1
|
Roth C, Kilpinen H, Kurian MA, Barral S. Histone lysine methyltransferase-related neurodevelopmental disorders: current knowledge and saRNA future therapies. Front Cell Dev Biol 2023; 11:1090046. [PMID: 36923252 PMCID: PMC10009263 DOI: 10.3389/fcell.2023.1090046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Neurodevelopmental disorders encompass a group of debilitating diseases presenting with motor and cognitive dysfunction, with variable age of onset and disease severity. Advances in genetic diagnostic tools have facilitated the identification of several monogenic chromatin remodeling diseases that cause Neurodevelopmental disorders. Chromatin remodelers play a key role in the neuro-epigenetic landscape and regulation of brain development; it is therefore not surprising that mutations, leading to loss of protein function, result in aberrant neurodevelopment. Heterozygous, usually de novo mutations in histone lysine methyltransferases have been described in patients leading to haploinsufficiency, dysregulated protein levels and impaired protein function. Studies in animal models and patient-derived cell lines, have highlighted the role of histone lysine methyltransferases in the regulation of cell self-renewal, cell fate specification and apoptosis. To date, in depth studies of histone lysine methyltransferases in oncology have provided strong evidence of histone lysine methyltransferase dysregulation as a determinant of cancer progression and drug resistance. As a result, histone lysine methyltransferases have become an important therapeutic target for the treatment of different cancer forms. Despite recent advances, we still lack knowledge about the role of histone lysine methyltransferases in neuronal development. This has hampered both the study and development of precision therapies for histone lysine methyltransferases-related Neurodevelopmental disorders. In this review, we will discuss the current knowledge of the role of histone lysine methyltransferases in neuronal development and disease progression. We will also discuss how RNA-based technologies using small-activating RNAs could potentially provide a novel therapeutic approach for the future treatment of histone lysine methyltransferase haploinsufficiency in these Neurodevelopmental disorders, and how they could be first tested in state-of-the-art patient-derived neuronal models.
Collapse
Affiliation(s)
- Charlotte Roth
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Helena Kilpinen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Serena Barral
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
2
|
Wilson KD, Porter EG, Garcia BA. Reprogramming of the epigenome in neurodevelopmental disorders. Crit Rev Biochem Mol Biol 2022; 57:73-112. [PMID: 34601997 PMCID: PMC9462920 DOI: 10.1080/10409238.2021.1979457] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The etiology of neurodevelopmental disorders (NDDs) remains a challenge for researchers. Human brain development is tightly regulated and sensitive to cellular alterations caused by endogenous or exogenous factors. Intriguingly, the surge of clinical sequencing studies has revealed that many of these disorders are monogenic and monoallelic. Notably, chromatin regulation has emerged as highly dysregulated in NDDs, with many syndromes demonstrating phenotypic overlap, such as intellectual disabilities, with one another. Here we discuss epigenetic writers, erasers, readers, remodelers, and even histones mutated in NDD patients, predicted to affect gene regulation. Moreover, this review focuses on disorders associated with mutations in enzymes involved in histone acetylation and methylation, and it highlights syndromes involving chromatin remodeling complexes. Finally, we explore recently discovered histone germline mutations and their pathogenic outcome on neurological function. Epigenetic regulators are mutated at every level of chromatin organization. Throughout this review, we discuss mechanistic investigations, as well as various animal and iPSC models of these disorders and their usefulness in determining pathomechanism and potential therapeutics. Understanding the mechanism of these mutations will illuminate common pathways between disorders. Ultimately, classifying these disorders based on their effects on the epigenome will not only aid in prognosis in patients but will aid in understanding the role of epigenetic machinery throughout neurodevelopment.
Collapse
Affiliation(s)
- Khadija D. Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth G. Porter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
3
|
Kent MR, Kara N, Patton JG. Inhibition of GABA A-ρ receptors induces retina regeneration in zebrafish. Neural Regen Res 2021; 16:367-374. [PMID: 32859800 PMCID: PMC7896201 DOI: 10.4103/1673-5374.286972] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A potential treatment for retinal diseases is to induce an endogenous Müller glia (MG)-derived regenerative response to replace damaged neurons. In contrast to mammalian MG, zebrafish MG are capable of mediating spontaneous regeneration. We seek to define the mechanisms that enable retina regeneration in zebrafish in order to identify therapeutic targets to induce mammalian retina regeneration. We previously used pharmacological and genetic methods to inhibit gamma aminobutyric acid A (GABAA) receptors in undamaged zebrafish retinas and showed that such inhibition could induce initiation of retina regeneration, as measured by the dedifferentiation of MG and the appearance of MG-derived proliferating progenitor cells. Here, we show that inhibition of a pharmacologically distinct subset of GABAA receptors (GABAA-ρ) can also induce retina regeneration. Dual inhibition of both GABA receptor subtypes led to enhanced retina regeneration. Gene expression analyses indicate that inhibition of GABAA-ρ receptors induces a canonical retinal regenerative response. Our results support a model in which decreased levels of GABA, such as would occur after retinal cell death or damage, induce dedifferentiation of MG and the generation of proliferating progenitor cells during zebrafish retina regeneration. Animal experiments were approved by the Vanderbilt's Institutional Animal Care and Use Committee (Protocol M1800200) on January 29, 2019.
Collapse
Affiliation(s)
- Matthew R Kent
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Nergis Kara
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
4
|
Transcription Factors of the bHLH Family Delineate Vertebrate Landmarks in the Nervous System of a Simple Chordate. Genes (Basel) 2020; 11:genes11111262. [PMID: 33114624 PMCID: PMC7693978 DOI: 10.3390/genes11111262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Tunicates are marine invertebrates whose tadpole-like larvae feature a highly simplified version of the chordate body plan. Similar to their distant vertebrate relatives, tunicate larvae develop a regionalized central nervous system and form distinct neural structures, which include a rostral sensory vesicle, a motor ganglion, and a caudal nerve cord. The sensory vesicle contains a photoreceptive complex and a statocyst, and based on the comparable expression patterns of evolutionarily conserved marker genes, it is believed to include proto-hypothalamic and proto-retinal territories. The evolutionarily conserved molecular fingerprints of these landmarks of the vertebrate brain consist of genes encoding for different transcription factors, and of the gene batteries that they control, and include several members of the bHLH family. Here we review the complement of bHLH genes present in the streamlined genome of the tunicate Ciona robusta and their current classification, and summarize recent studies on proneural bHLH transcription factors and their expression territories. We discuss the possible roles of bHLH genes in establishing the molecular compartmentalization of the enticing nervous system of this unassuming chordate.
Collapse
|
5
|
Staudt N, Giger FA, Fielding T, Hutt JA, Foucher I, Snowden V, Hellich A, Kiecker C, Houart C. Pineal progenitors originate from a non-neural territory limited by FGF signalling. Development 2019; 146:dev.171405. [PMID: 31754007 PMCID: PMC7375831 DOI: 10.1242/dev.171405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/30/2019] [Indexed: 01/10/2023]
Abstract
The embryonic development of the pineal organ, a neuroendocrine gland on top of the diencephalon, remains enigmatic. Classic fate-mapping studies suggested that pineal progenitors originate from the lateral border of the anterior neural plate. We show here, using gene expression and fate mapping/lineage tracing in zebrafish, that pineal progenitors originate, at least in part, from the non-neural ectoderm. Gene expression in chick indicates that this non-neural origin of pineal progenitors is conserved in amniotes. Genetic repression of placodal, but not neural crest, cell fate results in pineal hypoplasia in zebrafish, while mis-expression of transcription factors known to specify placodal identity during gastrulation promotes the formation of ectopic pineal progenitors. We also demonstrate that fibroblast growth factors (FGFs) position the pineal progenitor domain within the non-neural border by repressing pineal fate and that the Otx transcription factors promote pinealogenesis by inhibiting this FGF activity. The non-neural origin of the pineal organ reveals an underlying similarity in the formation of the pineal and pituitary glands, and suggests that all CNS neuroendocrine organs may require a non-neural contribution to form neurosecretory cells. Highlighted Article: Gene expression and fate mapping/lineage tracing in zebrafish reveals that the pineal organ develops from the non-neural pre-placodal ectoderm under the control of FGF signalling.
Collapse
Affiliation(s)
- Nicole Staudt
- Department for Developmental Neurobiology, Guy's Hospital Campus, King's College London, London SE1 1UL, UK
| | - Florence A Giger
- Department for Developmental Neurobiology, Guy's Hospital Campus, King's College London, London SE1 1UL, UK
| | - Triona Fielding
- Department for Developmental Neurobiology, Guy's Hospital Campus, King's College London, London SE1 1UL, UK
| | - James A Hutt
- Department for Developmental Neurobiology, Guy's Hospital Campus, King's College London, London SE1 1UL, UK
| | - Isabelle Foucher
- Department for Developmental Neurobiology, Guy's Hospital Campus, King's College London, London SE1 1UL, UK
| | - Vicky Snowden
- Department for Developmental Neurobiology, Guy's Hospital Campus, King's College London, London SE1 1UL, UK
| | - Agathe Hellich
- Department for Developmental Neurobiology, Guy's Hospital Campus, King's College London, London SE1 1UL, UK
| | - Clemens Kiecker
- Department for Developmental Neurobiology, Guy's Hospital Campus, King's College London, London SE1 1UL, UK
| | - Corinne Houart
- Department for Developmental Neurobiology, Guy's Hospital Campus, King's College London, London SE1 1UL, UK
| |
Collapse
|
6
|
Schlosser G. A Short History of Nearly Every Sense-The Evolutionary History of Vertebrate Sensory Cell Types. Integr Comp Biol 2019; 58:301-316. [PMID: 29741623 DOI: 10.1093/icb/icy024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Evolving from filter feeding chordate ancestors, vertebrates adopted a more active life style. These ecological and behavioral changes went along with an elaboration of the vertebrate head including novel complex paired sense organs such as the eyes, inner ears, and olfactory epithelia. However, the photoreceptors, mechanoreceptors, and chemoreceptors used in these sense organs have a long evolutionary history and homologous cell types can be recognized in many other bilaterians or even cnidarians. After briefly introducing some of the major sensory cell types found in vertebrates, this review summarizes the phylogenetic distribution of sensory cell types in metazoans and presents a scenario for the evolutionary history of various sensory cell types involving several cell type diversification and fusion events. It is proposed that the evolution of novel cranial sense organs in vertebrates involved the redeployment of evolutionarily ancient sensory cell types for building larger and more complex sense organs.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences and Regenerative Medicine Institute (REMEDI), National University of Ireland, Biomedical Sciences Building, Newcastle Road, Galway H91 TK33, Ireland
| |
Collapse
|
7
|
Signaling within the pineal gland: A parallelism with the central nervous system. Semin Cell Dev Biol 2018; 95:151-159. [PMID: 30502386 DOI: 10.1016/j.semcdb.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
Abstract
The pineal gland (PG) derives from the neural tube, like the rest of the central nervous system (CNS). The PG is specialized in synthesizing and secreting melatonin in a circadian fashion. The nocturnal elevation of melatonin is a highly conserved feature among species which proves its importance in nature. Here, we review a limited set of intrinsic and extrinsic regulatory elements that have been shown or proposed to influence the PG's melatonin production, as well as pineal ontogeny and homeostasis. Intrinsic regulators include the transcription factors CREB, Pax6 and NeuroD1. In addition, microglia within the PG participate as extrinsic regulators of these functions. We further discuss how these same elements work in other parts of the CNS, and note similarities and differences to their roles in the PG. Since the PG is a relatively well-defined and highly specialized organ within the CNS, we suggest that applying this comparative approach to additional PG regulators may be a useful tool for understanding complex areas of the brain, as well as the influence of the PG in both health and disease, including circadian functions and disorders.
Collapse
|
8
|
Chen XZ, Hu QX, Liu QQ, Wu G. Cloning of Wing-Development-Related Genes and mRNA Expression Under Heat Stress in Chlorpyrifos-Resistant and -Susceptible Plutella xylostella. Sci Rep 2018; 8:15279. [PMID: 30323169 PMCID: PMC6189056 DOI: 10.1038/s41598-018-33315-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022] Open
Abstract
Chlorpyrifos-resistant (Rc) Plutella xylostella (DBM) shows higher wing-vein injury than chlorpyrifos-susceptible (Sm) DBM under heat stress in our previous study. To investigate the toxicological mechanisms of the differences in injury of wing vein between Rc- and Sm-DBM collected from Fuzhou, China, total ten cDNA sequences of wing-development-related genes were isolated and characterized in DBM, including seven open reading frame (ORF) (ash1, ah2, ash3, ase, dpp, srf and dll encoded 187 amino acids, 231 aa, 223aa, 397aa, 423aa, 229aa and 299aa, respectively), and three partly sequences (salm, ser and wnt-1 encoded 614aa, 369aa and 388aa, respectively). The mRNA expression of the genes was inhibited in Rc- and Sm-DBM under heat stress, as compared with that an average temperature (25 °C). And, in general, significantly higher down-regulated expressions of the mRNA expression of the wing development-related genes were found in Rc-DBM as compared to those in Sm-DBM under heat stress. The results indicated that Sm-DBM displayed higher adaptability at high temperature because of significantly lower inhibition the mRNA expressions of wing-development-related genes. We suggest that significantly higher injury of wing vein showed in Rc-DBM under heat stress might be associated with the strong down-regulation of wing-development-related genes.
Collapse
Affiliation(s)
- Xue Zhun Chen
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Xing Hu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Qing Liu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gang Wu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
9
|
Histone Lysine Methylases and Demethylases in the Landscape of Human Developmental Disorders. Am J Hum Genet 2018; 102:175-187. [PMID: 29276005 DOI: 10.1016/j.ajhg.2017.11.013] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/17/2017] [Indexed: 11/23/2022] Open
Abstract
Histone lysine methyltransferases (KMTs) and demethylases (KDMs) underpin gene regulation. Here we demonstrate that variants causing haploinsufficiency of KMTs and KDMs are frequently encountered in individuals with developmental disorders. Using a combination of human variation databases and existing animal models, we determine 22 KMTs and KDMs as additional candidates for dominantly inherited developmental disorders. We show that KMTs and KDMs that are associated with, or are candidates for, dominant developmental disorders tend to have a higher level of transcription, longer canonical transcripts, more interactors, and a higher number and more types of post-translational modifications than other KMT and KDMs. We provide evidence to firmly associate KMT2C, ASH1L, and KMT5B haploinsufficiency with dominant developmental disorders. Whereas KMT2C or ASH1L haploinsufficiency results in a predominantly neurodevelopmental phenotype with occasional physical anomalies, KMT5B mutations cause an overgrowth syndrome with intellectual disability. We further expand the phenotypic spectrum of KMT2B-related disorders and show that some individuals can have severe developmental delay without dystonia at least until mid-childhood. Additionally, we describe a recessive histone lysine-methylation defect caused by homozygous or compound heterozygous KDM5B variants and resulting in a recognizable syndrome with developmental delay, facial dysmorphism, and camptodactyly. Collectively, these results emphasize the significance of histone lysine methylation in normal human development and the importance of this process in human developmental disorders. Our results demonstrate that systematic clinically oriented pathway-based analysis of genomic data can accelerate the discovery of rare genetic disorders.
Collapse
|
10
|
García-Lecea M, Gasanov E, Jedrychowska J, Kondrychyn I, Teh C, You MS, Korzh V. Development of Circumventricular Organs in the Mirror of Zebrafish Enhancer-Trap Transgenics. Front Neuroanat 2017; 11:114. [PMID: 29375325 PMCID: PMC5770639 DOI: 10.3389/fnana.2017.00114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022] Open
Abstract
The circumventricular organs (CVOs) are small structures lining the cavities of brain ventricular system. They are associated with the semitransparent regions of the blood-brain barrier (BBB). Hence it is thought that CVOs mediate biochemical signaling and cell exchange between the brain and systemic blood. Their classification is still controversial and development not fully understood largely due to an absence of tissue-specific molecular markers. In a search for molecular determinants of CVOs we studied the green fluorescent protein (GFP) expression pattern in several zebrafish enhancer trap transgenics including Gateways (ET33-E20) that has been instrumental in defining the development of choroid plexus. In Gateways the GFP is expressed in regions of the developing brain outside the choroid plexus, which remain to be characterized. The neuroanatomical and histological analysis suggested that some previously unassigned domains of GFP expression may correspond to at least six other CVOs–the organum vasculosum laminae terminalis (OVLT), subfornical organ (SFO), paraventricular organ (PVO), pineal (epiphysis), area postrema (AP) and median eminence (ME). Two other CVOs, parapineal and subcommissural organ (SCO) were detected in other enhancer-trap transgenics. Hence enhancer-trap transgenic lines could be instrumental for developmental studies of CVOs in zebrafish and understanding of the molecular mechanism of disease such a hydrocephalus in human. Their future analysis may shed light on general and specific molecular mechanisms that regulate development of CVOs.
Collapse
Affiliation(s)
- Marta García-Lecea
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Evgeny Gasanov
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Justyna Jedrychowska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Igor Kondrychyn
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,RIKEN Center for Developmental Biology, Kobe, Japan
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - May-Su You
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Rao MB, Didiano D, Patton JG. Neurotransmitter-Regulated Regeneration in the Zebrafish Retina. Stem Cell Reports 2017; 8:831-842. [PMID: 28285877 PMCID: PMC5390103 DOI: 10.1016/j.stemcr.2017.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 01/26/2023] Open
Abstract
Current efforts to repair damaged or diseased mammalian retinas are inefficient and largely incapable of fully restoring vision. Conversely, the zebrafish retina is capable of spontaneous regeneration upon damage using Müller glia (MG)-derived progenitors. Understanding how zebrafish MG initiate regeneration may help develop new treatments that prompt mammalian retinas to regenerate. We show that inhibition of γ-aminobutyric acid (GABA) signaling facilitates initiation of MG proliferation. GABA levels decrease following damage, and MG are positioned to detect decreased ambient levels and undergo dedifferentiation. Using pharmacological and genetic approaches, we demonstrate that GABAA receptor inhibition stimulates regeneration in undamaged retinas while activation inhibits regeneration in damaged retinas.
Collapse
Affiliation(s)
- Mahesh B Rao
- Department of Biological Sciences, Vanderbilt University, 2325 Stevenson Center, Box 1820 Station B, Nashville, TN 37235, USA
| | - Dominic Didiano
- Department of Biological Sciences, Vanderbilt University, 2325 Stevenson Center, Box 1820 Station B, Nashville, TN 37235, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, 2325 Stevenson Center, Box 1820 Station B, Nashville, TN 37235, USA.
| |
Collapse
|
12
|
Khuansuwan S, Clanton JA, Dean BJ, Patton JG, Gamse JT. A transcription factor network controls cell migration and fate decisions in the developing zebrafish pineal complex. Development 2016; 143:2641-50. [PMID: 27317804 PMCID: PMC4958332 DOI: 10.1242/dev.131680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/02/2016] [Indexed: 11/20/2022]
Abstract
The zebrafish pineal complex consists of four cell types (rod and cone photoreceptors, projection neurons and parapineal neurons) that are derived from a single pineal complex anlage. After specification, parapineal neurons migrate unilaterally away from the rest of the pineal complex whereas rods, cones and projection neurons are non-migratory. The transcription factor Tbx2b is important for both the correct number and migration of parapineal neurons. We find that two additional transcription factors, Flh and Nr2e3, negatively regulate parapineal formation. Flh induces non-migratory neuron fates and limits the extent of parapineal specification, in part by activation of Nr2e3 expression. Tbx2b is positively regulated by Flh, but opposes Flh action during specification of parapineal neurons. Loss of parapineal neuron specification in Tbx2b-deficient embryos can be partially rescued by loss of Nr2e3 or Flh function; however, parapineal migration absolutely requires Tbx2b activity. We conclude that cell specification and migration in the pineal complex are regulated by a network of at least three transcription factors. Summary: Cell fate specification and migration in the zebrafish pineal complex are regulated by a network of at least three transcription factors: Tbx2b, Flh and Nr2e3.
Collapse
Affiliation(s)
- Sataree Khuansuwan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Joshua A Clanton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Benjamin J Dean
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Joshua T Gamse
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
13
|
Castro AE, Benitez SG, Farias Altamirano LE, Savastano LE, Patterson SI, Muñoz EM. Expression and cellular localization of the transcription factor NeuroD1 in the developing and adult rat pineal gland. J Pineal Res 2015; 58:439-51. [PMID: 25752781 DOI: 10.1111/jpi.12228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 12/13/2022]
Abstract
Circadian rhythms govern many aspects of mammalian physiology. The daily pattern of melatonin synthesis and secretion is one of the classic examples of circadian oscillations. It is mediated by a class of neuroendocrine cells known as pinealocytes which are not yet fully defined. An established method to evaluate functional and cytological characters is through the expression of lineage-specific transcriptional regulators. NeuroD1 is a basic helix-loop-helix transcription factor involved in the specification and maintenance of both endocrine and neuronal phenotypes. We have previously described developmental and adult regulation of NeuroD1 mRNA in the rodent pineal gland. However, the transcript levels were not influenced by the elimination of sympathetic input, suggesting that any rhythmicity of NeuroD1 might be found downstream of transcription. Here, we describe NeuroD1 protein expression and cellular localization in the rat pineal gland during development and the daily cycle. In embryonic and perinatal stages, protein expression follows the mRNA pattern and is predominantly nuclear. Thereafter, NeuroD1 is mostly found in pinealocyte nuclei in the early part of the night and in cytoplasm during the day, a rhythm maintained into adulthood. Additionally, nocturnal nuclear NeuroD1 levels are reduced after sympathetic disruption, an effect mimicked by the in vivo administration of α- and β-adrenoceptor blockers. NeuroD1 phosphorylation at two sites, Ser(274) and Ser(336) , associates with nuclear localization in pinealocytes. These data suggest that NeuroD1 influences pineal phenotype both during development and adulthood, in an autonomic and phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Analía E Castro
- Laboratory of Neurobiology: Chronobiology Section, Institute of Histology and Embryology of Mendoza (IHEM-CONICET), School of Medicine, National University of Cuyo, Mendoza, Argentina
| | | | | | | | | | | |
Collapse
|
14
|
Lara-Ramírez R, Patthey C, Shimeld SM. Characterization of twoneurogeningenes from the brook lampreylampetra planeriand their expression in the lamprey nervous system. Dev Dyn 2015; 244:1096-1108. [DOI: 10.1002/dvdy.24273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/29/2015] [Accepted: 02/16/2015] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ricardo Lara-Ramírez
- Department of Zoology; The Tinbergen Building, University of Oxford; South Parks Road Oxford United Kingdom
| | - Cédric Patthey
- Department of Zoology; The Tinbergen Building, University of Oxford; South Parks Road Oxford United Kingdom
- Umeå Centre for Molecular Medicine, Umeå University; Umeå Sweden
| | - Sebastian M. Shimeld
- Department of Zoology; The Tinbergen Building, University of Oxford; South Parks Road Oxford United Kingdom
| |
Collapse
|
15
|
Williams RR, Venkatesh I, Pearse DD, Udvadia AJ, Bunge MB. MASH1/Ascl1a leads to GAP43 expression and axon regeneration in the adult CNS. PLoS One 2015; 10:e0118918. [PMID: 25751153 PMCID: PMC4353704 DOI: 10.1371/journal.pone.0118918] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 01/16/2015] [Indexed: 12/20/2022] Open
Abstract
Unlike CNS neurons in adult mammals, neurons in fish and embryonic mammals can regenerate their axons after injury. These divergent regenerative responses are in part mediated by the growth-associated expression of select transcription factors. The basic helix-loop-helix (bHLH) transcription factor, MASH1/Ascl1a, is transiently expressed during the development of many neuronal subtypes and regulates the expression of genes that mediate cell fate determination and differentiation. In the adult zebrafish (Danio rerio), Ascl1a is also transiently expressed in retinal ganglion cells (RGCs) that regenerate axons after optic nerve crush. Utilizing transgenic zebrafish with a 3.6 kb GAP43 promoter that drives expression of an enhanced green fluorescent protein (EGFP), we observed that knock-down of Ascl1a expression reduces both regenerative gap43 gene expression and axonal growth after injury compared to controls. In mammals, the development of noradrenergic brainstem neurons requires MASH1 expression. In contrast to zebrafish RGCs, however, MASH1 is not expressed in the mammalian brainstem after spinal cord injury (SCI). Therefore, we utilized adeno-associated viral (AAV) vectors to overexpress MASH1 in four month old rat (Rattus norvegicus) brainstem neurons in an attempt to promote axon regeneration after SCI. We discovered that after complete transection of the thoracic spinal cord and implantation of a Schwann cell bridge, animals that express MASH1 exhibit increased noradrenergic axon regeneration and improvement in hindlimb joint movements compared to controls. Together these data demonstrate that MASH1/Ascl1a is a fundamental regulator of axonal growth across vertebrates and can induce modifications to the intrinsic state of neurons to promote functional regeneration in response to CNS injury.
Collapse
Affiliation(s)
- Ryan R. Williams
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Ishwariya Venkatesh
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Ava J. Udvadia
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, United States of America
- * E-mail:
| |
Collapse
|
16
|
Schlosser G. Vertebrate cranial placodes as evolutionary innovations--the ancestor's tale. Curr Top Dev Biol 2015; 111:235-300. [PMID: 25662263 DOI: 10.1016/bs.ctdb.2014.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evolutionary innovations often arise by tinkering with preexisting components building new regulatory networks by the rewiring of old parts. The cranial placodes of vertebrates, ectodermal thickenings that give rise to many of the cranial sense organs (ear, nose, lateral line) and ganglia, originated as such novel structures, when vertebrate ancestors elaborated their head in support of a more active and exploratory life style. This review addresses the question of how cranial placodes evolved by tinkering with ectodermal patterning mechanisms and sensory and neurosecretory cell types that have their own evolutionary history. With phylogenetic relationships among the major branches of metazoans now relatively well established, a comparative approach is used to infer, which structures evolved in which lineages and allows us to trace the origin of placodes and their components back from ancestor to ancestor. Some of the core networks of ectodermal patterning and sensory and neurosecretory differentiation were already established in the common ancestor of cnidarians and bilaterians and were greatly elaborated in the bilaterian ancestor (with BMP- and Wnt-dependent patterning of dorsoventral and anteroposterior ectoderm and multiple neurosecretory and sensory cell types). Rostral and caudal protoplacodal domains, giving rise to some neurosecretory and sensory cells, were then established in the ectoderm of the chordate and tunicate-vertebrate ancestor, respectively. However, proper cranial placodes as clusters of proliferating progenitors producing high-density arrays of neurosecretory and sensory cells only evolved and diversified in the ancestors of vertebrates.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| |
Collapse
|
17
|
Pavlou S, Astell K, Kasioulis I, Gakovic M, Baldock R, van Heyningen V, Coutinho P. Pleiotropic effects of Sox2 during the development of the zebrafish epithalamus. PLoS One 2014; 9:e87546. [PMID: 24498133 PMCID: PMC3909122 DOI: 10.1371/journal.pone.0087546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/26/2013] [Indexed: 12/01/2022] Open
Abstract
The zebrafish epithalamus is part of the diencephalon and encompasses three major components: the pineal, the parapineal and the habenular nuclei. Using sox2 knockdown, we show here that this key transcriptional regulator has pleiotropic effects during the development of these structures. Sox2 negatively regulates pineal neurogenesis. Also, Sox2 is identified as the unknown factor responsible for pineal photoreceptor prepatterning and performs this function independently of the BMP signaling. The correct levels of sox2 are critical for the functionally important asymmetrical positioning of the parapineal organ and for the migration of parapineal cells as a coherent structure. Deviations from this strict control result in defects associated with abnormal habenular laterality, which we have documented and quantified in sox2 morphants.
Collapse
Affiliation(s)
- Sofia Pavlou
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Katy Astell
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Ioannis Kasioulis
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Milica Gakovic
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard Baldock
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Veronica van Heyningen
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Pedro Coutinho
- Biomedical Systems Analysis Section, Medical Developmental Genetics Section, Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
MacDonald RB, Pollack JN, Debiais-Thibaud M, Heude E, Talbot JC, Ekker M. The ascl1a and dlx genes have a regulatory role in the development of GABAergic interneurons in the zebrafish diencephalon. Dev Biol 2013; 381:276-85. [PMID: 23747543 DOI: 10.1016/j.ydbio.2013.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/08/2013] [Accepted: 05/25/2013] [Indexed: 11/28/2022]
Abstract
During development of the mouse forebrain interneurons, the Dlx genes play a key role in a gene regulatory network (GRN) that leads to the GABAergic phenotype. Here, we have examined the regulatory relationships between the ascl1a, dlx, and gad1b genes in the zebrafish forebrain. Expression of ascl1a overlaps with dlx1a in the telencephalon and diencephalon during early forebrain development. The loss of Ascl1a function results in a loss of dlx expression, and subsequent losses of dlx5a and gad1b expression in the diencephalic prethalamus and hypothalamus. Loss of Dlx1a and Dlx2a function, and, to a lesser extent, of Dlx5a and Dlx6a, impairs gad1b expression in the prethalamus and hypothalamus. We conclude that dlx1a/2a act downstream of ascl1a but upstream of dlx5a/dlx6a and gad1b to activate GABAergic specification. This pathway is conserved in the diencephalon, but has diverged between mammals and teleosts in the telencephalon.
Collapse
Affiliation(s)
- Ryan B MacDonald
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | | | | | | | | | | |
Collapse
|
19
|
Rath MF, Rohde K, Klein DC, Møller M. Homeobox genes in the rodent pineal gland: roles in development and phenotype maintenance. Neurochem Res 2013; 38:1100-12. [PMID: 23076630 PMCID: PMC3570627 DOI: 10.1007/s11064-012-0906-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 09/19/2012] [Accepted: 10/04/2012] [Indexed: 12/12/2022]
Abstract
The pineal gland is a neuroendocrine gland responsible for nocturnal synthesis of melatonin. During early development of the rodent pineal gland from the roof of the diencephalon, homeobox genes of the orthodenticle homeobox (Otx)- and paired box (Pax)-families are expressed and are essential for normal pineal development consistent with the well-established role that homeobox genes play in developmental processes. However, the pineal gland appears to be unusual because strong homeobox gene expression persists in the pineal gland of the adult brain. Accordingly, in addition to developmental functions, homeobox genes appear to be key regulators in postnatal phenotype maintenance in this tissue. In this paper, we review ontogenetic and phylogenetic aspects of pineal development and recent progress in understanding the involvement of homebox genes in rodent pineal development and adult function. A working model is proposed for understanding the sequential action of homeobox genes in controlling development and mature circadian function of the mammalian pinealocyte based on knowledge from detailed developmental and daily gene expression analyses in rats, the pineal phenotypes of homebox gene-deficient mice and studies on development of the retinal photoreceptor; the pinealocyte and retinal photoreceptor share features not seen in other tissues and are likely to have evolved from the same ancestral photodetector cell.
Collapse
Affiliation(s)
- Martin F Rath
- Department of Neuroscience and Pharmacology, Panum Institute 24.2, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark.
| | | | | | | |
Collapse
|
20
|
Deep mRNA sequencing analysis to capture the transcriptome landscape of zebrafish embryos and larvae. PLoS One 2013; 8:e64058. [PMID: 23700457 PMCID: PMC3659048 DOI: 10.1371/journal.pone.0064058] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/09/2013] [Indexed: 11/19/2022] Open
Abstract
Transcriptome analysis is a powerful tool to obtain large amount genome-scale gene expression profiles. Despite its extensive usage to diverse biological problems in the last decade, transcriptomic researches approaching the zebrafish embryonic development have been very limited. Several recent studies have made great progress in this direction, yet the large gap still exists, especially regarding to the transcriptome dynamics of embryonic stages from early gastrulation onwards. Here, we present a comprehensive analysis about the transcriptomes of 9 different stages covering 7 major periods (cleavage, blastula, gastrula, segmentation, pharyngula, hatching and early larval stage) in zebrafish development, by recruiting the RNA-sequencing technology. We detected the expression for at least 24,065 genes in at least one of the 9 stages. We identified 16,130 genes that were significantly differentially expressed between stages and were subsequently classified into six clusters. Each revealed gene cluster had distinct expression patterns and characteristic functional pathways, providing a framework for the understanding of the developmental transcriptome dynamics. Over 4000 genes were identified as preferentially expressed in one of the stages, which could be of high relevance to stage-specific developmental and molecular events. Among the 68 transcription factor families active during development, most had enhanced average expression levels and thus might be crucial for embryogenesis, whereas the inactivation of the other families was likely required by the activation of the zygotic genome. We discussed our RNA-seq data together with previous findings about the Wnt signaling pathway and some other genes with known functions, to show how our data could be used to advance our understanding about these developmental functional elements. Our study provides ample information for further study about the molecular and cellular mechanisms underlying vertebrate development.
Collapse
|
21
|
Clanton JA, Hope KD, Gamse JT. Fgf signaling governs cell fate in the zebrafish pineal complex. Development 2013; 140:323-32. [PMID: 23250206 DOI: 10.1242/dev.083709] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Left-right (L-R) asymmetries in neuroanatomy exist throughout the animal kingdom, with implications for function and behavior. The molecular mechanisms that control formation of such asymmetries are beginning to be understood. Significant progress has been made by studying the zebrafish parapineal organ, a group of neurons on the left side of the epithalamus. Parapineal cells arise from the medially located pineal complex anlage and migrate to the left side of the brain. We have found that Fgf8a regulates a fate decision among anterior pineal complex progenitors that occurs just prior to the initiation of leftward migration. Cell fate analysis shows that in the absence of Fgf8a a subset of cells in the anterior pineal complex anlage differentiate as cone photoreceptors rather than parapineal neurons. Fgf8a acts permissively to promote parapineal fate in conjunction with the transcription factor Tbx2b, but might also block cone photoreceptor fate. We conclude that this subset of anterior pineal complex precursors, which normally become parapineal cells, are bipotential and require Fgf8a to maintain parapineal identity and/or prevent cone identity.
Collapse
Affiliation(s)
- Joshua A Clanton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37205, USA
| | | | | |
Collapse
|
22
|
Roach G, Heath Wallace R, Cameron A, Emrah Ozel R, Hongay CF, Baral R, Andreescu S, Wallace KN. Loss of ascl1a prevents secretory cell differentiation within the zebrafish intestinal epithelium resulting in a loss of distal intestinal motility. Dev Biol 2013; 376:171-86. [PMID: 23353550 DOI: 10.1016/j.ydbio.2013.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 01/05/2013] [Accepted: 01/08/2013] [Indexed: 02/07/2023]
Abstract
The vertebrate intestinal epithelium is renewed continuously from stem cells at the base of the crypt in mammals or base of the fold in fish over the life of the organism. As stem cells divide, newly formed epithelial cells make an initial choice between a secretory or enterocyte fate. This choice has previously been demonstrated to involve Notch signaling as well as Atonal and Her transcription factors in both embryogenesis and adults. Here, we demonstrate that in contrast to the atoh1 in mammals, ascl1a is responsible for formation of secretory cells in zebrafish. ascl1a-/- embryos lack all intestinal epithelial secretory cells and instead differentiate into enterocytes. ascl1a-/- embryos also fail to induce intestinal epithelial expression of deltaD suggesting that ascl1a plays a role in initiation of Notch signaling. Inhibition of Notch signaling increases the number of ascl1a and deltaD expressing intestinal epithelial cells as well as the number of developing secretory cells during two specific time periods: between 30 and 34hpf and again between 64 and 74hpf. Loss of enteroendocrine products results in loss of anterograde motility in ascl1a-/- embryos. 5HT produced by enterochromaffin cells is critical in motility and secretion within the intestine. We find that addition of exogenous 5HT to ascl1a-/- embryos at near physiological levels (measured by differential pulse voltammetry) induce anterograde motility at similar levels to wild type velocity, distance, and frequency. Removal or doubling the concentration of 5HT in WT embryos does not significantly affect anterograde motility, suggesting that the loss of additional enteroendocrine products in ascl1a-/- embryos also contributes to intestinal motility. Thus, zebrafish intestinal epithelial cells appear to have a common secretory progenitor from which all subtypes form. Loss of enteroendocrine cells reveals the critical need for enteroendocrine products in maintenance of normal intestinal motility.
Collapse
Affiliation(s)
- Gillian Roach
- Department of Biology, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M. Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 2011; 138:4831-41. [PMID: 22007133 DOI: 10.1242/dev.072587] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Severe traumatic injury to the adult mammalian CNS leads to life-long loss of function. By contrast, several non-mammalian vertebrate species, including adult zebrafish, have a remarkable ability to regenerate injured organs, including the CNS. However, the cellular and molecular mechanisms that enable or prevent CNS regeneration are largely unknown. To study brain regeneration mechanisms in adult zebrafish, we developed a traumatic lesion assay, analyzed cellular reactions to injury and show that adult zebrafish can efficiently regenerate brain lesions and lack permanent glial scarring. Using Cre-loxP-based genetic lineage-tracing, we demonstrate that her4.1-positive ventricular radial glia progenitor cells react to injury, proliferate and generate neuroblasts that migrate to the lesion site. The newly generated neurons survive for more than 3 months, are decorated with synaptic contacts and express mature neuronal markers. Thus, regeneration after traumatic lesion of the adult zebrafish brain occurs efficiently from radial glia-type stem/progenitor cells.
Collapse
Affiliation(s)
- Volker Kroehne
- Biotechnology Center and DFG-Research Center for Regenerative Therapies Dresden, Technische Universitat Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
25
|
Quillien A, Blanco-Sanchez B, Halluin C, Moore JC, Lawson ND, Blader P, Cau E. BMP signaling orchestrates photoreceptor specification in the zebrafish pineal gland in collaboration with Notch. Development 2011; 138:2293-302. [PMID: 21558377 DOI: 10.1242/dev.060988] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A variety of signaling pathways have been shown to regulate specification of neuronal subtype identity. However, the mechanisms by which future neurons simultaneously process information from multiple pathways to establish their identity remain poorly understood. The zebrafish pineal gland offers a simple system with which to address questions concerning the integration of signaling pathways during neural specification as it contains only two types of neurons - photoreceptors and projection neurons. We have previously shown that Notch signaling inhibits the projection neuron fate. Here, we show that BMP signaling is both necessary and sufficient to promote the photoreceptor fate. We also demonstrate that crosstalk between BMP and Notch signaling is required for the inhibition of a projection neuron fate in future photoreceptors. In this case, BMP signaling is required as a competence factor for the efficient activation of Notch targets. Our results indicate that both the induction of a photoreceptor fate and the interaction with Notch relies on a canonical BMP/Smad5 pathway. However, the activation of Notch-dependent transcription does not require a canonical Smad5-DNA interaction. Our results provide new insights into how multiple signaling influences are integrated during cell fate specification in the vertebrate CNS.
Collapse
Affiliation(s)
- Aurélie Quillien
- Université de Toulouse, UPS, Centre de Biologie du Développement (CBD), CNRS, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
26
|
D'Aniello E, Pezzotti MR, Locascio A, Branno M. Onecut is a direct neural-specific transcriptional activator of Rx in Ciona intestinalis. Dev Biol 2011; 355:358-71. [PMID: 21600895 DOI: 10.1016/j.ydbio.2011.05.584] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 04/21/2011] [Accepted: 05/04/2011] [Indexed: 11/28/2022]
Abstract
Retinal homeobox (Rx) genes play a crucial and conserved role in the development of the anterior neural plate of metazoans. During chordate evolution, they have also acquired a novel function in the control of eye formation and neurogenesis. To characterize the Rx genetic cascade and shed light on the mechanisms that led to the acquisition of this new role in eye development, we studied Rx transcriptional regulation using the ascidian, Ciona intestinalis. Through deletion analysis of the Ci-Rx promoter, we have identified two distinct enhancer elements able to induce Ci-Rx specific expression in the anterior part of the CNS and in the photosensory organ at tailbud and larva stages. Bioinformatic analysis highlighted the presence of two Onecut binding sites contained in these enhancers, so we explored the role of this transcription factor in the regulation of Ci-Rx. By in situ hybridization, we first confirmed that these genes are co-expressed in the same cells. Through a series of in vivo and in vitro experiments, we then demonstrated that the two Onecut sites are responsible for enhancer activation in Ci-Rx endogenous territories. We also demonstrated in vivo that Onecut misexpression is able to induce ectopic activation of the Rx promoter. Finally, we demonstrated that Ci-Onecut is able to promote Ci-Rx expression in the sensory vesicle. Together, these results support the conclusion that in Ciona embryogenesis, Ci-Rx expression is under the control of the Onecut transcription factor and that this factor is necessary and sufficient to specifically activate Ci-Rx through two enhancer elements.
Collapse
Affiliation(s)
- Enrico D'Aniello
- Cellular and Developmental Biology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | | | | | | |
Collapse
|
27
|
Ben-Moshe Z, Vatine G, Alon S, Tovin A, Mracek P, Foulkes NS, Gothilf Y. Multiple PAR and E4BP4 bZIP transcription factors in zebrafish: diverse spatial and temporal expression patterns. Chronobiol Int 2011; 27:1509-31. [PMID: 20854132 DOI: 10.3109/07420528.2010.510229] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Circadian rhythms of physiology and behavior are generated by an autonomous circadian oscillator that is synchronized daily with the environment, mainly by light input. The PAR subfamily of transcriptional activators and the related E4BP4 repressor belonging to the basic leucine zipper (bZIP) family are clock-controlled genes that are suggested to mediate downstream circadian clock processes and to feedback onto the core oscillator. Here, the authors report the characterization of these genes in the zebrafish, an increasingly important model in the field of chronobiology. Five novel PAR and six novel e4bp4 zebrafish homolog genes were identified using bioinformatic tools and their coding sequences were cloned. Based on their evolutionary relationships, these genes were annotated as ztef2, zhlf1 and zhlf2, zdbp1 and zdbp2, and ze4bp4-1 to -6. The spatial and temporal mRNA expression pattern of each of these factors was characterized in zebrafish embryos in the context of a functional circadian clock and regulation by light. Nine of the factors exhibited augmented and rhythmic expression in the pineal gland, a central clock organ in zebrafish. Moreover, these genes were found to be regulated, to variable extents, by the circadian clock and/or by light. Differential expression patterns of multiple paralogs in zebrafish suggest multiple roles for these factors within the vertebrate circadian clock. This study, in the genetically accessible zebrafish model, lays the foundation for further research regarding the involvement and specific roles of PAR and E4BP4 transcription factors in the vertebrate circadian clock mechanism.
Collapse
Affiliation(s)
- Zohar Ben-Moshe
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
28
|
Xenopus Bsx links daily cell cycle rhythms and pineal photoreceptor fate. Proc Natl Acad Sci U S A 2010; 107:6352-7. [PMID: 20308548 DOI: 10.1073/pnas.1000854107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the developing central nervous system, the cell cycle clock plays a crucial role in determining cell fate specification. A second clock, the circadian oscillator, generates daily rhythms of cell cycle progression. Although these two clocks interact, the mechanisms linking circadian cell cycle progression and cell fate determination are still poorly understood. A convenient system to address this issue is the pineal organ of lower vertebrates, which contains only two neuronal types, photoreceptors and projection neurons. In particular, photoreceptors constitute the core of the pineal circadian system, being able to transduce daily light inputs into the rhythmical production of melatonin. However, the genetic program leading to photoreceptor fate largely remains to be deciphered. Here, we report a previously undescribed function for the homeobox gene Bsx in controlling pineal proliferation and photoreceptor fate in Xenopus. We show that Xenopus Bsx (Xbsx) is expressed rhythmically in postmitotic photoreceptor precursors, reaching a peak during the night, with a cycle that is complementary to the daily rhythms of S-phase entry displayed by pineal cells. Xbsx knockdown results in increased night levels of pineal proliferation, whereas activation of a GR-Xbsx protein flattens the daily rhythms of S-phase entry to the lowest level. Furthermore, evidence is presented that Xbsx is necessary and sufficient to promote a photoreceptor fate. Altogether, these data indicate that Xbsx plays a dual role in contributing to shape the profile of the circadian cell cycle progression and in the specification of pineal photoreceptors, thus acting as a unique link between these two events.
Collapse
|
29
|
Unfried C, Burbach G, Korf HW, von Gall C. Melatonin receptor 1-dependent gene expression in the mouse pars tuberalis as revealed by cDNA microarray analysis and in situ hybridization. J Pineal Res 2010; 48:148-56. [PMID: 20070488 DOI: 10.1111/j.1600-079x.2009.00738.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Melatonin is an important rhythmic endocrine signal within the circadian system of mammals. The hypophyseal pars tuberalis (PT) is a major target for melatonin and shows a high density of melatonin type 1 receptors (MT1). Melatonin affects expression of clock genes in PT cells which encode for transcriptional regulators of rhythmic gene expression. In this study, microarray analysis was performed to screen for genes coding for transcriptional regulators under the control of MT1 receptors in the mouse PT. Gene expression levels were compared between melatonin-proficient mice deficient for MT1 (MT1-/-) and the corresponding wild-type (WT) during mid-subjective day (CT06, low endogenous melatonin levels) and mid-subjective night (CT18, high endogenous melatonin levels). In situ hybridization was used to validate the data obtained by microarray analysis to analyze the acute effect of daytime melatonin application on gene expression in the wild-type PT. In the wild-type PT, expression of Tim was higher during day as compared to night. These day/night differences in gene expression were not observed in the PT of MT1-/- mice, demonstrating the impact of MT1-mediated signal transduction pathway. Day-time application of melatonin acutely affected Tim and Cry1 expression but not Neurod1 and Npas4 expression. We conclude that melatonin regulates expression of genes coding for transcriptional regulators in the PT through MT1 receptors by either acute or long-term mechanisms.
Collapse
Affiliation(s)
- Claudia Unfried
- Dr Senckenbergische Anatomie, Institut für Anatomie II, Goethe-Universität, Frankfurt/M, Germany
| | | | | | | |
Collapse
|
30
|
Toyama R, Chen X, Jhawar N, Aamar E, Epstein J, Reany N, Alon S, Gothilf Y, Klein DC, Dawid IB. Transcriptome analysis of the zebrafish pineal gland. Dev Dyn 2009; 238:1813-26. [PMID: 19504458 DOI: 10.1002/dvdy.21988] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The zebrafish pineal gland (epiphysis) is a site of melatonin production, contains photoreceptor cells, and functions as a circadian clock pace maker. Here, we have used microarray technology to study the zebrafish pineal transcriptome. Analysis of gene expression at three larval and two adult stages revealed a highly dynamic transcriptional profile, revealing many genes that are highly expressed in the zebrafish pineal gland. Statistical analysis of the data based on Gene Ontology annotation indicates that many transcription factors are highly expressed during larval stages, whereas genes dedicated to phototransduction are preferentially expressed in the adult. Furthermore, several genes were identified that exhibit day/night differences in expression. Among the multiple candidate genes suggested by these data, we note the identification of a tissue-specific form of the unc119 gene with a possible role in pineal development.
Collapse
Affiliation(s)
- Reiko Toyama
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yan RT, He L, Wang SZ. Pro-photoreceptor activity of chick neurogenin1. Invest Ophthalmol Vis Sci 2009; 50:5567-76. [PMID: 19578021 DOI: 10.1167/iovs.09-3647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Better understanding of photoreceptor fate specification may lead to efficient production of photoreceptors for cell replacement studies. The authors investigated the role of proneural bHLH gene neurogenin1 (ngn1) in photoreceptor genesis using the chick retina. METHODS In situ hybridization was used to delineate the spatial and temporal pattern of ngn1 expression. RCAS retrovirus was used to drive overexpression of ngn1 in retinal cells, and siRNA was used to reduce ngn1 expression in loss-of-function experiments. RESULTS Chick ngn1 was transiently expressed during early phases of retinal neurogenesis, from embryonic day (E)3 to E6, with cells expressing ngn1 confined to the apical side of the retinal neuroepithelium. The time window and the anatomic location of ngn1 expression coincided with photoreceptor genesis and differed from those of other transiently expressed proneural bHLH genes, such as ash1, ath3, ath5, and ngn2. Most ngn1-expressing cells lacked BrdU incorporation and lacked phosphorylated histone H3. In low-density cell culture, ngn1 overexpression increased neuroD expression and expanded the photoreceptor population but reduced the ganglion population. Treatment of dissociated retinal cells with siRNA against ngn1 mRNA specifically reduced the photoreceptor population. Overexpression of ngn1 in the retina reduced the expression of ash1, ath5, chx10, and ngn2. CONCLUSIONS The data suggest that ngn1 participates in a complex transcriptional network and may play a role in guiding a progenitor cell to the photoreceptor pathway.
Collapse
Affiliation(s)
- Run-Tao Yan
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0009, USA
| | | | | |
Collapse
|
32
|
Snelson CD, Burkart JT, Gamse JT. Formation of the asymmetric pineal complex in zebrafish requires two independently acting transcription factors. Dev Dyn 2009; 237:3538-44. [PMID: 18629869 DOI: 10.1002/dvdy.21607] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The pineal complex of zebrafish consists of a pineal organ and a left-sided parapineal organ. Mutation of the floating head (flh) gene, which encodes a homeodomain protein, causes premature termination of pineal cell division without affecting specification or asymmetric placement of the parapineal. The from beyond (fby) mutation, a premature stop codon in the T-domain-containing protein Tbx2b, disrupts formation of the parapineal while leaving the pineal largely intact. However, flh is reported as being required for tbx2b transcription. To resolve the paradox that flhand tbx2b mutants have opposite phenotypes but have been placed in the same genetic pathway, we have examined transcriptional cross-regulation in single flh or fby mutants and genetic epistasis in double mutants. Careful analysis shows that flh is not required for tbx2b transcription and double mutants exhibit an additive phenotype. We conclude that Flh and Tbx2b regulate separate programs of pineal and parapineal development.
Collapse
Affiliation(s)
- Corey D Snelson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | | | | |
Collapse
|
33
|
Legume lectin FRIL preserves neural progenitor cells in suspension culture in vitro. Clin Dev Immunol 2008; 2008:531317. [PMID: 18695740 PMCID: PMC2496955 DOI: 10.1155/2008/531317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 05/03/2008] [Indexed: 12/02/2022]
Abstract
In vitro maintenance of stem cells is crucial for many clinical applications. Stem cell preservation factor FRIL (Flt3 receptor-interacting lectin) is a plant lectin extracted from Dolichos Lablab and has been found preserve hematopoietic stem cells in vitro for a month in our previous studies. To investigate whether FRIL can preserve neural progenitor cells (NPCs), it was supplemented into serum-free suspension culture media. FRIL made NPC grow slowly, induced cell adhesion, and delayed neurospheres formation. However, FRIL did not initiate NPC differentiation according to immunofluorescence and semiquantitive RT-PCR results. In conclusion, FRIL could also preserve neural progenitor cells in vitro by inhibiting both cell proliferation and differentiation.
Collapse
|
34
|
Luo GR, Chen Y, Li XP, Liu TX, Le WD. Nr4a2 is essential for the differentiation of dopaminergic neurons during zebrafish embryogenesis. Mol Cell Neurosci 2008; 39:202-10. [DOI: 10.1016/j.mcn.2008.06.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 06/16/2008] [Accepted: 06/17/2008] [Indexed: 01/08/2023] Open
|
35
|
Cau E, Quillien A, Blader P. Notch resolves mixed neural identities in the zebrafish epiphysis. Development 2008; 135:2391-401. [PMID: 18550717 DOI: 10.1242/dev.013482] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Manipulation of Notch activity alters neuronal subtype identity in vertebrate neuronal lineages. Nonetheless, it remains controversial whether Notch activity diversifies cell fate by regulating the timing of neurogenesis or acts directly in neuronal subtype specification. Here, we address the role of Notch in the zebrafish epiphysis, a simple structure containing only two neural subtypes: projection neurons and photoreceptors. Reducing the activity of the Notch pathway results in an excess of projection neurons at the expense of photoreceptors, as well as an increase in cells retaining a mixed identity. However, although forced activation of the pathway inhibits the projection neuron fate, it does not promote photoreceptor identity. As birthdating experiments show that projection neurons and photoreceptors are born simultaneously, Notch acts directly during neuronal specification rather than by controlling the timing of neurogenesis. Finally, our data suggest that two distinct signals are required for photoreceptor fate specification: one for the induction of the photoreceptor fate and the other, involving Notch, for the inhibition of projection neuron traits. We propose a novel model in which Notch resolves mixed neural identities by repressing an undesired genetic program.
Collapse
Affiliation(s)
- Elise Cau
- Centre de Biologie du Développement, UMR 5547 CNRS/UPS, Université Paul Sabatier Bât. 4R3, Toulouse Cedex 9, France
| | | | | |
Collapse
|
36
|
Snelson CD, Santhakumar K, Halpern ME, Gamse JT. Tbx2b is required for the development of the parapineal organ. Development 2008; 135:1693-702. [PMID: 18385257 DOI: 10.1242/dev.016576] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Structural differences between the left and right sides of the brain exist throughout the vertebrate lineage. By studying the zebrafish pineal complex, which exhibits notable asymmetries, both the genes and the cell movements that result in left-right differences can be characterized. The pineal complex consists of the midline pineal organ and the left-sided parapineal organ. The parapineal is responsible for instructing the asymmetric architecture of the bilateral habenulae, the brain nuclei that flank the pineal complex. Using in vivo time-lapse confocal microscopy, we find that the cells that form the parapineal organ migrate as a cluster of cells from the pineal complex anlage to the left side of the brain. In a screen for mutations that disrupted brain laterality, we identified a nonsense mutation in the T-box2b (tbx2b) gene, which encodes a transcription factor expressed in the pineal complex anlage. The tbx2b mutant makes fewer parapineal cells, and they remain as individuals near the midline rather than migrating leftward as a group. The reduced number and incorrect placement of parapineal cells result in symmetric development of the adjacent habenular nuclei. We conclude that tbx2b functions to specify the correct number of parapineal cells and to regulate their asymmetric migration.
Collapse
Affiliation(s)
- Corey D Snelson
- Department of Biological Sciences, Vanderbilt University, VU Station B, Box 35-1634, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
37
|
Pocock R, Mione M, Hussain S, Maxwell S, Pontecorvi M, Aslam S, Gerrelli D, Sowden JC, Woollard A. Neuronal function of Tbx20 conserved from nematodes to vertebrates. Dev Biol 2008; 317:671-85. [PMID: 18358469 DOI: 10.1016/j.ydbio.2008.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 02/04/2008] [Accepted: 02/06/2008] [Indexed: 11/19/2022]
Abstract
The Tbx20 orthologue, mab-9, is required for development of the Caenorhabditis elegans hindgut, whereas several vertebrate Tbx20 genes promote heart development. Here we show that Tbx20 orthologues also have a role in motor neuron development that is conserved between invertebrates and vertebrates. mab-9 mutants exhibit guidance defects in dorsally projecting axons from motor neurons located in the ventral nerve cord. Danio rerio (Zebrafish) tbx20 morphants show defects in the migration patterns of motor neuron soma of the facial and trigeminal motor neuron groups. Human TBX20 is expressed in motor neurons in the developing hindbrain of human embryos and we show that human TBX20 can substitute for zebrafish tbx20 in promoting cranial motor neuron migration. mab-9 is also partially able to rescue the zebrafish migration defect, whereas other vertebrate T-box genes cannot. Conversely we show that the human TBX20 T-box domain can rescue motor neuron defects in C. elegans. These data suggest the functional equivalence of Tbx20 orthologues in regulating the development of specific motor neuron groups. We also demonstrate the functional equivalence of human and C. elegans Tbx20 T-box domains for regulating male tail development in the nematode even though these genes play highly diverged roles in organogenesis.
Collapse
Affiliation(s)
- Roger Pocock
- Genetics Unit, Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Unlike mammals, teleost fish can regenerate an injured retina, restoring lost visual function. Little is known of the molecular events that underlie retina regeneration. We previously found that in zebrafish, retinal injury stimulates Müller glia to generate multipotent alpha1-tubulin (alpha1T) and pax6-expressing progenitors for retinal repair. Here, we report the identification of a critical E-box in the alpha1T promoter that mediates transactivation by achaete-scute complex-like 1a (ascl1a) during retina regeneration. More importantly, we show that ascl1a is essential for retina regeneration. Within 4 h after retinal injury, ascl1a is induced in Müller glia. Knockdown of ascl1a blocks the induction of alpha1T and pax6 as well as Müller glial proliferation, consequently preventing the generation of retinal progenitors and their differentiated progeny. These data suggest ascl1a is required to convert quiescent Müller glia into actively dividing retinal progenitors, and that ascl1a is a key regulator in initiating retina regeneration.
Collapse
|
39
|
Muñoz EM, Bailey MJ, Rath MF, Shi Q, Morin F, Coon SL, Møller M, Klein DC. NeuroD1: developmental expression and regulated genes in the rodent pineal gland. J Neurochem 2007; 102:887-99. [PMID: 17630985 DOI: 10.1111/j.1471-4159.2007.04605.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NeuroD1/BETA2, a member of the bHLH transcription factor family, is known to influence the fate of specific neuronal, endocrine and retinal cells. We report here that NeuroD1 mRNA is highly abundant in the developing and adult rat pineal gland. Pineal expression begins in the 17-day embryo at which time it is also detectable in other brain regions. Expression in the pineal gland increases during the embryonic period and is maintained thereafter at levels equivalent to those found in the cerebellum and retina. In contrast, NeuroD1 mRNA decreases markedly in non-cerebellar brain regions during development. Pineal NeuroD1 levels are similar during the day and night, and do not appear to be influenced by sympathetic neural input. Gene expression analysis of the pineal glands from neonatal NeuroD1 knockout mice identifies 127 transcripts that are down-regulated (>twofold, p < 0.05) and 16 that are up-regulated (>twofold, p < 0.05). According to quantitative RT-PCR, the most dramatically down-regulated gene is kinesin family member 5C ( approximately 100-fold) and the most dramatically up-regulated gene is glutamic acid decarboxylase 1 ( approximately fourfold). Other impacted transcripts encode proteins involved in differentiation, development, signal transduction and trafficking. These findings represent the first step toward elucidating the role of NeuroD1 in the rodent pinealocyte.
Collapse
Affiliation(s)
- Estela M Muñoz
- Section on Neuroendocrinology, Office of the Scientific Director, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mano H, Fukada Y. A median third eye: pineal gland retraces evolution of vertebrate photoreceptive organs. Photochem Photobiol 2007; 83:11-8. [PMID: 16771606 DOI: 10.1562/2006-02-24-ir-813] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In many vertebrates, the pineal gland serves as a photoreceptive neuroendocrine organ. Morphological and functional similarities between the pineal and retinal photoreceptor cells indicate their close evolutionary relationship, and hence the comparative studies on the pineal gland and the retina are the keys to deciphering the evolutionary traces of the vertebrate photoreceptive organs. Several studies have suggested common genetic and molecular mechanisms responsible for their similarities, but largely unknown are those underlying pineal-specific development and physiological functions. Recent studies have identified several cis-acting DNA elements that participate in transcriptional control of the pineal-specific genes. Genetic approaches in the zebrafish have also contributed to elucidating the genetic network regulating the pineal development and neurogenesis. These efforts toward elucidating the molecular instrumentation intrinsic to the pineal gland, back to back with those to the retina, should lead to a comprehensive understanding of the evolutionary history of the vertebrate photoreceptive structures. This article summarizes the current status of research on these topics.
Collapse
Affiliation(s)
- Hiroaki Mano
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Japan
| | | |
Collapse
|
41
|
Sarrazin AF, Villablanca EJ, Nuñez VA, Sandoval PC, Ghysen A, Allende ML. Proneural gene requirement for hair cell differentiation in the zebrafish lateral line. Dev Biol 2006; 295:534-45. [PMID: 16678150 DOI: 10.1016/j.ydbio.2006.03.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 03/16/2006] [Accepted: 03/28/2006] [Indexed: 11/19/2022]
Abstract
The lateral line system comprises an array of mechanosensory organs, the neuromasts, distributed over the body surface. Each neuromast consists of a patch of mechanosensory hair cells surrounded by support cells. We show that, in the zebrafish, two proneural genes are essential for differentiation of the hair cells, neuroD (nrd) and atonal homolog 1 (ath1). Gene knockdown experiments demonstrate that loss of function of either gene, but not of the related proneural gene neurogenin1 (ngn1), abrogate the appearance of hair cell markers. This is in contrast to other sensory systems, such as the neurons of the lateral line ganglion, where nrd is regulated by ngn1 and not by ath1. Overexpression of ath1 can induce nrd, and the phenotype produced by loss of ath1 function can be partially rescued by injection of nrd mRNA. This supports the conclusion that the activation of nrd probably requires ath1 in the hair cell lineage, whereas in sensory neurons nrd activation requires ngn1. We propose that the emergence of two atonal homologs, ath1 and ngn1, allowed the cellular segregation of mechanoreception and signal transmission that were originally performed by a single cell type as found in insects.
Collapse
Affiliation(s)
- Andres F Sarrazin
- Millennium Nucleus in Developmental Biology, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
42
|
Jeong JY, Einhorn Z, Mercurio S, Lee S, Lau B, Mione M, Wilson SW, Guo S. Neurogenin1 is a determinant of zebrafish basal forebrain dopaminergic neurons and is regulated by the conserved zinc finger protein Tof/Fezl. Proc Natl Acad Sci U S A 2006; 103:5143-8. [PMID: 16549779 PMCID: PMC1458808 DOI: 10.1073/pnas.0600337103] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Indexed: 11/18/2022] Open
Abstract
The development of vertebrate basal forebrain dopaminergic (DA) neurons requires the conserved zinc finger protein Too Few (Tof/Fezl) in zebrafish. However, how Tof/Fezl regulates the commitment and differentiation of these DA neurons is not known. Proneural genes encoding basic helix-loop-helix transcription factors regulate the development of multiple neuronal lineages, but their involvement in vertebrate DA neuron determination is unclear. Here we show that neurogenin 1 (ngn1), a vertebrate proneural gene related to the Drosophila atonal, is expressed in and required for specification of DA progenitor cells, and when overexpressed leads to supernumerary DA neurons in the forebrain of zebrafish. Overexpression of ngn1 is also sufficient to induce tyrosine hydroxylase expression in addition to the pan-neuronal marker Hu in nonneural ectoderm. We further show that Tof/Fezl is required to establish basal forebrain ngn1-expressing DA progenitor domains. These findings identify Ngn1 as a determinant of brain DA neurons and provide insights into how Tof/Fezl regulates the development of these clinically important neuronal types.
Collapse
Affiliation(s)
- Jae-Yeon Jeong
- *Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, CA 94143; and
| | - Zev Einhorn
- *Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, CA 94143; and
| | - Sara Mercurio
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Susie Lee
- *Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, CA 94143; and
| | - Billy Lau
- *Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, CA 94143; and
| | - Marina Mione
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Stephen W. Wilson
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Su Guo
- *Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, CA 94143; and
| |
Collapse
|
43
|
Pogoda HM, von der Hardt S, Herzog W, Kramer C, Schwarz H, Hammerschmidt M. The proneural gene ascl1a is required for endocrine differentiation and cell survival in the zebrafish adenohypophysis. Development 2006; 133:1079-89. [PMID: 16481349 DOI: 10.1242/dev.02296] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian basic helix-loop-helix proteins of the achaete-scute family are proneural factors that, in addition to the central nervous system, are required for the differentiation of peripheral neurons and sensory cells, derivatives of the neural crest and placodal ectoderm. Here, in identifying the molecular nature of the pia mutation, we investigate the role of the zebrafish achaete-scute homologue ascl1a during development of the adenohypophysis, an endocrine derivative of the placodal ectoderm. Similar to mutants deficient in Fgf3 signaling from the adjacent ventral diencepahalon, pia mutants display failure of endocrine differentiation of all adenohypophyseal cell types. Shortly after the failed first phase of cell differentiation, the adenohypophysis of pia mutants displays a transient phase of cell death, which affects most, but not all adenohypophyseal cells. Surviving cells form a smaller pituitary rudiment, lack expression of specific adenohypophyseal marker genes (pit1, neurod), while expressing others (lim3, pitx3), and display an ultrastructure reminiscent of precursor cells. During normal development, ascl1a is expressed in the adenohypophysis and the adjacent diencephalon, the source of Fgf3 signals. However, chimera analyses show that ascl1a is required cell-autonomously in adenohypophyseal cells themselves. In fgf3 mutants, adenohypophyseal expression of ascl1a is absent, while implantation of Fgf3-soaked beads into pia mutants enhances ascl1a, but fails to rescue pit1 expression. Together, this suggests that Ascl1a might act downstream of diencephalic Fgf3 signaling to mediate some of the effects of Fgf3 on the developing adenohypophysis.
Collapse
|
44
|
Abstract
The role of pro-neural factors in specifying neuronal progenitors and in promoting neuronal differentiation is conserved from Drosophila to vertebrates. This primer discusses the basic functions of pro-neural factors in neurogenesis, mechanisms of pro-neural factor function, and models for how pro-neural factors generate neuronal subtypes. The primer also features a dialog about current topics and future directions in the field between two experts in neurogenesis: Andrew Jarman, Ph.D., and Jane Johnson, Ph.D.
Collapse
Affiliation(s)
- Julie C Kiefer
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | |
Collapse
|
45
|
Plouhinec JL, Granier C, Le Mentec C, Lawson KA, Sabéran-Djoneidi D, Aghion J, Shi DL, Collignon J, Mazan S. Identification of the mammalian Not gene via a phylogenomic approach. Gene Expr Patterns 2005; 5:11-22. [PMID: 15533813 DOI: 10.1016/j.modgep.2004.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2004] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
Despite the great morphological diversity of early embryos, the underlying mechanisms of gastrulation are known to be broadly conserved in vertebrates. However, a number of genes characterized as fulfilling an essential function in this process in several model organisms display no clear ortholog in mammalian genomes. We have devised an in silico phylogenomic approach, based on exhaustive similarity searches in vertebrate genomes and subsequent bayesian phylogenetic analyses, to identify such missing genes, presumed to be highly divergent. This approach has been used to identify mammalian orthologs of Not, an homeodomain containing gene previously characterized in Xenopus, chick and zebrafish as playing a critical role in the formation of the notochord. This attempt led to the identification of a highly divergent mammalian Not-related gene in the mouse, human and rat. The results from phylogenetic reconstructions, synteny analyses, expression pattern analyses in wild-type and mutant mouse embryos, and overexpression experiments in Xenopus embryos converge to confirm these genes as representatives of the Not family in mammals. The identification of the mammalian Not gene delivers an important component for the understanding of the genetics underlying notochord formation in mammals and its evolution among vertebrates. The phylogenomic method used to retrieve this gene thus provides a tool, which can complement or validate genome annotations in situations when they are weakly supported.
Collapse
Affiliation(s)
- J-L Plouhinec
- Développement et Evolution des Vertébrés, UMR 8080, Université Paris-Sud, 91405 ORSAY, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Appelbaum L, Anzulovich A, Baler R, Gothilf Y. Homeobox-clock protein interaction in zebrafish. A shared mechanism for pineal-specific and circadian gene expression. J Biol Chem 2005; 280:11544-51. [PMID: 15657039 DOI: 10.1074/jbc.m412935200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In non-mammalian vertebrates, the pineal gland is photoreceptive and contains an intrinsic circadian oscillator that drives rhythmic production and secretion of melatonin. These features require an accurate spatiotemporal expression of an array of specific genes in the pineal gland. Among these is the arylalkylamine N-acetyltransferase, a key enzyme in the melatonin production pathway. In zebrafish, pineal specificity of zfaanat2 is determined by a region designated the pineal-restrictive downstream module (PRDM), which contains three photoreceptor conserved elements (PCEs) and an E-box, elements that are generally associated with photoreceptor-specific and rhythmic expression, respectively. Here, by using in vivo and in vitro approaches, it was found that the PCEs and E-box of the PRDM mediate a synergistic effect of the photoreceptor-specific homeobox OTX5 and rhythmically expressed clock protein heterodimer, BMAL/CLOCK, on zfaanat2 expression. Furthermore, the distance between the PCEs and the E-box was found to be critical for PRDM function, suggesting a possible physical feature of this synergistic interaction. OTX5-BMAL/CLOCK may act through this mechanism to simultaneously control pineal-specific and rhythmic expression of zfaanat2 and possibly also other pineal and retinal genes.
Collapse
Affiliation(s)
- Lior Appelbaum
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | | |
Collapse
|
47
|
Cremona M, Colombo E, Andreazzoli M, Cossu G, Broccoli V. Bsx, an evolutionary conserved Brain Specific homeoboX gene expressed in the septum, epiphysis, mammillary bodies and arcuate nucleus. Gene Expr Patterns 2004; 4:47-51. [PMID: 14678827 DOI: 10.1016/s1567-133x(03)00151-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Shaping and orchestrating the genetic program involved in embryonic modelling of brain structures is a major function played by homeobox containing genes. Recently, analysis of conditional mouse mutants has pointed out additional roles in supporting adult brain functional activities. During a search for novel homeobox genes in the public released genomic sequences derived by the Human and Mouse genome projects, we were able to identify the mouse homologue of the Drosophila brain specific homeobox gene. We named it Bsx and characterized its expression in embryonic and post-natal mouse brain. Interestingly, Bsx shows an expression pattern restricted to a few specific developing brain structures. Pineal gland, telencephalic septum, hypothalamic pre-mammillary body and arcuate nucleus are the only brain structures where we detected Bsx transcriptional activity, which is maintained also after birth. In particular, Bsx might be considered an important molecular marker for early embryonic stages of epiphysis development, being specifically expressed in this neural structure from E9.5 onwards.
Collapse
Affiliation(s)
- Mattia Cremona
- Stem Cell Research Institute, DIBIT, San Raffaele Science Park Via Olgettina 58, Milan 20132, Italy
| | | | | | | | | |
Collapse
|
48
|
Geling A, Plessy C, Rastegar S, Strähle U, Bally-Cuif L. Her5 acts as a prepattern factor that blocks neurogenin1 and coe2 expression upstream of Notch to inhibit neurogenesis at the midbrain-hindbrain boundary. Development 2004; 131:1993-2006. [PMID: 15056616 DOI: 10.1242/dev.01093] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neurogenesis in both vertebrates and invertebrates is tightly controlled in time and space involving both positive and negative regulators. We report here that the bHLH factor Her5 acts as a prepattern gene to prevent neurogenesis in the anlage of the midbrain/hindbrain boundary in the zebrafish neural plate. This involves selective suppression of both neurogenin1(ngn1) and coe2 mRNA expression in a process that is independent of Notch signalling, and where inhibition of either ngn1or coe2 expression is sufficient to prevent neuronal differentiation across the midbrain-hindbrain boundary. A ngn1 transgene faithfully responds to Her5 and deletion analysis of the transgene identifies an E-box in a ngn1 upstream enhancer to be required for repression by Her5. Together our data demonstrate a role of Her5 as a prepattern factor in the spatial definition of proneural domains in the zebrafish neural plate, in a manner similar to its Drosophila homologue Hairy.
Collapse
Affiliation(s)
- Andrea Geling
- Zebrafish Neurogenetics Junior Research Group, Institute of Virology, Technical University-Munich, Trogerstrasse 4b, D-81675 Munich, Germany
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Concha ML, Russell C, Regan JC, Tawk M, Sidi S, Gilmour DT, Kapsimali M, Sumoy L, Goldstone K, Amaya E, Kimelman D, Nicolson T, Gründer S, Gomperts M, Clarke JDW, Wilson SW. Local tissue interactions across the dorsal midline of the forebrain establish CNS laterality. Neuron 2003; 39:423-38. [PMID: 12895418 DOI: 10.1016/s0896-6273(03)00437-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms that establish behavioral, cognitive, and neuroanatomical asymmetries are poorly understood. In this study, we analyze the events that regulate development of asymmetric nuclei in the dorsal forebrain. The unilateral parapineal organ has a bilateral origin, and some parapineal precursors migrate across the midline to form this left-sided nucleus. The parapineal subsequently innervates the left habenula, which derives from ventral epithalamic cells adjacent to the parapineal precursors. Ablation of cells in the left ventral epithalamus can reverse laterality in wild-type embryos and impose the direction of CNS asymmetry in embryos in which laterality is usually randomized. Unilateral modulation of Nodal activity by Lefty1 can also impose the direction of CNS laterality in embryos with bilateral expression of Nodal pathway genes. From these data, we propose that laterality is determined by a competitive interaction between the left and right epithalamus and that Nodal signaling biases the outcome of this competition.
Collapse
Affiliation(s)
- Miguel L Concha
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|