1
|
Lee M, Carpenter C, Hwang YS, Yoon J, Lu Q, Westlake CJ, Moody SA, Yamaguchi TP, Daar IO. Proliferation associated 2G4 is required for the ciliation of vertebrate motile cilia. Commun Biol 2024; 7:1430. [PMID: 39496919 PMCID: PMC11535434 DOI: 10.1038/s42003-024-07150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Motile cilia are critical structures that regulate early embryonic development and tissue homeostasis through synchronized ciliary motility. The formation of motile cilia is dependent on precisely controlled sequential processes including the generation, migration, and docking of centrioles/basal bodies as well as ciliary growth. Using the published proteomics data from various organisms, we identified proliferation-associated 2G4 as a novel regulator of ciliogenesis. Loss-of-function studies using Xenopus laevis as a model system reveal that Pa2G4 is essential for proper ciliogenesis and synchronized movement of cilia in multiciliated cells (MCCs) and the gastrocoel roof plate (GRP). Pa2G4 morphant MCCs exhibit defective basal body docking to the surface as a result of compromised Rac1 activity, apical actin network formation, and immature distal appendage generation. Interestingly, the regions that include the RNA-binding domain and the C-terminus of Pa2G4 are necessary for ciliogenesis in both MCCs and GRP cells. Our findings may provide insights into motile cilia-related genetic diseases such as Primary Ciliary Dyskinesia.
Collapse
Affiliation(s)
- Moonsup Lee
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christina Carpenter
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yoo-Seok Hwang
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jaeho Yoon
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Quanlong Lu
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, USA
| | - Terry P Yamaguchi
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| | - Ira O Daar
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
2
|
Liu R, Zhao Y, Su S, Kwabil A, Njoku PC, Yu H, Li X. Unveiling cancer dormancy: Intrinsic mechanisms and extrinsic forces. Cancer Lett 2024; 591:216899. [PMID: 38649107 DOI: 10.1016/j.canlet.2024.216899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Tumor cells disseminate in various distant organs at early stages of cancer progression. These disseminated tumor cells (DTCs) can stay dormant/quiescent without causing patient symptoms for years or decades. These dormant tumor cells survive despite curative treatments by entering growth arrest, escaping immune surveillance, and/or developing drug resistance. However, these dormant cells can reactivate to proliferate, causing metastatic progression and/or relapse, posing a threat to patients' survival. It's unclear how cancer cells maintain dormancy and what triggers their reactivation. What are better approaches to prevent metastatic progression and relapse through harnessing cancer dormancy? To answer these remaining questions, we reviewed the studies of tumor dormancy and reactivation in various types of cancer using different model systems, including the brief history of dormancy studies, the intrinsic characteristics of dormant cells, and the external cues at the cellular and molecular levels. Furthermore, we discussed future directions in the field and the strategies for manipulating dormancy to prevent metastatic progression and recurrence.
Collapse
Affiliation(s)
- Ruihua Liu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China; Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Yawei Zhao
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Shang Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Augustine Kwabil
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Prisca Chinonso Njoku
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Haiquan Yu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China.
| | - Xiaohong Li
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
3
|
Castro Colabianchi AM, González Pérez NG, Franchini LF, López SL. A maternal dorsoventral prepattern revealed by an asymmetric distribution of ventralizing molecules before fertilization in Xenopus laevis. Front Cell Dev Biol 2024; 12:1365705. [PMID: 38572484 PMCID: PMC10987785 DOI: 10.3389/fcell.2024.1365705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
The establishment of the embryonic dorsoventral axis in Xenopus occurs when the radial symmetry around the egg's animal-vegetal axis is broken to give rise to the typical symmetry of Bilaterians. We have previously shown that the Notch1 protein is ventrally enriched during early embryogenesis in Xenopus laevis and zebrafish and exerts ventralizing activity through β-Catenin destabilization and the positive regulation of ventral center genes in X. laevis. These findings led us to further investigate when these asymmetries arise. In this work, we show that the asymmetrical distribution of Notch1 protein and mRNA precedes cortical rotation and even fertilization in X. laevis. Moreover, we found that in unfertilized eggs transcripts encoded by the ventralizing gene bmp4 are also asymmetrically distributed in the animal hemisphere and notch1 transcripts accumulate consistently on the same side of the eccentric maturation point. Strikingly, a Notch1 asymmetry orthogonal to the animal-vegetal axis appears during X. laevis oogenesis. Thus, we show for the first time a maternal bias in the distribution of molecules that are later involved in ventral patterning during embryonic axialization, strongly supporting the hypothesis of a dorsoventral prepattern or intrinsic bilaterality of Xenopus eggs before fertilization.
Collapse
Affiliation(s)
- Aitana M. Castro Colabianchi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular “Prof. Dr. Andrés E. Carrasco”, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), Buenos Aires, Argentina
| | - Nicolás G. González Pérez
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular “Prof. Dr. Andrés E. Carrasco”, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), Buenos Aires, Argentina
| | - Lucía F. Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silvia L. López
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular “Prof. Dr. Andrés E. Carrasco”, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), Buenos Aires, Argentina
| |
Collapse
|
4
|
Beaver D, Limnios IJ. A treatment within sight: challenges in the development of stem cell-derived photoreceptor therapies for retinal degenerative diseases. FRONTIERS IN TRANSPLANTATION 2023; 2:1130086. [PMID: 38993872 PMCID: PMC11235385 DOI: 10.3389/frtra.2023.1130086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/07/2023] [Indexed: 07/13/2024]
Abstract
Stem cell therapies can potentially treat various retinal degenerative diseases, including age-related macular degeneration (AMD) and inherited retinal diseases like retinitis pigmentosa. For these diseases, transplanted cells may include stem cell-derived retinal pigmented epithelial (RPE) cells, photoreceptors, or a combination of both. Although stem cell-derived RPE cells have progressed to human clinical trials, therapies using photoreceptors and other retinal cell types are lagging. In this review, we discuss the potential use of human pluripotent stem cell (hPSC)-derived photoreceptors for the treatment of retinal degeneration and highlight the progress and challenges for their efficient production and clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Davinia Beaver
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QL, Australia
| | - Ioannis Jason Limnios
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QL, Australia
| |
Collapse
|
5
|
Maerker M, Getwan M, Dowdle ME, McSheene JC, Gonzalez V, Pelliccia JL, Hamilton DS, Yartseva V, Vejnar C, Tingler M, Minegishi K, Vick P, Giraldez AJ, Hamada H, Burdine RD, Sheets MD, Blum M, Schweickert A. Bicc1 and Dicer regulate left-right patterning through post-transcriptional control of the Nodal inhibitor Dand5. Nat Commun 2021; 12:5482. [PMID: 34531379 PMCID: PMC8446035 DOI: 10.1038/s41467-021-25464-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Rotating cilia at the vertebrate left-right organizer (LRO) generate an asymmetric leftward flow, which is sensed by cells at the left LRO margin. Ciliary activity of the calcium channel Pkd2 is crucial for flow sensing. How this flow signal is further processed and relayed to the laterality-determining Nodal cascade in the left lateral plate mesoderm (LPM) is largely unknown. We previously showed that flow down-regulates mRNA expression of the Nodal inhibitor Dand5 in left sensory cells. De-repression of the co-expressed Nodal, complexed with the TGFß growth factor Gdf3, drives LPM Nodal cascade induction. Here, we show that post-transcriptional repression of dand5 is a central process in symmetry breaking of Xenopus, zebrafish and mouse. The RNA binding protein Bicc1 was identified as a post-transcriptional regulator of dand5 and gdf3 via their 3'-UTRs. Two distinct Bicc1 functions on dand5 mRNA were observed at pre- and post-flow stages, affecting mRNA stability or flow induced translational inhibition, respectively. To repress dand5, Bicc1 co-operates with Dicer1, placing both proteins in the process of flow sensing. Intriguingly, Bicc1 mediated translational repression of a dand5 3'-UTR mRNA reporter was responsive to pkd2, suggesting that a flow induced Pkd2 signal triggers Bicc1 mediated dand5 inhibition during symmetry breakage.
Collapse
Affiliation(s)
- Markus Maerker
- University of Hohenheim, Institute of Biology, Department of Zoology, Stuttgart, Germany
| | - Maike Getwan
- University of Zurich, Institute of Anatomy, Zurich, Switzerland
| | - Megan E Dowdle
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - Jason C McSheene
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Vanessa Gonzalez
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - José L Pelliccia
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Valeria Yartseva
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Charles Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Melanie Tingler
- University of Hohenheim, Institute of Biology, Department of Zoology, Stuttgart, Germany
| | - Katsura Minegishi
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Philipp Vick
- University of Hohenheim, Institute of Biology, Department of Zoology, Stuttgart, Germany
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael D Sheets
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - Martin Blum
- University of Hohenheim, Institute of Biology, Department of Zoology, Stuttgart, Germany
| | - Axel Schweickert
- University of Hohenheim, Institute of Biology, Department of Zoology, Stuttgart, Germany.
| |
Collapse
|
6
|
Itoh K, Ossipova O, Sokol SY. Pinhead antagonizes Admp to promote notochord formation. iScience 2021; 24:102520. [PMID: 34142034 PMCID: PMC8188501 DOI: 10.1016/j.isci.2021.102520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 12/05/2022] Open
Abstract
Dorsoventral patterning of a vertebrate embryo critically depends on the activity of Smad1 that mediates signaling by BMP proteins, anti-dorsalizing morphogenetic protein (Admp), and their antagonists. Pinhead (Pnhd), a cystine-knot-containing secreted protein, is expressed in the ventrolateral mesoderm during Xenopus gastrulation; however, its molecular targets and signaling mechanisms have not been fully elucidated. Our mass spectrometry-based screen of the gastrula secretome identified Admp as Pnhd-associated protein. We show that Pnhd binds Admp and inhibits its ventralizing activity by reducing Smad1 phosphorylation and its transcriptional targets. Importantly, Pnhd depletion further increased phospho-Smad1 levels in the presence of Admp. Furthermore, Pnhd synergized with Chordin and a truncated BMP4 receptor in the induction of notochord markers in ectoderm cells, and Pnhd-depleted embryos displayed notochord defects. Our findings suggest that Pnhd binds and inactivates Admp to promote notochord development. We propose that the interaction between Admp and Pnhd refines Smad1 activity gradients during vertebrate gastrulation.
Collapse
Affiliation(s)
- Keiji Itoh
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Olga Ossipova
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
7
|
Limnios IJ, Chau YQ, Skabo SJ, Surrao DC, O'Neill HC. Efficient differentiation of human embryonic stem cells to retinal pigment epithelium under defined conditions. Stem Cell Res Ther 2021; 12:248. [PMID: 33883023 PMCID: PMC8058973 DOI: 10.1186/s13287-021-02316-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/30/2021] [Indexed: 11/11/2022] Open
Abstract
Age-related macular degeneration (AMD) is a highly prevalent form of blindness caused by loss death of cells of the retinal pigment epithelium (RPE). Transplantation of pluripotent stem cell (PSC)-derived RPE cells is considered a promising therapy to regenerate cell function and vision. OBJECTIVE The objective of this study is to develop a rapid directed differentiation method for production of RPE cells from PSC which is rapid, efficient, and fully defined and produces cells suitable for clinical use. DESIGN A protocol for cell growth and differentiation from hESCs was developed to induce differentiation through screening small molecules which regulated a primary stage of differentiation to the eyefield progenitor, and then, a subsequent set of molecules to drive differentiation to RPE cells. Methods for cell plating and maintenance have been optimized to give a homogeneous population of cells in a short 14-day period, followed by a procedure to support maturation of cell function. RESULTS We show here the efficient production of RPE cells from human embryonic stem cells (hESCs) using small molecules in a feeder-free system using xeno-free/defined medium. Flow cytometry at day 14 showed ~ 90% of cells expressed the RPE markers MITF and PMEL17. Temporal gene analysis confirmed differentiation through defined cell intermediates. Mature hESC-RPE cell monolayers exhibited key morphological, molecular, and functional characteristics of the endogenous RPE. CONCLUSION This study identifies a novel cell differentiation process for rapid and efficient production of retinal RPE cells directly from hESCs. The described protocol has utility for clinical-grade cell production for human therapy to treat AMD.
Collapse
Affiliation(s)
- Ioannis J Limnios
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, 4229, Australia.
| | - Yu-Qian Chau
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, 4229, Australia
| | - Stuart J Skabo
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, 4229, Australia
| | - Denver C Surrao
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, 4229, Australia
| | - Helen C O'Neill
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, 4229, Australia.
| |
Collapse
|
8
|
Popovic N, Hooker E, Barabino A, Flamier A, Provost F, Buscarlet M, Bernier G, Larrivée B. COCO/DAND5 inhibits developmental and pathological ocular angiogenesis. EMBO Mol Med 2021; 13:e12005. [PMID: 33587337 PMCID: PMC7933934 DOI: 10.15252/emmm.202012005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Neovascularization contributes to multiple visual disorders including age-related macular degeneration (AMD) and retinopathy of prematurity. Current therapies for treating ocular angiogenesis are centered on the inhibition of vascular endothelial growth factor (VEGF). While clinically effective, some AMD patients are refractory or develop resistance to anti-VEGF therapies and concerns of increased risks of developing geographic atrophy following long-term treatment have been raised. Identification of alternative pathways to inhibit pathological angiogenesis is thus important. We have identified a novel inhibitor of angiogenesis, COCO, a member of the Cerberus-related DAN protein family. We demonstrate that COCO inhibits sprouting, migration and cellular proliferation of cultured endothelial cells. Intravitreal injections of COCO inhibited retinal vascularization during development and in models of retinopathy of prematurity. COCO equally abrogated angiogenesis in models of choroidal neovascularization. Mechanistically, COCO inhibited TGFβ and BMP pathways and altered energy metabolism and redox balance of endothelial cells. Together, these data show that COCO is an inhibitor of retinal and choroidal angiogenesis, possibly representing a therapeutic option for the treatment of neovascular ocular diseases.
Collapse
Affiliation(s)
- Natalija Popovic
- Faculty of MedicineUniversity of MontrealMontrealQCCanada
- Hôpital Maisonneuve Rosemont Research CentreMontrealQCCanada
| | - Erika Hooker
- Faculty of MedicineUniversity of MontrealMontrealQCCanada
- Hôpital Maisonneuve Rosemont Research CentreMontrealQCCanada
| | - Andrea Barabino
- Hôpital Maisonneuve Rosemont Research CentreMontrealQCCanada
- Department of NeurosciencesUniversity of MontrealMontrealQCCanada
| | - Anthony Flamier
- Hôpital Maisonneuve Rosemont Research CentreMontrealQCCanada
- Department of NeurosciencesUniversity of MontrealMontrealQCCanada
- Present address:
Whitehead Institute of Biomedical ResearchCambridgeMAUSA
| | | | | | - Gilbert Bernier
- Faculty of MedicineUniversity of MontrealMontrealQCCanada
- Hôpital Maisonneuve Rosemont Research CentreMontrealQCCanada
- Department of NeurosciencesUniversity of MontrealMontrealQCCanada
| | - Bruno Larrivée
- Faculty of MedicineUniversity of MontrealMontrealQCCanada
- Hôpital Maisonneuve Rosemont Research CentreMontrealQCCanada
- Department of OphthalmologyUniversity of MontrealMontrealQCCanada
| |
Collapse
|
9
|
Pan D, Xia XX, Zhou H, Jin SQ, Lu YY, Liu H, Gao ML, Jin ZB. COCO enhances the efficiency of photoreceptor precursor differentiation in early human embryonic stem cell-derived retinal organoids. Stem Cell Res Ther 2020; 11:366. [PMID: 32831148 PMCID: PMC7444242 DOI: 10.1186/s13287-020-01883-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022] Open
Abstract
Background Significant progress has been made in cell replacement therapy for neural retinal diseases using retinal cells differentiated from human pluripotent stem cells. Low tumorigenicity and the ability to mature to form synaptic junctions make precursor cells a promising donor source. Here, we attempted to improve the yield of photoreceptor precursor cells in three-dimensional retinal organoids from human embryonic stem cells (hESCs). Methods A CRX-tdTomato-tagged hESC line was generated to track retinal precursors in 3D retinal organoids. COCO, a multifunctional antagonist of the Wnt, TGF-β, and BMP pathways, was employed to 3D organoid differentiation schemes for enhanced photoreceptor precursor cells. Organoid fluorescence intensity measurement was used to monitor retinalization tendency with the number of precursors further checked by flow cytometry. Signature gene expression during organoid differentiation were assessed by qPCR and immunocytochemistry after COCO supplementation. Results CRX-positive cells can be spatiotemporally tracked by tdTomato without affecting retinalization during retinal organoid differentiation. Fluorescence intensity of organoids, which turned out highly consistent with flow cytometry measurement, allowed us to determine the differentiation efficiency of precursors during organoid culturing directly. Using COCO as an auxiliary supplement, rather than alone, can yield an increased number of photoreceptor precursors in the early stage of organoid differentiation. Over a longer time-frame, photoreceptor precursors enhanced their fate of cones and decreased fate of rods after treatment with COCO. Conclusions Tracing with the CRX-reporter system showed that in retinal organoids derived from human pluripotent stem cells, COCO increased the differentiation efficiency of photoreceptor precursors and cones.
Collapse
Affiliation(s)
- Deng Pan
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xi-Xi Xia
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Heng Zhou
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Si-Qian Jin
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yang-Yan Lu
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hui Liu
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mei-Ling Gao
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zi-Bing Jin
- Laboratory of Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China. .,Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China. .,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing, 100730, China. .,School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
10
|
Reich S, Kayastha P, Teegala S, Weinstein DC. Tbx2 mediates dorsal patterning and germ layer suppression through inhibition of BMP/GDF and Activin/Nodal signaling. BMC Mol Cell Biol 2020; 21:39. [PMID: 32466750 PMCID: PMC7257154 DOI: 10.1186/s12860-020-00282-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/11/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Members of the T-box family of DNA-binding proteins play a prominent role in the differentiation of the three primary germ layers. VegT, Brachyury, and Eomesodermin function as transcriptional activators and, in addition to directly activating the transcription of endoderm- and mesoderm-specific genes, serve as regulators of growth factor signaling during induction of these germ layers. In contrast, the T-box gene, tbx2, is expressed in the embryonic ectoderm, where Tbx2 functions as a transcriptional repressor and inhibits mesendodermal differentiation by the TGFβ ligand Activin. Tbx2 misexpression also promotes dorsal ectodermal fate via inhibition of the BMP branch of the TGFβ signaling network. RESULTS Here, we report a physical association between Tbx2 and both Smad1 and Smad2, mediators of BMP and Activin/Nodal signaling, respectively. We perform structure/function analysis of Tbx2 to elucidate the roles of both Tbx2-Smad interaction and Tbx2 DNA-binding in germ layer suppression. CONCLUSION Our studies demonstrate that Tbx2 associates with intracellular mediators of the Activin/Nodal and BMP/GDF pathways. We identify a novel repressor domain within Tbx2, and have determined that Tbx2 DNA-binding activity is required for repression of TGFβ signaling. Finally, our data also point to overlapping yet distinct mechanisms for Tbx2-mediated repression of Activin/Nodal and BMP/GDF signaling.
Collapse
Affiliation(s)
- Shoshana Reich
- The Graduate Center, The City University of New York, New York, NY, 10016, USA
| | - Peter Kayastha
- Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA
| | - Sushma Teegala
- Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA
| | - Daniel C Weinstein
- The Graduate Center, The City University of New York, New York, NY, 10016, USA. .,Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA.
| |
Collapse
|
11
|
Reich S, Weinstein DC. Repression of Inappropriate Gene Expression in the Vertebrate Embryonic Ectoderm. Genes (Basel) 2019; 10:E895. [PMID: 31698780 PMCID: PMC6895975 DOI: 10.3390/genes10110895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 01/01/2023] Open
Abstract
During vertebrate embryogenesis, precise regulation of gene expression is crucial for proper cell fate determination. Much of what we know about vertebrate development has been gleaned from experiments performed on embryos of the amphibian Xenopus laevis; this review will focus primarily on studies of this model organism. An early critical step during vertebrate development is the formation of the three primary germ layers-ectoderm, mesoderm, and endoderm-which emerge during the process of gastrulation. While much attention has been focused on the induction of mesoderm and endoderm, it has become clear that differentiation of the ectoderm involves more than the simple absence of inductive cues; rather, it additionally requires the inhibition of mesendoderm-promoting genes. This review aims to summarize our current understanding of the various inhibitors of inappropriate gene expression in the presumptive ectoderm.
Collapse
Affiliation(s)
- Shoshana Reich
- PhD Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Daniel C. Weinstein
- PhD Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
- Department of Biology, Queens College, The City University of New York, Queens, NY 11367, USA
| |
Collapse
|
12
|
Bukhari SA, Yasmin A, Zahoor MA, Mustafa G, Sarfraz I, Rasul A. Secreted frizzled‐related protein 4 and its implication in obesity and type‐2 diabetes. IUBMB Life 2019; 71:1701-1710. [DOI: 10.1002/iub.2123] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022]
Affiliation(s)
| | - Aysha Yasmin
- Department of BiochemistryGovernment College University Faisalabad Pakistan
| | | | - Ghulam Mustafa
- Department of BiochemistryGovernment College University Faisalabad Pakistan
| | - Iqra Sarfraz
- Department of ZoologyGovernment College University Faisalabad Pakistan
| | - Azhar Rasul
- Department of ZoologyGovernment College University Faisalabad Pakistan
| |
Collapse
|
13
|
Mausner-Fainberg K, Penn M, Golan M, Benhamou M, Wilf-Yarkoni A, Gertel S, Karni A. Reduced levels of Coco in sera of multiple sclerosis patients: A potential role in neuro-regeneration failure. J Neuroimmunol 2019; 327:36-40. [PMID: 30685069 DOI: 10.1016/j.jneuroim.2019.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 01/17/2023]
Abstract
Demyelination, axonal loss and failure of tissue repair characterize MS lesions. Bone morphogenetic proteins (BMPs) signaling is associated with remyelination failure. Coco is one of the BMP antagonists. We found reduced Coco serum levels in relapsing-remitting MS (RR-MS) and primary progressive MS (PP-MS) patients compared to matched healthy controls (HC) and patients with rheumatoid arthritis. Exposure of P19 cells, in the presence of retinoic acid, BMP-2, or BMP-4 to Coco, at average sera level of MS patients failed to induce neuronal phenotype, in contrast to the average sera level of HC. Coco may be a player in the BMP dysregulation and the tissue repair failure in MS.
Collapse
Affiliation(s)
- Karin Mausner-Fainberg
- Neuroimmunology Laboratory, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Moran Penn
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Golan
- Neuroimmunology Laboratory, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Moshe Benhamou
- Neuroimmunology Laboratory, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Wilf-Yarkoni
- Department of Neurology, Tel Aviv Sourasky Medical Center, Israel
| | - Smadar Gertel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Arnon Karni
- Neuroimmunology Laboratory, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Segol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Ohta K, Aoyama E, Ahmad SAI, Ito N, Anam MB, Kubota S, Takigawa M. CCN2/CTGF binds the small leucine rich proteoglycan protein Tsukushi. J Cell Commun Signal 2018; 13:113-118. [PMID: 30232710 DOI: 10.1007/s12079-018-0487-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/07/2018] [Indexed: 11/30/2022] Open
Abstract
Extracellular molecules coordinate the multiple signaling pathways spatiotemporally to exchange information between cells during development. Understanding the regulation of these signal molecule-dependent pathways elucidates the mechanism of intercellular crosstalks. CCN2/CTGF is one of the CCN family members that binds BMP2, fibronectin, aggrecan, FGFR2 - regulating cartilage and bone formation, angiogenesis, wound repair etc. Tsukushi (TSK), which belongs to the Small Leucine-Rich Proteoglycan (SLRP) family, binds nodal/Vg1/TGF-β1, BMP4/chordin, Delta, FGF8, Frizzled4, and is involved in the early body formation, bone growth, wound healing, retinal stem cell regulation etc. These two secreted molecules are expressed in similar tissues and involved in several biological events by functioning as extracellular signaling modulators. Here, we examine the molecular interaction between CCN2 and TSK biochemically. Co-precipitation assay and Surface Plasmon Resonance measurement showed their direct binding with the Kd value 15.3 nM. Further, the Solid-phase Binding Assay indicated that TSK binds to IGFBP and CT domains of CCN2. Our data suggest that CCN2 and TSK exert their function together in the body formation.
Collapse
Affiliation(s)
- Kunimasa Ohta
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan. .,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan. .,Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0881, Japan. .,Japan Agency for Medical Research and Development (AMED), Tokyo, 100-0004, Japan.
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8525, Japan
| | - Shah Adil Ishtiyaq Ahmad
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.,Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Naofumi Ito
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Mohammad Badrul Anam
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Satoshi Kubota
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8525, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8525, Japan.
| |
Collapse
|
15
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
16
|
Teegala S, Chauhan R, Lei E, Weinstein DC. Tbx2 is required for the suppression of mesendoderm during early Xenopus development. Dev Dyn 2018; 247:903-913. [PMID: 29633424 DOI: 10.1002/dvdy.24633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/14/2018] [Accepted: 03/31/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND T-box family proteins are DNA-binding transcriptional regulators that play crucial roles during germ layer formation in the early vertebrate embryo. Well-characterized members of this family, including the transcriptional activators Brachyury and VegT, are essential for the proper formation of mesoderm and endoderm, respectively. To date, T-box proteins have not been shown to play a role in the promotion of the third primary germ layer, ectoderm. RESULTS Here, we report that the T-box factor Tbx2 is both sufficient and necessary for ectodermal differentiation in the frog Xenopus laevis. Tbx2 is expressed zygotically in the presumptive ectoderm, during blastula and gastrula stages. Ectopic expression of Tbx2 represses mesoderm and endoderm, while loss of Tbx2 leads to inappropriate expression of mesoderm- and endoderm-specific genes in the region fated to give rise to ectoderm. Misexpression of Tbx2 also promotes neural tissue in animal cap explants, suggesting that Tbx2 plays a role in both the establishment of ectodermal fate and its dorsoventral patterning. CONCLUSIONS Our studies demonstrate that Tbx2 functions as a transcriptional repressor during germ layer formation, and suggest that this activity is mediated in part through repression of target genes that are stimulated, in the mesendoderm, by transactivating T-box proteins. Taken together, our results point to a critical role for Tbx2 in limiting the potency of blastula-stage progenitor cells during vertebrate germ layer differentiation. Developmental Dynamics 247:903-913, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sushma Teegala
- Department of Biology, The Graduate Center, City University of New York, New York.,Department of Biology, Queens College, City University of New York, Flushing, New York
| | - Riddhi Chauhan
- Department of Biology, Queens College, City University of New York, Flushing, New York
| | - Emily Lei
- Department of Biology, Queens College, City University of New York, Flushing, New York
| | - Daniel C Weinstein
- Department of Biology, Queens College, City University of New York, Flushing, New York
| |
Collapse
|
17
|
Vopalensky P, Pralow S, Vastenhouw NL. Reduced expression of the Nodal co-receptor Oep causes loss of mesendodermal competence in zebrafish. Development 2018; 145:dev.158832. [PMID: 29440298 DOI: 10.1242/dev.158832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/29/2018] [Indexed: 12/17/2022]
Abstract
The activation of specific gene expression programs depends on the presence of the appropriate signals and the competence of cells to respond to those signals. Although it is well established that cellular competence is regulated in space and time, the molecular mechanisms underlying the loss of competence remain largely unknown. Here, we determine the time window during which zebrafish prospective ectoderm loses its ability to respond to Nodal signals, and show that this coincides with a decrease in the levels of the Nodal co-receptor One-eyed pinhead (Oep). Bypassing Oep using a photoactivatable receptor, or an Oep-independent ligand, allows activation of Nodal target genes for an extended period of time. These results suggest that the reduced expression of Oep causes the loss of responsiveness to Nodal signals in the prospective ectoderm. Indeed, extending the presence of Oep prolongs the window of competence to respond to Nodal signals. Our findings suggest a simple mechanism in which the decreasing level of one component of the Nodal signaling pathway regulates the loss of mesendodermal competence in the prospective ectoderm.
Collapse
Affiliation(s)
- Pavel Vopalensky
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Sabrina Pralow
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| |
Collapse
|
18
|
Ahmad SAI, Anam MB, Ito N, Ohta K. Involvement of Tsukushi in diverse developmental processes. J Cell Commun Signal 2018; 12:205-210. [PMID: 29352451 PMCID: PMC5842206 DOI: 10.1007/s12079-018-0452-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Tsukushi (TSK) is a small signaling molecule which takes part in different developmental processes of multiple vertebrate organisms. The diverse activity of TSK depends on its ability to bind various intermediate molecules from different major signaling pathways. Interactions of TSK with BMP, FGF, TGF-β and Wnt pathways have already been confirmed. In this review, we will introduce the latest information regarding the involvement of TSK in developmental events. We suggest a fine tuning role for TSK in multiple signaling cascades. Also, we recommend further studies on the developmental role of TSK to fully reveal its potential.
Collapse
Affiliation(s)
- Shah Adil Ishtiyaq Ahmad
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Mohammad Badrul Anam
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Naofumi Ito
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kunimasa Ohta
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
- Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
- AMED Core Research for Evolutional Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo, 100-0004, Japan.
| |
Collapse
|
19
|
Weed LS, Mills JA. Strategies for retinal cell generation from human pluripotent stem cells. Stem Cell Investig 2017; 4:65. [PMID: 28815176 DOI: 10.21037/sci.2017.07.02] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are specialized self-renewing cells that are generated by exogenously expressing pluripotency-associated transcription factors in somatic cells such as fibroblasts, peripheral blood mononuclear cells, or lymphoblastoid cell lines (LCLs). iPSCs are functionally similar to naturally pluripotent embryonic stem cells (ESCs) in their capacity to propagate indefinitely and potential to differentiate into all human cell types, and are devoid of the associated ethical complications of origin. iPSCs are useful for studying embryonic development, disease modeling, and drug screening. Additionally, iPSCs provide a personalized approach for pathological studies, particularly for diseases that lack appropriate animal models. Retinal cell differentiations using iPSCs have been successful in this regard. Several protocols to generate various retinal cells have been developed to maximize a specific cell type or, most recently, to mimic in vivo retinal structure and cellular environment. As differentiation protocols continue to improve we are likely to see an increase in our basic understanding of various retinal degenerative diseases and the utilization of iPSCs in clinical trials.
Collapse
Affiliation(s)
- Lindsey S Weed
- Center for Advanced Retinal and Ocular Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jason A Mills
- Center for Advanced Retinal and Ocular Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:49-82. [PMID: 27975270 DOI: 10.1007/978-3-319-46095-6_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The selective translation of maternal mRNAs encoding cell-fate determinants drives the earliest decisions of embryogenesis that establish the vertebrate body plan. This chapter will discuss studies in Xenopus laevis that provide insights into mechanisms underlying this translational control. Xenopus has been a powerful model organism for many discoveries relevant to the translational control of maternal mRNAs because of the large size of its oocytes and eggs that allow for microinjection of molecules and the relative ease of manipulating the oocyte to egg transition (maturation) and fertilization in culture. Consequently, many key studies have focused on the expression of maternal mRNAs during the oocyte to egg transition (the meiotic cell cycle) and the rapid cell divisions immediately following fertilization. This research has made seminal contributions to our understanding of translational regulatory mechanisms, but while some of the mRNAs under consideration at these stages encode cell-fate determinants, many encode cell cycle regulatory proteins that drive these early cell cycles. In contrast, while maternal mRNAs encoding key developmental (i.e., cell-fate) regulators that function after the first cleavage stages may exploit aspects of these foundational mechanisms, studies reveal that these mRNAs must also rely on distinct and, as of yet, incompletely understood mechanisms. These findings are logical because the functions of such developmental regulatory proteins have requirements distinct from cell cycle regulators, including becoming relevant only after fertilization and then only in specific cells of the embryo. Indeed, key maternal cell-fate determinants must be made available in exquisitely precise amounts (usually low), only at specific times and in specific cells during embryogenesis. To provide an appreciation for the regulation of maternal cell-fate determinant expression, an overview of the maternal phase of Xenopus embryogenesis will be presented. This section will be followed by a review of translational mechanisms operating in oocytes, eggs, and early cleavage-stage embryos and conclude with a discussion of how the regulation of key maternal cell-fate determinants at the level of translation functions in Xenopus embryogenesis. A key theme is that the molecular asymmetries critical for forming the body axes are established and further elaborated upon by the selective temporal and spatial regulation of maternal mRNA translation.
Collapse
|
21
|
Abstract
We review the evolution and structure of members of the transforming growth factor β (TGF-β) family, antagonistic or agonistic modulators, and receptors that regulate TGF-β signaling in extracellular environments. The growth factor (GF) domain common to all family members and many of their antagonists evolved from a common cystine knot growth factor (CKGF) domain. The CKGF superfamily comprises six distinct families in primitive metazoans, including the TGF-β and Dan families. Compared with Wnt/Frizzled and Notch/Delta families that also specify body axes, cell fate, tissues, and other families that contain CKGF domains that evolved in parallel, the TGF-β family was the most fruitful in evolution. Complexes between the prodomains and GFs of the TGF-β family suggest a new paradigm for regulating GF release by conversion from closed- to open-arm procomplex conformations. Ternary complexes of the final step in extracellular signaling show how TGF-β GF dimers bind type I and type II receptors on the cell surface, and enable understanding of much of the specificity and promiscuity in extracellular signaling. However, structures suggest that when GFs bind repulsive guidance molecule (RGM) family coreceptors, type I receptors do not bind until reaching an intracellular, membrane-enveloped compartment, blurring the line between extra- and intracellular signaling. Modulator protein structures show how structurally diverse antagonists including follistatins, noggin, and members of the chordin family bind GFs to regulate signaling; complexes with the Dan family remain elusive. Much work is needed to understand how these molecular components assemble to form signaling hubs in extracellular environments in vivo.
Collapse
Affiliation(s)
- Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Thomas D Mueller
- Department of Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, D-97082 Wuerzburg, Germany
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine and Division of Hematology, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
- Department of Biological Chemistry and Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
22
|
Park JS, Yi SW, Kim HJ, Kim SM, Park KH. Regulation of Cell Signaling Factors Using PLGA Nanoparticles Coated/Loaded with Genes and Proteins for Osteogenesis of Human Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30387-30397. [PMID: 27792311 DOI: 10.1021/acsami.6b08343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Transfection of specific genes and transportation of proteins into cells have been a focus of stem cell differentiation research. However, it is not easy to regulate codelivery of a gene and a protein into cells. For codelivery into undifferentiated cells (human mesenchymal stem cells (hMSCs)), we used biodegradable carriers loaded with Runt-related transcription factor 2 (RUNX2) protein and coated with bone morphogenetic protein 2 (BMP2) plasmid DNA (pDNA) to induce osteogenesis. The released gene and protein were first localized in the cytosol of transfected hMSCs, and the gene then moved into the nucleus. The levels of internalized PLGA nanoparticles were tested using different doses and incubation durations. Then, transfection of BMP2 pDNA was confirmed by determining mRNA and protein levels and acquiring cell images. The same techniques were used to assess osteogenesis of hMSCs both in vitro and in vivo upon internalization of PLGA NPs carrying the BMP2 gene and RUNX2 protein. Detection of specific genes and proteins demonstrated that cells transfected with PLGA NPs carrying both the BMP2 gene and RUNX2 protein were highly differentiated compared with other samples. Histological and immunofluorescence analyses demonstrated that transfection of PLGA nanoparticles carrying both the BMP2 gene and RUNX2 protein dramatically enhanced osteogenesis of hMSCs.
Collapse
Affiliation(s)
- Ji Sun Park
- Department of Biomedical Science, College of Life Science, CHA University , 6F CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si, 463-400, Korea
| | - Se Won Yi
- Department of Biomedical Science, College of Life Science, CHA University , 6F CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si, 463-400, Korea
| | - Hye Jin Kim
- Department of Biomedical Science, College of Life Science, CHA University , 6F CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si, 463-400, Korea
| | - Seong Min Kim
- Department of Biomedical Science, College of Life Science, CHA University , 6F CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si, 463-400, Korea
| | - Keun-Hong Park
- Department of Biomedical Science, College of Life Science, CHA University , 6F CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si, 463-400, Korea
| |
Collapse
|
23
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
24
|
Reid CD, Steiner AB, Yaklichkin S, Lu Q, Wang S, Hennessy M, Kessler DS. FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development. Dev Biol 2016; 414:34-44. [PMID: 27085753 DOI: 10.1016/j.ydbio.2016.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/28/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
In the vertebrate blastula and gastrula the Nodal pathway is essential for formation of the primary germ layers and the organizer. Nodal autoregulatory feedback potentiates signaling activity, but mechanisms limiting embryonic Nodal ligand transcription are poorly understood. Here we describe a transcriptional switch mechanism mediated by FoxH1, the principle effector of Nodal autoregulation. FoxH1 contains a conserved engrailed homology (EH1) motif that mediates direct binding of groucho-related gene 4 (Grg4), a Groucho family corepressor. Nodal-dependent gene expression is suppressed by FoxH1, but enhanced by a FoxH1 EH1 mutant, indicating that the EH1 motif is necessary for repression. Grg4 blocks Nodal-induced mesodermal gene expression and Nodal autoregulation, suggesting that Grg4 limits Nodal pathway activity. Conversely, blocking Grg4 function in the ectoderm results in ectopic expression of Nodal target genes. FoxH1 and Grg4 occupy the Xnr1 enhancer, and Grg4 occupancy is dependent on the FoxH1 EH1 motif. Grg4 occupancy at the Xnr1 enhancer significantly decreases with Nodal activation or Smad2 overexpression, while FoxH1 occupancy is unaffected. These results suggest that Nodal-activated Smad2 physically displaces Grg4 from FoxH1, an essential feature of the transcriptional switch mechanism. In support of this model, when FoxH1 is unable to bind Smad2, Grg4 occupancy is maintained at the Xnr1 enhancer, even in the presence of Nodal signaling. Our findings reveal that FoxH1 mediates both activation and repression of Nodal gene expression. We propose that this transcriptional switch is essential to delimit Nodal pathway activity in vertebrate germ layer formation.
Collapse
Affiliation(s)
- Christine D Reid
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| | - Aaron B Steiner
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| | - Sergey Yaklichkin
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| | - Qun Lu
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| | - Shouwen Wang
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| | - Morgan Hennessy
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| | - Daniel S Kessler
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine Smilow Center for Translational Research, Room 9-104, 3400 Civic Center Blvd Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Kiecker C, Bates T, Bell E. Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci 2016; 73:923-47. [PMID: 26667903 PMCID: PMC4744249 DOI: 10.1007/s00018-015-2092-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/11/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
Abstract
In order to generate the tissues and organs of a multicellular organism, different cell types have to be generated during embryonic development. The first step in this process of cellular diversification is the formation of the three germ layers: ectoderm, endoderm and mesoderm. The ectoderm gives rise to the nervous system, epidermis and various neural crest-derived tissues, the endoderm goes on to form the gastrointestinal, respiratory and urinary systems as well as many endocrine glands, and the mesoderm will form the notochord, axial skeleton, cartilage, connective tissue, trunk muscles, kidneys and blood. Classic experiments in amphibian embryos revealed the tissue interactions involved in germ layer formation and provided the groundwork for the identification of secreted and intracellular factors involved in this process. We will begin this review by summarising the key findings of those studies. We will then evaluate them in the light of more recent genetic studies that helped clarify which of the previously identified factors are required for germ layer formation in vivo, and to what extent the mechanisms identified in amphibians are conserved across other vertebrate species. Collectively, these studies have started to reveal the gene regulatory network (GRN) underlying vertebrate germ layer specification and we will conclude our review by providing examples how our understanding of this GRN can be employed to differentiate stem cells in a targeted fashion for therapeutic purposes.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
| | - Thomas Bates
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Esther Bell
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK.
| |
Collapse
|
26
|
Abstract
Leftward flow generated by motile cilia is known to underlie left-right asymmetry in vertebrate embryos. A new study now links intraciliary calcium oscillations to cilia motility and the downstream nodal signaling cascade that drives left-sided development.
Collapse
|
27
|
Ruiz-Villalba A, Hoppler S, van den Hoff MJB. Wnt signaling in the heart fields: Variations on a common theme. Dev Dyn 2016; 245:294-306. [PMID: 26638115 DOI: 10.1002/dvdy.24372] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/27/2022] Open
Abstract
Wnt signaling plays an essential role in development and differentiation. Heart development is initiated with the induction of precardiac mesoderm requiring the tightly and spatially controlled regulation of canonical and noncanonical Wnt signaling pathways. The role of Wnt signaling in subsequent development of the heart fields is to a large extent unclear. We will discuss the role of Wnt signaling in the development of the arterial and venous pole of the heart, highlighting the dual roles of Wnt signaling with respect to its time- and dosage-dependent effects and the balance between the canonical and noncanonical signaling. Canonical signaling appears to be involved in retaining the cardiac precursors in a proliferative and precursor state, whereas noncanonical signaling promotes their differentiation. Thereafter, both canonical and noncanonical signaling regulate specific steps in differentiation of the cardiac compartments. Because heart development is a contiguous, rather than a sequential, process, analyses tend only to show a single timeframe of development. The repetitive alternating and reciprocal effect of canonical and noncanonical signaling is lost when studied in homogenates. Without the simultaneous in vivo visualization of the different Wnt signaling pathways, the mechanism of Wnt signaling in heart development remains elusive.
Collapse
Affiliation(s)
- Adrián Ruiz-Villalba
- Academic Medical Center, Department of Anatomy, Embryology and Physiology, Amsterdam, The Netherlands
| | - Stefan Hoppler
- Cardiovascular Biology and Medicine Research Programme, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Maurice J B van den Hoff
- Academic Medical Center, Department of Anatomy, Embryology and Physiology, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Sánchez-Duffhues G, Hiepen C, Knaus P, Ten Dijke P. Bone morphogenetic protein signaling in bone homeostasis. Bone 2015; 80:43-59. [PMID: 26051467 DOI: 10.1016/j.bone.2015.05.025] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/11/2015] [Accepted: 05/20/2015] [Indexed: 01/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are cytokines belonging to the transforming growth factor-β (TGF-β) superfamily. They play multiple functions during development and tissue homeostasis, including regulation of the bone homeostasis. The BMP signaling pathway consists in a well-orchestrated manner of ligands, membrane receptors, co-receptors and intracellular mediators, that regulate the expression of genes controlling the normal functioning of the bone tissues. Interestingly, BMP signaling perturbation is associated to a variety of low and high bone mass diseases, including osteoporosis, bone fracture disorders and heterotopic ossification. Consistent with these findings, in vitro and in vivo studies have shown that BMPs have potent effects on the activity of cells regulating bone function, suggesting that manipulation of the BMP signaling pathway may be employed as a therapeutic approach to treat bone diseases. Here we review the recent advances on BMP signaling and bone homeostasis, and how this knowledge may be used towards improved diagnosis and development of novel treatment modalities. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, The Netherlands
| | - Christian Hiepen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany.
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, The Netherlands.
| |
Collapse
|
29
|
Zhou S, Flamier A, Abdouh M, Tétreault N, Barabino A, Wadhwa S, Bernier G. Differentiation of human embryonic stem cells into cone photoreceptors through simultaneous inhibition of BMP, TGFβ and Wnt signaling. Development 2015; 142:3294-306. [DOI: 10.1242/dev.125385] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cone photoreceptors are required for color discrimination and high-resolution central vision and are lost in macular degenerations, cone and cone/rod dystrophies. Cone transplantation could represent a therapeutic solution. However, an abundant source of human cones remains difficult to obtain. Work performed in model organisms suggests that anterior neural cell fate is induced ‘by default' if BMP, TGFβ and Wnt activities are blocked, and that photoreceptor genesis operates through an S-cone default pathway. We report here that Coco (Dand5), a member of the Cerberus gene family, is expressed in the developing and adult mouse retina. Upon exposure to recombinant COCO, human embryonic stem cells (hESCs) differentiated into S-cone photoreceptors, developed an inner segment-like protrusion, and could degrade cGMP when exposed to light. Addition of thyroid hormone resulted in a transition from a unique S-cone population toward a mixed M/S-cone population. When cultured at confluence for a prolonged period of time, COCO-exposed hESCs spontaneously developed into a cellular sheet composed of polarized cone photoreceptors. COCO showed dose-dependent and synergistic activity with IGF1 at blocking BMP/TGFβ/Wnt signaling, while its cone-inducing activity was blocked in a dose-dependent manner by exposure to BMP, TGFβ or Wnt-related proteins. Our work thus provides a unique platform to produce human cones for developmental, biochemical and therapeutic studies and supports the hypothesis that photoreceptor differentiation operates through an S-cone default pathway during human retinal development.
Collapse
Affiliation(s)
- Shufeng Zhou
- Stem Cell and Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Anthony Flamier
- Stem Cell and Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Mohamed Abdouh
- Stem Cell and Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Nicolas Tétreault
- Stem Cell and Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Andrea Barabino
- Stem Cell and Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Shashi Wadhwa
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Maisonneuve-Rosemont Hospital, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
- Department of Neuroscience, University of Montréal, Montréal H3T 1J4, Canada
- Department of Ophthalmology, University of Montréal, Montréal H3T 1J4, Canada
| |
Collapse
|
30
|
Deglincerti A, Haremaki T, Warmflash A, Sorre B, Brivanlou AH. Coco is a dual activity modulator of TGFβ signaling. Development 2015; 142:2678-85. [PMID: 26116664 DOI: 10.1242/dev.122358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/13/2015] [Indexed: 02/02/2023]
Abstract
The TGFβ signaling pathway is a crucial regulator of developmental processes and disease. The activity of TGFβ ligands is modulated by various families of soluble inhibitors that interfere with the interactions between ligands and receptors. In an unbiased, genome-wide RNAi screen to identify genes involved in ligand-dependent signaling, we unexpectedly identified the BMP/Activin/Nodal inhibitor Coco as an enhancer of TGFβ1 signaling. Coco synergizes with TGFβ1 in both cell culture and Xenopus explants. Molecularly, Coco binds to TGFβ1 and enhances TGFβ1 binding to its receptor Alk5. Thus, Coco acts as both an inhibitor and an enhancer of signaling depending on the ligand it binds. This finding raises the need for a global reconsideration of the molecular mechanisms regulating TGFβ signaling.
Collapse
Affiliation(s)
- Alessia Deglincerti
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Tomomi Haremaki
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Aryeh Warmflash
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA Laboratory of Theoretical Condensed Matter Physics, The Rockefeller University, New York, NY 10065, USA
| | - Benoit Sorre
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA Laboratory of Theoretical Condensed Matter Physics, The Rockefeller University, New York, NY 10065, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
31
|
Yuan G, Yang G, Zheng Y, Zhu X, Chen Z, Zhang Z, Chen Y. The non-canonical BMP and Wnt/β-catenin signaling pathways orchestrate early tooth development. Development 2015; 142:128-39. [PMID: 25428587 PMCID: PMC4299140 DOI: 10.1242/dev.117887] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/24/2014] [Indexed: 12/31/2022]
Abstract
BMP and Wnt signaling pathways play a crucial role in organogenesis, including tooth development. Despite extensive studies, the exact functions, as well as if and how these two pathways act coordinately in regulating early tooth development, remain elusive. In this study, we dissected regulatory functions of BMP and Wnt pathways in early tooth development using a transgenic noggin (Nog) overexpression model (K14Cre;pNog). It exhibits early arrested tooth development, accompanied by reduced cell proliferation and loss of odontogenic fate marker Pitx2 expression in the dental epithelium. We demonstrated that overexpression of Nog disrupted BMP non-canonical activity, which led to a dramatic reduction of cell proliferation rate but did not affect Pitx2 expression. We further identified a novel function of Nog by inhibiting Wnt/β-catenin signaling, causing loss of Pitx2 expression. Co-immunoprecipitation and TOPflash assays revealed direct binding of Nog to Wnts to functionally prevent Wnt/β-catenin signaling. In situ PLA and immunohistochemistry on Nog mutants confirmed in vivo interaction between endogenous Nog and Wnts and modulation of Wnt signaling by Nog in tooth germs. Genetic rescue experiments presented evidence that both BMP and Wnt signaling pathways contribute to cell proliferation regulation in the dental epithelium, with Wnt signaling also controlling the odontogenic fate. Reactivation of both BMP and Wnt signaling pathways, but not of only one of them, rescued tooth developmental defects in K14Cre;pNog mice, in which Wnt signaling can be substituted by transgenic activation of Pitx2. Our results reveal the orchestration of non-canonical BMP and Wnt/β-catenin signaling pathways in the regulation of early tooth development.
Collapse
Affiliation(s)
- Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Yuqian Zheng
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Department of Periodontology, College of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Xiaojing Zhu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zunyi Zhang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
32
|
Grant PA, Yan B, Johnson MA, Johnson DLE, Moody SA. Novel animal pole-enriched maternal mRNAs are preferentially expressed in neural ectoderm. Dev Dyn 2013; 243:478-96. [PMID: 24155242 DOI: 10.1002/dvdy.24082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/27/2013] [Accepted: 09/04/2013] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Many animals utilize maternal mRNAs to pre-pattern the embryo before the onset of zygotic transcription. In Xenopus laevis, vegetal factors specify the germ line, endoderm, and dorsal axis, but there are few studies demonstrating roles for animal-enriched maternal mRNAs. Therefore, we carried out a microarray analysis to identify novel maternal transcripts enriched in 8-cell-stage animal blastomeres. RESULTS We identified 39 mRNAs isolated from 8-cell animal blastomeres that are >4-fold enriched compared to vegetal pole mRNAs. We characterized 14 of these that are of unknown function. We validated the microarray results for 8/14 genes by qRT-PCR and for 14/14 genes by in situ hybridization assays. Because no developmental functions are reported yet, we provide the expression patterns for each of the 14 genes. Each is expressed in the animal hemisphere of unfertilized eggs, 8-cell animal blastomeres, and diffusely in blastula animal cap ectoderm, gastrula ectoderm and neural ectoderm, neural crest (and derivatives) and cranial placodes (and derivatives). They have varying later expression in some mesodermal and endodermal tissues in tail bud through larval stages. CONCLUSIONS Novel animal-enriched maternal mRNAs are preferentially expressed in ectodermal derivatives, particularly neural ectoderm. However, they are later expressed in derivatives of other germ layers.
Collapse
Affiliation(s)
- Paaqua A Grant
- Department of Biological Sciences, The George Washington University, Columbian College of Arts and Sciences, Washington, DC
| | | | | | | | | |
Collapse
|
33
|
Zhang Y, Cooke A, Park S, Dewey CN, Wickens M, Sheets MD. Bicaudal-C spatially controls translation of vertebrate maternal mRNAs. RNA (NEW YORK, N.Y.) 2013; 19:1575-82. [PMID: 24062572 PMCID: PMC3851724 DOI: 10.1261/rna.041665.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The Xenopus Cripto-1 protein is confined to the cells of the animal hemisphere during early embryogenesis where it regulates the formation of anterior structures. Cripto-1 protein accumulates only in animal cells because cripto-1 mRNA in cells of the vegetal hemisphere is translationally repressed. Here, we show that the RNA binding protein, Bicaudal-C (Bic-C), functioned directly in this vegetal cell-specific repression. While Bic-C protein is normally confined to vegetal cells, ectopic expression of Bic-C in animal cells repressed a cripto-1 mRNA reporter and associated with endogenous cripto-1 mRNA. Repression by Bic-C required its N-terminal domain, comprised of multiple KH motifs, for specific binding to relevant control elements within the cripto-1 mRNA and a functionally separable C-terminal translation repression domain. Bic-C-mediated repression required the 5' CAP and translation initiation factors, but not a poly(A) tail or the conserved SAM domain within Bic-C. Bic-C-directed immunoprecipitation followed by deep sequencing of associated mRNAs identified multiple Bic-C-regulated mRNA targets, including cripto-1 mRNA, providing new insights and tools for understanding the role of Bic-C in vertebrate development.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Amy Cooke
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Sookhee Park
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Colin N. Dewey
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael D. Sheets
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Corresponding authorE-mail
| |
Collapse
|
34
|
Bates TJD, Vonica A, Heasman J, Brivanlou AH, Bell E. Coco regulates dorsoventral specification of germ layers via inhibition of TGFβ signalling. Development 2013; 140:4177-81. [PMID: 24026124 DOI: 10.1242/dev.095521] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One of the earliest steps in embryonic development is the specification of the germ layers, the subdivision of the blastula embryo into endoderm, mesoderm and ectoderm. Maternally expressed members of the Transforming Growth Factor β (TGFβ) family influence all three germ layers; the ligands are required to induce endoderm and mesoderm, whereas inhibitors are required for formation of the ectoderm. Here, we demonstrate a vital role for maternal Coco, a secreted antagonist of TGFβ signalling, in this process. We show that Coco is required to prevent Activin and Nodal signals in the dorsal marginal side of the embryo from invading the prospective ectoderm, thereby restricting endoderm- and mesoderm-inducing signals to the vegetal and marginal zones of the pre-gastrula Xenopus laevis embryo.
Collapse
Affiliation(s)
- Thomas J D Bates
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | |
Collapse
|
35
|
Identification and expression analysis of BMP signaling inhibitors genes of the DAN family in amphioxus. Gene Expr Patterns 2013; 13:377-83. [PMID: 23872339 DOI: 10.1016/j.gep.2013.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/01/2013] [Accepted: 07/10/2013] [Indexed: 11/21/2022]
Abstract
Bone morphogenetic proteins (BMPs) are members of the Transforming Growth Factor-β (TGF-β) family implicated in many developmental processes in metazoans such as embryo axes specification. Their wide variety of actions is in part controlled by inhibitors that impede the interaction of BMPs with their specific receptors. Here, we focused our attention on the Differential screening-selected gene Aberrative in Neuroblastoma (DAN) family of inhibitors. Although they are well-characterized in vertebrates, few data are available for this family in other metazoan species. In order to understand the evolution of potential developmental roles of these inhibitors in chordates, we identified the members of this family in the cephalochordate amphioxus, and characterized their expression patterns during embryonic development. Our data suggest that the function of Cerberus/Dand5 subfamily genes is conserved among chordates, whereas Gremlin1/2 and NBL1 subfamily genes seem to have acquired divergent expression patterns in each chordate lineage. On the other hand, the expression of Gremlin in the amphioxus neural plate border during early neurulation strengthens the hypothesis of a conserved neural plate border gene network in chordates.
Collapse
|
36
|
Faunes F, Hayward P, Descalzo SM, Chatterjee SS, Balayo T, Trott J, Christoforou A, Ferrer-Vaquer A, Hadjantonakis AK, Dasgupta R, Arias AM. A membrane-associated β-catenin/Oct4 complex correlates with ground-state pluripotency in mouse embryonic stem cells. Development 2013; 140:1171-83. [PMID: 23444350 PMCID: PMC3585656 DOI: 10.1242/dev.085654] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The maintenance of pluripotency in mouse embryonic stem cells (mESCs) relies on the activity of a transcriptional network that is fuelled by the activity of three transcription factors (Nanog, Oct4 and Sox2) and balanced by the repressive activity of Tcf3. Extracellular signals modulate the activity of the network and regulate the differentiation capacity of the cells. Wnt/β-catenin signaling has emerged as a significant potentiator of pluripotency: increases in the levels of β-catenin regulate the activity of Oct4 and Nanog, and enhance pluripotency. A recent report shows that β-catenin achieves some of these effects by modulating the activity of Tcf3, and that this effect does not require its transcriptional activation domain. Here, we show that during self-renewal there is negligible transcriptional activity of β-catenin and that this is due to its tight association with membranes, where we find it in a complex with Oct4 and E-cadherin. Differentiation triggers a burst of Wnt/β-catenin transcriptional activity that coincides with the disassembly of the complex. Our results establish that β-catenin, but not its transcriptional activity, is central to pluripotency acting through a β-catenin/Oct4 complex.
Collapse
Affiliation(s)
- Fernando Faunes
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ning G, Liu X, Dai M, Meng A, Wang Q. MicroRNA-92a Upholds Bmp Signaling by Targeting noggin3 during Pharyngeal Cartilage Formation. Dev Cell 2013; 24:283-95. [DOI: 10.1016/j.devcel.2012.12.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/27/2012] [Accepted: 12/24/2012] [Indexed: 12/21/2022]
|
38
|
Martinez J, Zhang XHF. BMP/Coco antagonism as a deterministic factor of metastasis dormancy in lung. Breast Cancer Res 2013; 15:302. [PMID: 23320613 PMCID: PMC3672727 DOI: 10.1186/bcr3350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A recent Cell publication demonstrates that the secreted antagonist of transforming growth factor-beta ligands, Coco, can re-activate previously dormant metastatic breast cancer cells specifically in the lung by inhibiting bone morphogenetic protein (BMP) signaling. The authors provided evidence for a connection between Coco/BMP signaling and molecular and cellular traits of cancer stem cells. Their findings represent a significant advance in our understanding of metastatic dormancy, an extremely important clinical issue that remains understudied. Equally as important, this study also opens interesting avenues for future research.
Collapse
|
39
|
Nakamura T, Saito D, Kawasumi A, Shinohara K, Asai Y, Takaoka K, Dong F, Takamatsu A, Belo JA, Mochizuki A, Hamada H. Fluid flow and interlinked feedback loops establish left–right asymmetric decay of Cerl2 mRNA. Nat Commun 2012; 3:1322. [DOI: 10.1038/ncomms2319] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/22/2012] [Indexed: 11/09/2022] Open
|
40
|
Gao H, Chakraborty G, Lee-Lim AP, Mo Q, Decker M, Vonica A, Shen R, Brogi E, Brivanlou AH, Giancotti FG. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 2012; 150:764-79. [PMID: 22901808 DOI: 10.1016/j.cell.2012.06.035] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 02/03/2012] [Accepted: 06/19/2012] [Indexed: 01/23/2023]
Abstract
The mechanistic underpinnings of metastatic dormancy and reactivation are poorly understood. A gain-of-function cDNA screen reveals that Coco, a secreted antagonist of TGF-β ligands, induces dormant breast cancer cells to undergo reactivation in the lung. Mechanistic studies indicate that Coco exerts this effect by blocking lung-derived BMP ligands. Whereas Coco enhances the manifestation of traits associated with cancer stem cells, BMP signaling suppresses it. Coco induces a discrete gene expression signature, which is strongly associated with metastatic relapse to the lung, but not to the bone or brain in patients. Experiments in mouse models suggest that these latter organs contain niches devoid of bioactive BMP. These findings reveal that metastasis-initiating cells need to overcome organ-specific antimetastatic signals in order to undergo reactivation.
Collapse
Affiliation(s)
- Hua Gao
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ozair MZ, Kintner C, Brivanlou AH. Neural induction and early patterning in vertebrates. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:479-98. [PMID: 24014419 DOI: 10.1002/wdev.90] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vertebrates, the development of the nervous system is triggered by signals from a powerful 'organizing' region of the early embryo during gastrulation. This phenomenon--neural induction--was originally discovered and given conceptual definition by experimental embryologists working with amphibian embryos. Work on the molecular circuitry underlying neural induction, also in the same model system, demonstrated that elimination of ongoing transforming growth factor-β (TGFβ) signaling in the ectoderm is the hallmark of anterior neural-fate acquisition. This observation is the basis of the 'default' model of neural induction. Endogenous neural inducers are secreted proteins that act to inhibit TGFβ ligands in the dorsal ectoderm. In the ventral ectoderm, where the signaling ligands escape the inhibitors, a non-neural fate is induced. Inhibition of the TGFβ pathway has now been demonstrated to be sufficient to directly induce neural fate in mammalian embryos as well as pluripotent mouse and human embryonic stem cells. Hence the molecular process that delineates neural from non-neural ectoderm is conserved across a broad range of organisms in the evolutionary tree. The availability of embryonic stem cells from mouse, primates, and humans will facilitate further understanding of the role of signaling pathways and their downstream mediators in neural induction in vertebrate embryos.
Collapse
Affiliation(s)
- Mohammad Zeeshan Ozair
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
42
|
Cao JM, Li SQ, Zhang HW, Shi DL. High mobility group B proteins regulate mesoderm formation and dorsoventral patterning during zebrafish and Xenopus early development. Mech Dev 2012; 129:263-74. [DOI: 10.1016/j.mod.2012.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|
43
|
Xu S, Cheng F, Liang J, Wu W, Zhang J. Maternal xNorrin, a canonical Wnt signaling agonist and TGF-β antagonist, controls early neuroectoderm specification in Xenopus. PLoS Biol 2012; 10:e1001286. [PMID: 22448144 PMCID: PMC3308935 DOI: 10.1371/journal.pbio.1001286] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/06/2012] [Indexed: 12/28/2022] Open
Abstract
Xenopus maternal Norrin, which activates Wnt signaling but inhibits TGF-β family molecules, is essential for neuroectoderm formation. Loss of TGF-β inhibition in Norrin may contribute to the development of Norrie disease. Dorsal–ventral specification in the amphibian embryo is controlled by β-catenin, whose activation in all dorsal cells is dependent on maternal Wnt11. However, it remains unknown whether other maternally secreted factors contribute to β-catenin activation in the dorsal ectoderm. Here, we show that maternal Xenopus Norrin (xNorrin) promotes anterior neural tissue formation in ventralized embryos. Conversely, when xNorrin function is inhibited, early canonical Wnt signaling in the dorsal ectoderm and the early expression of the zygotic neural inducers Chordin, Noggin, and Xnr3 are severely suppressed, causing the loss of anterior structures. In addition, xNorrin potently inhibits BMP- and Nodal/Activin-related functions through direct binding to the ligands. Moreover, a subset of Norrin mutants identified in humans with Norrie disease retain Wnt activation but show defective inhibition of Nodal/Activin-related signaling in mesoderm induction, suggesting that this disinhibition causes Norrie disease. Thus, xNorrin is an unusual molecule that acts on two major signaling pathways, Wnt and TGF-β, in opposite ways and is essential for early neuroectoderm specification. A key step during early embryogenesis is the generation of neural precursors, which later form the central nervous system. In vertebrates, this process requires proper dorsal–ventral axis specification, and we know that the canonical Wnt and BMP signaling pathways help pattern the dorsal ectoderm. In this study, we examine other factors that are involved in neuroectoderm development in the frog species Xenopus laevis. We find that maternal Xenopus Norrin (xNorrin) is required for canonical Wnt signaling in the dorsal ectoderm, functions upstream of neural inducers, and is required for neural formation. We also find that xNorrin not only activates Wnt signaling, but also inhibits BMP/Nodal-related signaling. In humans, mutations in Norrin cause Norrie disease. Using Norrin mutants identified in patients with Norrie disease, we find that some Norrin mutants fail to inhibit BMP/Nodal-related signaling (specifically, TGF-β) but retain the ability to activate the Wnt pathway, suggesting that loss of TGF-β inhibition may contribute to Norrie disease development.
Collapse
Affiliation(s)
- Suhong Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Feng Cheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Juan Liang
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Wu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
44
|
Benchoua A, Onteniente B. Intracerebral transplantation for neurological disorders. Lessons from developmental, experimental, and clinical studies. Front Cell Neurosci 2012; 6:2. [PMID: 22319470 PMCID: PMC3267364 DOI: 10.3389/fncel.2012.00002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/09/2012] [Indexed: 01/24/2023] Open
Abstract
The use of human pluripotent stem cells (PSCs) for cell therapy faces a number of challenges that are progressively answered by results from clinical trials and experimental research. Among these is the control of differentiation before transplantation and the prediction of cell fate after administration into the human brain, two aspects that condition both the safety and efficacy of the approach. For neurological disorders, this includes two steps: firstly, the identification of the optimal maturation stage for transplantation along the continuum that transforms PSCs into fully differentiated neural cell types, together with the derivation of robust protocols for large-scale production of biological products, and, secondly, the understanding of the effects of environmental cues and their possible interference with transplanted cells commitment. This review will firstly summarize our knowledge on developmental processes that have been applied to achieve robust in vitro differentiation of PSCs into neural progenitors. In a second part, we summarize results from experimental and clinical transplantation studies that help understanding the dialogue that establishes between transplanted cells and their host brain.
Collapse
|
45
|
Bentaya S, Ghogomu SM, Vanhomwegen J, Van Campenhout C, Thelie A, Dhainaut M, Bellefroid EJ, Souopgui J. The RNA-binding protein XSeb4R regulates maternal Sox3 at the posttranscriptional level during maternal-zygotic transition in Xenopus. Dev Biol 2012; 363:362-72. [PMID: 22261149 DOI: 10.1016/j.ydbio.2011.12.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/14/2011] [Accepted: 12/23/2011] [Indexed: 01/17/2023]
Abstract
The maternal-zygotic transition (MZT) is an embryonic event that overlaps with and plays key roles in primary germ layer specification in vertebrates. During MZT, maternally supplied mRNAs are degraded while zygotic transcripts are synthesized to either reinforce the already specified cell fate or to trigger new cell identity. Here, we show that forced expression of the RNA-binding protein, XSeb4R, in animal pole blastomeres of Xenopus embryos, inappropriately stabilizes transcripts there, including maternal Sox3. This leads to the impaired ability of the ectodermal progenitors to respond to factors regulating brain patterning and their eventual loss by apoptosis. XSeb4R protein binds specifically to the 3'UTR of Sox3 mRNA. XSeb4R gain-of-function in ectodermal explants reveals increased stability of the maternal Sox3 transcripts, associated with a robust Sox3 protein production. Conversely, whereas XSeb4R depletion abolishes VegT expression, the amount of the maternal Sox3 mRNA is rather increased but without augmentation in the amount of Sox3 protein. Moreover, XSeb4R protein knockdown leads to the modification of the ectoderm-mesoderm boundary, marked by expanded/shifted expression of the mesodermal marker genes such as Xbra and Apod, followed by an expression inhibition of Epi. K., an ectodermal marker. Overall, our data suggest XSeb4R as a novel player in gene expression regulation, acting at the posttranscriptional level during ectoderm specification in Xenopus.
Collapse
Affiliation(s)
- Souhila Bentaya
- Laboratoire de Génétique du Développement, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires (IBMM), rue des Profs. Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Linking early determinants and cilia-driven leftward flow in left-right axis specification of Xenopus laevis: a theoretical approach. Differentiation 2011; 83:S67-77. [PMID: 22136958 DOI: 10.1016/j.diff.2011.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/10/2011] [Accepted: 11/13/2011] [Indexed: 11/23/2022]
Abstract
In vertebrates, laterality - the asymmetric placement of the viscera including organs of the gastrointestinal system, heart and lungs - is under the genetic control of a conserved signaling pathway in the left lateral plate mesoderm (LPM). A key feature of this pathway, shared by embryos of all non-avian vertebrate classes analyzed to date (e.g. fish, amphibia and mammals) is the formation of a transitory midline epithelial structure. Remarkably, the motility of cilia projecting from this epithelium produce a leftward-directed movement of extracellular liquid. This leftward flow precedes any sign of asymmetry in gene expression. Numerous analyses have shown that this leftward flow is not only necessary, but indeed sufficient to direct laterality. Interestingly, however, cilia-independent mechanisms acting much earlier in development in the frog Xenopus have been reported during the earliest cleavage stages, a period before any major zygotic gene transcription. The relationship between these two distinct mechanisms is not understood. In this review we present the conserved and critical steps of Xenopus LR axis formation. Next, we address the basic question of how an early asymmetric activity might contribute to, feed into, or regulate the conserved cilia-dependent pathway. Finally, we discuss the possibility that Spemann's organizer is itself polarized in the left-right dimension. In attempting to reconcile the sufficiency of the cilia-dependent pathway with potential earlier-acting asymmetries, we offer a general practical experimental checklist for the Xenopus community working on the process of left-right determination. This approach indicates areas where work still needs to be done to clarify the relationship between early determinants and cilia-driven leftward flow.
Collapse
|
47
|
Silva AC, Filipe M, Steinbeisser H, Belo JA. Characterization of Cer-1 cis-regulatory region during early Xenopus development. Dev Genes Evol 2011; 221:29-41. [PMID: 21509535 DOI: 10.1007/s00427-011-0357-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/08/2011] [Indexed: 01/07/2023]
Abstract
Cerberus-related molecules are well-known Wnt, Nodal, and BMP inhibitors that have been implicated in different processes including anterior–posterior patterning and left–right asymmetry. In both mouse and frog, two Cerberus-related genes have been isolated, mCer-1 and mCer-2, and Xcer and Xcoco, respectively. Until now, little is known about the mechanisms involved in their transcriptional regulation. Here, we report a heterologous analysis of the mouse Cerberus-1 gene upstream regulatory regions, responsible for its expression in the visceral endodermal cells. Our analysis showed that the consensus sequences for a TATA, CAAT, or GC boxes were absent but a TGTGG sequence was present at position -172 to -168 bp, relative to the ATG. Using a series of deletion constructs and transient expression in Xenopus embryos, we found that a fragment of 1.4 kb of Cer-1 promoter sequence could reproduce the endogenous expression pattern of Xenopus cerberus. A 0.7-kb mcer-1 upstream region was able to drive reporter expression to the involuting mesendodermal cells, while further deletions abolished reporter gene expression. Our results suggest that although no sequence similarity was found between mouse and Xenopus cerberus cis-regulatory regions, the signaling cascades regulating cerberus expression, during gastrulation, is conserved.
Collapse
|
48
|
Lin HH, Bell E, Uwanogho D, Perfect LW, Noristani H, Bates TJD, Snetkov V, Price J, Sun YM. Neuronatin promotes neural lineage in ESCs via Ca(2+) signaling. Stem Cells 2010; 28:1950-60. [PMID: 20872847 PMCID: PMC3003906 DOI: 10.1002/stem.530] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 09/04/2010] [Indexed: 12/19/2022]
Abstract
Neural induction is the first step in the formation of the vertebrate central nervous system. The emerging consensus of the mechanisms underlying neural induction is the combined influences from inhibiting bone morphogenetic protein (BMP) signaling and activating fibroblast growth factor (FGF)/Erk signaling, which act extrinsically via either autocrine or paracrine fashions. However, do intrinsic forces (cues) exist and do they play decisive roles in neural induction? These questions remain to be answered. Here, we have identified a novel neural initiator, neuronatin (Nnat), which acts as an intrinsic factor to promote neural fate in mammals and Xenopus. ESCs lacking this intrinsic factor fail to undergo neural induction despite the inhibition of the BMP pathway. We show that Nnat initiates neural induction in ESCs through increasing intracellular Ca(2+) ([Ca(2+) ](i)) by antagonizing Ca(2+) -ATPase isoform 2 (sarco/endoplasmic reticulum Ca(2+) -ATPase isoform 2) in the endoplasmic reticulum, which in turn increases the phosphorylation of Erk1/2 and inhibits the BMP4 pathway and leads to neural induction in conjunction with FGF/Erk pathway.
Collapse
Affiliation(s)
- Hsuan-Hwai Lin
- Institute of Psychiatry, King's College London, Centre for the Cellular Basis of Behaviour LondonUnited Kingdom
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical CenterTaipei, Taiwan, Republic of China
| | - Esther Bell
- MRC Centre for Developmental Neurobiology, Kings College London, Guy's CampusLondon, United Kingdom
| | - Dafe Uwanogho
- Institute of Psychiatry, King's College London, Centre for the Cellular Basis of Behaviour LondonUnited Kingdom
| | - Leo W Perfect
- Institute of Psychiatry, King's College London, Centre for the Cellular Basis of Behaviour LondonUnited Kingdom
| | - Harun Noristani
- Institute of Psychiatry, King's College London, Centre for the Cellular Basis of Behaviour LondonUnited Kingdom
| | - Thomas J D Bates
- MRC Centre for Developmental Neurobiology, Kings College London, Guy's CampusLondon, United Kingdom
| | - Vladimir Snetkov
- Department of Asthma, Allergy and Respiratory Science, Franklin-Wilkins Building, King's College LondonLondon, United Kingdom
| | - Jack Price
- Institute of Psychiatry, King's College London, Centre for the Cellular Basis of Behaviour LondonUnited Kingdom
| | - Yuh-Man Sun
- Institute of Psychiatry, King's College London, Centre for the Cellular Basis of Behaviour LondonUnited Kingdom
| |
Collapse
|
49
|
Bone morphogenetic proteins: a critical review. Cell Signal 2010; 23:609-20. [PMID: 20959140 DOI: 10.1016/j.cellsig.2010.10.003] [Citation(s) in RCA: 493] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/14/2010] [Accepted: 10/01/2010] [Indexed: 12/14/2022]
Abstract
Bone Morphogenetic Proteins (BMPs) are potent growth factors belonging to the Transforming Growth Factor Beta superfamily. To date over 20 members have been identified in humans with varying functions during processes such as embryogenesis, skeletal formation, hematopoiesis and neurogenesis. Though their functions have been identified, less is known regarding levels of regulation at the extracellular matrix, membrane surface, and receptor activation. Further, current models of activation lack the integration of these regulatory mechanisms. This review focuses on the different levels of regulation, ranging from the release of BMPs into the extracellular components to receptor activation for different BMPs. It also highlights areas in research that is lacking or contradictory.
Collapse
|
50
|
Krause C, Korchynskyi O, de Rooij K, Weidauer SE, de Gorter DJJ, van Bezooijen RL, Hatsell S, Economides AN, Mueller TD, Löwik CWGM, ten Dijke P. Distinct modes of inhibition by sclerostin on bone morphogenetic protein and Wnt signaling pathways. J Biol Chem 2010; 285:41614-26. [PMID: 20952383 DOI: 10.1074/jbc.m110.153890] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Sclerostin is expressed by osteocytes and has catabolic effects on bone. It has been shown to antagonize bone morphogenetic protein (BMP) and/or Wnt activity, although at present the underlying mechanisms are unclear. Consistent with previous findings, Sclerostin opposed direct Wnt3a-induced but not direct BMP7-induced responses when both ligand and antagonist were provided exogenously to cells. However, we found that when both proteins are expressed in the same cell, sclerostin can antagonize BMP signaling directly by inhibiting BMP7 secretion. Sclerostin interacts with both the BMP7 mature domain and pro-domain, leading to intracellular retention and proteasomal degradation of BMP7. Analysis of sclerostin knock-out mice revealed an inhibitory action of sclerostin on Wnt signaling in both osteoblasts and osteocytes in cortical and cancellous bones. BMP7 signaling was predominantly inhibited by sclerostin in osteocytes of the calcaneus and the cortical bone of the tibia. Our results suggest that sclerostin exerts its potent bone catabolic effects by antagonizing Wnt signaling in a paracrine and autocrine manner and antagonizing BMP signaling selectively in the osteocytes that synthesize simultaneously both sclerostin and BMP7 proteins.
Collapse
Affiliation(s)
- Carola Krause
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Julius-von-Sachs Institut für Biowissenschaften der UniversitätWürzburg, D-97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|