1
|
Grecco A, Macchiaroli N, Pérez MG, Casulli A, Cucher MA, Rosenzvit MC. microRNA silencing in a whole worm cestode model provides insight into miR-71 function. Int J Parasitol 2023; 53:699-710. [PMID: 37699506 DOI: 10.1016/j.ijpara.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/13/2023] [Accepted: 08/05/2023] [Indexed: 09/14/2023]
Abstract
Parasites belonging to the class Cestoda include zoonotic species such as Echinococcus spp. and Taenia spp. that cause morbidity and mortality in endemic areas, mainly affecting pastoral and rural communities in low income countries but also upper middle income countries. Cestodes show remarkable developmental plasticity, implying tight regulation of gene expression throughout their complex life cycles. Despite the recent availability of genomic data for cestodes, little progress was made on postgenomic functional studies. MicroRNAs (miRNAs) are key components of gene regulatory systems that guide diverse developmental processes in multicellular organisms. miR-71 is a highly expressed miRNA in cestodes, which is absent in vertebrates and targets essential parasite genes, representing a potential key player in understanding the role of miRNAs in cestodes biology. Here we used transfection with antisense oligonucleotides to perform whole worm miRNA knockdown in tetrathyridia of Mesocestoides vogae (syn. Mesocestoides corti), a laboratory model of cestodes. We believe this is the first report of miRNA knockdown at the organism level in these parasites. Our results showed that M. vogae miR-71 is involved in the control of strobilation in vitro and in the establishment of murine infection. In addition, we identified miR-71 targets in M. vogae, several of them being de-repressed upon miR-71 knockdown. This study provides new knowledge on gene expression regulation in cestodes and suggests that miRNAs could be evaluated as new selective therapeutic targets for treating Neglected Tropical Diseases prioritised by the World Health Organization.
Collapse
Affiliation(s)
- Andrés Grecco
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Macchiaroli
- Laboratorio de Genómica y Bioinformática de Patógenos, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Matías Gastón Pérez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriano Casulli
- WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis. Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy; European Reference Laboratory for Parasites. Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marcela Alejandra Cucher
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mara Cecilia Rosenzvit
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Casal J, Storer F, Lawrence PA. Planar cell polarity: intracellular asymmetry and supracellular gradients of Frizzled. Open Biol 2023; 13:230105. [PMID: 37311537 PMCID: PMC10264100 DOI: 10.1098/rsob.230105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023] Open
Abstract
Planar cell polarity (PCP), the coordinated orientation of structures such as cilia, mammalian hairs or insect bristles, depends on at least two molecular systems. We have argued that these two systems use similar mechanisms; each depending on a supracellular gradient of concentration that spans a field of cells. In a linked paper, we studied the Dachsous/Fat system. We found a graded distribution of Dachsous in vivo in a segment of the pupal epidermis in the abdomen of Drosophila. Here we report a similar study of the key molecule for the Starry Night/Frizzled or 'core' system. We measure the distribution of the receptor Frizzled on the cell membranes of all cells of one segment in the living pupal abdomen of Drosophila. We find a supracellular gradient that falls about 17% in concentration from the front to the rear of the segment. We present some evidence that the gradient then resets in the most anterior cells of the next segment back. We find an intracellular asymmetry in all the cells, the posterior membrane of each cell carrying about 22% more Frizzled than the anterior membrane. These direct molecular measurements add to earlier evidence that the two systems of PCP act independently.
Collapse
Affiliation(s)
- José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Freya Storer
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Peter A. Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
3
|
Lee KM, Seo EC, Lee JH, Kim HJ, Hwangbo C. The Multifunctional Protein Syntenin-1: Regulator of Exosome Biogenesis, Cellular Function, and Tumor Progression. Int J Mol Sci 2023; 24:ijms24119418. [PMID: 37298370 DOI: 10.3390/ijms24119418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Syntenin acts as an adaptor and scaffold protein through its two PSD-95, Dlg, and ZO-1 (PDZ) domains, participating in multiple signaling pathways and modulating cellular physiology. It has been identified as an oncogene, promoting cancer development, metastasis, and angiogenesis in various carcinomas. Syntenin-1 is also associated with the production and release of exosomes, small extracellular vesicles that play a significant role in intercellular communication by containing bioactive molecules such as proteins, lipids, and nucleic acids. The trafficking of exosomes involves a complex interplay of various regulatory proteins, including syntenin-1, which interacts with its binding partners, syndecan and activated leukocyte cell adhesion molecule (ALIX). Exosomal transfer of microRNAs, a key cargo, can regulate the expression of various cancer-related genes, including syntenin-1. Targeting the mechanism involving the regulation of exosomes by syntenin-1 and microRNAs may provide a novel treatment strategy for cancer. This review highlights the current understanding of syntenin-1's role in regulating exosome trafficking and its associated cellular signaling pathways.
Collapse
Affiliation(s)
- Kwang-Min Lee
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Eun-Chan Seo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry (BK21 Four), College of Natural Sciences, Kangwon National University, Chuncheon 24414, Republic of Korea
| | - Hyo-Jin Kim
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
4
|
Huang Y, Winklbauer R. Cell cortex regulation by the planar cell polarity protein Prickle1. J Cell Biol 2022; 221:e202008116. [PMID: 35512799 PMCID: PMC9082893 DOI: 10.1083/jcb.202008116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/18/2022] [Accepted: 04/09/2022] [Indexed: 01/07/2023] Open
Abstract
The planar cell polarity pathway regulates cell polarity, adhesion, and rearrangement. Its cytoplasmic core components Prickle (Pk) and Dishevelled (Dvl) often localize as dense puncta at cell membranes to form antagonizing complexes and establish cell asymmetry. In vertebrates, Pk and Dvl have been implicated in actomyosin cortex regulation, but the mechanism of how these proteins control cell mechanics is unclear. Here we demonstrate that in Xenopus prechordal mesoderm cells, diffusely distributed, cytoplasmic Pk1 up-regulates the F-actin content of the cortex. This counteracts cortex down-regulation by Dvl2. Both factors act upstream of casein kinase II to increase or decrease cortical tension. Thus, cortex modulation by Pk1 and Dvl2 is translated into mechanical force and affects cell migration and rearrangement during radial intercalation in the prechordal mesoderm. Pk1 also forms puncta and plaques, which are associated with localized depletion of cortical F-actin, suggesting opposite roles for diffuse and punctate Pk1.
Collapse
Affiliation(s)
- Yunyun Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Humphreys PA, Mancini FE, Ferreira MJS, Woods S, Ogene L, Kimber SJ. Developmental principles informing human pluripotent stem cell differentiation to cartilage and bone. Semin Cell Dev Biol 2022; 127:17-36. [PMID: 34949507 DOI: 10.1016/j.semcdb.2021.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Human pluripotent stem cells can differentiate into any cell type given appropriate signals and hence have been used to research early human development of many tissues and diseases. Here, we review the major biological factors that regulate cartilage and bone development through the three main routes of neural crest, lateral plate mesoderm and paraxial mesoderm. We examine how these routes have been used in differentiation protocols that replicate skeletal development using human pluripotent stem cells and how these methods have been refined and improved over time. Finally, we discuss how pluripotent stem cells can be employed to understand human skeletal genetic diseases with a developmental origin and phenotype, and how developmental protocols have been applied to gain a better understanding of these conditions.
Collapse
Affiliation(s)
- Paul A Humphreys
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, University of Manchester, UK
| | - Fabrizio E Mancini
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Miguel J S Ferreira
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, University of Manchester, UK
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Leona Ogene
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
6
|
Mitchell NP, Cislo DJ, Shankar S, Lin Y, Shraiman BI, Streichan SJ. Visceral organ morphogenesis via calcium-patterned muscle constrictions. eLife 2022; 11:e77355. [PMID: 35593701 PMCID: PMC9275821 DOI: 10.7554/elife.77355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/08/2022] [Indexed: 11/24/2022] Open
Abstract
Organ architecture is often composed of multiple laminar tissues arranged in concentric layers. During morphogenesis, the initial geometry of visceral organs undergoes a sequence of folding, adopting a complex shape that is vital for function. Genetic signals are known to impact form, yet the dynamic and mechanical interplay of tissue layers giving rise to organs' complex shapes remains elusive. Here, we trace the dynamics and mechanical interactions of a developing visceral organ across tissue layers, from subcellular to organ scale in vivo. Combining deep tissue light-sheet microscopy for in toto live visualization with a novel computational framework for multilayer analysis of evolving complex shapes, we find a dynamic mechanism for organ folding using the embryonic midgut of Drosophila as a model visceral organ. Hox genes, known regulators of organ shape, control the emergence of high-frequency calcium pulses. Spatiotemporally patterned calcium pulses trigger muscle contractions via myosin light chain kinase. Muscle contractions, in turn, induce cell shape change in the adjacent tissue layer. This cell shape change collectively drives a convergent extension pattern. Through tissue incompressibility and initial organ geometry, this in-plane shape change is linked to out-of-plane organ folding. Our analysis follows tissue dynamics during organ shape change in vivo, tracing organ-scale folding to a high-frequency molecular mechanism. These findings offer a mechanical route for gene expression to induce organ shape change: genetic patterning in one layer triggers a physical process in the adjacent layer - revealing post-translational mechanisms that govern shape change.
Collapse
Affiliation(s)
- Noah P Mitchell
- Kavli Institute for Theoretical Physics, University of California, Santa BarbaraSanta BarbaraUnited States
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Dillon J Cislo
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Suraj Shankar
- Kavli Institute for Theoretical Physics, University of California, Santa BarbaraSanta BarbaraUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
| | - Yuzheng Lin
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Boris I Shraiman
- Kavli Institute for Theoretical Physics, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Sebastian J Streichan
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
- Biomolecular Science and Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
7
|
Peng D, Wei C, Zhang X, Li S, Liang H, Zheng X, Jiang S, Han L. Pan-cancer analysis combined with experiments predicts CTHRC1 as a therapeutic target for human cancers. Cancer Cell Int 2021; 21:566. [PMID: 34702252 PMCID: PMC8549344 DOI: 10.1186/s12935-021-02266-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The function of collagen triple helix repeat containing 1 (CTHRC1) as an oncogene has been reported in a growing number of publications. Bioinformatics methods represent a beneficial approach to examine the mechanism and function of the CTHRC1 gene in the disease process of cancers from a pan-cancer perspective. METHODS In this study, using the online databases UCSC, NCBI, HPA, TIMER2, Oncomine, GEPIA, UALCAN, cBioPortal, COSMIC, MEXPRESS, STRING, CCLE, LinkedOmics, GTEx, TCGA, CGGA, and SangerBox, we focused on the relationship between CTHRC1 and tumorigenesis, progression, methylation, immunity, and prognosis. qPCR was used to detect CTHRC1 expression in glioma tissues and cell lines. RESULTS The pan-cancer analysis showed that CTHRC1 was overexpressed in most tumors, and a significant correlation was observed between CTHRC1 expression and the prognosis of patients with cancer. CTHRC1 genetic alterations occur in diverse tumors and are associated with tumor progression. Levels of CTHRC1 promoter methylation were decreased in most cancer tissues compared with normal tissues. In addition, CTHRC1 coordinated the activity of ICP genes through diverse signal transduction pathways, was also associated with immune cell infiltration and the tumor microenvironment, and potentially represented a promising immunotherapy target. We identified CTHRC1-related genes across cancers using the GEPIA2 tool. The single-gene GO analysis of CTHRC1 across cancers showed that it was involved in some signaling pathways and biological processes, such as the Wnt signaling pathway, cell migration, and positive regulation of protein binding. The expression and function of CTHRC1 were also further verified in glioma tissues and cell lines. CONCLUSIONS CTHRC1 is overexpressed in various cancer types and functions as an important oncogene that may promote tumorigenesis and development through different mechanisms. CTHRC1 may represent an important therapeutic target for human cancers.
Collapse
Affiliation(s)
- Dazhao Peng
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Cheng Wei
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Xiaoyang Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Shenghui Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Hao Liang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| | - Xingyu Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jiankang Road, Jining, Shandong 272000 People’s Republic of China
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052 China
| |
Collapse
|
8
|
The Role of CTHRC1 in Regulation of Multiple Signaling and Tumor Progression and Metastasis. Mediators Inflamm 2020; 2020:9578701. [PMID: 32848510 PMCID: PMC7441421 DOI: 10.1155/2020/9578701] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Collagen triple helix repeat containing-1 (CTHRC1) has been identified as cancer-related protein. CTHRC1 expresses mainly in adventitial fibroblasts and neointimal smooth muscle cells of balloon-injured vessels and promotes cell migration and tissue repair in response to injury. CTHRC1 plays a pivotal role in some pathophysiological processes, including increasing bone mass, preventing myelination, and reversing collagen synthesis in many tumor cells. The ascended expression of CTHRC1 is related to tumorigenesis, proliferation, invasion, and metastasis in various human malignancies, including gastric cancer, pancreatic cancer, hepatocellular carcinoma, keloid, breast cancer, colorectal cancer, epithelial ovarian cancer, esophageal squamous cell carcinoma, cervical cancer, non-small-cell lung carcinoma, and melanoma. And molecules that regulate the expression of CTHRC1 include miRNAs, lncRNAs, WAIF1, and DPAGT1. Many reports have pointed that CTHRC1 could exert different effects through several signaling pathways such as TGF-β, Wnt, integrin β/FAK, Src/FAK, MEK/ERK, PI3K/AKT/ERK, HIF-1α, and PKC-δ/ERK signaling pathways. As a participant in tissue remodeling or immune response, CTHRC1 may promote early-stage cancer. Several recent studies have identified CTHRC1 as an effectual prognostic biomarker for predicting tumor recurrence or metastasis. It is worth noting that CTHRC1 has different cellular localization and mechanisms of action in different cells and different microenvironments. In this article, we focus on the advances in the signaling pathways mediated by CTHRC1 in tumors.
Collapse
|
9
|
Tang X, Zhang L, Ma T, Wang M, Li B, Jiang L, Yan Y, Guo Y. Molecular mechanisms that regulate export of the planar cell-polarity protein Frizzled-6 out of the endoplasmic reticulum. J Biol Chem 2020; 295:8972-8987. [PMID: 32376691 PMCID: PMC7335806 DOI: 10.1074/jbc.ra120.012835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/30/2020] [Indexed: 01/05/2023] Open
Abstract
Planar cell polarity (PCP) is a process during which cells are polarized along the plane of the epithelium and is regulated by several transmembrane signaling proteins. After their synthesis, these PCP proteins are delivered along the secretory transport pathway to the plasma membrane, where they perform their physiological functions. However, the molecular mechanisms that regulate PCP protein transport remain largely unclear. Here, we found that the delivery of a PCP protein, Frizzled-6, to the cell surface is regulated by two conserved polybasic motifs: one located in its first intracellular loop and the other in its C-terminal cytosolic domain. We observed that the polybasic motif of Frizzled is also important for its surface localization in the Drosophila wing. Results from a mechanistic analysis indicated that Frizzled-6 packaging into vesicles at the endoplasmic reticulum (ER) is regulated by a direct interaction between the polybasic motif and the Glu-62 and Glu-63 residues on the secretion-associated Ras-related GTPase 1A (SAR1A) subunit of coat protein complex II (COPII). Moreover, we found that newly synthesized Frizzled-6 is associated with another PCP protein, cadherin EGF LAG seven-pass G-type receptor 1 (CELSR1), in the secretory transport pathway, and that this association regulates their surface delivery. Our results reveal insights into the molecular machinery that regulates the ER export of Frizzled-6. They also suggest that the association of CELSR1 with Frizzled-6 is important, enabling efficient Frizzled-6 delivery to the cell surface, providing a quality control mechanism that ensures the appropriate stoichiometry of these two PCP proteins at cell boundaries.
Collapse
Affiliation(s)
- Xiao Tang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Lina Zhang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tianji Ma
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Mo Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yan Yan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusong Guo
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
10
|
Li J, Wang Y, Wang Y, Yan Y, Tong H, Li S. Fibronectin type III domain containing four promotes differentiation of C2C12 through the Wnt/β-catenin signaling pathway. FASEB J 2020; 34:7759-7772. [PMID: 32298013 DOI: 10.1096/fj.201902860rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 01/16/2023]
Abstract
Fibronectin type III domain containing 4 (FNDC4) belongs to the fibronectin type III domain containing protein family. FNDC5, which is highly homologous to FNDC4, can promote the differentiation of cardiac cells. We aimed to investigate the role of FNDC4 in the differentiation of C2C12 mouse skeletal muscle cells. Western blotting and immunofluorescence analysis showed that FNDC4 gradually increased with the differentiation of C2C12. Muscle injury repair experiments indicated that FNDC4 may promote the repair of injured muscles. When FNDC4 was either overexpressed or knocked down, the expression of desmin and myogenin myogenic marker molecules followed that of FNDC4, suggesting that FNDC4 can influence the differentiation of C2C12. In addition, immunoprecipitation results showed that FNDC4 can interact with the Wnt/β-catenin signaling pathway receptor low-density lipoprotein receptor-related protein 6 (LRP6), and that β-catenin levels in the nucleus decreased after knocking down FNDC4. Exogenous addition of FNDC4 protein could not restore the blocking of differentiation due to inhibition of both Wnt/β-catenin signal transduction and LRP6 activity via the β-catenin inhibitor XAV-939. Overall, our findings indicate that FDNC4 can influence the differentiation of C2C12 by activating Wnt/β-catenin signal transduction.
Collapse
Affiliation(s)
- Jiwei Li
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Yanshuang Wang
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Yan Wang
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Yunqin Yan
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Huili Tong
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| | - Shufeng Li
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
McQuate A, Latorre-Esteves E, Barria A. A Wnt/Calcium Signaling Cascade Regulates Neuronal Excitability and Trafficking of NMDARs. Cell Rep 2017; 21:60-69. [DOI: 10.1016/j.celrep.2017.09.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
|
12
|
Kay SK, Harrington HA, Shepherd S, Brennan K, Dale T, Osborne JM, Gavaghan DJ, Byrne HM. The role of the Hes1 crosstalk hub in Notch-Wnt interactions of the intestinal crypt. PLoS Comput Biol 2017; 13:e1005400. [PMID: 28245235 PMCID: PMC5363986 DOI: 10.1371/journal.pcbi.1005400] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/23/2017] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
The Notch pathway plays a vital role in determining whether cells in the intestinal epithelium adopt a secretory or an absorptive phenotype. Cell fate specification is coordinated via Notch's interaction with the canonical Wnt pathway. Here, we propose a new mathematical model of the Notch and Wnt pathways, in which the Hes1 promoter acts as a hub for pathway crosstalk. Computational simulations of the model can assist in understanding how healthy intestinal tissue is maintained, and predict the likely consequences of biochemical knockouts upon cell fate selection processes. Chemical reaction network theory (CRNT) is a powerful, generalised framework which assesses the capacity of our model for monostability or multistability, by analysing properties of the underlying network structure without recourse to specific parameter values or functional forms for reaction rates. CRNT highlights the role of β-catenin in stabilising the Notch pathway and damping oscillations, demonstrating that Wnt-mediated actions on the Hes1 promoter can induce dynamic transitions in the Notch system, from multistability to monostability. Time-dependent model simulations of cell pairs reveal the stabilising influence of Wnt upon the Notch pathway, in which β-catenin- and Dsh-mediated action on the Hes1 promoter are key in shaping the subcellular dynamics. Where Notch-mediated transcription of Hes1 dominates, there is Notch oscillation and maintenance of fate flexibility; Wnt-mediated transcription of Hes1 favours bistability akin to cell fate selection. Cells could therefore regulate the proportion of Wnt- and Notch-mediated control of the Hes1 promoter to coordinate the timing of cell fate selection as they migrate through the intestinal epithelium and are subject to reduced Wnt stimuli. Furthermore, mutant cells characterised by hyperstimulation of the Wnt pathway may, through coupling with Notch, invert cell fate in neighbouring healthy cells, enabling an aberrant cell to maintain its neighbours in mitotically active states.
Collapse
Affiliation(s)
- Sophie K. Kay
- Department of Computer Science, University of Oxford, Oxford, U.K.
| | | | - Sarah Shepherd
- School of Mathematical Sciences, University of Nottingham, Nottingham, U.K.
| | - Keith Brennan
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester, U.K.
| | - Trevor Dale
- School of Biosciences, Cardiff University, Cardiff, U.K.
| | - James M. Osborne
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| | | | - Helen M. Byrne
- Department of Computer Science, University of Oxford, Oxford, U.K.
- Mathematical Institute, University of Oxford, Oxford, U.K.
| |
Collapse
|
13
|
Gerlee P, Basanta D, Anderson ARA. The Influence of Cellular Characteristics on the Evolution of Shape Homeostasis. ARTIFICIAL LIFE 2017; 23:424-448. [PMID: 28786729 DOI: 10.1162/artl_a_00240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The importance of individual cells in a developing multicellular organism is well known, but precisely how the individual cellular characteristics of those cells collectively drive the emergence of robust, homeostatic structures is less well understood. For example, cell communication via a diffusible factor allows for information to travel across large distances within the population, and cell polarization makes it possible to form structures with a particular orientation, but how do these processes interact to produce a more robust and regulated structure? In this study we investigate the ability of cells with different cellular characteristics to grow and maintain homeostatic structures. We do this in the context of an individual-based model where cell behavior is driven by an intracellular network that determines the cell phenotype. More precisely, we investigated evolution with 96 different permutations of our model, where cell motility, cell death, long-range growth factor (LGF), short-range growth factor (SGF), and cell polarization were either present or absent. The results show that LGF has the largest positive influence on the fitness of the evolved solutions. SGF and polarization also contribute, but all other capabilities essentially increase the search space, effectively making it more difficult to achieve a solution. By perturbing the evolved solutions, we found that they are highly robust to both mutations and wounding. In addition, we observed that by evolving solutions in more unstable environments they produce structures that were more robust and adaptive. In conclusion, our results suggest that robust collective behavior is most likely to evolve when cells are endowed with long-range communication, cell polarisation, and selection pressure from an unstable environment.
Collapse
Affiliation(s)
- Philip Gerlee
- Chalmers University of Technology and University of Gothenburg
| | | | | |
Collapse
|
14
|
Carvajal-Gonzalez JM, Mulero-Navarro S, Smith M, Mlodzik M. A Novel Frizzled-Based Screening Tool Identifies Genetic Modifiers of Planar Cell Polarity in Drosophila Wings. G3 (BETHESDA, MD.) 2016; 6:3963-3973. [PMID: 27729438 PMCID: PMC5144966 DOI: 10.1534/g3.116.035535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/24/2016] [Indexed: 01/25/2023]
Abstract
Most mutant alleles in the Fz-PCP pathway genes were discovered in classic Drosophila screens looking for recessive loss-of-function (LOF) mutations. Nonetheless, although Fz-PCP signaling is sensitive to increased doses of PCP gene products, not many screens have been performed in the wing under genetically engineered Fz overexpression conditions, mostly because the Fz phenotypes were strong and/or not easy to score and quantify. Here, we present a screen based on an unexpected mild Frizzled gain-of-function (GOF) phenotype. The leakiness of a chimeric Frizzled protein designed to be accumulated in the endoplasmic reticulum (ER) generated a reproducible Frizzled GOF phenotype in Drosophila wings. Using this genotype, we first screened a genome-wide collection of large deficiencies and found 16 strongly interacting genomic regions. Next, we narrowed down seven of those regions to finally test 116 candidate genes. We were, thus, able to identify eight new loci with a potential function in the PCP context. We further analyzed and confirmed krasavietz and its interactor short-stop as new genes acting during planar cell polarity establishment with a function related to actin and microtubule dynamics.
Collapse
Affiliation(s)
- Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Michael Smith
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York 10029
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York 10029
| | - Marek Mlodzik
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York 10029
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York 10029
| |
Collapse
|
15
|
Ross CL. The use of electric, magnetic, and electromagnetic field for directed cell migration and adhesion in regenerative medicine. Biotechnol Prog 2016; 33:5-16. [PMID: 27797153 DOI: 10.1002/btpr.2371] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/10/2016] [Indexed: 01/01/2023]
Abstract
Directed cell migration and adhesion is essential to embryonic development, tissue formation and wound healing. For decades it has been reported that electric field (EF), magnetic field (MF) and electromagnetic field (EMF) can play important roles in determining cell differentiation, migration, adhesion, and evenwound healing. Combinations of these techniques have revealed new and exciting explanations for how cells move and adhere to surfaces; how the migration of multiple cells are coordinated and regulated; how cellsinteract with neighboring cells, and also to changes in their microenvironment. In some cells, speed and direction are voltage dependent. Data suggests that the use of EF, MF and EMF could advance techniques in regenerative medicine, tissue engineering and wound healing. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:5-16, 2017.
Collapse
Affiliation(s)
- Christina L Ross
- The Wake Forest Institute for Regenerative Medicine, Wake Forest Center for Integrative Medicine, Medical Center Blvd, Winston-Salem, NC
| |
Collapse
|
16
|
Yang Y, Mlodzik M. Wnt-Frizzled/planar cell polarity signaling: cellular orientation by facing the wind (Wnt). Annu Rev Cell Dev Biol 2016; 31:623-46. [PMID: 26566118 DOI: 10.1146/annurev-cellbio-100814-125315] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The establishment of planar cell polarity (PCP) in epithelial and mesenchymal cells is a critical, evolutionarily conserved process during development and organogenesis. Analyses in Drosophila and several vertebrate model organisms have contributed a wealth of information on the regulation of PCP. A key conserved pathway regulating PCP, the so-called core Wnt-Frizzled PCP (Fz/PCP) signaling pathway, was initially identified through genetic studies of Drosophila. PCP studies in vertebrates, most notably mouse and zebrafish, have identified novel factors in PCP signaling and have also defined cellular features requiring PCP signaling input. These studies have shifted focus to the role of Van Gogh (Vang)/Vangl genes in this molecular system. This review focuses on new insights into the core Fz/Vangl/PCP pathway and recent advances in Drosophila and vertebrate PCP studies. We attempt to integrate these within the existing core Fz/Vangl/PCP signaling framework.
Collapse
Affiliation(s)
- Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115;
| | - Marek Mlodzik
- Department of Developmental and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| |
Collapse
|
17
|
Tamura M, Nemoto E. Role of the Wnt signaling molecules in the tooth. JAPANESE DENTAL SCIENCE REVIEW 2016; 52:75-83. [PMID: 28408959 PMCID: PMC5390339 DOI: 10.1016/j.jdsr.2016.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling plays a central role in many processes during embryonic development and adult homeostasis. At least 19 types of Wnt ligands, receptors, transducers, transcription factors, and antagonists have been identified in mammals. Two distinct Wnt signaling pathways, the canonical signaling pathway and the noncanonical signaling pathway, have been described. Some Wnt signaling pathway components are expressed in the dental epithelium and mesenchyme during tooth development in humans and mice. Functional studies and experimental analysis of relevant animal models confirm the effects of Wnt signaling pathway on the regulation of developing tooth formation and adult tooth homeostasis. Mutations in some Wnt signaling pathway components have been identified in syndromic and non-syndromic tooth agenesis. This review provides an overview of progress in elucidating the role of Wnt signaling pathway components in the tooth and the resulting possibilities for therapeutic development.
Collapse
Affiliation(s)
- Masato Tamura
- Department of Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, N13, W7, Sapporo, Japan
| | - Eiji Nemoto
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Japan
| |
Collapse
|
18
|
LIU SHENSHEN, ZHOU PU, ZHANG YANQIU. Abnormal expression of key genes and proteins in the canonical Wnt/β-catenin pathway of articular cartilage in a rat model of exercise-induced osteoarthritis. Mol Med Rep 2016; 13:1999-2006. [PMID: 26794964 PMCID: PMC4768959 DOI: 10.3892/mmr.2016.4798] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 12/23/2015] [Indexed: 01/16/2023] Open
Abstract
To investigate the molecular pathogenesis of the canonical Wnt/β-catenin pathway in exercise-induced osteoarthritis (OA), 30 male healthy Sprague Dawley rats were divided into three groups (control, normal exercise‑induced OA and injured exercise‑induced OA groups) in order to establish the exercise‑induced OA rat model. The mRNA and protein expression levels of Runx‑2, BMP‑2, Ctnnb1, Sox‑9, collagen Ⅱ, Mmp‑13, Wnt‑3a and β‑catenin in chondrocytes were detected by reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemical staining. The mRNA levels of Runx‑2, BMP‑2 and Ctnnb1 were upregulated in the normal exercise‑induced OA and injured exercise‑induced OA groups; while Runx‑2 and BMP‑2 were upregulated in the injured exercise‑induced OA group when compared with the normal exercise‑induced OA group. The protein levels of Mmp‑13, Wnt‑3a and β‑catenin were increased and collagen Ⅱ was reduced in the normal exercise‑induced OA and injured exercise‑induced OA groups. Ctnnb1, Wnt‑3a and β‑catenin, which are key genes and proteins in the canonical Wnt/β‑catenin pathway, were abnormally expressed in chondrocytes of the exercise‑induced OA rat model. Ctnnb1, β‑catenin and Wnt‑3a were suggested to participate in the pathogenesis of exercise‑induced OA by abnormally activating the Wnt/β‑catenin pathway during physical exercise due to excessive pressure. The results of the present study may provide an improved understanding of the pathogenesis of exercise-induced OA.
Collapse
Affiliation(s)
- SHEN-SHEN LIU
- College of Physical Education, Langfang Teachers University, Langfang, Hebei 065000, P.R. China
| | - PU ZHOU
- College of Physical Education, Langfang Teachers University, Langfang, Hebei 065000, P.R. China
| | - YANQIU ZHANG
- Department of Physical Education, Xi'an Shiyou University, Xi'an, Shaanxi 710065, P.R. China
| |
Collapse
|
19
|
Comparison of Signaling Pathways Gene Expression in CD34(-) Umbilical Cord Blood and Bone Marrow Stem Cells. Stem Cells Int 2016; 2016:5395261. [PMID: 26839563 PMCID: PMC4709787 DOI: 10.1155/2016/5395261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/30/2015] [Accepted: 09/16/2015] [Indexed: 12/30/2022] Open
Abstract
The aim of the study was to compare the biological activity of the total pool of genes in CD34− umbilical cord blood and bone marrow stem cells and to search for the differences in signaling pathway gene expression responsible for the biological processes. The introductory analysis revealed a big similarity of gene expression among stem cells. When analyzing GO terms for biological processes, we observed an increased activity of JAK-STAT signaling pathway, calcium-mediated, cytokine-mediated, integrin-mediated signaling pathway, and MAPK in a cluster of upregulating genes in CD34− umbilical cord blood stem cells. At the same time, we observed a decreased activity of BMP signaling pathways, TGF-beta pathway, and VEGF receptor signaling pathway in a cluster of downregulating genes in CD34− umbilical cord blood stem cells. In accordance with KEGG classification, the cytokine-cytokine receptor interaction, toll-like receptor signaling pathway, and JAK-STAT signaling pathway are overrepresented in CD34− umbilical cord blood stem cells. A similar gene expression in both CD34− UCB and BM stem cells was characteristic for such biological processes as cell division, cell cycle gene expression, mitosis, telomere maintenance with telomerase, RNA and DNA treatment processes during cell division, and similar genes activity of Notch and Wnt signaling pathways.
Collapse
|
20
|
Moseti D, Regassa A, Kim WK. Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules. Int J Mol Sci 2016; 17:ijms17010124. [PMID: 26797605 PMCID: PMC4730365 DOI: 10.3390/ijms17010124] [Citation(s) in RCA: 500] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/27/2015] [Accepted: 01/07/2016] [Indexed: 11/24/2022] Open
Abstract
Adipogenesis is the process by which precursor stem cells differentiate into lipid laden adipocytes. Adipogenesis is regulated by a complex and highly orchestrated gene expression program. In mammalian cells, the peroxisome proliferator-activated receptor γ (PPARγ), and the CCAAT/enhancer binding proteins (C/EBPs) such as C/EBPα, β and δ are considered the key early regulators of adipogenesis, while fatty acid binding protein 4 (FABP4), adiponectin, and fatty acid synthase (FAS) are responsible for the formation of mature adipocytes. Excess accumulation of lipids in the adipose tissue leads to obesity, which is associated with cardiovascular diseases, type II diabetes and other pathologies. Thus, investigating adipose tissue development and the underlying molecular mechanisms is vital to develop therapeutic agents capable of curbing the increasing incidence of obesity and related pathologies. In this review, we address the process of adipogenic differentiation, key transcription factors and proteins involved, adipogenic regulators and potential anti-adipogenic bioactive molecules.
Collapse
Affiliation(s)
- Dorothy Moseti
- Department of Animal Science, University of Manitoba, 201 Animal Science building, Winnipeg, MB R3T 2N2, Canada.
| | - Alemu Regassa
- Department of Animal Science, University of Manitoba, 201 Animal Science building, Winnipeg, MB R3T 2N2, Canada.
| | - Woo-Kyun Kim
- Department of Poultry Science, University of Georgia, 303 Poultry Science Building, Athens, GA 30602-2772, USA.
| |
Collapse
|
21
|
The Dishevelled Protein Family: Still Rather a Mystery After Over 20 Years of Molecular Studies. Curr Top Dev Biol 2016; 117:75-91. [PMID: 26969973 DOI: 10.1016/bs.ctdb.2015.11.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dishevelled (Dsh) is a key component of Wnt-signaling pathways and possibly also has other functional requirements. Dsh appears to be a key factor to interpret Wnt signals coming via the Wnt-receptor family, the Frizzled proteins, from the plasma membrane and route them into the correct intracellular pathways. However, how Dsh is regulated to relay signal flow to specific and distinct cellular responses upon interaction with the same Wnt-receptor family remains very poorly understood.
Collapse
|
22
|
Ajima R, Bisson JA, Helt JC, Nakaya MA, Habas R, Tessarollo L, He X, Morrisey EE, Yamaguchi TP, Cohen ED. DAAM1 and DAAM2 are co-required for myocardial maturation and sarcomere assembly. Dev Biol 2015; 408:126-39. [PMID: 26526197 DOI: 10.1016/j.ydbio.2015.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/25/2015] [Accepted: 10/02/2015] [Indexed: 11/29/2022]
Abstract
Wnt ligands regulate heart morphogenesis but the underlying mechanisms remain unclear. Two Formin-related proteins, DAAM1 and 2, were previously found to bind the Wnt effector Disheveled. Here, since DAAM1 and 2 nucleate actin and mediate Wnt-induced cytoskeletal changes, a floxed-allele of Daam1 was used to disrupt its function specifically in the myocardium and investigate Wnt-associated pathways. Homozygous Daam1 conditional knockout (CKO) mice were viable but had misshapen hearts and poor cardiac function. The defects in Daam1 CKO mice were observed by mid-gestation and were associated with a loss of protrusions from cardiomyocytes invading the outflow tract. Further, these mice exhibited noncompaction cardiomyopathy (NCM) and deranged cardiomyocyte polarity. Interestingly, Daam1 CKO mice that were also homozygous for an insertion disrupting Daam2 (DKO) had stronger NCM, severely reduced cardiac function, disrupted sarcomere structure, and increased myocardial proliferation, suggesting that DAAM1 and DAAM2 have redundant functions. While RhoA was unaffected in the hearts of Daam1/2 DKO mice, AKT activity was lower than in controls, raising the issue of whether DAAM1/2 are only mediating Wnt signaling. Daam1-floxed mice were thus bred to Wnt5a null mice to identify genetic interactions. The hearts of Daam1 CKO mice that were also heterozygous for the null allele of Wnt5a had stronger NCM and more severe loss of cardiac function than Daam1 CKO mice, consistent with DAAM1 and Wnt5a acting in a common pathway. However, deleting Daam1 further disrupted Wnt5a homozygous-null hearts, suggesting that DAAM1 also has Wnt5a-independent roles in cardiac development.
Collapse
Affiliation(s)
- Rieko Ajima
- Mammalian Development Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Joseph A Bisson
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jay-Christian Helt
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Masa-Aki Nakaya
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Raymond Habas
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Xi He
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Edward E Morrisey
- Department of Medicine and Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Terry P Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA.
| | - Ethan David Cohen
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
23
|
Janssen R, Schönauer A, Weber M, Turetzek N, Hogvall M, Goss GE, Patel NH, McGregor AP, Hilbrant M. The evolution and expression of panarthropod frizzled genes. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Participation of WNT and β-Catenin in Physiological and Pathological Endometrial Changes: Association with Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:854056. [PMID: 26366420 PMCID: PMC4558421 DOI: 10.1155/2015/854056] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/15/2015] [Indexed: 12/23/2022]
Abstract
WNT proteins are involved in embryonic development, sex determination, stem cell recruitment, angiogenesis, and cancer. They take part in morphological changes in the endometrium during development, regulate processes of endometrial proliferation and differentiation. This review presents current knowledge about implication of WNT proteins and β-catenin in physiological endometrial functions as well as their involvement in uterine carcinogenesis. Influence of WNT proteins on the formation of blood vessel, taking place both under healthy and pathological conditions, is also considered. Participation of WNT proteins, β-catenin, and inhibitors and inducers of WNT signaling in the process of endometrial angiogenesis is largely unknown. Thus, confirmation of their local and systemic participation in the process of endometrial angiogenesis may in the long term help to establish new diagnostic and therapeutic approaches in conditions associated with the pathology of the female reproductive system.
Collapse
|
25
|
Yamamoto H, Awada C, Matsumoto S, Kaneiwa T, Sugimoto T, Takao T, Kikuchi A. Basolateral secretion of Wnt5a in polarized epithelial cells is required for apical lumen formation. J Cell Sci 2015; 128:1051-63. [PMID: 25593127 DOI: 10.1242/jcs.163683] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Wnt5a regulates planar cell polarity in epithelial cells, but it remains to be determined whether Wnt5a and its receptors are sorted apically or basolaterally, and how Wnt5a signaling is involved in apical and basolateral polarization. We found that Wnt5a was secreted basolaterally in polarized kidney epithelial cells. The basolateral secretion of Wnt5a required Wntless (Wls), clathrin and adaptor protein 1 (AP-1). Wnt5a receptors were also localized to the basolateral membranes, but their sorting did not require Wls. Wnt5a-induced signaling was stimulated more efficiently at the basolateral side than the apical side of epithelial cells. Knockdown of Wnt5a delayed apical lumen formation of the epithelial cyst, and these phenotypes were rescued by wild-type Wnt5a, but not by a Wnt5a mutant that is secreted apically. Although apoptosis was not required for apical lumen formation in a wild-type cyst, apoptosis was necessary for eliminating luminal cells in a Wnt5a-depleted cyst. These results suggest that Wnt5a and its receptors are sorted to their correct destination by different mechanisms and that the basolateral secretion of Wnt5a is necessary for apical lumen formation in the epithelial cyst.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chihiro Awada
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoyuki Kaneiwa
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Sugimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshifumi Takao
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Bisson JA, Mills B, Paul Helt JC, Zwaka TP, Cohen ED. Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT. Dev Biol 2014; 398:80-96. [PMID: 25482987 DOI: 10.1016/j.ydbio.2014.11.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 01/09/2023]
Abstract
Wnt proteins regulate cell behavior via a canonical signaling pathway that induces β-catenin dependent transcription. It is now appreciated that Wnt/β-catenin signaling promotes the expansion of the second heart field (SHF) progenitor cells that ultimately give-rise to the majority of cardiomyocytes. However, activating β-catenin can also cause the loss of SHF progenitors, highlighting the necessity of precise control over β-catenin signaling during heart development. We recently reported that two non-canonical Wnt ligands, Wnt5a and Wnt11, act cooperatively to attenuate canonical Wnt signaling that would otherwise disrupt the SHF. While these data reveal the essential role of this anti-canonical Wnt5a/Wnt11 signaling in SHF development, the mechanisms by which these ligands inhibit the canonical Wnt pathway are unclear. Wnt11 was previously shown to inhibit β-catenin and promote cardiomyocyte maturation by activating a novel apoptosis-independent function of Caspases. Consistent with these data, we now show that Wnt5a and Wnt11 are capable of inducing Caspase activity in differentiating embryonic stem (ES) cells and that hearts from Wnt5a(-/-); Wnt11(-/-) embryos have diminished Caspase 3 (Casp3) activity. Furthermore, SHF markers are reduced in Casp3 mutant ES cells while the treatment of wild type ES cells with Caspase inhibitors blocked the ability of Wnt5a and Wnt11 to promote SHF gene expression. This finding was in agreement with our in vivo studies in which injecting pregnant mice with Caspase inhibitors reduced SHF marker expression in their gestating embryos. Caspase inhibition also blocked other Wnt5a/Wnt11 induced effects, including the suppression of β-catenin protein expression and activity. Interestingly, Wnt5a/Wnt11 treatment of differentiating ES cells reduced both phosphorylated and total Akt through a Caspase-dependent mechanism and phosphorylated Akt levels were increased in the hearts Caspase inhibitor treated. Surprisingly, inhibition of either Akt or PI3K in ES cells was an equally effective means of increasing SHF markers compared to treatment with Wnt5a/Wnt11. Moreover, Akt inhibition restored SHF gene expression in Casp3 mutant ES cells. Taken together, these findings suggest that Wnt5a/Wnt11 inhibit β-catenin to promote SHF development through Caspase-dependent Akt degradation.
Collapse
Affiliation(s)
- Joseph A Bisson
- Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Bradley Mills
- Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jay-Christian Paul Helt
- Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Thomas P Zwaka
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethan David Cohen
- Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
27
|
Carvajal-Gonzalez JM, Mlodzik M. Mechanisms of planar cell polarity establishment in Drosophila. F1000PRIME REPORTS 2014; 6:98. [PMID: 25580252 PMCID: PMC4229721 DOI: 10.12703/p6-98] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Correct patterning and polarization of epithelial and mesenchymal cells are essential for morphogenesis and function of all organs and organisms. Epithelial cells are generally polarized in two axes: (a) the ubiquitous apical-basal axis and (b) polarity within the plane of the epithelium. The latter is generally referred to as planar cell polarity (PCP) and also is found in several contexts of mesenchymal cell patterning. In Drosophila, all adult structures display PCP features, and two conserved molecular systems (the Fat [Ft]/Dachsous [Ds] system and the Frizzled [Fz]/PCP pathway) that regulate this process have been identified. Although significant progress has been made in dissecting aspects of PCP signaling within cells, much remains to be discovered about the mechanisms of long-range and local PCP cell-cell interactions. Here, we discuss the current models based on Drosophila studies and incorporate recent insights into this long-standing cell and developmental biology problem.
Collapse
|
28
|
Shangguan S, Wang L, Chang S, Lu X, Wang Z, Wu L, Wang J, Wang X, Guan Z, Bao Y, Zhao H, Zou J, Niu B, Zhang T. DNA methylation aberrations rather than polymorphisms ofFZD3gene increase the risk of spina bifida in a high-risk region for neural tube defects. ACTA ACUST UNITED AC 2014; 103:37-44. [DOI: 10.1002/bdra.23285] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/15/2014] [Accepted: 06/23/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Shaofang Shangguan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing China
| | - Li Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing China
| | - Shaoyan Chang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing China
| | - Xiaoling Lu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing China
| | - Zhen Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing China
| | - Lihua Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing China
| | - Jianhua Wang
- Department of Biotechnology; Capital Institute of Pediatrics; Beijing China
| | - Xiuwei Wang
- Department of Biotechnology; Capital Institute of Pediatrics; Beijing China
| | - Zhen Guan
- Department of Biotechnology; Capital Institute of Pediatrics; Beijing China
| | - Yihua Bao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing China
| | - Huizhi Zhao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing China
| | - Jizhen Zou
- Department of Pathology; Capital Institute of Pediatrics; Beijing China
| | - Bo Niu
- Department of Biotechnology; Capital Institute of Pediatrics; Beijing China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing China
| |
Collapse
|
29
|
De Marco P, Merello E, Piatelli G, Cama A, Kibar Z, Capra V. Planar cell polarity gene mutations contribute to the etiology of human neural tube defects in our population. ACTA ACUST UNITED AC 2014; 100:633-41. [PMID: 24838524 DOI: 10.1002/bdra.23255] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/23/2014] [Accepted: 04/29/2014] [Indexed: 12/21/2022]
Abstract
Neural Tube Defects (NTDs) are congenital malformations that involve failure of the neural tube closure during the early phases of development at any level of the rostro-caudal axis. The planar cell polarity (PCP) pathway is a highly conserved, noncanonical Wnt-Frizzled-Dishevelled signaling cascade, that was first identified in the fruit fly Drosophila. We are here reviewing the role of the PCP pathway genes in the etiology of human NTDs, updating the list of the rare and deleterious mutations identified so far. We report 50 rare nonsynonymous mutations of PCP genes in 54 patients having a pathogenic effect on the protein function. Thirteen mutations that have previously been reported as novel are now reported in public databases, although at very low frequencies. The mutations were private, mostly missense, and transmitted by a healthy parent. To date, no clear genotype-phenotype correlation has been possible to create. Even if PCP pathway genes are involved in the pathogenesis of neural tube defects, future studies will be necessary to better dissect the genetic causes underlying these complex malformations.
Collapse
|
30
|
Koopmans T, Anaparti V, Castro-Piedras I, Yarova P, Irechukwu N, Nelson C, Perez-Zoghbi J, Tan X, Ward JPT, Wright DB. Ca2+ handling and sensitivity in airway smooth muscle: emerging concepts for mechanistic understanding and therapeutic targeting. Pulm Pharmacol Ther 2014; 29:108-20. [PMID: 24831539 DOI: 10.1016/j.pupt.2014.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/28/2014] [Accepted: 05/01/2014] [Indexed: 02/01/2023]
Abstract
Free calcium ions within the cytosol serve as a key secondary messenger system for a diverse range of cellular processes. Dysregulation of cytosolic Ca(2+) handling in airway smooth muscle (ASM) has been implicated in asthma, and it has been hypothesised that this leads, at least in part, to associated changes in both the architecture and function of the lung. Significant research is therefore directed towards furthering our understanding of the mechanisms which control ASM cytosolic calcium, in addition to those regulating the sensitivity of its downstream effector targets to calcium. Key aspects of the recent developments in this field were discussed at the 8th Young Investigators' Symposium on Smooth Muscle (2013, Groningen, The Netherlands), and are outlined in this review.
Collapse
Affiliation(s)
- T Koopmans
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - V Anaparti
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - I Castro-Piedras
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - P Yarova
- Cardiff School of Biosciences, Cardiff University, UK
| | - N Irechukwu
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - C Nelson
- School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - J Perez-Zoghbi
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - X Tan
- Lung Inflammation & Infection Lab, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - J P T Ward
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - D B Wright
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Division of Asthma, Allergy and Lung Biology, King's College London, UK.
| |
Collapse
|
31
|
Bigas A, Guiu J, Gama-Norton L. Notch and Wnt signaling in the emergence of hematopoietic stem cells. Blood Cells Mol Dis 2013; 51:264-70. [DOI: 10.1016/j.bcmd.2013.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/28/2013] [Indexed: 10/26/2022]
|
32
|
Bassuk AG, Muthuswamy LB, Boland R, Smith TL, Hulstrand AM, Northrup H, Hakeman M, Dierdorff JM, Yung CK, Long A, Brouillette RB, Au KS, Gurnett C, Houston DW, Cornell RA, Manak JR. Copy number variation analysis implicates the cell polarity gene glypican 5 as a human spina bifida candidate gene. Hum Mol Genet 2012; 22:1097-111. [PMID: 23223018 DOI: 10.1093/hmg/dds515] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neural tube defects (NTDs) are common birth defects of complex etiology. Family and population-based studies have confirmed a genetic component to NTDs. However, despite more than three decades of research, the genes involved in human NTDs remain largely unknown. We tested the hypothesis that rare copy number variants (CNVs), especially de novo germline CNVs, are a significant risk factor for NTDs. We used array-based comparative genomic hybridization (aCGH) to identify rare CNVs in 128 Caucasian and 61 Hispanic patients with non-syndromic lumbar-sacral myelomeningocele. We also performed aCGH analysis on the parents of affected individuals with rare CNVs where parental DNA was available (42 sets). Among the eight de novo CNVs that we identified, three generated copy number changes of entire genes. One large heterozygous deletion removed 27 genes, including PAX3, a known spina bifida-associated gene. A second CNV altered genes (PGPD8, ZC3H6) for which little is known regarding function or expression. A third heterozygous deletion removed GPC5 and part of GPC6, genes encoding glypicans. Glypicans are proteoglycans that modulate the activity of morphogens such as Sonic Hedgehog (SHH) and bone morphogenetic proteins (BMPs), both of which have been implicated in NTDs. Additionally, glypicans function in the planar cell polarity (PCP) pathway, and several PCP genes have been associated with NTDs. Here, we show that GPC5 orthologs are expressed in the neural tube, and that inhibiting their expression in frog and fish embryos results in NTDs. These results implicate GPC5 as a gene required for normal neural tube development.
Collapse
Affiliation(s)
- Alexander G Bassuk
- Department of Pediatrics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Widelitz RB. Wnt signaling in skin organogenesis. Organogenesis 2012; 4:123-33. [PMID: 19279724 DOI: 10.4161/org.4.2.5859] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/06/2008] [Indexed: 12/18/2022] Open
Abstract
While serving as the interface between an organism and its environment, the skin also can elaborate a wide range of skin appendages to service specific purposes in a region-specific fashion. As in other organs, Wnt signaling plays a key role in regulating the proliferation, differentiation and motility of skin cells during their morphogenesis. Here I will review some of the recent work that has been done on skin organogenesis. I will cover dermis formation, the development of skin appendages, cycling of appendages in the adult, stem cell regulation, patterning, orientation, regional specificity and modulation by sex hormone nuclear receptors. I will also cover their roles in wound healing, hair regeneration and skin related diseases. It appears that Wnt signaling plays essential but distinct roles in different hierarchical levels of morphogenesis and organogenesis. Many of these areas have not yet been fully explored but are certainly promising areas of future research.
Collapse
Affiliation(s)
- Randall B Widelitz
- Department of Pathology; Keck School of Medicine; University of Southern California; Los Angeles, California USA
| |
Collapse
|
34
|
Boras-Granic K, Wysolmerski JJ. Wnt signaling in breast organogenesis. Organogenesis 2012; 4:116-22. [PMID: 19279723 DOI: 10.4161/org.4.2.5858] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/06/2008] [Indexed: 01/19/2023] Open
Abstract
Wnt signals play a critical role in regulating the normal development of the mammary gland and dysregulation of Wnt signaling causes breast cancer. This pathway is involved in the earliest development of the mammary gland in embryos and its role extends through the functional differentiation of the gland during pregnancy. In this review, we summarize the molecular mechanisms through which Wnts regulate mammary gland development in the mouse.
Collapse
Affiliation(s)
- Kata Boras-Granic
- Section of Endocrinology and Metabolism; Department of Internal Medicine; Yale University; New Haven, Connecticut USA
| | | |
Collapse
|
35
|
De Marco P, Merello E, Consales A, Piatelli G, Cama A, Kibar Z, Capra V. Genetic analysis of disheveled 2 and disheveled 3 in human neural tube defects. J Mol Neurosci 2012; 49:582-8. [PMID: 22892949 PMCID: PMC3566388 DOI: 10.1007/s12031-012-9871-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 07/31/2012] [Indexed: 11/25/2022]
Abstract
Neural tube defects are severe malformations affecting 1/1,000 live births. The planar cell polarity pathway controls the neural tube closure and has been implicated in the pathogenesis of neural tube defects both in animal models and human cohorts. In mouse disruption of Dvl2 alone (Dvl2−/−) or Dvl2 and Dvl3 (Dvl2−/−; Dvl3+/−, Dvl2+/−; Dvl3−/−) results in incomplete neurulation, suggesting a role for Disheveled in neural tube closure. Disheveled is a multifunctional protein that is involved in both the canonical Wnt signaling and the noncanonical planar cell polarity pathway. In this study, we analyzed the role of the human orthologs DVL2 and DVL3 in a cohort of 473 patients with neural tube defects. Rare variants were genotyped in 639 ethnically matched controls. We identified seven rare missense mutations that were absent in all controls analyzed. Two of these mutations, p.Tyr667Cys and p.Ala53Val, identified in DVL2 were predicted to be detrimental in silico. Significantly, a 1-bp insertion (c.1801_1802insG) in exon 15 of DVL2 predicted to lead to the truncation of the protein was identified in a patient with a complex form of caudal agenesis. In summary, we demonstrate a possible role for rare variants in DVL2 gene as risk factors for neural tube defects.
Collapse
|
36
|
Abstract
Planar cell polarity (PCP) is a common feature of many epithelia and epithelial organs. Although progress has been made in the dissection of molecular mechanisms regulating PCP, many questions remain. Here we describe a screen to identify novel PCP regulators in Drosophila. We employed mild gain-of-function (GOF) phenotypes of two cytoplasmic Frizzled (Fz)/PCP core components, Diego (Dgo) and Prickle (Pk), and screened these against the DrosDel genome-wide deficiency collection for dominant modifiers. Positive genomic regions were rescreened and narrowed down with smaller overlapping deficiencies from the Exelixis collection and RNAi-mediated knockdown applied to individual genes. This approach isolated new regulators of PCP, which were confirmed with loss-of-function analyses displaying PCP defects in the eye and/or wing. Furthermore, knockdown of a subset was also sensitive to dgo dosage or dominantly modified a dishevelled (dsh) GOF phenotype, supporting a role in Fz/PCP-mediated polarity establishment. Among the new "PCP" genes we identified several kinases, enzymes required for lipid modification, scaffolding proteins, and genes involved in substrate modification and/or degradation. Interestingly, one of them is a member of the Meckel-Gruber syndrome factors, associated with human ciliopathies, suggesting an important role for cell polarity in nonciliated cells.
Collapse
|
37
|
Majid S, Saini S, Dahiya R. Wnt signaling pathways in urological cancers: past decades and still growing. Mol Cancer 2012; 11:7. [PMID: 22325146 PMCID: PMC3293036 DOI: 10.1186/1476-4598-11-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/10/2012] [Indexed: 02/25/2023] Open
Abstract
The Wnt signaling pathway is involved in a wide range of embryonic patterning events and maintenance of homeostasis in adult tissues. The pathological role of the Wnt pathway has emerged from studies showing a high frequency of specific human cancers associated with mutations that constitutively activate the transcriptional response of these pathways. Constitutive activation of the Wnt signaling pathway is a common feature of solid tumors and contributes to tumor development, progression and metastasis in various cancers. In this review, the Wnt pathway will be covered from the perspective of urological cancers with emphasis placed on the recent published literature. Regulation of the Wnt signaling pathway by microRNAs (miRNA), small RNA sequences that modify gene expression profiles will also be discussed. An improved understanding of the basic genetics and biology of Wnt signaling pathway will provide insights into the development of novel chemopreventive and therapeutic strategies for urological cancers.
Collapse
Affiliation(s)
- Shahana Majid
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, 4150 Clement Street, San Francisco CA 94121, USA
| | | | | |
Collapse
|
38
|
Abstract
Branching morphology is a hallmark feature of axons and dendrites and is essential for neuronal connectivity. To understand how this develops, I analyzed the stereotyped pattern of Drosophila mushroom body (MB) neurons, which have single axons branches that extend dorsally and medially. I found that components of the Wnt/Planar Cell Polarity (PCP) pathway control MB axon branching. frizzled mutant animals showed a predominant loss of dorsal branch extension, whereas strabismus (also known as Van Gogh) mutants preferentially lost medial branches. Further results suggest that Frizzled and Strabismus act independently. Nonetheless, branching fates are determined by complex Wnt/PCP interactions, including interactions with Dishevelled and Prickle that function in a context-dependent manner. Branching decisions are MB-autonomous but non-cell-autonomous as mutant and non-mutant neurons regulate these decisions collectively. I found that Wnt/PCP components do not need to be asymmetrically localized to distinct branches to execute branching functions. However, Prickle axonal localization depends on Frizzled and Strabismus.
Collapse
Affiliation(s)
- Julian Ng
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
39
|
Li Y, Li B, Wan X, Zhang W, Zhong L, Tang SJ. NMDA receptor activation stimulates transcription-independent rapid wnt5a protein synthesis via the MAPK signaling pathway. Mol Brain 2012; 5:1. [PMID: 22217152 PMCID: PMC3287101 DOI: 10.1186/1756-6606-5-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/04/2012] [Indexed: 11/10/2022] Open
Abstract
Wnt proteins are emerging key regulators of the plasticity and functions of adult brains. However, the mechanisms by which the expression of Wnt proteins is regulated in neurons are unclear. Using cortical primary cultures, we show here that activation of NMDA receptors (NMDARs) induces rapid Wnt5a protein synthesis and secretion. This NMDAR-regulated Wnt5a synthesis does not require transcription and is a result of activity-dependent translation. We also show that NMDAR-regulated Wnt5a translation depends on MAPK signaling but not mTOR signaling. Our findings suggest that the synaptic activity of CNS neurons activates NMDARs, which in turn stimulate translation from stored Wnt5a mRNA via the MAPK signaling pathway.
Collapse
Affiliation(s)
- Yichen Li
- School of Pharmaceutical Sciences and Laboratory Animal Center of Sun Yat-Sen University, Guangzhen, P, R, China
| | | | | | | | | | | |
Collapse
|
40
|
Viegas P, Nicoleau C, Perrier AL. Derivation of striatal neurons from human stem cells. PROGRESS IN BRAIN RESEARCH 2012. [DOI: 10.1016/b978-0-444-59575-1.00017-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Maschietto M, Trapé AP, Piccoli FS, Ricca TI, Dias AAM, Coudry RA, Galante PA, Torres C, Fahhan L, Lourenço S, Grundy PE, de Camargo B, de Souza S, Neves EJ, Soares FA, Brentani H, Carraro DM. Temporal blastemal cell gene expression analysis in the kidney reveals new Wnt and related signaling pathway genes to be essential for Wilms' tumor onset. Cell Death Dis 2011; 2:e224. [PMID: 22048167 PMCID: PMC3223691 DOI: 10.1038/cddis.2011.105] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Wilms' tumors (WTs) originate from metanephric blastema cells that are unable to complete differentiation, resulting in triphasic tumors composed of epithelial, stromal and blastemal cells, with the latter harboring molecular characteristics similar to those of the earliest kidney development stages. Precise regulation of Wnt and related signaling pathways has been shown to be crucial for correct kidney differentiation. In this study, the gene expression profile of Wnt and related pathways was assessed in laser-microdissected blastemal cells in WTs and differentiated kidneys, in human and in four temporal kidney differentiation stages (i.e. E15.5, E17.5, P1.5 and P7.5) in mice, using an orthologous cDNA microarray platform. A signaling pathway-based gene signature was shared between cells of WT and of earliest kidney differentiation stages, revealing genes involved in the interruption of blastemal cell differentiation in WT. Reverse transcription-quantitative PCR showed high robustness of the microarray data demonstrating 75 and 56% agreement in the initial and independent sample sets, respectively. The protein expression of CRABP2, IGF2, GRK7, TESK1, HDGF, WNT5B, FZD2 and TIMP3 was characterized in WTs and in a panel of human fetal kidneys displaying remarkable aspects of differentiation, which was recapitulated in the tumor. Taken together, this study reveals new genes candidate for triggering WT onset and for therapeutic treatment targets.
Collapse
Affiliation(s)
- M Maschietto
- Laboratory of Genomics and Molecular Biology, CIPE-AC Camargo Hospital, São Paulo, SP, Brasil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gray RS, Roszko I, Solnica-Krezel L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell 2011; 21:120-33. [PMID: 21763613 DOI: 10.1016/j.devcel.2011.06.011] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Planar cell polarization entails establishment of cellular asymmetries within the tissue plane. An evolutionarily conserved planar cell polarity (PCP) signaling system employs intra- and intercellular feedback interactions between its core components, including Frizzled, Van Gogh, Flamingo, Prickle, and Dishevelled, to establish their characteristic asymmetric intracellular distributions and coordinate planar polarity of cell populations. By translating global patterning information into asymmetries of cell membranes and intracellular organelles, PCP signaling coordinates morphogenetic behaviors of individual cells and cell populations with the embryonic polarity. In vertebrates, by polarizing cilia in the node/Kupffer's vesicle, PCP signaling links the anteroposterior to left-right embryonic polarity.
Collapse
Affiliation(s)
- Ryan S Gray
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
43
|
Yanfeng WA, Berhane H, Mola M, Singh J, Jenny A, Mlodzik M. Functional dissection of phosphorylation of Disheveled in Drosophila. Dev Biol 2011; 360:132-42. [PMID: 21963539 DOI: 10.1016/j.ydbio.2011.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 08/23/2011] [Accepted: 09/14/2011] [Indexed: 01/25/2023]
Abstract
Disheveled/Dsh proteins (Dvl in mammals) are core components of both Wnt/Wg-signaling pathways: canonical β-catenin signaling and Frizzled (Fz)-planar cell polarity (PCP) signaling. Although Dsh is a key cytoplasmic component of both Wnt/Fz-pathways, regulation of its signaling specificity is not well understood. Dsh is phosphorylated, but the functional significance of its phosphorylation remains unclear. We have systematically investigated the phosphorylation of Dsh by combining mass-spectrometry analyses, biochemical studies, and in vivo genetic methods in Drosophila. Our approaches identified multiple phospho-residues of Dsh in vivo. Our data define three novel and unexpected conclusions: (1) strikingly and in contrast to common assumptions, all conserved serines/threonines are non-essential for Dsh function in either pathway; (2) phosphorylation of conserved Tyrosine473 in the DEP domain is critical for PCP-signaling - Dsh(Y473F) behaves like a PCP-specific allele; and (3) defects associated with the PCP specific dsh(1) allele, Dsh(K417M), located within a putative Protein Kinase C consensus site, are likely due to a post-translational modification requirement of Lys417, rather than phosphorylation nearby. In summary, our combined data indicate that while many Ser/Thr and Tyr residues are indeed phosphorylated in vivo, strikingly most of these phosphorylation events are not critical for Dsh function with the exception of DshY473.
Collapse
Affiliation(s)
- Wang A Yanfeng
- Dept. of Developmental & Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
44
|
Roles of planar cell polarity pathways in the development of neural [correction of neutral] tube defects. J Biomed Sci 2011; 18:66. [PMID: 21864354 PMCID: PMC3175158 DOI: 10.1186/1423-0127-18-66] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/24/2011] [Indexed: 02/08/2023] Open
Abstract
Neural tube defects (NTDs) are the second most common birth defect in humans. Despite many advances in the understanding of NTDs and the identification of many genes related to NTDs, the fundamental etiology for the majority of cases of NTDs remains unclear. Planar cell polarity (PCP) signaling pathway, which is important for polarized cell movement (such as cell migration) and organ morphogenesis through the activation of cytoskeletal pathways, has been shown to play multiple roles during neural tube closure. The disrupted function of PCP pathway is connected with some NTDs. Here, we summarize our current understanding of how PCP factors affect the pathogenesis of NTDs.
Collapse
|
45
|
Abstract
In all multicellular organisms, epithelial cells are not only polarized along the apical-basal axis, but also within the epithelial plane, giving cells a sense of direction. Planar cell polarity (PCP) signaling regulates establishment of polarity within the plane of an epithelium. The outcomes of PCP signaling are diverse and include the determination of cell fates, the generation of asymmetric but highly aligned structures, such as the stereocilia in the human inner ear or the hairs on a fly wing, or the directional migration of cells during convergence and extension during vertebrate gastrulation. In humans, aberrant PCP signaling can result in severe developmental defects, such as open neural tubes (spina bifida), and can cause cystic kidneys. In this review, we discuss the basic mechanism and more recent findings of PCP signaling focusing on Drosophila melanogaster, the model organism in which most key PCP components were initially identified.
Collapse
Affiliation(s)
- Saw Myat Thanda W Maung
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY, USA
| | | |
Collapse
|
46
|
Takatani T, Minagawa M, Takatani R, Kinoshita K, Kohno Y. AMP-activated protein kinase attenuates Wnt/β-catenin signaling in human osteoblastic Saos-2 cells. Mol Cell Endocrinol 2011; 339:114-9. [PMID: 21501658 DOI: 10.1016/j.mce.2011.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/28/2011] [Accepted: 04/01/2011] [Indexed: 01/05/2023]
Abstract
AMP-activated protein kinase (AMPK) is a key sensor of cellular energetic conditions. Recent studies suggest that AMPK affects osteoblast differentiation, although its role and mechanism are not fully understood. One of the most important signals in osteoblast differentiation is the Wnt/β-catenin pathway which induces T-cell transcription factor 1 (TCF)-dependent transcription. Using human osteoblast-like Saos-2 cells, we determined whether AMPK modulates Wnt/β-catenin signaling in osteoblasts. Chemical activators of AMPK (AICAR [5-aminoimidazole-4-carboxamide riboside], metformin) suppressed Wnt3a-induced TCF-dependent transcriptional activity. Transactivation by Wnt was potentiated by inhibiting β-catenin degradation with lithium chloride (LiCl). LiCl-induced Wnt transactivation was suppressed by addition of metformin. Metformin increased the phosphorylation of β-catenin and decreased β-catenin protein levels leading to suppression of Wnt/β-catenin signaling. Our present study showed that AMPK attenuates Wnt/β-catenin signaling by reducing β-catenin protein levels in osteoblast-like cells.
Collapse
Affiliation(s)
- Tomozumi Takatani
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan.
| | | | | | | | | |
Collapse
|
47
|
Abstract
Planar polarity describes the coordinated polarisation of cells or structures in the plane of a tissue. The patterning mechanisms that underlie planar polarity are well characterised in Drosophila, where many events are regulated by two pathways: the 'core' planar polarity complex and the Fat/Dachsous system. Components of both pathways also function in vertebrates and are implicated in diverse morphogenetic processes, some of which self-evidently involve planar polarisation and some of which do not. Here, we review the molecular mechanisms and cellular consequences of planar polarisation in diverse contexts, seeking to identify the common principles across the animal kingdom.
Collapse
Affiliation(s)
- Lisa V. Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David Strutt
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
48
|
Van de Bor V, Zimniak G, Cérézo D, Schaub S, Noselli S. Asymmetric localisation of cytokine mRNA is essential for JAK/STAT activation during cell invasiveness. Development 2011; 138:1383-93. [PMID: 21350010 DOI: 10.1242/dev.056184] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The transition from immotile epithelial cells to migrating cells occurs in all organisms during normal embryonic development, as well as during tumour metastasis. During Drosophila oogenesis, border cells (BCs) are recruited and delaminate from the follicular epithelium. This process is triggered by the polar cells (PCs), which secrete the cytokine Unpaired (Upd) and activate the JAK/STAT pathway in neighbouring cells, turning them into invasive BCs. Interestingly, either a decrease or an increase in BC number alters migration, indicating that mechanisms controlling the level of JAK/STAT signalling are crucial in this process. Here, we show that PCs have a highly stable and polarised network of microtubules along which upd transcripts are asymmetrically transported in a Dynein-dependent manner. We demonstrate that in the absence of upd mRNA localisation the ligand is no longer efficiently secreted, leading to a loss of signalling strength as well as recruitment and migration defects. These findings reveal a novel post-transcriptional regulatory mechanism of JAK/STAT signalling in the control of epithelial cell invasiveness.
Collapse
Affiliation(s)
- Véronique Van de Bor
- Institute of Developmental Biology and Cancer UMR6543/CNRS, University of Nice Sophia-Antipolis, Parc Valrose, 06108 Nice cedex 2, France
| | | | | | | | | |
Collapse
|
49
|
Nodal dependent differential localisation of dishevelled-2 demarcates regions of differing cell behaviour in the visceral endoderm. PLoS Biol 2011; 9:e1001019. [PMID: 21364967 PMCID: PMC3042994 DOI: 10.1371/journal.pbio.1001019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/07/2011] [Indexed: 01/04/2023] Open
Abstract
The anterior visceral endoderm (AVE), a signalling centre within the simple epithelium of the visceral endoderm (VE), is required for anterior-posterior axis specification in the mouse embryo. AVE cells migrate directionally within the VE, thereby properly positioning the future anterior of the embryo and orientating the primary body axis. AVE cells consistently come to an abrupt stop at the border between the anterior epiblast and extra-embryonic ectoderm, which represents an end-point to their proximal migration. Little is known about the underlying basis for this barrier and how surrounding cells in the VE respond to or influence AVE migration. We use high-resolution 3D reconstructions of protein localisation patterns and time-lapse microscopy to show that AVE cells move by exchanging neighbours within an intact epithelium. Cell movement and mixing is restricted to the VE overlying the epiblast, characterised by the enrichment of Dishevelled-2 (Dvl2) to the lateral plasma membrane, a hallmark of Planar Cell Polarity (PCP) signalling. AVE cells halt upon reaching the adjoining region of VE overlying the extra-embryonic ectoderm, which displays reduced neighbour exchange and in which Dvl2 is excluded specifically from the plasma membrane. Though a single continuous sheet, these two regions of VE show distinct patterns of F-actin localisation, in cortical rings and an apical shroud, respectively. We genetically perturb PCP signalling and show that this disrupts the localisation pattern of Dvl2 and F-actin and the normal migration of AVE cells. In Nodal null embryos, membrane localisation of Dvl2 is reduced, while in mutants for the Nodal inhibitor Lefty1, Dvl2 is ectopically membrane localised, establishing a role for Nodal in modulating PCP signalling. These results show that the limits of AVE migration are determined by regional differences in cell behaviour and protein localisation within an otherwise apparently uniform VE. In addition to coordinating global cell movements across epithelia (such as during convergence extension), PCP signalling in interplay with TGFβ signalling can demarcate regions of differing behaviour within epithelia, thereby modulating the movement of cells within them. The orientation of the head-tail axis is determined during embryogenesis by the movements of a subset of cells called the AVE (anterior visceral endoderm). These cells migrate from their initial position within the simple epithelium of the visceral endoderm (VE) to a location from which they eventually induce anterior pattern in the adjacent epiblast. Little is understood about how AVE cells migrate within the VE, why they stop migrating where they do, and how surrounding cells in the VE respond to or influence AVE migration. In this study, we use time-lapse microscopy and high-resolution 3D reconstructions of protein localisation patterns to address these issues. Our results show that AVE cells move by exchanging neighbours within an intact epithelium. The limits of AVE migration are determined by regional differences in cell behaviour and protein localisation within an otherwise apparently uniform VE. Finally, we examine the role of planar cell polarity (PCP) signalling, which is responsible for coordinating morphogenetic events across different epithelia. We show that in addition to this traditional role in coordinating global cell movements, PCP signalling along with TGFβ signalling can demarcate regions of differing behaviour within epithelia, thereby modulating the movement of cells within them.
Collapse
|
50
|
Adamska M, Larroux C, Adamski M, Green K, Lovas E, Koop D, Richards GS, Zwafink C, Degnan BM. Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica. Evol Dev 2011; 12:494-518. [PMID: 20883218 DOI: 10.1111/j.1525-142x.2010.00435.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wnt-signalling plays a critical role in animal development, and its misregulation results in serious human diseases, including cancer. While the Wnt pathway is well studied in eumetazoan models, little is known about the evolutionary origin of its components and their functions. Here, we have identified key machinery of the Wnt-β-catenin (canonical)-signalling pathway that is encoded in the Amphimedon queenslandica (Demospongiae; Porifera) genome, namely Wnt, Fzd, SFRP, Lrp5/6, Dvl, Axin, APC, GSK3, β-catenin, Tcf, and Groucho. Most of these genes are not detected in the choanoflagellate and other nonmetazoan eukaryotic genomes. In contrast, orthologues of some of key components of bilaterian Wnt-planar cell polarity and Wnt/Ca(2+) are absent from the Amphimedon genome, suggesting these pathways evolved after demosponge and eumetazoan lineages diverged. Sequence analysis of the identified proteins of the Wnt-β-catenin pathway has revealed the presence of most of the conserved motifs and domains responsible for protein-protein and protein-DNA interactions in vertebrates and insects. However, several protein-protein interaction domains appear to be absent from the Amphimedon Axin and APC proteins. These are also missing from their orthologues in the cnidarian Nematostella vectensis, suggesting that they are bilaterian novelties. All of the analyzed Wnt pathway genes are expressed in specific patterns during Amphimedon embryogenesis. Most are expressed in especially striking and highly dynamic patterns during formation of a simple organ-like larval structure, the pigment ring. Overall, our results indicate that the Wnt-β-catenin pathway was used in embryonic patterning in the last common ancestor of living metazoans. Subsequently, gene duplications and a possible increase in complexity of protein interactions have resulted in the precisely regulated Wnt pathway observed in extant bilaterian animals.
Collapse
Affiliation(s)
- Maja Adamska
- School of Integrative Biology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|