1
|
Afzal Z, Lange JJ, Nolte C, McKinney S, Wood C, Paulson A, De Kumar B, Unruh J, Slaughter BD, Krumlauf R. Shared retinoic acid responsive enhancers coordinately regulate nascent transcription of Hoxb coding and non-coding RNAs in the developing mouse neural tube. Development 2023; 150:dev201259. [PMID: 37102683 PMCID: PMC10233718 DOI: 10.1242/dev.201259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Signaling pathways regulate the patterns of Hox gene expression that underlie their functions in the specification of axial identity. Little is known about the properties of cis-regulatory elements and underlying transcriptional mechanisms that integrate graded signaling inputs to coordinately control Hox expression. Here, we optimized a single molecule fluorescent in situ hybridization (smFISH) technique with probes spanning introns to evaluate how three shared retinoic acid response element (RARE)-dependent enhancers in the Hoxb cluster regulate patterns of nascent transcription in vivo at the level of single cells in wild-type and mutant embryos. We predominately detect nascent transcription of only a single Hoxb gene in each cell, with no evidence for simultaneous co-transcriptional coupling of all or specific subsets of genes. Single and/or compound RARE mutations indicate that each enhancer differentially impacts global and local patterns of nascent transcription, suggesting that selectivity and competitive interactions between these enhancers is important to robustly maintain the proper levels and patterns of nascent Hoxb transcription. This implies that rapid and dynamic regulatory interactions potentiate transcription of genes through combined inputs from these enhancers in coordinating the retinoic acid response.
Collapse
Affiliation(s)
- Zainab Afzal
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Anatomy and Cell Biology Department, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christof Nolte
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christopher Wood
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Anatomy and Cell Biology Department, Kansas University Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Needham J, Metzis V. Heads or tails: Making the spinal cord. Dev Biol 2022; 485:80-92. [DOI: 10.1016/j.ydbio.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/15/2021] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
|
3
|
Godfrey TC, Wildman BJ, Beloti MM, Kemper AG, Ferraz EP, Roy B, Rehan M, Afreen LH, Kim E, Lengner CJ, Hassan Q. The microRNA-23a cluster regulates the developmental HoxA cluster function during osteoblast differentiation. J Biol Chem 2018; 293:17646-17660. [PMID: 30242124 DOI: 10.1074/jbc.ra118.003052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRs) and Hox transcription factors have decisive roles in postnatal bone formation and homeostasis. In silico analysis identified extensive interaction between HOXA cluster mRNA and microRNAs from the miR-23a cluster. However, Hox regulation by the miR-23a cluster during osteoblast differentiation remains undefined. We examined this regulation in preosteoblasts and in a novel miR-23a cluster knockdown mouse model. Overexpression and knockdown of the miR-23a cluster in preosteoblasts decreased and increased, respectively, the expression of the proteins HOXA5, HOXA10, and HOXA11; these proteins' mRNAs exhibited significant binding with the miR-23a cluster miRNAs, and miRNA 3'-UTR reporter assays confirmed repression. Importantly, during periods correlating with development and differentiation of bone cells, we found an inverse pattern of expression between HoxA factors and members of the miR-23a cluster. HOXA5 and HOXA11 bound to bone-specific promoters, physically interacted with transcription factor RUNX2, and regulated bone-specific genes. Depletion of HOXA5 or HOXA11 in preosteoblasts also decreased cellular differentiation. Additionally, stable overexpression of the miR-23a cluster in osteoblasts decreased the recruitment of HOXA5 and HOXA11 to osteoblast gene promoters, significantly inhibiting histone H3 acetylation. Heterozygous miR-23a cluster knockdown female mice (miR-23a ClWT/ZIP) had significantly increased trabecular bone mass when compared with WT mice. Furthermore, miR-23a cluster knockdown in calvarial osteoblasts of these mice increased the recruitment of HOXA5 and HOXA11, with a substantial enrichment of promoter histone H3 acetylation. Taken together, these findings demonstrate that the miR-23a cluster is required for maintaining stage-specific HoxA factor expression during osteogenesis.
Collapse
Affiliation(s)
- Tanner C Godfrey
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Benjamin J Wildman
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Marcio M Beloti
- the School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil, and
| | - Austin G Kemper
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Emanuela P Ferraz
- the School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil, and
| | - Bhaskar Roy
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Mohammad Rehan
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Lubana H Afreen
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Eddy Kim
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Christopher J Lengner
- the Department of Biomedical Sciences, School of Veterinary Medicine, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Quamarul Hassan
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294,
| |
Collapse
|
4
|
MicroRNA filters Hox temporal transcription noise to confer boundary formation in the spinal cord. Nat Commun 2017; 8:14685. [PMID: 28337978 PMCID: PMC5376671 DOI: 10.1038/ncomms14685] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/24/2017] [Indexed: 01/17/2023] Open
Abstract
The initial rostrocaudal patterning of the neural tube leads to differential expression of Hox genes that contribute to the specification of motor neuron (MN) subtype identity. Although several 3' Hox mRNAs are expressed in progenitors in a noisy manner, these Hox proteins are not expressed in the progenitors and only become detectable in postmitotic MNs. MicroRNA biogenesis impairment leads to precocious expression and propagates the noise of Hoxa5 at the protein level, resulting in an imprecise Hoxa5-Hoxc8 boundary. Here we uncover, using in silico simulation, two feed-forward Hox-miRNA loops accounting for the precocious and noisy Hoxa5 expression, as well as an ill-defined boundary phenotype in Dicer mutants. Finally, we identify mir-27 as a major regulator coordinating the temporal delay and spatial boundary of Hox protein expression. Our results provide a novel trans Hox-miRNA circuit filtering transcription noise and controlling the timing of protein expression to confer robust individual MN identity.
Collapse
|
5
|
Guerreiro I, Gitto S, Novoa A, Codourey J, Nguyen Huynh TH, Gonzalez F, Milinkovitch MC, Mallo M, Duboule D. Reorganisation of Hoxd regulatory landscapes during the evolution of a snake-like body plan. eLife 2016; 5. [PMID: 27476854 PMCID: PMC4969037 DOI: 10.7554/elife.16087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/10/2016] [Indexed: 12/15/2022] Open
Abstract
Within land vertebrate species, snakes display extreme variations in their body plan, characterized by the absence of limbs and an elongated morphology. Such a particular interpretation of the basic vertebrate body architecture has often been associated with changes in the function or regulation of Hox genes. Here, we use an interspecies comparative approach to investigate different regulatory aspects at the snake HoxD locus. We report that, unlike in other vertebrates, snake mesoderm-specific enhancers are mostly located within the HoxD cluster itself rather than outside. In addition, despite both the absence of limbs and an altered Hoxd gene regulation in external genitalia, the limb-associated bimodal HoxD chromatin structure is maintained at the snake locus. Finally, we show that snake and mouse orthologous enhancer sequences can display distinct expression specificities. These results show that vertebrate morphological evolution likely involved extensive reorganisation at Hox loci, yet within a generally conserved regulatory framework.
Collapse
Affiliation(s)
- Isabel Guerreiro
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Sandra Gitto
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Ana Novoa
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | - Julien Codourey
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Federico Gonzalez
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Moises Mallo
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | - Denis Duboule
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Mallo M, Alonso CR. The regulation of Hox gene expression during animal development. Development 2013; 140:3951-63. [PMID: 24046316 DOI: 10.1242/dev.068346] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hox genes encode a family of transcriptional regulators that elicit distinct developmental programmes along the head-to-tail axis of animals. The specific regional functions of individual Hox genes largely reflect their restricted expression patterns, the disruption of which can lead to developmental defects and disease. Here, we examine the spectrum of molecular mechanisms controlling Hox gene expression in model vertebrates and invertebrates and find that a diverse range of mechanisms, including nuclear dynamics, RNA processing, microRNA and translational regulation, all concur to control Hox gene outputs. We propose that this complex multi-tiered regulation might contribute to the robustness of Hox expression during development.
Collapse
Affiliation(s)
- Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | |
Collapse
|
7
|
Chen P, Tong XL, Li DD, Liang PF, Fu MY, Li CF, Hu H, Xiang ZH, Lu C, Dai FY. Fine mapping of a supernumerary proleg mutant (E(Cs) -l) and comparative expression analysis of the abdominal-A gene in silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2013; 22:497-504. [PMID: 23803144 DOI: 10.1111/imb.12039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Patterning and phenotypic variations of appendages in insects provide important clues on developmental genetics. In the silkworm Bombyx mori, morphological variations associated with the E complex, an analogue of the Drosophila melanogaster bithorax complex, mainly determine the shape and number of prolegs on abdominal segments. Here, we report the identification and characterization of the allele responsible for the supernumerary crescents and legs-like (E(Cs) -l) mutant, a model derived from spontaneous mutation of the E complex, with supernumerary legs and extra crescents. Fine mapping with 1605 individuals revealed a ∼68 kb sequence in the upstream intergenic region of B. mori abdominal-A (Bmabd-A) clustered with the E(Cs) -l locus. Quantitative real-time PCR (qRT-PCR) and Western blotting analyses disclosed a marked increase in Bmabd-A expression in the E(Cs) -l mutant at both the transcriptional and translational levels, compared to wild-type Dazao. Furthermore, we observed ectopic expression of the Bmabd-A protein in the second abdominal segment (A2) of the E(Cs) -l mutant. Our results collectively suggest that the 68 kb region contains important regulatory elements of the Bmabd-A gene, and provide evidence that the gene is required for limb development in abdominal segments in the silkworm.
Collapse
Affiliation(s)
- P Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Since the last common ancestor of Metazoa, animals have evolved complex body plans with specialized cells and spatial organization of tissues and organs. Arguably, one of the most significant innovations during animal evolutionary history was the establishment of a bilateral plane of symmetry on which morphological features (e.g. tissues, organs, appendages, skeleton) could be given specific coordinates within the animal along the anterior-posterior (A-P) and dorsal-ventral (D-V) axes. Hox genes are a known group of eumetazoan transcription factors central to regulating A-P patterning, but less well known and under current investigation is the broader regulatory landscape incorporating these genes, including microRNA (miRNA) regulation. The degree to which evolutionarily conserved targeting of Hox genes by Hox-embedded miRNAs contributes directly to A-P patterning is under investigation, yielding contrasting information dependent on the organism and miRNA of interest. The widespread A-P patterning defects observed in recent miR-196 loss-of-function studies solidifies the importance of miRNA regulation in Hox genetic hierarchies, and elucidating the developmental and evolutionary importance of all Hox-embedded miRNAs remains a challenge for the future.
Collapse
Affiliation(s)
- Alysha Heimberg
- EMBL Australia, Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, 3800, Australia
| | | |
Collapse
|
9
|
He X, Imanishi S, Sone H, Nagano R, Qin XY, Yoshinaga J, Akanuma H, Yamane J, Fujibuchi W, Ohsako S. Effects of methylmercury exposure on neuronal differentiation of mouse and human embryonic stem cells. Toxicol Lett 2012; 212:1-10. [PMID: 22555245 DOI: 10.1016/j.toxlet.2012.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/13/2012] [Accepted: 04/16/2012] [Indexed: 12/19/2022]
Abstract
The establishment of more efficient in vitro approaches has been widely acknowledged as a critical need for toxicity testing. In this study, we examined the effects of methylmercury (MeHg), which is a well-known developmental neurotoxicant, in two neuronal differentiation systems of mouse and human embryonic stem cells (mESCs and hESCs, respectively). Embryoid bodies were generated from gathering of mESCs and hESCs using a micro-device and seeded onto ornithine-laminin-coated plates to promote proliferation and neuronal differentiation. The cells were exposed to MeHg from the start of neuronal induction until the termination of cultures, and significant reductions of mESCs and hESCs were observed in the cell viability assays at 1,10,100 and 1000nM, respectively. Although the mESC derivatives were more sensitive than the hESC derivatives to MeHg exposure in terms of cell viability, the morphological evaluation demonstrated that the neurite length and branch points of hESC derivatives were more susceptible to a low concentration of MeHg. Then, the mRNA levels of differentiation markers were examined using quantitative RT-PCR analysis and the interactions between MeHg exposure and gene expression levels were visualized using a network model based on a Bayesian algorithm. The Bayesian network analysis showed that a MeHg-node was located on the highest hierarchy in the hESC derivatives, but not in the mESC derivatives, suggesting that MeHg directly affect differentiation marker genes in hESCs. Taken together, effects of MeHg were observed in our neuronal differentiation systems of mESCs and hESCs using a combination of morphological and molecular markers. Our study provided possible, but limited, evidences that human ESC models might be more sensitive in particular endpoints in response to MeHg exposure than that in mouse ESC models. Further investigations that expand on the findings of the present paper may solve problems that occur when the outcomes from laboratory animals are extrapolated for human risk evaluation.
Collapse
Affiliation(s)
- Xiaoming He
- Division of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Three Drosophila Hox complex microRNAs do not have major effects on expression of evolutionarily conserved Hox gene targets during embryogenesis. PLoS One 2012; 7:e31365. [PMID: 22393361 PMCID: PMC3290615 DOI: 10.1371/journal.pone.0031365] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/09/2012] [Indexed: 12/21/2022] Open
Abstract
The discovery of microRNAs has resulted in a major expansion of the number of molecules known to be involved in gene regulation. Elucidating the functions of animal microRNAs has posed a significant challenge as their target interactions with messenger RNAs do not adhere to simple rules. Of the thousands of known animal microRNAs, relatively few microRNA:messenger RNA regulatory interactions have been biologically validated in an normal organismal context. Here we present evidence that three microRNAs from the Hox complex in Drosophila (miR-10-5p, miR-10-3p, miR-iab-4-5p) do not have significant effects during embryogenesis on the expression of Hox genes that contain high confidence microRNAs target sites in the 3′ untranslated regions of their messenger RNAs. This is significant, in that it suggests that many predicted microRNA-target interactions may not be biologically relevant, or that the outcomes of these interactions may be so subtle that mutants may only show phenotypes in specific contexts, such as in environmental stress conditions, or in combinations with other microRNA mutations.
Collapse
|
11
|
Mansfield JH, McGlinn E. Evolution, Expression, and Developmental Function of Hox-Embedded miRNAs. Curr Top Dev Biol 2012; 99:31-57. [DOI: 10.1016/b978-0-12-387038-4.00002-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Kondrashov N, Pusic A, Stumpf CR, Shimizu K, Hsieh AC, Ishijima J, Shiroishi T, Barna M. Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 2011; 145:383-397. [PMID: 21529712 DOI: 10.1016/j.cell.2011.03.028] [Citation(s) in RCA: 434] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 10/16/2010] [Accepted: 03/15/2011] [Indexed: 12/27/2022]
Abstract
Historically, the ribosome has been viewed as a complex ribozyme with constitutive rather than regulatory capacity in mRNA translation. Here we identify mutations of the Ribosomal Protein L38 (Rpl38) gene in mice exhibiting surprising tissue-specific patterning defects, including pronounced homeotic transformations of the axial skeleton. In Rpl38 mutant embryos, global protein synthesis is unchanged; however the translation of a select subset of Homeobox mRNAs is perturbed. Our data reveal that RPL38 facilitates 80S complex formation on these mRNAs as a regulatory component of the ribosome to confer transcript-specific translational control. We further show that Rpl38 expression is markedly enriched in regions of the embryo where loss-of-function phenotypes occur. Unexpectedly, a ribosomal protein (RP) expression screen reveals dynamic regulation of individual RPs within the vertebrate embryo. Collectively, these findings suggest that RP activity may be highly regulated to impart a new layer of specificity in the control of gene expression and mammalian development.
Collapse
Affiliation(s)
- Nadya Kondrashov
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, San Francisco, San Francisco, California
| | - Aya Pusic
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, San Francisco, San Francisco, California
| | - Craig R Stumpf
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, San Francisco, San Francisco, California
| | - Kunihiko Shimizu
- Department of Pediatric Dentistry, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan.,Mammalian Genetics Laboratory, National Institute of Genetics, Mishima Shizuoka-ken 411-8540, Japan
| | - Andrew C Hsieh
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, San Francisco, San Francisco, California.,Division of Hematology/Oncology, University of California, San Francisco, San Francisco, California
| | - Junko Ishijima
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima Shizuoka-ken 411-8540, Japan
| | - Toshihiko Shiroishi
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima Shizuoka-ken 411-8540, Japan
| | - Maria Barna
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, San Francisco, San Francisco, California
| |
Collapse
|
13
|
Mansfield JH, Abzhanov A. Hox expression in the American alligator and evolution of archosaurian axial patterning. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 314:629-44. [PMID: 20623505 DOI: 10.1002/jez.b.21364] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The avian body plan has undergone many modifications, most associated with adaptation to flight and bipedal walking. Some of these modifications may be owing to avian-specific changes in the embryonic Hox expression code. Here, we have examined Hox expression in alligator, the closest living relative of birds, and an archosaur with a more conservative body plan. Two differences in Hox expression between chick, alligator, and other tetrapods correlate with aspects of alligator or bird-specific skeletal morphology. First, absence of a thoracic subdomain of Hoxc-8 expression in alligator correlates with morphological adaptations in crocodilian thoracic segments. Second, Hoxa-5, a gene required to pattern the cervical-thoracic transition, shows unique patterns of expression in chick, alligator, and mouse, correlating with species-specific morphological patterning of this region. Given that cervical vertebral morphologies evolved independently in the bird and mammalian lineages, the underlying developmental mechanisms, including refinement of Hox expression domains, may be distinct.
Collapse
Affiliation(s)
- Jennifer H Mansfield
- Department of Biological Sciences, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, USA.
| | | |
Collapse
|
14
|
Hoxb4-YFP reporter mouse model: a novel tool for tracking HSC development and studying the role of Hoxb4 in hematopoiesis. Blood 2011; 117:3521-8. [DOI: 10.1182/blood-2009-12-253989] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Hoxb4 overexpression promotes dramatic expansion of bone marrow (BM) hematopoietic stem cells (HSCs) without leukemic transformation and induces development of definitive HSCs from early embryonic yolk sac and differentiating embryonic stem cells. Knockout studies of Hoxb4 showed little effect on hematopoiesis, but interpretation of these results is obscured by the lack of direct evidence that Hoxb4 is expressed in HSCs and possible compensatory effects of other (Hox) genes. To evaluate accurately the pattern of Hoxb4 expression and to gain a better understanding of the physiologic role of Hoxb4 in the hemato-poietic system, we generated a knock-in Hoxb4–yellow fluorescent protein (YFP) reporter mouse model. We show that BM Lin−Sca1+c-Kit+ cells express Hoxb4-YFP and demonstrate functionally in the long-term repopulation assay that definitive HSCs express Hoxb4. Similarly, aorta-gonad-mesonephrous–derived CD45+CD144+ cells, enriched for HSCs, express Hoxb4. Furthermore, yolk sac and placental HSC populations express Hoxb4. Unexpectedly, Hoxb4 expression in the fetal liver HSCs is lower than in the BM, reaching negligible levels in some HSCs, suggesting an insignificant role of Hoxb4 in expansion of fetal liver HSCs. Hoxb4 expression therefore would not appear to correlate with the cycling status of fetal liver HSCs, although highly proliferative HSCs from young BM show strong Hoxb4 expression.
Collapse
|
15
|
Sturgeon K, Kaneko T, Biemann M, Gauthier A, Chawengsaksophak K, Cordes SP. Cdx1 refines positional identity of the vertebrate hindbrain by directly repressing Mafb expression. Development 2010; 138:65-74. [PMID: 21098558 DOI: 10.1242/dev.058727] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An interplay of transcription factors interprets signalling pathways to define anteroposterior positions along the vertebrate axis. In the hindbrain, these transcription factors prompt the position-appropriate appearance of seven to eight segmental structures, known as rhombomeres (r1-r8). The evolutionarily conserved Cdx caudal-type homeodomain transcription factors help specify the vertebrate trunk and tail but have not been shown to directly regulate hindbrain patterning genes. Mafb (Kreisler, Krml1, valentino), a basic domain leucine zipper transcription factor, is required for development of r5 and r6 and is the first gene to show restricted expression within these two segments. The homeodomain protein vHnf1 (Hnf1b) directly activates Mafb expression. vHnf1 and Mafb share an anterior expression limit at the r4/r5 boundary but vHnf1 expression extends beyond the posterior limit of Mafb and, therefore, cannot establish the posterior Mafb expression boundary. Upon identifying regulatory sequences responsible for posterior Mafb repression, we have used in situ hybridization, immunofluorescence and chromatin immunoprecipitation (ChIP) analyses to determine that Cdx1 directly inhibits early Mafb expression in the neural tube posterior of the r6/r7 boundary, which is the anteriormost boundary of Cdx1 expression in the hindbrain. Cdx1 dependent repression of Mafb is transient. After the 10-somite stage, another mechanism acts to restrict Mafb expression in its normal r5 and r6 domain, even in the absence of Cdx1. Our findings identify Mafb as one of the earliest direct targets of Cdx1 and show that Cdx1 plays a direct role in early hindbrain patterning. Thus, just as Cdx2 and Cdx4 govern the trunk-to-tail transition, Cdx1 may regulate the hindbrain-to-spinal cord transition.
Collapse
Affiliation(s)
- Kendra Sturgeon
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Moreno E, De Mulder K, Salvenmoser W, Ladurner P, Martínez P. Inferring the ancestral function of the posterior Hox gene within the bilateria: controlling the maintenance of reproductive structures, the musculature and the nervous system in the acoel flatworm Isodiametra pulchra. Evol Dev 2010; 12:258-66. [PMID: 20565536 DOI: 10.1111/j.1525-142x.2010.00411.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Molecular phylogenies place the acoel flatworms as the sister-group to the remaining Bilateria, a position that should prove very valuable when trying to understand the evolutionary origins of the bilaterian body plan. A major feature characterizing Bilateria is the presence of two, orthogonal, body axis. In this article we aim at tackling the problem of how the bilaterian anterior-posterior (AP) axis is organized, and how this axis have been established over evolutionary time. To this purpose we have studied the role of some key regulatory genes involved in the control of the AP axis, the Hox family of transcription factors. All acoels studied to date contain a minimal complement of three Hox genes that are all expressed in nested domains along this major axis, providing the oldest evidence for a "Hox vectorial system" working in Bilateria. However, this proposition is not based in the analysis of Hox functions. Here we document the specific roles of one posterior Hox gene, IpHoxPost, in the postembryonic development of the acoel Isodiametra pulchra. The analysis has been done using RNA interference technologies, for the first time in acoels, and we demonstrate that the functions of this gene are restricted to the posterior region of the animal, within the muscular and neural tissues. We conclude, therefore, that the posterior Hox genes were used to specify and maintain defined anatomical regions within the AP axis of animals since the beginning of bilaterian evolution.
Collapse
Affiliation(s)
- Eduardo Moreno
- Departament de Genètica, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
17
|
Barth JL, Clark CD, Fresco VM, Knoll EP, Lee B, Argraves WS, Lee KH. Jarid2 is among a set of genes differentially regulated by Nkx2.5 during outflow tract morphogenesis. Dev Dyn 2010; 239:2024-33. [PMID: 20549724 DOI: 10.1002/dvdy.22341] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nkx2.5, a transcription factor implicated in human congenital heart disease, is required for regulation of second heart field (SHF) progenitors contributing to outflow tract (OFT). Here, we define a set of genes (Lrrn1, Elovl2, Safb, Slc39a6, Khdrbs1, Hoxb4, Fez1, Ccdc117, Jarid2, Nrcam, and Enpp3) expressed in SHF containing pharyngeal arch tissue whose regulation is dependent on Nkx2.5. Further investigation shows that Jarid2, which has been implicated in OFT morphogenesis, is a direct target of Nkx2.5 regulation. Jarid2 expression was up-regulated in SHF mesoderm of Nkx2.5-deficient embryos. Chromatin immunoprecipitation analysis showed Nkx2.5 interaction with consensus binding sites in the Jarid2 promoter in pharyngeal arch cells. Finally, Jarid2 promoter activity and mRNA expression levels were down-regulated by Nkx2.5 overexpression. Given the role of Jarid2 as a regulator of early cardiac proliferation, these findings highlight Jarid2 as one of several potential mediators of the critical role played by Nkx2.5 during OFT morphogenesis.
Collapse
Affiliation(s)
- Jeremy L Barth
- Regenerative Medicine and Cell Biology Department, Medical University of South Carolina,173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Coulombe Y, Lemieux M, Moreau J, Aubin J, Joksimovic M, Bérubé-Simard FA, Tabariès S, Boucherat O, Guillou F, Larochelle C, Tuggle CK, Jeannotte L. Multiple promoters and alternative splicing: Hoxa5 transcriptional complexity in the mouse embryo. PLoS One 2010; 5:e10600. [PMID: 20485555 PMCID: PMC2868907 DOI: 10.1371/journal.pone.0010600] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/13/2010] [Indexed: 12/28/2022] Open
Abstract
Background The genomic organization of Hox clusters is fundamental for the precise spatio-temporal regulation and the function of each Hox gene, and hence for correct embryo patterning. Multiple overlapping transcriptional units exist at the Hoxa5 locus reflecting the complexity of Hox clustering: a major form of 1.8 kb corresponding to the two characterized exons of the gene and polyadenylated RNA species of 5.0, 9.5 and 11.0 kb. This transcriptional intricacy raises the question of the involvement of the larger transcripts in Hox function and regulation. Methodology/Principal Findings We have undertaken the molecular characterization of the Hoxa5 larger transcripts. They initiate from two highly conserved distal promoters, one corresponding to the putative Hoxa6 promoter, and a second located nearby Hoxa7. Alternative splicing is also involved in the generation of the different transcripts. No functional polyadenylation sequence was found at the Hoxa6 locus and all larger transcripts use the polyadenylation site of the Hoxa5 gene. Some larger transcripts are potential Hoxa6/Hoxa5 bicistronic units. However, even though all transcripts could produce the genuine 270 a.a. HOXA5 protein, only the 1.8 kb form is translated into the protein, indicative of its essential role in Hoxa5 gene function. The Hoxa6 mutation disrupts the larger transcripts without major phenotypic impact on axial specification in their expression domain. However, Hoxa5-like skeletal anomalies are observed in Hoxa6 mutants and these defects can be explained by the loss of expression of the 1.8 kb transcript. Our data raise the possibility that the larger transcripts may be involved in Hoxa5 gene regulation. Significance Our observation that the Hoxa5 larger transcripts possess a developmentally-regulated expression combined to the increasing sum of data on the role of long noncoding RNAs in transcriptional regulation suggest that the Hoxa5 larger transcripts may participate in the control of Hox gene expression.
Collapse
Affiliation(s)
- Yan Coulombe
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cis-regulatory characterization of sequence conservation surrounding the Hox4 genes. Dev Biol 2010; 340:269-82. [PMID: 20144609 DOI: 10.1016/j.ydbio.2010.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 01/17/2010] [Accepted: 01/30/2010] [Indexed: 01/30/2023]
Abstract
Hox genes are key regulators of anterior-posterior axis patterning and have a major role in hindbrain development. The zebrafish Hox4 paralogs have strong overlapping activities in hindbrain rhombomeres 7 and 8, in the spinal cord and in the pharyngeal arches. With the aim to predict enhancers that act on the hoxa4a, hoxb4a, hoxc4a and hoxd4a genes, we used sequence conservation around the Hox4 genes to analyze all fish:human conserved non-coding sequences by reporter assays in stable zebrafish transgenesis. Thirty-four elements were functionally tested in GFP reporter gene constructs and more than 100 F1 lines were analyzed to establish a correlation between sequence conservation and cis-regulatory function, constituting a catalog of Hox4 CNEs. Sixteen tissue-specific enhancers could be identified. Multiple alignments of the CNEs revealed paralogous cis-regulatory sequences, however, the CNE sequence similarities were found not to correlate with tissue specificity. To identify ancestral enhancers that direct Hox4 gene activity, genome sequence alignments of mammals, teleosts, horn shark and the cephalochordate amphioxus, which is the most basal extant chordate possessing a single prototypical Hox cluster, were performed. Three elements were identified and two of them exhibited regulatory activity in transgenic zebrafish, however revealing no specificity. Our data show that the approach to identify cis-regulatory sequences by genome sequence alignments and subsequent testing in zebrafish transgenesis can be used to define enhancers within the Hox clusters and that these have significantly diverged in their function during evolution.
Collapse
|
20
|
Villaescusa JC, Buratti C, Penkov D, Mathiasen L, Planagumà J, Ferretti E, Blasi F. Cytoplasmic Prep1 interacts with 4EHP inhibiting Hoxb4 translation. PLoS One 2009; 4:e5213. [PMID: 19365557 PMCID: PMC2664923 DOI: 10.1371/journal.pone.0005213] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 03/19/2009] [Indexed: 11/18/2022] Open
Abstract
Background Homeobox genes are essential for embryonic patterning and cell fate determination. They are regulated mostly at the transcriptional level. In particular, Prep1 regulates Hox transcription in association with Pbx proteins. Despite its nuclear role as a transcription factor, Prep1 is located in the cytosol of mouse oocytes from primary to antral follicles. The homeodomain factor Bicoid (Bcd) has been shown to interact with 4EHP (eukaryotic translation initiation factor 4E homolog protein) to repress translation of Caudal mRNA and to drive Drosophila embryo development. Interestingly, Prep1 contains a putative binding motif for 4EHP, which may reflect a novel unknown function. Methodology/Principal Findings In this paper we show by confocal microscopy and deconvolution analysis that Prep1 and 4EHP co-localize in the cytosol of growing mouse oocytes, demonstrating their interaction by co-immunoprecipitation and pull-down experiments. A functional 4EHP-binding motif present in Prep1 has been also identified by mutagenesis analysis. Moreover, Prep1 inhibits (>95%) the in vitro translation of a luciferase reporter mRNA fused to the Hoxb4 3′UTR, in the presence of 4EHP. RNA electrophoretic mobility shift assay was used to demonstrate that Prep1 binds the Hoxb4 3′UTR. Furthermore, conventional histology and immunohistochemistry has shown a dramatic oocyte growth failure in hypomorphic mouse Prep1i/i females, accompanied by an increased production of Hoxb4. Finally, Hoxb4 overexpression in mouse zygotes showed a slow in vitro development effect. Conclusions Prep1 has a novel cytoplasmic, 4EHP-dependent, function in the regulation of translation. Mechanistically, the Prep1-4EHP interaction might bridge the 3′UTR of Hoxb4 mRNA to the 5′ cap structure. This is the first demonstration that a mammalian homeodomain transcription factor regulates translation, and that this function can be possibly essential for the development of female germ cells and involved in mammalian zygote development.
Collapse
Affiliation(s)
| | | | - Dmitry Penkov
- IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
| | - Lisa Mathiasen
- IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
| | - Jesús Planagumà
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Elisabetta Ferretti
- Laboratory of Molecular Genetics, San Raffaele Scientific Institute and Università Vita Salute San Raffaele, Milano, Italy
| | - Francesco Blasi
- IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
- Laboratory of Molecular Genetics, San Raffaele Scientific Institute and Università Vita Salute San Raffaele, Milano, Italy
- * E-mail:
| |
Collapse
|
21
|
Abstract
Homeobox (Hox) transcription factors confer anterior-posterior (AP) axial coordinates to vertebrate embryos. Hox genes are found in clusters that also contain genes for microRNAs (miRNAs). Our analysis of predicted miRNA targets indicates that Hox cluster-embedded miRNAs preferentially target Hox mRNAs. Moreover, the presumed Hox target genes are predominantly situated on the 3' side of each Hox miRNA locus. These results suggest that Hox miRNAs help repress more anterior programmes, thereby reinforcing posterior prevalence, which is the hierarchical dominance of posterior over anterior Hox gene function that is observed in bilaterians. In this way, miRNA-mediated regulation seems to recapitulate interactions at other levels of gene expression, some more ancestral, within a network under stabilizing selection.
Collapse
|
22
|
Shen HCJ, Rosen JE, Yang LM, Savage SA, Burns AL, Mateo CM, Agarwal SK, Chandrasekharappa SC, Spiegel AM, Collins FS, Marx SJ, Libutti SK. Parathyroid tumor development involves deregulation of homeobox genes. Endocr Relat Cancer 2008; 15:267-75. [PMID: 18310293 PMCID: PMC3133970 DOI: 10.1677/erc-07-0191] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant syndrome caused by mutations in the MEN1 tumor suppressor gene. Loss of the functional second copy of the MEN1 gene causes individuals to develop multiple endocrine tumors, primarily affecting the parathyroid, pituitary, and pancreas. While it is clear that the protein encoded by MEN1, menin, suppresses endocrine tumors, its biochemical functions and direct downstream targets remain unclear. Recent studies have suggested that menin may act as a scaffold protein to coordinate gene transcription, and that menin is an oncogenic cofactor for homeobox (HOX) gene expression in hematopoietic cancer. The role of HOX genes in adult cell differentiation is still obscure, but growing evidence suggests that they may play important roles in the development of cancer. Therefore, we hypothesized that specific HOX genes were regulated by menin in parathyroid tumor development. Utilizing quantitative TaqMan RT-PCR, we compared expression profiles of the 39 HOX genes in human familial MEN1 (fMEN1) parathyroid tumors and sporadic parathyroid adenomas with normal samples. We identified a large set of 23 HOX genes whose deregulation is specific for fMEN1 parathyroid tumors, and only 5 HOX genes whose misexpression are specific for sporadic parathyroid tumor development. These findings provide the first evidence that loss of the MEN1 tumor suppressor gene is associated with deregulation of specific HOX gene expression in the development of familial human parathyroid tumors. Our results strongly reinforce the idea that abnormal expression of developmental HOX genes can be critical in human cancer progression.
Collapse
Affiliation(s)
- H-C Jennifer Shen
- Tumor Angiogenesis Section, Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The axial skeleton in all vertebrates is composed of similar components that extend from anterior to posterior along the body axis: the occipital skull bones and cervical, thoracic, lumbar, sacral, and caudal vertebrae. Despite significant changes in the number and size of these elements during evolution, the basic character of these anatomical elements, as well as the order in which they appear in vertebrate skeletons, have remained remarkably similar. Through extensive expression analyses, classic morphological perturbation experiments in chicken and targeted loss-of-function analyses in mice, Hox genes have proven to be critical regulators in the establishment of axial skeleton morphology. The convergence of these studies to date allows an emerging understanding of Hox gene function in patterning the vertebrate axial skeleton. This review summarizes genetic and embryologic findings regarding the role of Hox genes in establishing axial morphology and how these combined results impact our current understanding of the vertebrate Hox code.
Collapse
Affiliation(s)
- Deneen M Wellik
- University of Michigan Medical Center, Department of Internal Medicine, Division of Molecular Medicine & Genetics, and Department of Cell and Developmental Biology, Ann Arbor, Michigan 48109-2200, USA.
| |
Collapse
|
24
|
Taylor KH, Taylor JF, White SN, Womack JE. Identification of genetic variation and putative regulatory regions in bovine CARD15. Mamm Genome 2006; 17:892-901. [PMID: 16897345 DOI: 10.1007/s00335-005-0148-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 04/05/2006] [Indexed: 11/30/2022]
Abstract
Mutations in caspase recruitment domain 15 (CARD15) are associated with susceptibility to Crohn's disease and Blau Syndrome. We performed comparative analyses of the bovine, murine, and human CARD15 transcripts to elucidate functionality of bovine CARD15 and examine its potential role in bovine disease resistance. Comparative analyses of intronic sequence across seven divergent species were performed to identify putative regulatory element binding motifs. High levels of interspecies conservation in sequence, genomic structure, and protein domains were detected indicating common functionality for CARD15 in cattle, human, and mouse. We identified species-specific regulatory elements in the 5' and 3' untranslated regions, suggesting that modes of regulation may have diverged across species. Thirty-one conserved putative regulatory element binding motifs were identified in the CARD15 intronic sequence of seven species. To assess the extent of genetic diversity within bovine CARD15, 41 individuals from two subspecies were sequenced and screened for polymorphisms. Thirty-six single nucleotide polymorphisms (SNPs) were identified. Finally, 20 subspecies-specific haplotypes were predicted with 7 and 13 unique haplotypes explaining the diversity within B. taurus taurus and B. taurus indicus animals, respectively. Strong evidence for a simple causal relationship between these SNP loci and their haplotypes with Johne's disease was not detected.
Collapse
Affiliation(s)
- Kristen H Taylor
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467, USA
| | | | | | | |
Collapse
|
25
|
Kobrossy L, Rastegar M, Featherstone M. Interplay between chromatin and trans-acting factors regulating the Hoxd4 promoter during neural differentiation. J Biol Chem 2006; 281:25926-39. [PMID: 16757478 DOI: 10.1074/jbc.m602555200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Correct patterning of the antero-posterior axis of the embryonic trunk is dependent on spatiotemporally restricted Hox gene expression. In this study, we identified components of the Hoxd4 P1 promoter directing expression in neurally differentiating retinoic acid-treated P19 cells. We mapped three nucleosomes that are subsequently remodeled into an open chromatin state upon retinoic acid-induced Hoxd4 transcription. These nucleosomes spanned the Hoxd4 transcriptional start site in addition to a GC-rich positive regulatory element located 3' to the initiation site. We further identified two major cis-acting regulatory elements. An autoregulatory element was shown to recruit HOXD4 and its cofactor PBX1 and to positively regulate Hoxd4 expression in differentiating P19 cells. Conversely, the Polycomb group (PcG) protein Ying-Yang 1 (YY1) binds to an internucleosomal linker and represses Hoxd4 transcription before and during transcriptional activation. Sequential chromatin immunoprecipitation studies revealed that the PcG protein MEL18 was co-recruited with YY1 only in undifferentiated P19 cells, suggesting a role for MEL18 in silencing Hoxd4 transcription in undifferentiated P19 cells. This study links for the first time local chromatin remodeling events that take place during transcriptional activation with the dynamics of transcription factor association and DNA accessibility at a Hox regulatory region.
Collapse
Affiliation(s)
- Laila Kobrossy
- McGill Cancer Centre, McGill University, Montréal, Québec H3G 1Y6 Canada
| | | | | |
Collapse
|
26
|
Pearson JC, Lemons D, McGinnis W. Modulating Hox gene functions during animal body patterning. Nat Rev Genet 2006; 6:893-904. [PMID: 16341070 DOI: 10.1038/nrg1726] [Citation(s) in RCA: 623] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With their power to shape animal morphology, few genes have captured the imagination of biologists as the evolutionarily conserved members of the Hox clusters have done. Recent research has provided new insight into how Hox proteins cause morphological diversity at the organismal and evolutionary levels. Furthermore, an expanding collection of sequences that are directly regulated by Hox proteins provides information on the specificity of target-gene activation, which might allow the successful prediction of novel Hox-response genes. Finally, the recent discovery of microRNA genes within the Hox gene clusters indicates yet another level of control by Hox genes in development and evolution.
Collapse
Affiliation(s)
- Joseph C Pearson
- Section in Cell & Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
27
|
Hadrys T, Punnamoottil B, Pieper M, Kikuta H, Pezeron G, Becker TS, Prince V, Baker R, Rinkwitz S. Conserved co-regulation and promoter sharing of hoxb3a and hoxb4a in zebrafish. Dev Biol 2006; 297:26-43. [PMID: 16860306 DOI: 10.1016/j.ydbio.2006.04.446] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 03/16/2006] [Accepted: 04/12/2006] [Indexed: 10/24/2022]
Abstract
The expression of zebrafish hoxb3a and hoxb4a has been found to be mediated through five transcripts, hoxb3a transcripts I-III and hoxb4a transcripts I-II, driven by four promoters. A "master" promoter, located about 2 kb downstream of hoxb5a, controls transcription of a pre-mRNA comprising exon sequences of both genes. This unique gene structure is proposed to provide a novel mechanism to ensure overlapping, tissue-specific expression of both genes in the posterior hindbrain and spinal cord. Transgenic approaches were used to analyze the functions of zebrafish hoxb3a/hoxb4a promoters and enhancer sequences containing regions of homology that were previously identified by comparative genomics. Two neural enhancers were shown to establish specific anterior expression borders within the hindbrain and mediate expression in defined neuronal populations derived from hindbrain rhombomeres (r) 5 to 8, suggesting a late role of the genes in neuronal cell lineage specification. Species comparison showed that the zebrafish hoxb3a r5 and r6 enhancer corresponded to a sequence within the mouse HoxA cluster controlling activity of Hoxa3 in r5 and r6, whereas a homologous region within the HoxB cluster activated Hoxb3 expression but limited to r5. We conclude that the similarity of hoxb3a/Hoxa3 regulatory mechanisms reflect the shared descent of both genes from a single ancestral paralog group 3 gene.
Collapse
Affiliation(s)
- Thorsten Hadrys
- Department of Physiology and Neuroscience, NYU Medical School, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bijl J, Thompson A, Ramirez-Solis R, Krosl J, Grier DG, Lawrence HJ, Sauvageau G. Analysis of HSC activity and compensatory Hox gene expression profile in Hoxb cluster mutant fetal liver cells. Blood 2005; 108:116-22. [PMID: 16339407 PMCID: PMC1895826 DOI: 10.1182/blood-2005-06-2245] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Overexpression of Hoxb4 in bone marrow cells promotes expansion of hematopoietic stem cell (HSC) populations in vivo and in vitro, indicating that this homeoprotein can activate the genetic program that determines self-renewal. However, this function cannot be solely attributed to Hoxb4 because Hoxb4(-/-) mice are viable and have an apparently normal HSC number. Quantitative polymerase chain reaction analysis showed that Hoxb4(-/-) c-Kit+ fetal liver cells expressed moderately higher levels of several Hoxb cluster genes than control cells, raising the possibility that normal HSC activity in Hoxb4(-/-) mice is due to a compensatory up-regulation of other Hoxb genes. In this study, we investigated the competitive repopulation potential of HSCs lacking Hoxb4 alone, or in conjunction with 8 other Hoxb genes. Our results show that Hoxb4(-/-) and Hoxb1-b9 (-/-) fetal liver cells retain full competitive repopulation potential and the ability to regenerate all myeloid and lymphoid lineages. Quantitative Hox gene expression profiling in purified c-Kit+ Hoxb1-b9(-/-) fetal liver cells revealed an interaction between the Hoxa, b, and c clusters with variation in expression levels of Hoxa4,-a11, and -c4.Together, these studies show a complex network of genetic interactions between several Hox genes in primitive hematopoietic cells and demonstrate that HSCs lacking up to 30% of the active Hox genes remain fully competent.
Collapse
Affiliation(s)
- Janet Bijl
- Laboratory of Molecular Genetics of Stem cells, Institute for Research in Lmmunology and Cancer (IRIC), Montréal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Joksimovic M, Jeannotte L, Tuggle CK. Dynamic expression of murine HOXA5 protein in the central nervous system. Gene Expr Patterns 2005; 5:792-800. [PMID: 15922675 DOI: 10.1016/j.modgep.2005.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 02/28/2005] [Accepted: 03/28/2005] [Indexed: 12/20/2022]
Abstract
The Hox genes encode transcription factors that are indispensable for proper spatio-temporal patterning of the vertebrate body axes. As for other Hox genes, region-specific expression of Hoxa5 appears to be important for correct function during development. In mouse, Hoxa5 transcripts are differentially expressed in specific mesoderm-derived structures and in the most anterior domain of expression in the central nervous system (CNS), in contrast to indistinct patterns seen in the posterior CNS. However, the functional significance of any pattern of protein-coding RNAs must be verified by correlating the presence of the protein(s) and RNAs. Here, we describe the dynamic pattern of HOXA5 protein during mouse embryogenesis. The HOXA5 protein is detected as early as embryonic day (E) 9.0, and is found, as development proceeds, in several mesoderm-derived structures such as prevertebrae (pv), proximal forelimb bud, scapula, lung, trachea, and gut. In addition, the protein shows a strikingly restricted and dynamic expression pattern in the developing CNS, and is detected in both motor neurons and interneurons between E10.5 and E13.5. Moreover, this CNS region-specific HOXA5 protein pattern is more restricted than the pattern observed for the Hoxa5 transcripts. In many mesoderm-derived tissues affected by the Hoxa5 mutation, the expression pattern of HOXA5 protein corresponds to that of the putative functional Hoxa5 transcript. However, in the CNS, this correlation is exclusively demonstrated in the most anterior domain of expression. Overall, the HOXA5 protein pattern is consistent with its proposed role in positional specification in mesodermal structures, as well as in the embryonic neuraxis.
Collapse
Affiliation(s)
- Milan Joksimovic
- Interdepartmental Genetics and Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA 50011, USA
| | | | | |
Collapse
|
30
|
Deschamps J, van Nes J. Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development 2005; 132:2931-42. [PMID: 15944185 DOI: 10.1242/dev.01897] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Hox genes confer positional information to the axial and paraxial tissues as they emerge gradually from the posterior aspect of the vertebrate embryo. Hox genes are sequentially activated in time and space, in a way that reflects their organisation into clusters in the genome. Although this co-linearity of expression of the Hox genes has been conserved during evolution, it is a phenomenon that is still not understood at the molecular level. This review aims to bring together recent findings that have advanced our understanding of the regulation of the Hox genes during mouse embryonic development. In particular, we highlight the integration of these transducers of anteroposterior positional information into the genetic network that drives tissue generation and patterning during axial elongation.
Collapse
Affiliation(s)
- Jacqueline Deschamps
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | | |
Collapse
|
31
|
Akin ZN, Nazarali AJ. Hox genes and their candidate downstream targets in the developing central nervous system. Cell Mol Neurobiol 2005; 25:697-741. [PMID: 16075387 DOI: 10.1007/s10571-005-3971-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 04/14/2004] [Indexed: 12/14/2022]
Abstract
1. Homeobox (Hox) genes were originally discovered in the fruit fly Drosophila, where they function through a conserved homeodomain as transcriptional regulators to control embryonic morphogenesis. Since then over 1000 homeodomain proteins have been identified in several species. In vertebrates, 39 Hox genes have been identified as homologs of the original Drosophila complex, and like their Drosophila counterparts they are organized within chromosomal clusters. Vertebrate Hox genes have also been shown to play a critical role in embryonic development as transcriptional regulators. 2. Both the Drosophila and vertebrate Hox genes have been shown to interact with various cofactors, such as the TALE homeodomain proteins, in recognition of consensus sequences within regulatory elements of their target genes. These protein-protein interactions are believed to contribute to enhancing the specificity of target gene recognition in a cell-type or tissue- dependent manner. The regulatory activity of a particular Hox protein on a specific regulatory element is highly variable and dependent on its interacting partners within the transcriptional complex. 3. In vertebrates, Hox genes display spatially restricted patterns of expression within the developing CNS, both along the anterioposterior and dorsoventral axis of the embryo. Their restricted gene expression is suggestive of a regulatory role in patterning of the CNS, as well as in cell specification. Determining the precise function of individual Hox genes in CNS morphogenesis through classical mutational analyses is complicated due to functional redundancy between Hox genes. 4. Understanding the precise mechanisms through which Hox genes mediate embryonic morphogenesis requires the identification of their downstream target genes. Although Hox genes have been implicated in the regulation of several pathways, few target genes have been shown to be under their direct regulatory control. Development of methodologies used for the isolation of target genes and for the analysis of putative targets will be beneficial in establishing the genetic pathways controlled by Hox factors. 5. Within the developing CNS various cell adhesion molecules and signaling molecules have been identified as candidate downstream target genes of Hox proteins. These targets play a role in processes such as cell migration and differentiation, and are implicated in contributing to neuronal processes such as plasticity and/or specification. Hence, Hox genes not only play a role in patterning of the CNS during early development, but may also contribute to cell specification and identity.
Collapse
Affiliation(s)
- Z N Akin
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada
| | | |
Collapse
|
32
|
Haines BP, Gupta R, Jones CM, Summerbell D, Rigby PWJ. The NLRR gene family and mouse development: Modified differential display PCR identifies NLRR-1 as a gene expressed in early somitic myoblasts. Dev Biol 2005; 281:145-59. [PMID: 15893969 DOI: 10.1016/j.ydbio.2005.01.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 01/27/2005] [Accepted: 01/30/2005] [Indexed: 01/08/2023]
Abstract
During vertebrate embryogenesis, the somites form by segmentation of the trunk mesoderm, lateral to the neural tube, in an anterior to posterior direction. Analysis of differential gene expression during somitogenesis has been problematic due to the limited amount of tissue available from early mouse embryos. To circumvent these problems, we developed a modified differential display PCR technique that is highly sensitive and yields products that can be used directly as in situ hybridisation probes. Using this technique, we isolated NLRR-1 as a gene expressed in the myotome of developing somites but not in the presomitic mesoderm. Detailed expression analysis showed that this gene was expressed in the skeletal muscle precursors of the myotome, branchial arches and limbs as well as in the developing nervous system. Somitic expression occurs in the earliest myoblasts that originate from the dorsal lip in a pattern reminiscent of the muscle determination gene Myf5, but not at the ventral lip, indicating that NLRR-1 is expressed in a subset of myotome cells. The NLRR genes comprise a three-gene family encoding glycosylated transmembrane proteins with external leucine-rich repeats, a fibronectin domain, an immunoglobulin domain and short intracellular tails capable of mediating protein-protein interaction. Analysis of NLRR-3 expression revealed regulated expression in the neural system in developing ganglia and motor neurons. NLRR-2 expression appears to be predominately confined to the adult. The regulated embryonic expression and cellular location of these proteins suggest important roles during mouse development in the control of cell adhesion, movement or signalling.
Collapse
Affiliation(s)
- Bryan P Haines
- Section of Gene Function and Regulation, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | |
Collapse
|
33
|
Soulier J, Clappier E, Cayuela JM, Regnault A, García-Peydró M, Dombret H, Baruchel A, Toribio ML, Sigaux F. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005; 106:274-86. [PMID: 15774621 DOI: 10.1182/blood-2004-10-3900] [Citation(s) in RCA: 288] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Using a combination of molecular cytogenetic and large-scale expression analysis in human T-cell acute lymphoblastic leukemias (T-ALLs), we identified and characterized a new recurrent chromosomal translocation, targeting the major homeobox gene cluster HOXA and the TCRB locus. Real-time quantitative polymerase chain reaction (RQ-PCR) analysis showed that the expression of the whole HOXA gene cluster was dramatically dysregulated in the HOXA-rearranged cases, and also in MLL and CALM-AF10-related T-ALL cases, strongly suggesting that HOXA genes are oncogenic in these leukemias. Inclusion of HOXA-translocated cases in a general molecular portrait of 92 T-ALLs based on large-scale expression analysis shows that this rearrangement defines a new homogeneous subgroup, which shares common biologic networks with the TLX1- and TLX3-related cases. Because T-ALLs derive from T-cell progenitors, expression profiles of the distinct T-ALL subgroups were analyzed with respect to those of normal human thymic subpopulations. Inappropriate use or perturbation of specific molecular networks involved in thymic differentiation was detected. Moreover, we found a significant association between T-ALL oncogenic subgroups and ectopic expression of a limited set of genes, including several developmental genes, namely HOXA, TLX1, TLX3, NKX3-1, SIX6, and TFAP2C. These data strongly support the view that the abnormal expression of developmental genes, including the prototypical homeobox genes HOXA, is critical in T-ALL oncogenesis.
Collapse
Affiliation(s)
- Jean Soulier
- Institut National de la Santé et de la Recherche Médicale Lymphocyte et Cancer, and Molecular Hematology Laboratory, Hôpital Saint Louis, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tabariès S, Lapointe J, Besch T, Carter M, Woollard J, Tuggle CK, Jeannotte L. Cdx protein interaction with Hoxa5 regulatory sequences contributes to Hoxa5 regional expression along the axial skeleton. Mol Cell Biol 2005; 25:1389-401. [PMID: 15684390 PMCID: PMC548006 DOI: 10.1128/mcb.25.4.1389-1401.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hox gene functions are intimately linked to correct developmental expression of the genes. The identification of cis-acting regulatory sequences and their associated trans-acting factors constitutes a key step in deciphering the mechanisms underlying the correct positioning of the functional domain of Hox genes along the anterior-posterior axis. We have identified DNA elements driving Hoxa5 regionalized expression in mice, using the 2.1-kb mesodermal enhancer (MES) localized in Hoxa5 3' flanking sequences as a starting point. The MES sequence comprises regulatory elements targeting Hoxa5 expression in the limbs, the urogenital and gastrointestinal tracts, and the cervical-upper thoracic region of the prevertebral column. A 164-bp DNA fragment within the MES caudally restricts Hoxa5 expression at the level of prevertebra 10, corresponding to the posterior limit of its functional domain. Cdx proteins directly bind to this element in vitro via two conserved sites. Preventing Cdx binding by mutating the sites causes caudal expansion of the transgene expression domain. Of all three murine Cdx proteins that bind this element in vitro, Cdx4 has emerged as a potential regional posterior repressor of Hoxa5 expression. The restrictive control provided by Cdx interactions with Hoxa5 regulatory sequences may be one of the critical events in cervicothoracic axial specification.
Collapse
Affiliation(s)
- Sébastien Tabariès
- Centre de Recherche de L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC G1R 2J6, Canada.
| | | | | | | | | | | | | |
Collapse
|
35
|
Serpente P, Tümpel S, Ghyselinck NB, Niederreither K, Wiedemann LM, Dollé P, Chambon P, Krumlauf R, Gould AP. Direct crossregulation between retinoic acid receptor β and Hox genes during hindbrain segmentation. Development 2005; 132:503-13. [PMID: 15634700 DOI: 10.1242/dev.01593] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During anteroposterior (AP) patterning of the developing hindbrain, the expression borders of many transcription factors are aligned at interfaces between neural segments called rhombomeres (r). Mechanisms regulating segmental expression have been identified for Hox genes, but for other classes of AP patterning genes there is only limited information. We have analysed the murine retinoic acid receptor β gene (Rarb) and show that it is induced prior to segmentation, by retinoic-acid (RA) signalling from the mesoderm. Induction establishes a diffuse expression border that regresses until, at later stages, it is stably maintained at the r6/r7 boundary by inputs from Hoxb4 and Hoxd4. Separate RA- and Hox-responsive enhancers mediate the two phases of Rarb expression: a regulatory mechanism remarkably similar to that of Hoxb4. By showing that Rarb is a direct transcriptional target of Hoxb4, this study identifies a new molecular link, completing a feedback circuit between Rarb, Hoxb4 and Hoxd4. We propose that the function of this circuit is to align the initially incongruent expression of multiple RA-induced genes at a single segment boundary.
Collapse
MESH Headings
- Aldehyde Oxidoreductases/genetics
- Aldehyde Oxidoreductases/metabolism
- Animals
- Base Sequence
- Binding Sites
- Chickens
- Embryo, Mammalian/cytology
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Embryo, Nonmammalian
- Enhancer Elements, Genetic/genetics
- Gene Expression Regulation, Developmental
- Homeodomain Proteins/chemistry
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Mice
- Mice, Knockout
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Rhombencephalon/cytology
- Rhombencephalon/embryology
- Rhombencephalon/metabolism
- Sequence Alignment
- Time Factors
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tretinoin/metabolism
Collapse
Affiliation(s)
- Patricia Serpente
- Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rastegar M, Kobrossy L, Kovacs EN, Rambaldi I, Featherstone M. Sequential histone modifications at Hoxd4 regulatory regions distinguish anterior from posterior embryonic compartments. Mol Cell Biol 2004; 24:8090-103. [PMID: 15340071 PMCID: PMC515066 DOI: 10.1128/mcb.24.18.8090-8103.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hox genes are differentially expressed along the embryonic anteroposterior axis. We used chromatin immunoprecipitation to detect chromatin changes at the Hoxd4 locus during neurogenesis in P19 cells and embryonic day 8.0 (E8.0) and E10.5 mouse embryos. During Hoxd4 induction in both systems, we observed that histone modifications typical of transcriptionally active chromatin occurred first at the 3' neural enhancer and then at the promoter. Moreover, the sequential distribution of histone modifications between E8.0 and E10.5 was consistent with a spreading of open chromatin, starting with the enhancer, followed by successively more 5' intervening sequences, and culminating at the promoter. Neither RNA polymerase II (Pol II) nor CBP associated with the inactive gene. During Hoxd4 induction, CBP and RNA Pol II were recruited first to the enhancer and then to the promoter. Whereas the CBP association was transient, RNA Pol II remained associated with both regulatory regions. Histone modification and transcription factor recruitment occurred in posterior, Hox-expressing embryonic tissues, but never in anterior tissues, where such genes are inactive. Together, our observations demonstrate that the direction of histone modifications at Hoxd4 mirrors colinear gene activation across Hox clusters and that the establishment of anterior and posterior compartments is accompanied by the imposition of distinct chromatin states.
Collapse
Affiliation(s)
- Mojgan Rastegar
- McGill Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
37
|
Mansfield JH, Harfe BD, Nissen R, Obenauer J, Srineel J, Chaudhuri A, Farzan-Kashani R, Zuker M, Pasquinelli AE, Ruvkun G, Sharp PA, Tabin CJ, McManus MT. MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 2004; 36:1079-83. [PMID: 15361871 DOI: 10.1038/ng1421] [Citation(s) in RCA: 327] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 08/04/2004] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) are a class of short ( approximately 22-nt) noncoding RNA molecules that downregulate expression of their mRNA targets. Since their discovery as regulators of developmental timing in Caenorhabditis elegans, hundreds of miRNAs have been identified in both animals and plants. Here, we report a technique for visualizing detailed miRNA expression patterns in mouse embryos. We elucidate the tissue-specific expression of several miRNAs during embryogenesis, including two encoded by genes embedded in homeobox (Hox) clusters, miR-10a and miR-196a. These two miRNAs are expressed in patterns that are markedly reminiscent of those of Hox genes. Furthermore, miR-196a negatively regulates Hoxb8, indicating that its restricted expression pattern probably reflects a role in the patterning function of the Hox complex.
Collapse
Affiliation(s)
- Jennifer H Mansfield
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hadrys T, Prince V, Hunter M, Baker R, Rinkwitz S. Comparative genomic analysis of vertebrate Hox3 and Hox4 genes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2004; 302:147-64. [PMID: 15054858 DOI: 10.1002/jez.b.20012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We used a comparative genomic approach to identify putative cis-acting regulatory sequences of the zebrafish hoxb3a and hoxb4a genes. We aligned genomic sequences spanning the clustered Hoxb1 to Hoxb5 genes from pufferfish, mice, and humans with the zebrafish hoxba and hoxbb cluster sequences. We identified multiple blocks of conserved sequences in non-coding regions within and surrounding the Hoxb3/b4 gene locus; a subset of these blocks are conserved in the zebrafish hoxbb cluster, despite loss of hoxb3/b4 genes. Overall, we find that the architecture of the Hoxb3/b4 loci and of the conserved sequence elements is very similar in teleosts and mammals. Our analyses also revealed two alternative transcripts of the zebrafish hoxb3a gene and an exon sequence unusually located 10 kb upstream of adjacent hoxb4a; an equivalent murine Hoxb3 exon has not yet been confirmed. We show that many of the Hoxb3/b4 conserved non-coding sequences correlate with functional neural enhancers previously described in the mouse. Further, within the conserved non-coding sequences we have identified binding sites for transcription factors, including Kreisler/Valentino, Krox20, Hox, and Pbx, some of which had not been previously described for the mouse. Finally, we demonstrate that the regulatory sequences of zebrafish hoxa3a are divergent with respect to the mouse ortholog Hoxa3, or the paralog hoxb3a. Despite limited conservation of regulatory sequences, zebrafish hoxa3a and hoxb3a genes share very similar expression profiles.
Collapse
Affiliation(s)
- Thorsten Hadrys
- Department of Physiology and Neuroscience, NYU Medical School, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
MicroRNAs (miRNAs) are endogenous approximately 22-nucleotide RNAs, some of which are known to play important regulatory roles in animals by targeting the messages of protein-coding genes for translational repression. We find that miR-196, a miRNA encoded at three paralogous locations in the A, B, and C mammalian HOX clusters, has extensive, evolutionarily conserved complementarity to messages of HOXB8, HOXC8, and HOXD8. RNA fragments diagnostic of miR-196-directed cleavage of HOXB8 were detected in mouse embryos. Cell culture experiments demonstrated down-regulation of HOXB8, HOXC8, HOXD8, and HOXA7 and supported the cleavage mechanism for miR-196-directed repression of HOXB8. These results point to a miRNA-mediated mechanism for the posttranscriptional restriction of HOX gene expression during vertebrate development and demonstrate that metazoan miRNAs can repress expression of their natural targets through mRNA cleavage in addition to inhibiting productive translation.
Collapse
Affiliation(s)
- Soraya Yekta
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
40
|
Dasen JS, Liu JP, Jessell TM. Motor neuron columnar fate imposed by sequential phases of Hox-c activity. Nature 2003; 425:926-33. [PMID: 14586461 DOI: 10.1038/nature02051] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Accepted: 09/03/2003] [Indexed: 01/07/2023]
Abstract
The organization of neurons into columns is a prominent feature of central nervous system structure and function. In many regions of the central nervous system the grouping of neurons into columns links cell-body position to axonal trajectory, thus contributing to the establishment of topographic neural maps. This link is prominent in the developing spinal cord, where columnar sets of motor neurons innervate distinct targets in the periphery. We show here that sequential phases of Hox-c protein expression and activity control the columnar differentiation of spinal motor neurons. Hox expression in neural progenitors is established by graded fibroblast growth factor signalling and translated into a distinct motor neuron Hox pattern. Motor neuron columnar fate then emerges through cell autonomous repressor and activator functions of Hox proteins. Hox proteins also direct the expression of genes that establish motor topographic projections, thus implicating Hox proteins as critical determinants of spinal motor neuron identity and organization.
Collapse
Affiliation(s)
- Jeremy S Dasen
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, 701 West 168th Street, New York, New York 10032, USA.
| | | | | |
Collapse
|