS in the primary tumor, cancer cells up-regulate other types of CAMs, that enable them to attach to the endothelium in the organ of the future metastasis. During EMT, the expression of cell-to-cell and cell-to-matrix adhesion molecules and their down- and upregulation is therefore critical for metastasis formation. Tumor cells mimic leukocytes to enable transmigration of the endothelial barrier at the metastatic site. The attachment of leukocytes/cancer cells to the endothelium are mediated by several CAMs different from those at the site of the primary tumor. These CAMs and their ligands are organized in a sequential row, the leukocyte adhesion cascade. In this adhesion process, integrins and their ligands are centrally involved in the molecular interactions governing the transmigration. This review discusses the integrin expression patterns found on primary tumor cells and studies whether their expression correlates with tumor progression, metastatic capacity and prognosis. Simultaneously, further possible, but so far unclearly characterized, alternative adhesion molecules and/or ligands, will be considered and emerging therapeutic possibilities reviewed.
Collapse
Affiliation(s)
- Greta Sökeland
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
22
|
Sfanos KS, Yegnasubramanian S, Nelson WG, Lotan TL, Kulac I, Hicks JL, Zheng Q, Bieberich CJ, Haffner MC, De Marzo AM. If this is true, what does it imply? How end-user antibody validation facilitates insights into biology and disease. Asian J Urol 2019; 6:10-25. [PMID: 30775245 PMCID: PMC6363603 DOI: 10.1016/j.ajur.2018.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022] Open
Abstract
Antibodies are employed ubiquitously in biomedical sciences, including for diagnostics and therapeutics. One of the most important uses is for immunohistochemical (IHC) staining, a process that has been improving and evolving over decades. IHC is useful when properly employed, yet misuse of the method is widespread and contributes to the "reproducibility crisis" in science. We report some of the common problems encountered with IHC assays, and direct readers to a wealth of literature documenting and providing some solutions to this problem. We also describe a series of vignettes that include our approach to analytical validation of antibodies and IHC assays that have facilitated a number of biological insights into prostate cancer and the refutation of a controversial association of a viral etiology in gliomas. We postulate that a great deal of the problem with lack of accuracy in IHC assays stems from the lack of awareness by researchers for the critical necessity for end-users to validate IHC antibodies and assays in their laboratories, regardless of manufacturer claims or past publications. We suggest that one reason for the pervasive lack of end-user validation for research antibodies is that researchers fail to realize that there are two general classes of antibodies employed in IHC. First, there are antibodies that are "clinical grade" reagents used by pathologists to help render diagnoses that influence patient treatment. Such diagnostic antibodies, which tend to be highly validated prior to clinical implementation, are in the vast minority (e.g. < 500). The other main class of antibodies are "research grade" antibodies (now numbering >3 800 000), which are often not extensively validated prior to commercialization. Given increased awareness of the problem, both the United States, National Institutes of Health and some journals are requiring investigators to provide evidence of specificity of their antibody-based assays.
Collapse
Affiliation(s)
- Karen S. Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - William G. Nelson
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ibrahim Kulac
- Department of Pathology, Koc Universitesi Tip Fakultesi, Istanbul, Turkey
| | - Jessica L. Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles J. Bieberich
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Michael C. Haffner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Cyclodextrin polymers decorated with RGD peptide as delivery systems for targeted anti-cancer chemotherapy. Invest New Drugs 2018; 37:771-778. [PMID: 30556100 DOI: 10.1007/s10637-018-0711-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
Polymeric cyclodextrin-based nanoparticles are currently undergoing clinical trials as nanotherapeutics. Using a non-covalent approach, we decorated two cross-linked cyclodextrin polymers of different molecular weights with an RGD peptide derivative to construct a novel carrier for the targeted delivery of doxorubicin. RGD is the binding sequence for the integrin receptor family that is highly expressed in tumour tissues. The assembled host-guest systems were investigated using NMR and DLS techniques. We found that, in comparison with free doxorubicin or the binary complex doxorubicin/cyclodextrin polymer, the RGD units decorating the cyclodextrin-based nanosystems improved the selectivity and cytotoxicity of the complexed doxorubicin towards cultured human tumour cell lines. Our results suggest that the nanocarriers under study may contribute to the development of new platforms for cancer therapy.
Collapse
|
24
|
αvβ3 Integrin Is Required for Efficient Infection of Epithelial Cells with Human Adenovirus Type 26. J Virol 2018; 93:JVI.01474-18. [PMID: 30333171 DOI: 10.1128/jvi.01474-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/30/2018] [Indexed: 11/20/2022] Open
Abstract
Human adenoviruses (HAdVs) are being explored as vectors for gene transfer and vaccination. Human adenovirus type 26 (HAdV26), which belongs to the largest subgroup of adenoviruses, species D, has a short fiber and a so-far-unknown natural tropism. Due to its low seroprevalence, HAdV26 has been considered a promising vector for the development of vaccines. Despite the fact that the in vivo safety and immunogenicity of HAdV26 have been extensively studied, the basic biology of the virus with regard to receptor use, cell attachment, internalization, and intracellular trafficking is poorly understood. In this work, we investigated the roles of the coxsackievirus and adenovirus receptor (CAR), CD46, and αv integrins in HAdV26 infection of human epithelial cell lines. By performing different gain- and loss-of-function studies, we found that αvβ3 integrin is required for efficient infection of epithelial cells by HAdV26, while CAR and CD46 did not increase the transduction efficiency of HAdV26. By studying intracellular trafficking of fluorescently labeled HAdV26 in A549 cells and A549-derived cell clones with stably increased expression of αvβ3 integrin, we observed that HAdV26 colocalizes with αvβ3 integrin and that increased αvβ3 integrin enhances internalization of HAdV26. Thus, we conclude that HAdV26 uses αvβ3 integrin as a receptor for infecting epithelial cells. These results give us new insight into the HAdV26 infection pathway and will be helpful in further defining HAdV-based vector manufacturing and vaccination strategies.IMPORTANCE Adenovirus-based vectors are used today for gene transfer and vaccination. HAdV26 has emerged as a promising candidate vector for development of vaccines due to its relatively low seroprevalence and its ability to induce potent immune responses against inserted transgenes. However, data regarding the basic biology of the virus, like receptor usage or intracellular trafficking, are limited. In this work, we found that efficient infection of human epithelial cell lines by HAdV26 requires the expression of the αvβ3 integrin. By studying intracellular trafficking of fluorescently labeled HAdV26 in a cell clone with stably increased expression of αvβ3 integrin, we observed that HAdV26 colocalizes with αvβ3 integrin and confirmed that αvβ3 integrin expression facilitates efficient HAdV26 internalization. These results will allow further improvement of HAdV26-based vectors for gene transfer and vaccination.
Collapse
|
25
|
Han J, Räder AFB, Reichart F, Aikman B, Wenzel MN, Woods B, Weinmüller M, Ludwig BS, Stürup S, Groothuis GMM, Permentier HP, Bischoff R, Kessler H, Horvatovich P, Casini A. Bioconjugation of Supramolecular Metallacages to Integrin Ligands for Targeted Delivery of Cisplatin. Bioconjug Chem 2018; 29:3856-3865. [DOI: 10.1021/acs.bioconjchem.8b00682] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jiaying Han
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Andreas F. B. Räder
- Institute for Advanced Study and Center of Integrated Protein Science München (CIPSM), TU München, Department Chemie, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Florian Reichart
- Institute for Advanced Study and Center of Integrated Protein Science München (CIPSM), TU München, Department Chemie, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Brech Aikman
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| | - Margot N. Wenzel
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| | - Ben Woods
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| | - Michael Weinmüller
- Institute for Advanced Study and Center of Integrated Protein Science München (CIPSM), TU München, Department Chemie, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Beatrice S. Ludwig
- Institute for Advanced Study and Center of Integrated Protein Science München (CIPSM), TU München, Department Chemie, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Stefan Stürup
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Geny M. M. Groothuis
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Hjalmar P. Permentier
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rainer Bischoff
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Horst Kessler
- Institute for Advanced Study and Center of Integrated Protein Science München (CIPSM), TU München, Department Chemie, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Peter Horvatovich
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Angela Casini
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| |
Collapse
|
26
|
Stojanović N, Dekanić A, Paradžik M, Majhen D, Ferenčak K, Ruščić J, Bardak I, Supina C, Tomicic MT, Christmann M, Osmak M, Ambriović-Ristov A. Differential Effects of Integrin αv Knockdown and Cilengitide on Sensitization of Triple-Negative Breast Cancer and Melanoma Cells to Microtubule Poisons. Mol Pharmacol 2018; 94:1334-1351. [DOI: 10.1124/mol.118.113027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 01/03/2023] Open
|
27
|
López Rivas P, Ranđelović I, Raposo Moreira Dias A, Pina A, Arosio D, Tóvári J, Mező G, Dal Corso A, Pignataro L, Gennari C. Synthesis and Biological Evaluation of Paclitaxel Conjugates Involving Linkers Cleavable by Lysosomal Enzymes and αV
β3
-Integrin Ligands for Tumor Targeting. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Paula López Rivas
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi, 19 20133 Milan Italy
| | - Ivan Ranđelović
- Department of Experimental Pharmacology; National Institute of Oncology; Ráth György u. 7-9. 1122 Budapest Hungary
| | | | - Arianna Pina
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi, 19 20133 Milan Italy
| | - Daniela Arosio
- CNR; Istituto di Scienze e Tecnologie Molecolari (ISTM); Via C. Golgi, 19 20133 Milan Italy
| | - József Tóvári
- Department of Experimental Pharmacology; National Institute of Oncology; Ráth György u. 7-9. 1122 Budapest Hungary
| | - Gábor Mező
- Faculty of Science; Institute of Chemistry; Eötvös Loránd University; Pázmány Péter st. 1/A 1117 Budapest Hungary
| | - Alberto Dal Corso
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi, 19 20133 Milan Italy
| | - Luca Pignataro
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi, 19 20133 Milan Italy
| | - Cesare Gennari
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi, 19 20133 Milan Italy
- CNR; Istituto di Scienze e Tecnologie Molecolari (ISTM); Via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
28
|
He Z, Tang F, Lu Z, Huang Y, Lei H, Li Z, Zeng G. Analysis of differentially expressed genes, clinical value and biological pathways in prostate cancer. Am J Transl Res 2018; 10:1444-1456. [PMID: 29887958 PMCID: PMC5992552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
The present study aimed to investigate the gene expression changes in prostate cancer (PC) and screen the hub genes and associated pathways of PC progression. The authors employed integrated analysis of GSE46602 downloaded from the Gene Expression Omnibus and The Cancer Genome Atlas databases to identify 484 consensual differentially expressed genes (DEGs) in PC, when compared with adjacent normal tissue samples. Functional annotation and pathway analysis were performed. The protein-protein interaction (PPI) networks and module were constructed. RT-qPCR was used to validate the results in clinical PC samples. Survival analysis of hub genes was performed to explore their clinical value. GO analysis results revealed that DEGs were significantly enriched in negative regulation of nitrobenzene metabolic process, extracellular space and protein homodimerization activity. KEGG pathway analysis results revealed that DEGs were most significantly enriched in focal adhesion. The top 10 hub genes were identified to be hub genes from the PPI network, and the model revealed that these genes were enriched in various pathways, including neuroactive ligand-receptor interaction, p53 and glutathione metabolism signaling pathways. RT-qPCR results validated that expression levels of eight genes (PIK3R1, BIRC5, ITGB4, RRM2, TOP2A, ANXA1, LPAR1 and ITGB8) were consistent with the bioinformatics analysis. ITGB4 and RRM2 with genetic alterations exhibited association with a poorer survival rate, compared with those without alterations. These results revealed that PC-related genes and pathways have an important role in tumor expansion, metastasis and prognosis. In summary, these hub genes and related pathways may act as biomarkers or therapeutic targets for PC.
Collapse
Affiliation(s)
- Zhaohui He
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510230, China
| | - Fucai Tang
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510230, China
| | - Zechao Lu
- First Clinical College of Guangzhou Medical UniversityGuangzhou 510230, China
| | - Yucong Huang
- Third Clinical College of Guangzhou Medical UniversityGuangzhou 510230, China
| | - Hanqi Lei
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510230, China
| | - Zhibiao Li
- Third Clinical College of Guangzhou Medical UniversityGuangzhou 510230, China
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou 510230, China
| |
Collapse
|
29
|
Goodman SL. The path to VICTORy - a beginner's guide to success using commercial research antibodies. J Cell Sci 2018; 131:131/10/jcs216416. [PMID: 29764917 DOI: 10.1242/jcs.216416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Commercial research antibodies are crucial tools in modern cell biology and biochemistry. In the USA some $2 billion a year are spent on them, but many are apparently not fit-for-purpose, and this may contribute to the 'reproducibility crisis' in biological sciences. Inadequate antibody validation and characterization, lack of user awareness, and occasional incompetence amongst suppliers have had immense scientific and personal costs. In this Opinion, I suggest some paths to make the use of these vital tools more successful. I have attempted to summarize and extend expert views from the literature to suggest that sustained routine efforts should made in: (1) the validation of antibodies, (2) their identification, (3) communication and controls, (4) the training of potential users, (5) the transparency of original equipment manufacturer (OEM) marketing agreements, and (5) in a more widespread use of recombinant antibodies (together denoted the 'VICTOR' approach).
Collapse
|
30
|
Bodero L, López Rivas P, Korsak B, Hechler T, Pahl A, Müller C, Arosio D, Pignataro L, Gennari C, Piarulli U. Synthesis and biological evaluation of RGD and isoDGR peptidomimetic-α-amanitin conjugates for tumor-targeting. Beilstein J Org Chem 2018. [PMID: 29520305 PMCID: PMC5827777 DOI: 10.3762/bjoc.14.29] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
RGD-α-amanitin and isoDGR-α-amanitin conjugates were synthesized by joining integrin ligands to α-amanitin via various linkers and spacers. The conjugates were evaluated for their ability to inhibit biotinylated vitronectin binding to the purified αVβ3 receptor, retaining good binding affinity, in the same nanomolar range as the free ligands. The antiproliferative activity of the conjugates was evaluated in three cell lines possessing different levels of αVβ3 integrin expression: human glioblastoma U87 (αVβ3+), human lung carcinoma A549 (αVβ3−) and breast adenocarcinoma MDA-MB-468 (αVβ3−). In the U87, in the MDA-MB-468, and partly in the A549 cancer cell lines, the cyclo[DKP-isoDGR]-α-amanitin conjugates bearing the lysosomally cleavable Val-Ala linker were found to be slightly more potent than α-amanitin. Apparently, for all these α-amanitin conjugates there is no correlation between the cytotoxicity and the expression of αVβ3 integrin. To determine whether the increased cytotoxicity of the cyclo[DKP-isoDGR]-α-amanitin conjugates is governed by an integrin-mediated binding and internalization process, competition experiments were carried out in which the conjugates were tested with U87 (αVβ3+, αVβ5+, αVβ6−, α5β1+) and MDA-MB-468 (αVβ3−, αVβ5+, αVβ6+, α5β1−) cells in the presence of excess cilengitide, with the aim of blocking integrins on the cell surface. Using the MDA-MB-468 cell line, a fivefold increase of the IC50 was observed for the conjugates in the presence of excess cilengitide, which is known to strongly bind not only αVβ3, but also αVβ5, αVβ6, and α5β1. These data indicate that in this case the cyclo[DKP-isoDGR]-α-amanitin conjugates are possibly internalized by a process mediated by integrins different from αVβ3 (e.g., αVβ5).
Collapse
Affiliation(s)
- Lizeth Bodero
- Dipartimento di Scienza e Alta Tecnologia, Via Valleggio, 11, 22100, Como, Italy
| | - Paula López Rivas
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I-20133, Milan, Italy
| | - Barbara Korsak
- Heidelberg Pharma Research GmbH, Schriesheimer Strasse 101, 68526, Ladenburg, Germany
| | - Torsten Hechler
- Heidelberg Pharma Research GmbH, Schriesheimer Strasse 101, 68526, Ladenburg, Germany
| | - Andreas Pahl
- Heidelberg Pharma Research GmbH, Schriesheimer Strasse 101, 68526, Ladenburg, Germany
| | - Christoph Müller
- Heidelberg Pharma Research GmbH, Schriesheimer Strasse 101, 68526, Ladenburg, Germany
| | - Daniela Arosio
- CNR, Istituto di Scienze e Tecnologie Molecolare (ITSM), Via C. Golgi, 19, 20133, Milan, Italy
| | - Luca Pignataro
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I-20133, Milan, Italy
| | - Cesare Gennari
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, I-20133, Milan, Italy
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia, Via Valleggio, 11, 22100, Como, Italy
| |
Collapse
|
31
|
The antibody horror show: an introductory guide for the perplexed. N Biotechnol 2018; 45:9-13. [PMID: 29355666 DOI: 10.1016/j.nbt.2018.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 01/21/2023]
Abstract
The biological literature reverberates with the inadequacies of commercial research-tool antibodies. The scientific community spends some $2 billion per year on such reagents. Excellent accessible scientific platforms exist for reliably making, validating and using antibodies, yet the laboratory end-user reality is somehow depressing - because they often "don't work". This experience is due to a bizarre and variegated spectrum of causes including: inadequately identified antibodies; inappropriate user and supplier validation; poor user training; and overloaded publishers. Colourful as this may appear, the outcomes for the community are uniformly grim, including badly damaged scientific careers, wasted public funding, and contaminated literature. As antibodies are amongst the most important of everyday reagents in cell biology and biochemistry, I have tried here to gently suggest a few possible solutions, including: a move towards using recombinant antibodies; obligatory unique identification of antibodies, their immunogens, and their producers; centralized international banking of standard antibodies and their ligands; routine, accessible open-source documentation of user experience with antibodies; and antibody-user certification.
Collapse
|
32
|
Weller M, Nabors LB, Gorlia T, Leske H, Rushing E, Bady P, Hicking C, Perry J, Hong YK, Roth P, Wick W, Goodman SL, Hegi ME, Picard M, Moch H, Straub J, Stupp R. Cilengitide in newly diagnosed glioblastoma: biomarker expression and outcome. Oncotarget 2017; 7:15018-32. [PMID: 26918452 PMCID: PMC4924768 DOI: 10.18632/oncotarget.7588] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 01/29/2016] [Indexed: 11/25/2022] Open
Abstract
Integrins αvβ3 and αvβ5 regulate angiogenesis and invasiveness in cancer, potentially by modulating activation of the transforming growth factor (TGF)-β pathway. The randomized phase III CENTRIC and phase II CORE trials explored the integrin inhibitor cilengitide in patients with newly diagnosed glioblastoma with versus without O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. These trials failed to meet their primary endpoints. Immunohistochemistry was used to assess the levels of the target integrins of cilengitide, αvβ3 and αvβ5 integrins, of αvβ8 and of their putative target, phosphorylation of SMAD2, in tumor tissues from CENTRIC (n=274) and CORE (n=224). αvβ3 and αvβ5 expression correlated well in tumor and endothelial cells, but showed little association with αvβ8 or pSMAD2 levels. In CENTRIC, there was no interaction between the biomarkers and treatment for prediction of outcome. In CORE, higher αvβ3 levels in tumor cells were associated with improved progression-free survival by central review and with improved overall survival in patients treated with cilengitide. Integrins αvβ3, αvβ5 and αvβ8 are differentially expressed in glioblastoma. Integrin levels do not correlate with the activation level of the canonical TGF-β pathway. αvβ3 integrin expression may predict benefit from integrin inhibition in patients with glioblastoma lacking MGMT promoter methylation.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | | | - Henning Leske
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Elisabeth Rushing
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Pierre Bady
- Department of Education and Research, University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Clinical Neurosciences, University Hospital Lausanne, Lausanne, Switzerland
| | - Christine Hicking
- Department of Translational and Biomarkers Research, Oncology, Merck KGaA, Darmstadt, Germany
| | - James Perry
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Yong-Kil Hong
- The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Korea
| | - Patrick Roth
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Wolfgang Wick
- Neurology Clinic, University of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon L Goodman
- Department of Translational and Biomarkers Research, Oncology, Merck KGaA, Darmstadt, Germany
| | - Monika E Hegi
- Department of Clinical Neurosciences, University Hospital Lausanne, Lausanne, Switzerland
| | - Martin Picard
- Department of Translational and Biomarkers Research, Oncology, Merck KGaA, Darmstadt, Germany
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Josef Straub
- Department of Translational and Biomarkers Research, Oncology, Merck KGaA, Darmstadt, Germany
| | - Roger Stupp
- Department of Oncology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Dhandhukia JP, Shi P, Peddi S, Li Z, Aluri S, Ju Y, Brill D, Wang W, Janib SM, Lin YA, Liu S, Cui H, MacKay JA. Bifunctional Elastin-like Polypeptide Nanoparticles Bind Rapamycin and Integrins and Suppress Tumor Growth in Vivo. Bioconjug Chem 2017; 28:2715-2728. [PMID: 28937754 DOI: 10.1021/acs.bioconjchem.7b00469] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recombinant protein-polymer scaffolds such as elastin-like polypeptides (ELPs) offer drug-delivery opportunities including biocompatibility, monodispersity, and multifunctionality. We recently reported that the fusion of FK-506 binding protein 12 (FKBP) to an ELP nanoparticle (FSI) increases rapamycin (Rapa) solubility, suppresses tumor growth in breast cancer xenografts, and reduces side effects observed with free-drug controls. This new report significantly advances this carrier strategy by demonstrating the coassembly of two different ELP diblock copolymers containing drug-loading and tumor-targeting domains. A new ELP nanoparticle (ISR) was synthesized that includes the canonical integrin-targeting ligand (Arg-Gly-Asp, RGD). FSI and ISR mixed in a 1:1 molar ratio coassemble into bifunctional nanoparticles containing both the FKBP domain for Rapa loading and the RGD ligand for integrin binding. Coassembled nanoparticles were evaluated for bifunctionality by performing in vitro cell-binding and drug-retention assays and in vivo MDA-MB-468 breast tumor regression and tumor-accumulation studies. The bifunctional nanoparticle demonstrated superior cell target binding and similar drug retention to FSI; however, it enhanced the formulation potency, such that tumor growth was suppressed at a 3-fold lower dose compared to an untargeted FSI-Rapa control. This data suggests that ELP-mediated scaffolds are useful tools for generating multifunctional nanomedicines with potential activity in cancer.
Collapse
Affiliation(s)
- Jugal P Dhandhukia
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Pu Shi
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Santosh Peddi
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Zhe Li
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Suhaas Aluri
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Dab Brill
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Wan Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Siti M Janib
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States
| | - Yi-An Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | | | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy , Los Angeles, California 90089, United States.,Department of Biomedical Engineering, University of Southern California Viterbi School of Engineering , Los Angeles, California 90089, United States
| |
Collapse
|
34
|
Raab-Westphal S, Marshall JF, Goodman SL. Integrins as Therapeutic Targets: Successes and Cancers. Cancers (Basel) 2017; 9:E110. [PMID: 28832494 PMCID: PMC5615325 DOI: 10.3390/cancers9090110] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
Integrins are transmembrane receptors that are central to the biology of many human pathologies. Classically mediating cell-extracellular matrix and cell-cell interaction, and with an emerging role as local activators of TGFβ, they influence cancer, fibrosis, thrombosis and inflammation. Their ligand binding and some regulatory sites are extracellular and sensitive to pharmacological intervention, as proven by the clinical success of seven drugs targeting them. The six drugs on the market in 2016 generated revenues of some US$3.5 billion, mainly from inhibitors of α4-series integrins. In this review we examine the current developments in integrin therapeutics, especially in cancer, and comment on the health economic implications of these developments.
Collapse
Affiliation(s)
- Sabine Raab-Westphal
- Translational In Vivo Pharmacology, Translational Innovation Platform Oncology, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.
| | - John F Marshall
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Simon L Goodman
- Translational and Biomarkers Research, Translational Innovation Platform Oncology, Merck KGaA, 64293 Darmstadt, Germany.
| |
Collapse
|
35
|
Das V, Kalyan G, Hazra S, Pal M. Understanding the role of structural integrity and differential expression of integrin profiling to identify potential therapeutic targets in breast cancer. J Cell Physiol 2017; 233:168-185. [DOI: 10.1002/jcp.25821] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Vishal Das
- Biological Sciences and Technology DivisionCSIR‐North East Institute of Science and TechnologyJorhat, AssamIndia
| | - Gazal Kalyan
- Department of BiotechnologyIndian Institute of Technology Roorkee (IITR)RoorkeeUttarakhandIndia
| | - Saugata Hazra
- Department of BiotechnologyIndian Institute of Technology Roorkee (IITR)RoorkeeUttarakhandIndia
- Centre for NanotechnologyIndian Institute of Technology RoorkeeRoorkeeUttarakhandIndia
| | - Mintu Pal
- Biological Sciences and Technology DivisionCSIR‐North East Institute of Science and TechnologyJorhat, AssamIndia
| |
Collapse
|
36
|
Medrano MA, Morais M, Ferreira VFC, Correia JDG, Paulo A, Santos I, Navarro-Ranninger C, Valdes AA, Casini A, Mendes F, Quiroga AG. Nonconventionaltrans-Platinum Complexes Functionalized with RDG Peptides: Chemical and Cytototoxicity Studies. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maria Angeles Medrano
- IadChem. and Departamento de Química Inorgánica; Universidad Autonoma de Madrid; 28049 Madrid Spain
| | - Maurício Morais
- Centro de Ciências e Tecnologias Nucleares; Instituto Superior Técnico; Universidade de Lisboa; Estrada Nacional 10 (km 139,7) 2695-066 Bobadela LRS Portugal
| | - Vera F. C. Ferreira
- Centro de Ciências e Tecnologias Nucleares; Instituto Superior Técnico; Universidade de Lisboa; Estrada Nacional 10 (km 139,7) 2695-066 Bobadela LRS Portugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares; Instituto Superior Técnico; Universidade de Lisboa; Estrada Nacional 10 (km 139,7) 2695-066 Bobadela LRS Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares; Instituto Superior Técnico; Universidade de Lisboa; Estrada Nacional 10 (km 139,7) 2695-066 Bobadela LRS Portugal
| | - Isabel Santos
- Centro de Ciências e Tecnologias Nucleares; Instituto Superior Técnico; Universidade de Lisboa; Estrada Nacional 10 (km 139,7) 2695-066 Bobadela LRS Portugal
| | - Carmen Navarro-Ranninger
- IadChem. and Departamento de Química Inorgánica; Universidad Autonoma de Madrid; 28049 Madrid Spain
| | - Amparo Alvarez Valdes
- IadChem. and Departamento de Química Inorgánica; Universidad Autonoma de Madrid; 28049 Madrid Spain
| | - Angela Casini
- School of Chemistry; Instituto Superior Técnico; Cardiff University; Park Place CF10 3AT Cardiff United Kingdom
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares; Instituto Superior Técnico; Universidade de Lisboa; Estrada Nacional 10 (km 139,7) 2695-066 Bobadela LRS Portugal
| | - Adoración G. Quiroga
- IadChem. and Departamento de Química Inorgánica; Universidad Autonoma de Madrid; 28049 Madrid Spain
| |
Collapse
|
37
|
Hahn EM, Estrada-Ortiz N, Han J, Ferreira VFC, Kapp TG, Correia JDG, Casini A, Kühn FE. Functionalization of Ruthenium(II) Terpyridine Complexes with Cyclic RGD Peptides To Target Integrin Receptors in Cancer Cells. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201601094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Eva M. Hahn
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry; Technische Universität München; Lichtenbergstr. 4 85747 Garching bei München Germany
- School of Chemistry; Cardiff University; Park Place CF103AT Cardiff United Kingdom
| | - Natalia Estrada-Ortiz
- Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Jiaying Han
- Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Vera F. C. Ferreira
- Centro de Ciências e Tecnologias Nucleares; Instituto Superior Técnico; Universidade de Lisboa, CTN; Estrada Nacional 10 (km 139.7) 2695-066 Bobadela LRS Portugal
| | - Tobias G. Kapp
- Institute for Advanced Study; Technische Universität München; Lichtenbergstr. 2a 85748 Garching Germany
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares; Instituto Superior Técnico; Universidade de Lisboa, CTN; Estrada Nacional 10 (km 139.7) 2695-066 Bobadela LRS Portugal
| | - Angela Casini
- School of Chemistry; Cardiff University; Park Place CF103AT Cardiff United Kingdom
- Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
- Institute for Advanced Study; Technische Universität München; Lichtenbergstr. 2a 85748 Garching Germany
| | - Fritz E. Kühn
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry; Technische Universität München; Lichtenbergstr. 4 85747 Garching bei München Germany
| |
Collapse
|
38
|
Hall ER, Bibby LI, Slack RJ. Characterisation of a novel, high affinity and selective αvβ6 integrin RGD-mimetic radioligand. Biochem Pharmacol 2016; 117:88-96. [PMID: 27501918 DOI: 10.1016/j.bcp.2016.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/02/2016] [Indexed: 11/25/2022]
Abstract
The alpha-v beta-6 (αvβ6) integrin has been identified as playing a key role in the activation of transforming growth factor-β (TGFβ) that is hypothesised to be pivotal in the development of cancer and fibrotic diseases. Therefore, the αvβ6 integrin is an attractive therapeutic target for these debilitating diseases and a drug discovery programme to identify small molecule αvβ6 selective arginyl-glycinyl-aspartic acid (RGD)-mimetics was initiated within GlaxoSmithKline. The primary aim of this study was to pharmacologically characterise the binding to αvβ6 of a novel clinical candidate, compound 1, using a radiolabelled form. Radioligand binding studies were completed with [(3)H]compound 1 against the human and mouse soluble protein forms of αvβ6 to determine accurate affinity estimates and binding kinetics. The selectivity of compound 1 for the RGD integrin family was also determined using saturation binding studies (αvβ1, αvβ3, αvβ5, αvβ8, α5β1 and α8β1 integrins) and fibrinogen-induced platelet aggregation (αIIbβ3 integrin). In addition, the relationship between divalent metal cation type and concentration and αvβ6 RGD site binding was also investigated. Compound 1 has been demonstrated to bind with extremely high affinity and selectivity for the αvβ6 integrin and has the potential as a clinical tool and therapeutic for investigating the role of αvβ6 in a range of disease states both pre-clinically and clinically. In addition, this is the first study that has successfully applied radioligand binding to the RGD integrin field to accurately determine the affinity and selectivity profile of a small molecule RGD-mimetic.
Collapse
Affiliation(s)
- Eleanor R Hall
- Fibrosis and Lung Injury Discovery Performance Unit, Respiratory TAU, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - Lloyd I Bibby
- Fibrosis and Lung Injury Discovery Performance Unit, Respiratory TAU, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - Robert J Slack
- Fibrosis and Lung Injury Discovery Performance Unit, Respiratory TAU, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, UK.
| |
Collapse
|
39
|
Luan L, Fang W, Liu W, Tian M, Ni Y, Chen X, Yu X, He J, Yang Y, Li X. 4-tert-butylphenoxy substituted phthalocyanine with RGD motif as highly selective one-photon and two-photon imaging probe for mitochondria and cancer cell. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616500188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An unsymmetrical phthalocyanine based one- and two-photon fluorescence imaging probe that substituted with 4-tert-butylphenoxy and RDGyK moieties was developed and characterized by UV-vis and high-resolution MALDI-TOF/MS. The conjugate is non-aggregated in [Formula: see text],[Formula: see text]-dimethylformamide, with relatively weak fluorescence emission ([Formula: see text] 0.023) and high singlet oxygen quantum yield ([Formula: see text] 0.55). Conjugation of the cyclic peptide sequence c(RGDyK) can enhance the cellular uptake towards the DU145 and PC3 cells. While the fluorescence is greatly enhanced in mitochondria, the conjugate is non-cytotoxicity either in dark or upon exposure to red-light with dose up to 12 J.cm[Formula: see text]. The results suggest that this conjugate is a promising multifunctional imaging probe for mitochondria and cancer.
Collapse
Affiliation(s)
- Liqiang Luan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250012, P.R. China
| | - Wenjuan Fang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250012, P.R. China
| | - Wei Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250012, P.R. China
| | - Minggang Tian
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250012, P.R. China
| | - Yuxing Ni
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250012, P.R. China
| | - Xi Chen
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250012, P.R. China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250012, P.R. China
| | - Jing He
- School of Medicine, Shandong University, Jinan 250012, P.R. China
| | - Yang Yang
- School of Medicine, Shandong University, Jinan 250012, P.R. China
| | - Xiangzhi Li
- School of Medicine, Shandong University, Jinan 250012, P.R. China
| |
Collapse
|
40
|
Shi J, Wang F, Liu S. Radiolabeled cyclic RGD peptides as radiotracers for tumor imaging. BIOPHYSICS REPORTS 2016; 2:1-20. [PMID: 27819026 PMCID: PMC5071373 DOI: 10.1007/s41048-016-0021-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/01/2016] [Indexed: 12/19/2022] Open
Abstract
The integrin family comprises 24 transmembrane receptors, each a heterodimeric combination of one of 18α and one of 8β subunits. Their main function is to integrate the cell adhesion and interaction with the extracellular microenvironment with the intracellular signaling and cytoskeletal rearrangement through transmitting signals across the cell membrane upon ligand binding. Integrin αvβ3 is a receptor for the extracellular matrix proteins containing arginine–glycine–aspartic (RGD) tripeptide sequence. The αvβ3 is generally expressed in low levels on the epithelial cells and mature endothelial cells, but it is highly expressed in many solid tumors. The αvβ3 levels correlate well with the potential for tumor metastasis and aggressiveness, which make it an important biological target for development of antiangiogenic drugs, and molecular imaging probes for early tumor diagnosis. Over the last decade, many radiolabeled cyclic RGD peptides have been evaluated as radiotracers for imaging tumors by SPECT or PET. Even though they are called “αvβ3-targeted” radiotracers, the radiolabeled cyclic RGD peptides are also able to bind αvβ5, α5β1, α6β4, α4β1, and αvβ6 integrins, which may help enhance their tumor uptake due to the “increased receptor population.” This article will use the multimeric cyclic RGD peptides as examples to illustrate basic principles for development of integrin-targeted radiotracers and focus on different approaches to maximize their tumor uptake and T/B ratios. It will also discuss important assays for pre-clinical evaluations of the integrin-targeted radiotracers, and their potential applications as molecular imaging tools for noninvasive monitoring of tumor metastasis and early detection of the tumor response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Jiyun Shi
- Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ; Medical Isotopes Research Center, Peking University, Beijing, 100191 China
| | - Fan Wang
- Interdisciplinary Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ; Medical Isotopes Research Center, Peking University, Beijing, 100191 China
| | - Shuang Liu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
41
|
Gandioso A, Shaili E, Massaguer A, Artigas G, González-Cantó A, Woods JA, Sadler PJ, Marchán V. An integrin-targeted photoactivatable Pt(IV) complex as a selective anticancer pro-drug: synthesis and photoactivation studies. Chem Commun (Camb) 2016; 51:9169-72. [PMID: 25947177 DOI: 10.1039/c5cc03180j] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new anticancer agent based on the conjugation of a photoactivatable Pt(IV) pro-drug to a cyclic RGD-containing peptide is described. Upon visible light irradiation, phototoxicity was induced preferentially in SK-MEL-28 melanoma cancer cells overexpressing αVβ3 integrin compared to control DU-145 human prostate carcinoma cells.
Collapse
Affiliation(s)
- Albert Gandioso
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Barcelona, E-08028, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hussain M, Le Moulec S, Gimmi C, Bruns R, Straub J, Miller K. Differential Effect on Bone Lesions of Targeting Integrins: Randomized Phase II Trial of Abituzumab in Patients with Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2016; 22:3192-200. [PMID: 26839144 DOI: 10.1158/1078-0432.ccr-15-2512] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/05/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Integrins play a critical role in the progression of prostate cancer and its bone metastases. We investigated the use of the pan-αv integrin inhibitor abituzumab in chemotherapy-naïve patients with asymptomatic or mildly symptomatic metastatic castration-resistant prostate cancer. EXPERIMENTAL DESIGN PERSEUS (NCT01360840) was a randomized, double-blind phase II study. Men with pathologically confirmed prostate cancer and radiologic progression of bone lesions in the 28 days prior to randomization were assigned to receive abituzumab 750 mg or 1,500 mg or placebo (1:1:1) every 3 weeks in combination with luteinizing hormone-releasing hormone agonist/antagonist therapy. The primary endpoint was progression-free survival (PFS). RESULTS The intent-to-treat population comprised 180 patients, 60 in each arm. The primary endpoint of PFS was not significantly different with abituzumab-based therapy compared with placebo [abituzumab 750 mg, 3.4 months, HR = 0.89; 95% confidence interval (CI), 0.57-1.39; abituzumab 1,500 mg, 4.3 months, HR = 0.81; 95% CI, 0.52-1.26; placebo, 3.3 months], but the cumulative incidence of bone lesion progression was lower with abituzumab than with placebo for up to 24 months (cumulative incidence 23.6% vs. 41.1% at 6 months, 26.1% vs. 45.4% at 12 months). Two partial tumor responses were observed (1 abituzumab 1,500 mg and 1 placebo). Approximately 85% to 90% of patients experienced at least one treatment-emergent adverse event (TEAE) in the different arms, but the incidences of serious TEAEs and TEAEs with fatal outcome were similar in the three arms. CONCLUSIONS Although PFS was not significantly extended, abituzumab appears to have specific activity in prostate cancer-associated bone lesions that warrants further investigation. Clin Cancer Res; 22(13); 3192-200. ©2016 AACR.
Collapse
Affiliation(s)
| | | | | | | | | | - Kurt Miller
- Department of Urology, Charité, Berlin, Germany
| | | |
Collapse
|
43
|
Giner-Casares JJ, Henriksen-Lacey M, García I, Liz-Marzán LM. Plasmonic Surfaces for Cell Growth and Retrieval Triggered by Near-Infrared Light. Angew Chem Int Ed Engl 2016; 55:974-8. [PMID: 26594015 PMCID: PMC4737312 DOI: 10.1002/anie.201509025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 10/31/2015] [Indexed: 01/19/2023]
Abstract
Methods for efficient detachment of cells avoiding damage are required in tissue engineering and regenerative medicine. We introduce a bottom-up approach to build plasmonic substrates using micellar block copolymer nanolithography to generate a 2D array of Au seeds, followed by chemical growth leading to anisotropic nanoparticles. The resulting plasmonic substrates show a broad plasmon band covering a wide part of the visible and near-infrared (NIR) spectral ranges. Both human and murine cells were successfully grown on the substrates. A simple functionalization step of the plasmonic substrates with the cyclic arginylglycylaspartic acid (c-RGD) peptide allowed us to tune the morphology of integrin-rich human umbilical vein endothelial cells (HUVEC). Subsequent irradiation with a NIR laser led to highly efficient detachment of the cells with cell viability confirmed using the MTT assay. We thus propose the use of such plasmonic substrates for cell growth and controlled detachment using remote near-IR irradiation, as a general method for cell culture in biomedical applications.
Collapse
Affiliation(s)
- Juan J Giner-Casares
- CIC biomaGUNE, Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain.
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain
| | - Isabel García
- CIC biomaGUNE, Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
44
|
Luan L, Fang W, Liu W, Tian M, Ni Y, Chen X, Yu X. Phthalocyanine-cRGD conjugate: synthesis, photophysical properties and in vitro biological activity for targeting photodynamic therapy. Org Biomol Chem 2016; 14:2985-92. [DOI: 10.1039/c6ob00099a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phthalocyanine-RGD conjugate was synthesized and examined for its two-photon absorption cross section (TPACS), cellular uptake, and photocytotoxicity.
Collapse
Affiliation(s)
- Liqiang Luan
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250012
- P.R. China
| | - Wenjuan Fang
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250012
- P.R. China
| | - Wei Liu
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250012
- P.R. China
| | - Minggang Tian
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250012
- P.R. China
| | - Yuxing Ni
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250012
- P.R. China
| | - Xi Chen
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250012
- P.R. China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials
- Shandong University
- Jinan 250012
- P.R. China
| |
Collapse
|
45
|
Giner-Casares JJ, Henriksen-Lacey M, García I, Liz-Marzán LM. Plasmonic Surfaces for Cell Growth and Retrieval Triggered by Near-Infrared Light. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juan J. Giner-Casares
- CIC biomaGUNE; Paseo de Miramón 182 20009 Donostia-San Sebastián Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN); Paseo de Miramón 182 20009 Donostia-San Sebastián Spain
| | - Malou Henriksen-Lacey
- CIC biomaGUNE; Paseo de Miramón 182 20009 Donostia-San Sebastián Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN); Paseo de Miramón 182 20009 Donostia-San Sebastián Spain
| | - Isabel García
- CIC biomaGUNE; Paseo de Miramón 182 20009 Donostia-San Sebastián Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN); Paseo de Miramón 182 20009 Donostia-San Sebastián Spain
| | - Luis M. Liz-Marzán
- CIC biomaGUNE; Paseo de Miramón 182 20009 Donostia-San Sebastián Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN); Paseo de Miramón 182 20009 Donostia-San Sebastián Spain
- Ikerbasque, Basque Foundation for Science; 48013 Bilbao Spain
| |
Collapse
|
46
|
The aryl hydrocarbon receptor links integrin signaling to the TGF-β pathway. Oncogene 2015; 35:3260-71. [PMID: 26500056 DOI: 10.1038/onc.2015.387] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 01/02/2023]
Abstract
Glioblastoma is the most common and aggressive form of intrinsic brain tumor. Transforming growth factor (TGF)-β represents a central mediator of the malignant phenotype of these tumors by promoting invasiveness and angiogenesis, maintaining tumor cell stemness and inducing profound immunosuppression. Integrins, which are highly expressed in glioma cells, interact with the TGF-β pathway. Furthermore, a link has been described between activity of the transcription factor aryl hydrocarbon receptor (AhR) and TGF-β expression. Here we demonstrate that integrin inhibition, using αv, β3 or β5 neutralizing antibodies, RNA interference-mediated integrin gene silencing or pharmacological inhibition by the cyclic RGD peptide EMD 121974 (cilengitide) or the non-peptidic molecule GLPG0187, inhibits AhR activity. These effects are independent of cell detachment or cell density. While AhR mRNA expression was not affected by integrin inhibition, AhR total and nuclear protein levels were reduced, suggesting that integrin inhibition-mediated regulation of AhR may occur at a post-transcriptional level. AhR-null astrocytes, AhR-null hepatocytes or glioblastoma cells with a transiently silenced AhR gene showed reduced sensitivity to integrin inhibition-mediated alterations in TGF-β signaling, indicating that AhR mediates integrin control of the TGF-β pathway. Accordingly, there was a significant correlation of αv integrin levels with nuclear AhR and pSmad2 levels as determined by immunohistochemistry in human glioblastoma in vivo. In summary, this study identifies a signaling network comprising integrins, AhR and TGF-β and validates integrin inhibition as a promising strategy not only to inhibit angiogenesis, but also to block AhR- and TGF-β-controlled features of malignancy in human glioblastoma.
Collapse
|
47
|
Böger C, Warneke VS, Behrens HM, Kalthoff H, Goodman SL, Becker T, Röcken C. Integrins αvβ3 and αvβ5 as prognostic, diagnostic, and therapeutic targets in gastric cancer. Gastric Cancer 2015; 18:784-95. [PMID: 25315085 PMCID: PMC4572058 DOI: 10.1007/s10120-014-0435-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND We investigated the expression of two αv integrins, αvβ3 and αvβ5, in gastric cancer (GC) by testing the following hypotheses: that these molecules are expressed in GC; that they are implicated in GC biology; that they help to distinguish between the two major histological subtypes of GC, according to Laurén; and that they are prognostically relevant. METHODS Formalin-fixed and paraffin-embedded tissue samples from 482 GC samples were stained immunohistochemically using rabbit monoclonal antibodies directed against αvβ3 (EM22703) and αvβ5 (EM09902). Immunostaining of tumor, stroma, and endothelial cells was evaluated separately by the quantity and intensity, generating an immunoreactivity score. The immunoreactivity score of both antibodies was correlated with clinicopathology data and patient survival. RESULTS Each integrin was expressed in at least one tumor component in all GCs. Both were expressed significantly more often in the intestinal phenotype according to Laurén. Moreover, patients who grouped as "positive" for expression of αvβ3 on endothelial cells, and patients with an intestinal type GC, grouped as "negative" for expression of αvβ5 on stroma cells, had significantly longer survival. The expression of αvβ5 on stroma cells was confirmed to be an independent prognostic factor of intestinal-type GC. CONCLUSION The expression of αvβ3 and αvβ5 in at least one tumor component in all GC samples is an interesting new result that should form a basis for further investigations; for example, regarding selective integrin antagonists and the value of αvβ3 and αvβ5 as putative prognostic biomarkers. Moreover, both markers might be helpful in the routine classification of GC subtypes.
Collapse
Affiliation(s)
- Christine Böger
- Department of Pathology, Christian Albrechts University, Arnold-Heller-Str. 3, Haus 14, 24105, Kiel, Germany
| | - Viktoria S Warneke
- Department of Pathology, Christian Albrechts University, Arnold-Heller-Str. 3, Haus 14, 24105, Kiel, Germany
| | - Hans-Michael Behrens
- Department of Pathology, Christian Albrechts University, Arnold-Heller-Str. 3, Haus 14, 24105, Kiel, Germany
| | - Holger Kalthoff
- Department of Experimental Cancer Research, Christian Albrechts University, Kiel, Germany
| | - Simon L Goodman
- Oncology Platform, Department of Translational and Biomarkers Research, Merck KGaA, Darmstadt, Germany
| | - Thomas Becker
- Department of General Surgery and Thoracic Surgery, Christian Albrechts University, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, Christian Albrechts University, Arnold-Heller-Str. 3, Haus 14, 24105, Kiel, Germany.
| |
Collapse
|
48
|
Liu S. Radiolabeled Cyclic RGD Peptide Bioconjugates as Radiotracers Targeting Multiple Integrins. Bioconjug Chem 2015; 26:1413-38. [PMID: 26193072 DOI: 10.1021/acs.bioconjchem.5b00327] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiogenesis is a requirement for tumor growth and metastasis. The angiogenic process depends on vascular endothelial cell migration and invasion, and is regulated by various cell adhesion receptors. Integrins are such a family of receptors that facilitate the cellular adhesion to and migration on extracellular matrix proteins in the intercellular spaces and basement membranes. Among 24 members of the integrin family, αvβ3 is studied most extensively for its role in tumor angiogenesis and metastasis. The αvβ3 is expressed at relatively low levels on epithelial cells and mature endothelial cells, but it is highly expressed on the activated endothelial cells of tumor neovasculature and some tumor cells. This restricted expression makes αvβ3 an excellent target to develop antiangiogenic drugs and diagnostic molecular imaging probes. Since αvβ3 is a receptor for extracellular matrix proteins with one or more RGD tripeptide sequence, many radiolabeled cyclic RGD peptides have been evaluated as "αvβ3-targeted" radiotracers for tumor imaging over the past decade. This article will use the dimeric and tetrameric cyclic RGD peptides developed in our laboratories as examples to illustrate basic principles for development of αvβ3-targeted radiotracers. It will focus on different approaches to maximize the radiotracer tumor uptake and tumor/background ratios. This article will also discuss some important assays for preclinical evaluations of integrin-targeted radiotracers. In general, multimerization of cyclic RGD peptides increases their integrin binding affinity and the tumor uptake and retention times of their radiotracers. Regardless of their multiplicity, the capability of cyclic RGD peptides to bind other integrins (namely, αvβ5, α5β1, α6β4, α4β1, and αvβ6) is expected to enhance the radiotracer tumor uptake due to the increased integrin population. The results from preclinical and clinical studies clearly show that radiolabeled cyclic RGD peptides (such as (99m)Tc-3P-RGD2, (18)F-Alfatide-I, and (18)F-Alfatide-II) are useful as the molecular imaging probes for early cancer detection and noninvasive monitoring of the tumor response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Shuang Liu
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
49
|
Vansteenkiste J, Barlesi F, Waller CF, Bennouna J, Gridelli C, Goekkurt E, Verhoeven D, Szczesna A, Feurer M, Milanowski J, Germonpre P, Lena H, Atanackovic D, Krzakowski M, Hicking C, Straub J, Picard M, Schuette W, O'Byrne K. Cilengitide combined with cetuximab and platinum-based chemotherapy as first-line treatment in advanced non-small-cell lung cancer (NSCLC) patients: results of an open-label, randomized, controlled phase II study (CERTO). Ann Oncol 2015; 26:1734-40. [PMID: 25939894 DOI: 10.1093/annonc/mdv219] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/28/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND This multicentre, open-label, randomized, controlled phase II study evaluated cilengitide in combination with cetuximab and platinum-based chemotherapy, compared with cetuximab and chemotherapy alone, as first-line treatment of patients with advanced non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS Patients were randomized 1:1:1 to receive cetuximab plus platinum-based chemotherapy alone (control), or combined with cilengitide 2000 mg 1×/week i.v. (CIL-once) or 2×/week i.v. (CIL-twice). A protocol amendment limited enrolment to patients with epidermal growth factor receptor (EGFR) histoscore ≥200 and closed the CIL-twice arm for practical feasibility issues. Primary end point was progression-free survival (PFS; independent read); secondary end points included overall survival (OS), safety, and biomarker analyses. A comparison between the CIL-once and control arms is reported, both for the total cohorts, as well as for patients with EGFR histoscore ≥200. RESULTS There were 85 patients in the CIL-once group and 84 in the control group. The PFS (independent read) was 6.2 versus 5.0 months for CIL-once versus control [hazard ratio (HR) 0.72; P = 0.085]; for patients with EGFR histoscore ≥200, PFS was 6.8 versus 5.6 months, respectively (HR 0.57; P = 0.0446). Median OS was 13.6 for CIL-once versus 9.7 months for control (HR 0.81; P = 0.265). In patients with EGFR ≥200, OS was 13.2 versus 11.8 months, respectively (HR 0.95; P = 0.855). No major differences in adverse events between CIL-once and control were reported; nausea (59% versus 56%, respectively) and neutropenia (54% versus 46%, respectively) were the most frequent. There was no increased incidence of thromboembolic events or haemorrhage in cilengitide-treated patients. αvβ3 and αvβ5 expression was neither a predictive nor a prognostic indicator. CONCLUSIONS The addition of cilengitide to cetuximab/chemotherapy indicated potential clinical activity, with a trend for PFS difference in the independent-read analysis. However, the observed inconsistencies across end points suggest additional investigations are required to substantiate a potential role of other integrin inhibitors in NSCLC treatment. CLINICAL TRIAL REGISTRATION ID NUMBER NCT00842712.
Collapse
Affiliation(s)
- J Vansteenkiste
- Respiratory Oncology Unit, Department of Respiratory Medicine, University Hospitals KU Leuven, Leuven, Belgium
| | - F Barlesi
- Multidisciplinary Oncology and Therapeutic Innovations, Aix Marseille University-Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - C F Waller
- Haematology, Oncology and Stem Cell Transplantation, University Hospital of Freiburg, Freiburg, Germany
| | - J Bennouna
- Département d'Oncologie Médicale, Centre Rene Gauducheau, Saint-Herblain Cedex, France
| | - C Gridelli
- Division of Medical Oncology, Azienda Ospedaliera 'S.G. Moscati', Avellino, Italy
| | - E Goekkurt
- Department of Oncology, Hematology, Stem Cell Transplantation and Hemostaseology, University Hospital Aachen, Aachen, Germany
| | - D Verhoeven
- Iridium Cancer Network, Medical Oncology, AZ Klina, Antwerp, Belgium
| | - A Szczesna
- Mazowieckie Centrum Leczenia Chorób Pluc i Gruźlicy, Otwock, Poland
| | - M Feurer
- Lungenpraxis Munich, Munich, Germany
| | - J Milanowski
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - P Germonpre
- Pulmonary Medicine, AZ Maria Middelares, Ghent, Belgium
| | - H Lena
- Pneumology, CHU Rennes, Rennes, France
| | - D Atanackovic
- Oncology/Hematology/Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Krzakowski
- The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Lung and Thoracic Tumours, Warsaw, Poland
| | | | | | | | - W Schuette
- Krankenhaus Martha-Maria Halle-Dölau, Klinik für Innere Medizin II, Halle, Germany
| | - K O'Byrne
- Cancer Services, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
50
|
Mertens-Walker I, Fernandini BC, Maharaj MSN, Rockstroh A, Nelson CC, Herington AC, Stephenson SA. The tumour-promoting receptor tyrosine kinase, EphB4, regulates expression of integrin-β8 in prostate cancer cells. BMC Cancer 2015; 15:164. [PMID: 25886373 PMCID: PMC4389669 DOI: 10.1186/s12885-015-1164-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/05/2015] [Indexed: 01/18/2023] Open
Abstract
Background The EphB4 receptor tyrosine kinase is overexpressed in many cancers including prostate cancer. The molecular mechanisms by which this ephrin receptor influences cancer progression are complex as there are tumor-promoting ligand-independent mechanisms in place as well as ligand-dependent tumor suppressive pathways. Methods We employed transient knockdown of EPHB4 in prostate cancer cells, coupled with gene microarray analysis, to identify genes that were regulated by EPHB4 and may represent linked tumor-promoting factors. We validated target genes using qRT-PCR and employed functional assays to determine their role in prostate cancer migration and invasion. Results We discovered that over 500 genes were deregulated upon EPHB4 siRNA knockdown, with integrin β8 (ITGB8) being the top hit (29-fold down-regulated compared to negative non-silencing siRNA). Gene ontology analysis found that the process of cell adhesion was highly deregulated and two other integrin genes, ITGA3 and ITGA10, were also differentially expressed. In parallel, we also discovered that over-expression of EPHB4 led to a concomitant increase in ITGB8 expression. In silico analysis of a prostate cancer progression microarray publically available in the Oncomine database showed that both EPHB4 and ITGB8 are highly expressed in prostatic intraepithelial neoplasia, the precursor to prostate cancer. Knockdown of ITGB8 in PC-3 and 22Rv1 prostate cancer cells in vitro resulted in significant reduction of cell migration and invasion. Conclusions These results reveal that EphB4 regulates integrin β8 expression and that integrin β8 plays a hitherto unrecognized role in the motility of prostate cancer cells and thus targeting integrin β8 may be a new treatment strategy for prostate cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1164-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Inga Mertens-Walker
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia. .,Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, 4102, Australia.
| | - Bruno C Fernandini
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia.
| | - Mohanan S N Maharaj
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia.
| | - Anja Rockstroh
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, 4102, Australia.
| | - Colleen C Nelson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia. .,Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, 4102, Australia.
| | - Adrian C Herington
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia. .,Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, 4102, Australia.
| | - Sally-Anne Stephenson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia. .,Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, 4102, Australia.
| |
Collapse
|