1
|
Su Y, Shea J, Destephanis D, Su Z. Transcriptomic analysis of the spatiotemporal axis of oogenesis and fertilization in C. elegans. Front Cell Dev Biol 2024; 12:1436975. [PMID: 39224437 PMCID: PMC11366716 DOI: 10.3389/fcell.2024.1436975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Caenorhabditis elegans hermaphrodite presents a unique model to study the formation of oocytes. However, the size of the model animal and difficulties in retrieval of specific stages of the germline have obviated closer systematic studies of this process throughout the years. Here, we present a transcriptomic level analysis into the oogenesis of C. elegans hermaphrodites. We dissected a hermaphrodite gonad into seven sections corresponding to the mitotic distal region, the pachytene region, the diplotene region, the early diakinesis region and the 3 most proximal oocytes, and deeply sequenced the transcriptome of each of them along with that of the fertilized egg using a single-cell RNA-seq (scRNA-seq) protocol. We identified specific gene expression events as well as gene splicing events in finer detail along the gonad and provided novel insights into underlying mechanisms of the oogenesis process. Furthermore, through careful review of relevant research literature coupled with patterns observed in our analysis, we delineate transcripts that may serve functions in the interactions between the germline and cells of the somatic gonad. These results expand our knowledge of the transcriptomic space of the C. elegans germline and lay a foundation on which future studies of the germline can be based upon.
Collapse
Affiliation(s)
| | | | | | - Zhengchang Su
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
2
|
Brinkley DM, Smith KC, Fink EC, Kwen W, Yoo NH, West Z, Sullivan NL, Farthing AS, Hale VA, Goutte C. Notch signaling without the APH-2/nicastrin subunit of gamma secretase in Caenorhabditis elegans germline stem cells. Genetics 2024; 227:iyae076. [PMID: 38717968 DOI: 10.1093/genetics/iyae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/01/2024] [Indexed: 07/09/2024] Open
Abstract
The final step in Notch signaling activation is the transmembrane cleavage of Notch receptor by γ secretase. Thus far, genetic and biochemical evidence indicates that four subunits are essential for γ secretase activity in vivo: presenilin (the catalytic core), APH-1, PEN-2, and APH-2/nicastrin. Although some γ secretase activity has been detected in APH-2/nicastrin-deficient mammalian cell lines, the lack of biological relevance for this activity has left the quaternary γ secretase model unchallenged. Here, we provide the first example of in vivo Notch signal transduction without APH-2/nicastrin. The surprising dispensability of APH-2/nicastrin is observed in Caenorhabditis elegans germline stem cells (GSCs) and contrasts with its essential role in previously described C. elegans Notch signaling events. Depletion of GLP-1/Notch, presenilin, APH-1, or PEN-2 causes a striking loss of GSCs. In contrast, aph-2/nicastrin mutants maintain GSCs and exhibit robust and localized expression of the downstream Notch target sygl-1. Interestingly, APH-2/nicastrin is normally expressed in GSCs and becomes essential under conditions of compromised Notch function. Further insight is provided by reconstituting the C. elegans γ secretase complex in yeast, where we find that APH-2/nicastrin increases but is not essential for γ secretase activity. Together, our results are most consistent with a revised model of γ secretase in which the APH-2/nicastrin subunit has a modulatory, rather than obligatory role. We propose that a trimeric presenilin-APH-1-PEN-2 γ secretase complex can provide a low level of γ secretase activity, and that cellular context determines whether or not APH-2/nicastrin is essential for effective Notch signal transduction.
Collapse
Affiliation(s)
- David M Brinkley
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, USA
| | - Karen C Smith
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | - Emma C Fink
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | - Woohyun Kwen
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | - Nina H Yoo
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | - Zachary West
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | - Nora L Sullivan
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | - Alex S Farthing
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, USA
| | - Valerie A Hale
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | - Caroline Goutte
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, USA
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| |
Collapse
|
3
|
Jones M, Norman M, Tiet AM, Lee J, Lee MH. C. elegans Germline as Three Distinct Tumor Models. BIOLOGY 2024; 13:425. [PMID: 38927305 PMCID: PMC11200432 DOI: 10.3390/biology13060425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Tumor cells display abnormal growth and division, avoiding the natural process of cell death. These cells can be benign (non-cancerous growth) or malignant (cancerous growth). Over the past few decades, numerous in vitro or in vivo tumor models have been employed to understand the molecular mechanisms associated with tumorigenesis in diverse regards. However, our comprehension of how non-tumor cells transform into tumor cells at molecular and cellular levels remains incomplete. The nematode C. elegans has emerged as an excellent model organism for exploring various phenomena, including tumorigenesis. Although C. elegans does not naturally develop cancer, it serves as a valuable platform for identifying oncogenes and the underlying mechanisms within a live organism. In this review, we describe three distinct germline tumor models in C. elegans, highlighting their associated mechanisms and related regulators: (1) ectopic proliferation due to aberrant activation of GLP-1/Notch signaling, (2) meiotic entry failure resulting from the loss of GLD-1/STAR RNA-binding protein, (3) spermatogenic dedifferentiation caused by the loss of PUF-8/PUF RNA-binding protein. Each model requires the mutations of specific genes (glp-1, gld-1, and puf-8) and operates through distinct molecular mechanisms. Despite these differences in the origins of tumorigenesis, the internal regulatory networks within each tumor model display shared features. Given the conservation of many of the regulators implicated in C. elegans tumorigenesis, it is proposed that these unique models hold significant potential for enhancing our comprehension of the broader control mechanisms governing tumorigenesis.
Collapse
Affiliation(s)
- Mariah Jones
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; (M.J.); (M.N.)
| | - Mina Norman
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; (M.J.); (M.N.)
| | - Alex Minh Tiet
- Neuroscience Program, East Carolina University, Greenville, NC 27858, USA;
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Jiwoo Lee
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Myon Hee Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; (M.J.); (M.N.)
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
4
|
Li W, Ma L, Shi Y, Wang J, Yin J, Wang D, Luo K, Liu R. Meiosis-mediated reproductive toxicity by fenitrothion in Caenorhabditis elegans from metabolomic perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114680. [PMID: 36857914 DOI: 10.1016/j.ecoenv.2023.114680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Fenitrothion (FNT), an organophosphorus insecticide, is widely detected in the living environment. The reproductive and endocrine toxicity of FNT to biological communities has been ever reported, but potential mechanism and reproductive toxicity dose effect remain unclear. In our study, we constructed Caenorhabditis elegans model to analyze the reproductive toxicity mechanism of FNT based on metabolomics and evaluated its reproductive toxicity dose effect using benchmark dose (BMD)method. Our results showed that FNT exposure significantly reduced brood size, number of germ cells, and delayed gonadal development in nematodes. Non-targeted metabolomics revealed that FNT exposure caused significant metabolic disturbances in nematodes, leading to a significant reduction in the synthesis of cortisol and melatonin, and the latter played a mediating role in the effects of FNT on number of germ cells. We further found that the levels of these two hormones were significantly negative correlated with the expression of the androgen receptor nhr-69 and affected the meiosis of germ cells by regulating the nhr-69/ fbf-1/2 /gld-3 /fog-1/3 pathway. Meanwhile, the study found the BMDL10s for N2 and him-5 mutant were 0.411 μg/L by number of germ cells and 0.396 μg/L by number of germ cells in the meiotic zone, respectively, providing a more protective reference dose for ecological risk assessment of FNT. This study suggested that FNT can affect androgen receptor expression by inhibiting cortisol and melatonin secretion, which further mediate the meiotic pathway to affect sperm formation and exert reproductive toxicity, and provides a basis for setting reproductive toxicity limits for FNT.
Collapse
Affiliation(s)
- Weixi Li
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Lingyi Ma
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yingchi Shi
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jia Wang
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiechen Yin
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- School of Medical, Southeast University, Nanjing 210009, China
| | - Kai Luo
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Ran Liu
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
5
|
Albarqi MMY, Ryder SP. The role of RNA-binding proteins in orchestrating germline development in Caenorhabditis elegans. Front Cell Dev Biol 2023; 10:1094295. [PMID: 36684428 PMCID: PMC9846511 DOI: 10.3389/fcell.2022.1094295] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
RNA passed from parents to progeny controls several aspects of early development. The germline of the free-living nematode Caenorhabditis elegans contains many families of evolutionarily conserved RNA-binding proteins (RBPs) that target the untranslated regions of mRNA transcripts to regulate their translation and stability. In this review, we summarize what is known about the binding specificity of C. elegans germline RNA-binding proteins and the mechanisms of mRNA regulation that contribute to their function. We examine the emerging role of miRNAs in translational regulation of germline and embryo development. We also provide an overview of current technology that can be used to address the gaps in our understanding of RBP regulation of mRNAs. Finally, we present a hypothetical model wherein multiple 3'UTR-mediated regulatory processes contribute to pattern formation in the germline to ensure the proper and timely localization of germline proteins and thus a functional reproductive system.
Collapse
|
6
|
Crittenden SL, Seidel HS, Kimble J. Analysis of the C. elegans Germline Stem Cell Pool. Methods Mol Biol 2023; 2677:1-36. [PMID: 37464233 DOI: 10.1007/978-1-0716-3259-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The Caenorhabditis elegans germline is an excellent model for studying the genetic and molecular regulation of stem cell self-renewal and progression of cells from a stem cell state to a differentiated state. The germline tissue is organized in an assembly line with the germline stem cell (GSC) pool at one end and differentiated gametes at the other. A simple mesenchymal niche caps the GSC pool and maintains GSCs in an undifferentiated state by signaling through the conserved Notch pathway. Notch signaling activates transcription of the key GSC regulators lst-1 and sygl-1 proteins in a gradient through the GSC pool. LST-1 and SYGL-1 proteins work with PUF RNA regulators in a self-renewal hub to maintain the GSC pool. In this chapter, we present methods for characterizing the C. elegans GSC pool and early stages of germ cell differentiation. The methods include examination of germlines in living and fixed worms, cell cycle analysis, and analysis of markers. We also discuss assays to separate mutant phenotypes that affect the stem cell vs. differentiation decision from those that affect germ cell processes more generally.
Collapse
Affiliation(s)
- Sarah L Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Hannah S Seidel
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Vanden Broek K, Han X, Hansen D. Redundant mechanisms regulating the proliferation vs. differentiation balance in the C. elegans germline. Front Cell Dev Biol 2022; 10:960999. [PMID: 36120589 PMCID: PMC9479330 DOI: 10.3389/fcell.2022.960999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
The proper production of gametes over an extended portion of the life of an organism is essential for a high level of fitness. The balance between germline stem cell (GSC) proliferation (self-renewal) and differentiation (production of gametes) must be tightly regulated to ensure proper gamete production and overall fitness. Therefore, organisms have evolved robust regulatory systems to control this balance. Here we discuss the redundancy in the regulatory system that controls the proliferation vs. differentiation balance in the C. elegans hermaphrodite germline, and how this redundancy may contribute to robustness. We focus on the various types of redundancy utilized to regulate this balance, as well as the approaches that have enabled these redundant mechanisms to be uncovered.
Collapse
|
8
|
Lynch TR, Xue M, Czerniak CW, Lee C, Kimble J. Notch-dependent DNA cis-regulatory elements and their dose-dependent control of C. elegans stem cell self-renewal. Development 2022; 149:dev200332. [PMID: 35394007 PMCID: PMC9058496 DOI: 10.1242/dev.200332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
A long-standing biological question is how DNA cis-regulatory elements shape transcriptional patterns during metazoan development. Reporter constructs, cell culture assays and computational modeling have made major contributions to answering this question, but analysis of elements in their natural context is an important complement. Here, we mutate Notch-dependent LAG-1 binding sites (LBSs) in the endogenous Caenorhabditis elegans sygl-1 gene, which encodes a key stem cell regulator, and analyze the consequences on sygl-1 expression (nascent transcripts, mRNA, protein) and stem cell maintenance. Mutation of one LBS in a three-element cluster approximately halved both expression and stem cell pool size, whereas mutation of two LBSs essentially abolished them. Heterozygous LBS mutant clusters provided intermediate values. Our results lead to two major conclusions. First, both LBS number and configuration impact cluster activity: LBSs act additively in trans and synergistically in cis. Second, the SYGL-1 gradient promotes self-renewal above its functional threshold and triggers differentiation below the threshold. Our approach of coupling CRISPR/Cas9 LBS mutations with effects on both molecular and biological readouts establishes a powerful model for in vivo analyses of DNA cis-regulatory elements.
Collapse
Affiliation(s)
- Tina R. Lynch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, Madison, WI 53706, USA
| | - Mingyu Xue
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Cazza W. Czerniak
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - ChangHwan Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Integrated Program in Biochemistry, Madison, WI 53706, USA
| |
Collapse
|
9
|
Amar A, Hubbard EJA, Kugler H. Modeling the C. elegans germline stem cell genetic network using automated reasoning. Biosystems 2022; 217:104672. [PMID: 35469833 PMCID: PMC9142837 DOI: 10.1016/j.biosystems.2022.104672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022]
Abstract
Computational methods and tools are a powerful complementary approach to experimental work for studying regulatory interactions in living cells and systems. We demonstrate the use of formal reasoning methods as applied to the Caenorhabditis elegans germ line, which is an accessible system for stem cell research. The dynamics of the underlying genetic networks and their potential regulatory interactions are key for understanding mechanisms that control cellular decision-making between stem cells and differentiation. We model the “stem cell fate” versus entry into the “meiotic development” pathway decision circuit in the young adult germ line based on an extensive study of published experimental data and known/hypothesized genetic interactions. We apply a formal reasoning framework to derive predictive networks for control of differentiation. Using this approach we simultaneously specify many possible scenarios and experiments together with potential genetic interactions, and synthesize genetic networks consistent with all encoded experimental observations. In silico analysis of knock-down and overexpression experiments within our model recapitulate published phenotypes of mutant animals and can be applied to make predictions on cellular decision-making. A methodological contribution of this work is demonstrating how to effectively model within a formal reasoning framework a complex genetic network with a wealth of known experimental data and constraints. We provide a summary of the steps we have found useful for the development and analysis of this model and can potentially be applicable to other genetic networks. This work also lays a foundation for developing realistic whole tissue models of the C. elegans germ line where each cell in the model will execute a synthesized genetic network.
Collapse
Affiliation(s)
- Ani Amar
- The Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Department of Pathology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, United States of America.
| | - Hillel Kugler
- The Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
10
|
Baudrimont A, Paouneskou D, Mohammad A, Lichtenberger R, Blundon J, Kim Y, Hartl M, Falk S, Schedl T, Jantsch V. Release of CHK-2 from PPM-1.D anchorage schedules meiotic entry. SCIENCE ADVANCES 2022; 8:eabl8861. [PMID: 35171669 PMCID: PMC8849337 DOI: 10.1126/sciadv.abl8861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/22/2021] [Indexed: 05/13/2023]
Abstract
Transition from the stem/progenitor cell fate to meiosis is mediated by several redundant posttranscriptional regulatory pathways in Caenorhabditis elegans. Interfering with all three branches causes tumorous germ lines. SCFPROM-1 comprises one branch and mediates a scheduled degradation step at entry into meiosis. prom-1 mutants show defects in the timely initiation of meiotic prophase I events, resulting in high rates of embryonic lethality. Here, we identify the phosphatase PPM-1.D/Wip1 as crucial substrate for PROM-1. We report that PPM-1.D antagonizes CHK-2 kinase, a key regulator for meiotic prophase initiation, including DNA double-strand breaks, chromosome pairing, and synaptonemal complex formation. We propose that PPM-1.D controls the amount of active CHK-2 via both catalytic and noncatalytic activities; notably, noncatalytic regulation seems to be crucial at meiotic entry. PPM-1.D sequesters CHK-2 at the nuclear periphery, and programmed SCFPROM-1-mediated degradation of PPM-1.D liberates the kinase and promotes meiotic entry.
Collapse
Affiliation(s)
- Antoine Baudrimont
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Dimitra Paouneskou
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Ariz Mohammad
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Raffael Lichtenberger
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Joshua Blundon
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Yumi Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Markus Hartl
- Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, Vienna, Austria
| | - Sebastian Falk
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
11
|
Meiosis initiation: a story of two sexes in all creatures great and small. Biochem J 2021; 478:3791-3805. [PMID: 34709374 PMCID: PMC8589329 DOI: 10.1042/bcj20210412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022]
Abstract
Meiosis facilitates diversity across individuals and serves as a major driver of evolution. However, understanding how meiosis begins is complicated by fundamental differences that exist between sexes and species. Fundamental meiotic research is further hampered by a current lack of human meiotic cells lines. Consequently, much of what we know relies on data from model organisms. However, contextualising findings from yeast, worms, flies and mice can be challenging, due to marked differences in both nomenclature and the relative timing of meiosis. In this review, we set out to combine current knowledge of signalling and transcriptional pathways that control meiosis initiation across the sexes in a variety of organisms. Furthermore, we highlight the emerging links between meiosis initiation and oncogenesis, which might explain the frequent re-expression of normally silent meiotic genes in a variety of human cancers.
Collapse
|
12
|
Singh R, Smit RB, Wang X, Wang C, Racher H, Hansen D. Reduction of Derlin activity suppresses Notch-dependent tumours in the C. elegans germ line. PLoS Genet 2021; 17:e1009687. [PMID: 34555015 PMCID: PMC8491880 DOI: 10.1371/journal.pgen.1009687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/05/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
Regulating the balance between self-renewal (proliferation) and differentiation is key to the long-term functioning of all stem cell pools. In the Caenorhabditis elegans germline, the primary signal controlling this balance is the conserved Notch signaling pathway. Gain-of-function mutations in the GLP-1/Notch receptor cause increased stem cell self-renewal, resulting in a tumour of proliferating germline stem cells. Notch gain-of-function mutations activate the receptor, even in the presence of little or no ligand, and have been associated with many human diseases, including cancers. We demonstrate that reduction in CUP-2 and DER-2 function, which are Derlin family proteins that function in endoplasmic reticulum-associated degradation (ERAD), suppresses the C. elegans germline over-proliferation phenotype associated with glp-1(gain-of-function) mutations. We further demonstrate that their reduction does not suppress other mutations that cause over-proliferation, suggesting that over-proliferation suppression due to loss of Derlin activity is specific to glp-1/Notch (gain-of-function) mutations. Reduction of CUP-2 Derlin activity reduces the expression of a read-out of GLP-1/Notch signaling, suggesting that the suppression of over-proliferation in Derlin loss-of-function mutants is due to a reduction in the activity of the mutated GLP-1/Notch(GF) receptor. Over-proliferation suppression in cup-2 mutants is only seen when the Unfolded Protein Response (UPR) is functioning properly, suggesting that the suppression, and reduction in GLP-1/Notch signaling levels, observed in Derlin mutants may be the result of activation of the UPR. Chemically inducing ER stress also suppress glp-1(gf) over-proliferation but not other mutations that cause over-proliferation. Therefore, ER stress and activation of the UPR may help correct for increased GLP-1/Notch signaling levels, and associated over-proliferation, in the C. elegans germline. Notch signaling is a highly conserved signaling pathway that is utilized in many cell fate decisions in many organisms. In the C. elegans germline, Notch signaling is the primary signal that regulates the balance between stem cell proliferation and differentiation. Notch gain-of-function mutations cause the receptor to be active, even when a signal that is normally needed to activate the receptor is absent. In the germline of C. elegans, gain-of-function mutations in GLP-1, a Notch receptor, results in over-proliferation of the stem cells and tumour formation. Here we demonstrate that a reduction or loss of Derlin activity, which is a conserved family of proteins involved in endoplasmic reticulum-associated degradation (ERAD), suppresses over-proliferation due to GLP-1/Notch gain-of-function mutations. Furthermore, we demonstrate that a surveillance mechanism utilized in cells to monitor and react to proteins that are not folded properly (Unfolded Protein Response-UPR) must be functioning well in order for the loss of Derlin activity to supress over-proliferation caused by glp-1/Notch gain-of-function mutations. This suggests that activation of the UPR may be the mechanism at work for suppressing this type of over-proliferation, when Derlin activity is reduced. Therefore, decreasing Derlin activity may be a means of reducing the impact of phenotypes and diseases due to certain Notch gain-of-function mutations.
Collapse
Affiliation(s)
- Ramya Singh
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Ryan B. Smit
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Xin Wang
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Chris Wang
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Hilary Racher
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
13
|
Pushpa K, Dagar S, Kumar H, Pathak D, Mylavarapu SVS. The exocyst complex regulates C. elegans germline stem cell proliferation by controlling membrane Notch levels. Development 2021; 148:271155. [PMID: 34338279 DOI: 10.1242/dev.196345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/30/2021] [Indexed: 11/20/2022]
Abstract
The conserved exocyst complex regulates plasma membrane-directed vesicle fusion in eukaryotes. However, its role in stem cell proliferation has not been reported. Germline stem cell (GSC) proliferation in the nematode Caenorhabditis elegans is regulated by conserved Notch signaling. Here, we reveal that the exocyst complex regulates C. elegans GSC proliferation by modulating Notch signaling cell autonomously. Notch membrane density is asymmetrically maintained on GSCs. Knockdown of exocyst complex subunits or of the exocyst-interacting GTPases Rab5 and Rab11 leads to Notch redistribution from the GSC-niche interface to the cytoplasm, suggesting defects in plasma membrane Notch deposition. The anterior polarity (aPar) protein Par6 is required for GSC proliferation, and for maintaining niche-facing membrane levels of Notch and the exocyst complex. The exocyst complex biochemically interacts with the aPar regulator Par5 (14-3-3ζ) and Notch in C. elegans and human cells. Exocyst components are required for Notch plasma membrane localization and signaling in mammalian cells. Our study uncovers a possibly conserved requirement of the exocyst complex in regulating GSC proliferation and in maintaining optimal membrane Notch levels.
Collapse
Affiliation(s)
- Kumari Pushpa
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Sunayana Dagar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Harsh Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Diksha Pathak
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
14
|
Doenier J, Lynch TR, Kimble J, Aoki ST. An improved in vivo tethering assay with single molecule FISH reveals that a nematode Nanos enhances reporter expression and mRNA stability. RNA (NEW YORK, N.Y.) 2021; 27:643-652. [PMID: 33727224 PMCID: PMC8127996 DOI: 10.1261/rna.078693.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Robust methods are critical for testing the in vivo regulatory mechanism of RNA binding proteins. Here we report improvement of a protein-mRNA tethering assay to probe the function of an RNA binding protein in its natural context within the C. elegans adult germline. The assay relies on a dual reporter expressing two mRNAs from a single promoter and resolved by trans-splicing. The gfp reporter 3'UTR harbors functional binding elements for λN22 peptide, while the mCherry reporter 3'UTR carries mutated nonfunctional elements. This strategy enables internally controlled quantitation of reporter protein by immunofluorescence and mRNA by smFISH. To test the new system, we analyzed a C. elegans Nanos protein, NOS-3, which serves as a post-transcriptional regulator of germ cell fate. Unexpectedly, tethered NOS-3 enhanced reporter expression. We confirmed this enhancement activity with a second reporter engineered at an endogenous germline gene. NOS-3 enhancement of reporter expression was associated with its amino-terminal intrinsically disordered region, not its carboxy-terminal zinc fingers. RNA quantitation revealed that tethered NOS-3 enhances stability of the reporter mRNA. We suggest that this direct NOS-3 enhancement activity may explain a paradox: Classically Nanos proteins are expected to repress RNA, but nos-3 had been found to promote gld-1 expression, an effect that could be direct. Regardless, the new dual reporter dramatically improves in situ quantitation of reporter expression after RNA binding protein tethering to determine its molecular mechanism in a multicellular tissue.
Collapse
Affiliation(s)
- Jonathan Doenier
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Tina R Lynch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Scott T Aoki
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
15
|
Mukherjee N, Mukherjee C. Germ cell ribonucleoprotein granules in different clades of life: From insects to mammals. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1642. [PMID: 33555143 DOI: 10.1002/wrna.1642] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Ribonucleoprotein (RNP) granules are no newcomers in biology. Found in all life forms, ranging across taxa, these membrane-less "organelles" have been classified into different categories based on their composition, structure, behavior, function, and localization. Broadly, they can be listed as stress granules (SGs), processing bodies (PBs), neuronal granules (NGs), and germ cell granules (GCGs). Keeping in line with the topic of this review, RNP granules present in the germ cells have been implicated in a wide range of cellular functions including cellular specification, differentiation, proliferation, and so forth. The mechanisms used by them can be diverse and many of them remain partly obscure and active areas of research. GCGs can be of different types in different organisms and at different stages of development, with multiple types coexisting in the same cell. In this review, the different known subcategories of GCGs have been studied with respect to five distinct model organisms, namely, Drosophila, Caenorhabditis elegans, Xenopus, Zebrafish, and mammals. Of them, the cytoplasmic polar granules in Drosophila, P granules in C. elegans, balbiani body in Xenopus and Zebrafish, and chromatoid bodies in mammals have been specifically emphasized upon. A descriptive account of the same has been provided along with insights into our current understanding of their functional significance with respect to cellular events relating to different developmental and reproductive processes. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease.
Collapse
|
16
|
Gordon K. Recent Advances in the Genetic, Anatomical, and Environmental Regulation of the C. elegans Germ Line Progenitor Zone. J Dev Biol 2020; 8:E14. [PMID: 32707774 PMCID: PMC7559772 DOI: 10.3390/jdb8030014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022] Open
Abstract
The C. elegans germ line and its gonadal support cells are well studied from a developmental genetics standpoint and have revealed many foundational principles of stem cell niche biology. Among these are the observations that a niche-like cell supports a self-renewing stem cell population with multipotential, differentiating daughter cells. While genetic features that distinguish stem-like cells from their differentiating progeny have been defined, the mechanisms that structure these populations in the germ line have yet to be explained. The spatial restriction of Notch activation has emerged as an important genetic principle acting in the distal germ line. Synthesizing recent findings, I present a model in which the germ stem cell population of the C. elegans adult hermaphrodite can be recognized as two distinct anatomical and genetic populations. This review describes the recent progress that has been made in characterizing the undifferentiated germ cells and gonad anatomy, and presents open questions in the field and new directions for research to pursue.
Collapse
Affiliation(s)
- Kacy Gordon
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Chen J, Mohammad A, Pazdernik N, Huang H, Bowman B, Tycksen E, Schedl T. GLP-1 Notch-LAG-1 CSL control of the germline stem cell fate is mediated by transcriptional targets lst-1 and sygl-1. PLoS Genet 2020; 16:e1008650. [PMID: 32196486 PMCID: PMC7153901 DOI: 10.1371/journal.pgen.1008650] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/13/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Stem cell systems are essential for the development and maintenance of polarized tissues. Intercellular signaling pathways control stem cell systems, where niche cells signal stem cells to maintain the stem cell fate/self-renewal and inhibit differentiation. In the C. elegans germline, GLP-1 Notch signaling specifies the stem cell fate, employing the sequence-specific DNA binding protein LAG-1 to implement the transcriptional response. We undertook a comprehensive genome-wide approach to identify transcriptional targets of GLP-1 signaling. We expected primary response target genes to be evident at the intersection of genes identified as directly bound by LAG-1, from ChIP-seq experiments, with genes identified as requiring GLP-1 signaling for RNA accumulation, from RNA-seq analysis. Furthermore, we performed a time-course transcriptomics analysis following auxin inducible degradation of LAG-1 to distinguish between genes whose RNA level was a primary or secondary response of GLP-1 signaling. Surprisingly, only lst-1 and sygl-1, the two known target genes of GLP-1 in the germline, fulfilled these criteria, indicating that these two genes are the primary response targets of GLP-1 Notch and may be the sole germline GLP-1 signaling protein-coding transcriptional targets for mediating the stem cell fate. In addition, three secondary response genes were identified based on their timing following loss of LAG-1, their lack of a LAG-1 ChIP-seq peak and that their glp-1 dependent mRNA accumulation could be explained by a requirement for lst-1 and sygl-1 activity. Moreover, our analysis also suggests that the function of the primary response genes lst-1 and sygl-1 can account for the glp-1 dependent peak protein accumulation of FBF-2, which promotes the stem cell fate and, in part, for the spatial restriction of elevated LAG-1 accumulation to the stem cell region. Stem cell systems are central to tissue development, homeostasis and regeneration, where niche to stem cell signaling pathways promote the stem cell fate/self-renewal and inhibit differentiation. The evolutionarily conserved GLP-1 Notch signaling pathway in the C. elegans germline is an experimentally tractable system, allowing dissection of control of the stem cell fate and inhibition of meiotic development. However, as in many systems, the primary molecular targets of the signaling pathway in stem cells is incompletely known, as are secondary molecular targets, and this knowledge is essential for a deep understanding of stem cell systems. Here we focus on the identification of the primary transcriptional targets of the GLP-1 signaling pathway that promotes the stem cell fate, employing unbiased multilevel genomic approaches. We identify only lst-1 and sygl-1, two of a number of previously reported targets, as likely the sole primary mRNA transcriptional targets of GLP-1 signaling that promote the germline stem cell fate. We also identify secondary GLP-1 signaling RNA and protein targets, whose expression shows dependence on lst-1 and sygl-1, where the protein targets reinforce the importance of posttranscriptional regulation in control of the stem cell fate.
Collapse
Affiliation(s)
- Jian Chen
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ariz Mohammad
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Nanette Pazdernik
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Current address, Integrated DNA Technologies, Coralville, Iowa, United States of America
| | - Huiyan Huang
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Beth Bowman
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Current address, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Eric Tycksen
- Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
18
|
Wang X, Voronina E. Diverse Roles of PUF Proteins in Germline Stem and Progenitor Cell Development in C. elegans. Front Cell Dev Biol 2020; 8:29. [PMID: 32117964 PMCID: PMC7015873 DOI: 10.3389/fcell.2020.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/14/2020] [Indexed: 01/05/2023] Open
Abstract
Stem cell development depends on post-transcriptional regulation mediated by RNA-binding proteins (RBPs) (Zhang et al., 1997; Forbes and Lehmann, 1998; Okano et al., 2005; Ratti et al., 2006; Kwon et al., 2013). Pumilio and FBF (PUF) family RBPs are highly conserved post-transcriptional regulators that are critical for stem cell maintenance (Wickens et al., 2002; Quenault et al., 2011). The RNA-binding domains of PUF proteins recognize a family of related sequence motifs in the target mRNAs, yet individual PUF proteins have clearly distinct biological functions (Lu et al., 2009; Wang et al., 2018). The C. elegans germline is a simple and powerful model system for analyzing regulation of stem cell development. Studies in C. elegans uncovered specific physiological roles for PUFs expressed in the germline stem cells ranging from control of proliferation and differentiation to regulation of the sperm/oocyte decision. Importantly, recent studies started to illuminate the mechanisms behind PUF functional divergence. This review summarizes the many roles of PUF-8, FBF-1, and FBF-2 in germline stem and progenitor cells (SPCs) and discusses the factors accounting for their distinct biological functions. PUF proteins are conserved in evolution, and insights into PUF-mediated regulation provided by the C. elegans model system are likely relevant for other organisms.
Collapse
Affiliation(s)
- Xiaobo Wang
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| |
Collapse
|
19
|
Hubbard EJA, Schedl T. Biology of the Caenorhabditis elegans Germline Stem Cell System. Genetics 2019; 213:1145-1188. [PMID: 31796552 PMCID: PMC6893382 DOI: 10.1534/genetics.119.300238] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cell systems regulate tissue development and maintenance. The germline stem cell system is essential for animal reproduction, controlling both the timing and number of progeny through its influence on gamete production. In this review, we first draw general comparisons to stem cell systems in other organisms, and then present our current understanding of the germline stem cell system in Caenorhabditis elegans In contrast to stereotypic somatic development and cell number stasis of adult somatic cells in C. elegans, the germline stem cell system has a variable division pattern, and the system differs between larval development, early adult peak reproduction and age-related decline. We discuss the cell and developmental biology of the stem cell system and the Notch regulated genetic network that controls the key decision between the stem cell fate and meiotic development, as it occurs under optimal laboratory conditions in adult and larval stages. We then discuss alterations of the stem cell system in response to environmental perturbations and aging. A recurring distinction is between processes that control stem cell fate and those that control cell cycle regulation. C. elegans is a powerful model for understanding germline stem cells and stem cell biology.
Collapse
Affiliation(s)
- E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, New York 10016
| | - Tim Schedl
- and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
20
|
Gupta S, Varshney B, Chatterjee S, Ray K. Somatic ERK activation during transit amplification is essential for maintaining the synchrony of germline divisions in Drosophila testis. Open Biol 2019; 8:rsob.180033. [PMID: 30045884 PMCID: PMC6070716 DOI: 10.1098/rsob.180033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/28/2018] [Indexed: 12/23/2022] Open
Abstract
Transit amplification (TA) of progenitor cells maintains tissue homeostasis by balancing proliferation and differentiation. In Drosophila testis, the germline proliferation is tightly regulated by factors present in both the germline and the neighbouring somatic cyst cells (SCCs). Although the exact mechanism is unclear, the epidermal growth factor receptor (EGFR) activation in SCCs has been reported to control spermatogonial divisions within a cyst, through downstream activations of Rac1-dependent pathways. Here, we report that somatic activation of the mitogen-activated protein kinase (Rolled/ERK) downstream of EGFR is required to synchronize the mitotic divisions and regulate the transition to meiosis. The process operates independently of the Bag-of-marble activity in the germline. Also, the integrity of the somatic cyst enclosure is inessential for this purpose. Together, these results suggest that synchronization of germ-cell divisions through somatic activation of distinct ERK-downstream targets independently regulates TA and subsequent differentiation of neighbouring germline cells.
Collapse
Affiliation(s)
- Samir Gupta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Bhavana Varshney
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Shambhabi Chatterjee
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
21
|
Dynein Light Chain DLC-1 Facilitates the Function of the Germline Cell Fate Regulator GLD-1 in Caenorhabditis elegans. Genetics 2018; 211:665-681. [PMID: 30509955 DOI: 10.1534/genetics.118.301617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022] Open
Abstract
Developmental transitions of germ cells are often regulated at the level of post-transcriptional control of gene expression. In the Caenorhabditis elegans germline, stem and progenitor cells exit the proliferative phase and enter meiotic differentiation to form gametes essential for fertility. The RNA binding protein GLD-1 is a cell fate regulator that promotes meiosis and germ cell differentiation during development by binding to and repressing translation of target messenger RNAs. Here, we discovered that some GLD-1 functions are promoted by binding to DLC-1, a small protein that functions as an allosteric regulator of multisubunit protein complexes. We found that DLC-1 is required to regulate a subset of GLD-1 target messenger RNAs and that DLC-1 binding GLD-1 prevents ectopic germ cell proliferation and facilitates gametogenesis in vivo Additionally, our results reveal a new requirement for GLD-1 in the events of oogenesis leading to ovulation. DLC-1 contributes to GLD-1 function independent of its role as a light chain component of the dynein motor. Instead, we propose that DLC-1 promotes assembly of GLD-1 with other binding partners, which facilitates formation of regulatory ribonucleoprotein complexes and may direct GLD-1 target messenger RNA selectivity.
Collapse
|
22
|
Day NJ, Ellenbecker M, Voronina E. Caenorhabditis elegans DLC-1 associates with ribonucleoprotein complexes to promote mRNA regulation. FEBS Lett 2018; 592:3683-3695. [PMID: 30264890 PMCID: PMC6263831 DOI: 10.1002/1873-3468.13259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022]
Abstract
Ribonucleoprotein complexes, which contain mRNAs and their regulator proteins, carry out post-transcriptional control of gene expression. The function of many RNA-binding proteins depends on their association with cofactors. Here, we use a genomic approach to identify transcripts associated with DLC-1, a protein previously identified as a cofactor of two unrelated RNA-binding proteins that act in the Caenorhabditis elegans germline. Among the 2732 potential DLC-1 targets, most are germline mRNAs associated with oogenesis. Removal of DLC-1 affects expression of its targets expressed in the oocytes, meg-1 and meg-3. We propose that DLC-1 acts as a cofactor for multiple ribonucleoprotein complexes, including the ones regulating gene expression during oogenesis.
Collapse
Affiliation(s)
- Nicholas J Day
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Mary Ellenbecker
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
23
|
Spike CA, Huelgas-Morales G, Tsukamoto T, Greenstein D. Multiple Mechanisms Inactivate the LIN-41 RNA-Binding Protein To Ensure a Robust Oocyte-to-Embryo Transition in Caenorhabditis elegans. Genetics 2018; 210:1011-1037. [PMID: 30206186 PMCID: PMC6218228 DOI: 10.1534/genetics.118.301421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022] Open
Abstract
In the nematode Caenorhabditis elegans, the conserved LIN-41 RNA-binding protein is a translational repressor that coordinately controls oocyte growth and meiotic maturation. LIN-41 exerts these effects, at least in part, by preventing the premature activation of the cyclin-dependent kinase CDK-1 Here we investigate the mechanism by which LIN-41 is rapidly eliminated upon the onset of meiotic maturation. Elimination of LIN-41 requires the activities of CDK-1 and multiple SCF (Skp1, Cul1, and F-box protein)-type E3 ubiquitin ligase subunits, including the conserved substrate adaptor protein SEL-10/Fbw7/Cdc4, suggesting that LIN-41 is a target of ubiquitin-mediated protein degradation. Within the LIN-41 protein, two nonoverlapping regions, Deg-A and Deg-B, are individually necessary for LIN-41 degradation; both contain several potential phosphodegron sequences, and at least one of these sequences is required for LIN-41 degradation. Finally, Deg-A and Deg-B are sufficient, in combination, to mediate SEL-10-dependent degradation when transplanted into a different oocyte protein. Although LIN-41 is a potent inhibitor of protein translation and M phase entry, the failure to eliminate LIN-41 from early embryos does not result in the continued translational repression of LIN-41 oocyte messenger RNA targets. Based on these observations, we propose a model for the elimination of LIN-41 by the SEL-10 E3 ubiquitin ligase and suggest that LIN-41 is inactivated before it is degraded. Furthermore, we provide evidence that another RNA-binding protein, the GLD-1 tumor suppressor, is regulated similarly. Redundant mechanisms to extinguish translational repression by RNA-binding proteins may both control and provide robustness to irreversible developmental transitions, including meiotic maturation and the oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gabriela Huelgas-Morales
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Tatsuya Tsukamoto
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
24
|
Mohammad A, Vanden Broek K, Wang C, Daryabeigi A, Jantsch V, Hansen D, Schedl T. Initiation of Meiotic Development Is Controlled by Three Post-transcriptional Pathways in Caenorhabditis elegans. Genetics 2018; 209:1197-1224. [PMID: 29941619 PMCID: PMC6063227 DOI: 10.1534/genetics.118.300985] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022] Open
Abstract
A major event in germline development is the transition from stem/progenitor cells to entry into meiosis and gametogenesis. This transition requires downregulation of mitotic cell cycle activity and upregulation of processes associated with meiosis. We identify the Caenorhabditis elegans SCFPROM-1 E3 ubiquitin-ligase complex as functioning to downregulate mitotic cell cycle protein levels including cyclin E, WAPL-1, and KNL-2 at meiotic entry and, independently, promoting homologous chromosome pairing as a positive regulator of the CHK-2 kinase. SCFPROM-1 is thus a novel regulator of meiotic entry, coordinating downregulation of mitotic cell cycle proteins and promoting homolog pairing. We further show that SCFPROM-1 functions redundantly, in parallel to the previously described GLD-1 and GLD-2 meiotic entry pathways, downstream of and inhibited by GLP-1 Notch signaling, which specifies the stem cell fate. Accordingly, C. elegans employs three post-transcriptional pathways, SCFPROM-1-mediated protein degradation, GLD-1-mediated translational repression, and GLD-2-mediated translational activation, to control and coordinate the initiation of meiotic development.
Collapse
Affiliation(s)
- Ariz Mohammad
- Department of Genetics, School of Medicine, Washington University in St. Louis, Missouri 63110
| | - Kara Vanden Broek
- Department of Biological Sciences, University of Calgary, T2N 1N4, Canada
| | - Christopher Wang
- Department of Biological Sciences, University of Calgary, T2N 1N4, Canada
| | - Anahita Daryabeigi
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030, Austria
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030, Austria
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, T2N 1N4, Canada
| | - Tim Schedl
- Department of Genetics, School of Medicine, Washington University in St. Louis, Missouri 63110
| |
Collapse
|
25
|
Yoon DS, Cha DS, Alfhili MA, Keiper BD, Lee MH. Subunits of the DNA polymerase alpha-primase complex promote Notch-mediated proliferation with discrete and shared functions in C. elegans germline. FEBS J 2018; 285:2590-2604. [PMID: 29775245 DOI: 10.1111/febs.14512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 11/27/2022]
Abstract
Notch receptor signaling is a highly conserved cell communication system in most multicellular organisms and plays a critical role at several junctures in animal development. In Caenorhabditis elegans,GLP-1/Notch signaling is essential for both germline stem cell maintenance and germ cell proliferation during gonad development. Here, we show that subunits (POLA-1, DIV-1, PRI-1, and PRI-2) of the DNA polymerase alpha-primase complex are required for germ cell proliferation in response to GLP-1/Notch signaling in different tissues at different developmental stages. Specifically, genetic and functional analyses demonstrated that (a) maternally contributed DIV-1 (regulatory subunit) is indispensable non-cell autonomously for GLP-1/Notch-mediated germ cell proliferation during early larval development, whereas POLA-1 (catalytic subunit) and two primase subunits, PRI-1 and PRI-2, do not appear to be essential; (b) germline POLA-1, PRI-1, and PRI-2 play a crucial role in GLP-1/Notch-mediated maintenance of proliferative cell fate during adulthood, while DIV-1 is dispensable; and (c) germline POLA-1, DIV-1, PRI-1, and PRI-2 function in tandem with PUF (Pumilio/FBF) RNA-binding proteins to maintain germline stem cells in the adult gonad. These findings suggest that the subunits of the DNA polymerase alpha-primase complex exhibit both discrete and shared functions in GLP-1/Notch or PUF-mediated germ cell dynamics in C. elegans. These findings link the biological functions of DNA replication machineries to signals that maintain a stem cell population, and may have further implications for Notch-dependent tumors.
Collapse
Affiliation(s)
- Dong Suk Yoon
- Department of Medicine (Hematology/Oncology), Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Dong Seok Cha
- Department of Medicine (Hematology/Oncology), Brody School of Medicine at East Carolina University, Greenville, NC, USA.,Department of Oriental Pharmacy, College of Pharmacy, Woosuk University, Jeonbuk, Korea
| | - Mohammad A Alfhili
- Department of Medicine (Hematology/Oncology), Brody School of Medicine at East Carolina University, Greenville, NC, USA.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Myon-Hee Lee
- Department of Medicine (Hematology/Oncology), Brody School of Medicine at East Carolina University, Greenville, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, NC, USA
| |
Collapse
|
26
|
Ow MC, Borziak K, Nichitean AM, Dorus S, Hall SE. Early experiences mediate distinct adult gene expression and reproductive programs in Caenorhabditis elegans. PLoS Genet 2018; 14:e1007219. [PMID: 29447162 PMCID: PMC5831748 DOI: 10.1371/journal.pgen.1007219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 02/28/2018] [Accepted: 01/24/2018] [Indexed: 01/16/2023] Open
Abstract
Environmental stress during early development in animals can have profound effects on adult phenotypes via programmed changes in gene expression. Using the nematode C. elegans, we demonstrated previously that adults retain a cellular memory of their developmental experience that is manifested by differences in gene expression and life history traits; however, the sophistication of this system in response to different environmental stresses, and how it dictates phenotypic plasticity in adults that contribute to increased fitness in response to distinct environmental challenges, was unknown. Using transcriptional profiling, we show here that C. elegans adults indeed retain distinct cellular memories of different environmental conditions. We identified approximately 500 genes in adults that entered dauer due to starvation that exhibit significant opposite (“seesaw”) transcriptional phenotypes compared to adults that entered dauer due to crowding, and are distinct from animals that bypassed dauer. Moreover, we show that two-thirds of the genes in the genome experience a 2-fold or greater seesaw trend in gene expression, and based upon the direction of change, are enriched in large, tightly linked regions on different chromosomes. Importantly, these transcriptional programs correspond to significant changes in brood size depending on the experienced stress. In addition, we demonstrate that while the observed seesaw gene expression changes occur in both somatic and germline tissue, only starvation-induced changes require a functional GLP-4 protein necessary for germline development, and both programs require the Argonaute CSR-1. Thus, our results suggest that signaling between the soma and the germ line can generate phenotypic plasticity as a result of early environmental experience, and likely contribute to increased fitness in adverse conditions and the evolution of the C. elegans genome. Environmental stress during early development in animals can have profound effects on adult behavior and physiology due to programmed changes in gene expression. However, whether different stresses result in distinct changes in traits that allow stressed animals to better survive and reproduce in future adverse conditions is largely unknown. Using the animal model system, C. elegans, we show that adults that experienced starvation exhibit opposite (“seesaw”) genome-wide gene expression changes compared to adults that experienced crowding, and are distinct from animals that experienced favorable conditions. Genes that are similarly up- or downregulated due to either starvation or crowding are located in clusters on the same chromosomes. Importantly, these gene expression changes of differently-stressed animals result in corresponding changes in progeny number, a life history trait of evolutionary significance. These distinct gene expression programs require different signaling pathways that communicate across somatic and germline tissue types. Thus, different environmental stresses experienced early in development induce distinct signaling mechanisms to result in changes in gene expression and reproduction in adults, and likely contribute to increased survival in future adverse conditions.
Collapse
Affiliation(s)
- Maria C. Ow
- Department of Biology, Syracuse University, Syracuse, NY, United States of America
| | - Kirill Borziak
- Department of Biology, Syracuse University, Syracuse, NY, United States of America
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, United States of America
| | | | - Steve Dorus
- Department of Biology, Syracuse University, Syracuse, NY, United States of America
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, United States of America
| | - Sarah E. Hall
- Department of Biology, Syracuse University, Syracuse, NY, United States of America
- * E-mail:
| |
Collapse
|
27
|
Inaba M, Yamashita YM, Buszczak M. Keeping stem cells under control: New insights into the mechanisms that limit niche-stem cell signaling within the reproductive system. Mol Reprod Dev 2018; 83:675-83. [PMID: 27434704 DOI: 10.1002/mrd.22682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/12/2016] [Indexed: 12/12/2022]
Abstract
Adult stem cells reside in specialized microenvironments, called niches, that maintain stem cells in an undifferentiated and self-renewing state. Defining and understanding the mechanisms that restrict niche signaling exclusively to stem cells is crucial to determine how stem cells undergo self-renewal while their progeny, often located just one cell diameter away from the niche, differentiate. Despite extensive studies on the signaling pathways that operate within stem cells and their niches, how this segregation occurs remains elusive. Here we review recent progress on the characterization of niche-stem cell interactions, with a focus on emerging mechanisms that spatially restrict niche signaling. Mol. Reprod. Dev. 83: 675-683, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mayu Inaba
- Department of Cell and Developmental Biology Medical School, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yukiko M Yamashita
- Department of Cell and Developmental Biology Medical School, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
28
|
Exploring Potential Germline-Associated Roles of the TRIM-NHL Protein NHL-2 Through RNAi Screening. G3-GENES GENOMES GENETICS 2017; 7:3251-3256. [PMID: 28818867 PMCID: PMC5633376 DOI: 10.1534/g3.117.300166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
TRIM-NHL proteins are highly conserved regulators of developmental pathways in vertebrates and invertebrates. The TRIM-NHL family member NHL-2 in Caenorhabditis elegans functions as a miRNA cofactor to regulate developmental timing. Similar regulatory roles have been reported in other model systems, with the mammalian ortholog in mice, TRIM32, contributing to muscle and neuronal cell proliferation via miRNA activity. Given the interest associated with TRIM-NHL family proteins, we aimed to further investigate the role of NHL-2 in C. elegans development by using a synthetic RNAi screening approach. Using the ORFeome library, we knocked down 11,942 genes in wild-type animals and nhl-2 null mutants. In total, we identified 42 genes that produced strong reproductive synthetic phenotypes when knocked down in nhl-2 null mutants, with little or no change when knocked down in wild-type animals. These included genes associated with transcriptional processes, chromosomal integrity, and key cofactors of the germline small 22G RNA pathway.
Collapse
|
29
|
McCaig CM, Lin X, Farrell M, Rehain-Bell K, Shakes DC. Germ cell cysts and simultaneous sperm and oocyte production in a hermaphroditic nematode. Dev Biol 2017; 430:362-373. [PMID: 28844904 DOI: 10.1016/j.ydbio.2017.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/05/2017] [Accepted: 08/08/2017] [Indexed: 11/29/2022]
Abstract
Studies of gamete development in the self-fertile hermaphrodites of Caenorhabditis elegans have significantly contributed to our understanding of fundamental developmental mechanisms. However, evolutionary transitions from outcrossing males and females to self-fertile hermaphrodites have convergently evolved within multiple nematode sub-lineages, and whether the C. elegans pattern of self-fertile hermaphroditism and gamete development is representative remains largely unexplored. Here we describe a pattern of sperm production in the trioecious (male/female/hermaphrodite) nematode Rhabditis sp. SB347 (recently named Auanema rhodensis) that differs from C. elegans in two striking ways. First, while C. elegans hermaphrodites make a one-time switch from sperm to oocyte production, R. sp. SB347 hermaphrodites continuously produce both sperm and oocytes. Secondly, while C. elegans germ cell proliferation is limited to germline stem cells (GSCs), sperm production in R. sp. SB347 includes an additional population of mitotically dividing cells that are a developmental intermediate between GSCs and fully differentiated spermatocytes. These cells are present in males and hermaphrodites but not females, and exhibit key characteristics of spermatogonia - the mitotic progenitors of spermatocytes in flies and vertebrates. Specifically, they exist outside the stem cell niche, increase germ cell numbers by transit-amplifying divisions, and synchronously proliferate within germ cell cysts. We also discovered spermatogonia in other trioecious Rhabditis species, but not in the male/female species Rhabditis axei or the more distant hermaphroditic Oscheius tipulae. The discovery of simultaneous hermaphroditism and spermatogonia in a lab-cultivatable nematode suggests R. sp. SB347 as a richly informative species for comparative studies of gametogenesis.
Collapse
Affiliation(s)
- Caitlin M McCaig
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | - Xiaoxue Lin
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | - Maureen Farrell
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | - Kathryn Rehain-Bell
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA
| | - Diane C Shakes
- Department of Biology, College of William and Mary, Williamsburg, VA 23187, USA.
| |
Collapse
|
30
|
LIN-41 and OMA Ribonucleoprotein Complexes Mediate a Translational Repression-to-Activation Switch Controlling Oocyte Meiotic Maturation and the Oocyte-to-Embryo Transition in Caenorhabditis elegans. Genetics 2017; 206:2007-2039. [PMID: 28576864 PMCID: PMC5560804 DOI: 10.1534/genetics.117.203174] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/31/2017] [Indexed: 11/30/2022] Open
Abstract
An extended meiotic prophase is a hallmark of oogenesis. Hormonal signaling activates the CDK1/cyclin B kinase to promote oocyte meiotic maturation, which involves nuclear and cytoplasmic events. Nuclear maturation encompasses nuclear envelope breakdown, meiotic spindle assembly, and chromosome segregation. Cytoplasmic maturation involves major changes in oocyte protein translation and cytoplasmic organelles and is poorly understood. In the nematode Caenorhabditis elegans, sperm release the major sperm protein (MSP) hormone to promote oocyte growth and meiotic maturation. Large translational regulatory ribonucleoprotein (RNP) complexes containing the RNA-binding proteins OMA-1, OMA-2, and LIN-41 regulate meiotic maturation downstream of MSP signaling. To understand the control of translation during meiotic maturation, we purified LIN-41-containing RNPs and characterized their protein and RNA components. Protein constituents of LIN-41 RNPs include essential RNA-binding proteins, the GLD-2 cytoplasmic poly(A) polymerase, the CCR4-NOT deadenylase complex, and translation initiation factors. RNA sequencing defined messenger RNAs (mRNAs) associated with both LIN-41 and OMA-1, as well as sets of mRNAs associated with either LIN-41 or OMA-1. Genetic and genomic evidence suggests that GLD-2, which is a component of LIN-41 RNPs, stimulates the efficient translation of many LIN-41-associated transcripts. We analyzed the translational regulation of two transcripts specifically associated with LIN-41 which encode the RNA regulators SPN-4 and MEG-1. We found that LIN-41 represses translation of spn-4 and meg-1, whereas OMA-1 and OMA-2 promote their expression. Upon their synthesis, SPN-4 and MEG-1 assemble into LIN-41 RNPs prior to their functions in the embryo. This study defines a translational repression-to-activation switch as a key element of cytoplasmic maturation.
Collapse
|
31
|
Singh R, Hansen D. Regulation of the Balance Between Proliferation and Differentiation in Germ Line Stem Cells. Results Probl Cell Differ 2017; 59:31-66. [PMID: 28247045 DOI: 10.1007/978-3-319-44820-6_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In many animals, reproductive fitness is dependent upon the production of large numbers of gametes over an extended period of time. This level of gamete production is possible due to the continued presence of germ line stem cells. These cells can produce two types of daughter cells, self-renewing daughter cells that will maintain the stem cell population and differentiating daughter cells that will become gametes. A balance must be maintained between the proliferating self-renewing cells and those that differentiate for long-term gamete production to be maintained. Too little proliferation can result in depletion of the stem cell population, while too little differentiation can lead to a lack of gamete formation and possible tumor formation. In this chapter, we discuss our current understanding of how the balance between proliferation and differentiation is achieved in three well-studied germ line model systems: the Drosophila female, the mouse male, and the C. elegans hermaphrodite. While these three systems have significant differences in how this balance is regulated, including differences in stem cell population size, signaling pathways utilized, and the use of symmetric and/or asymmetric cell divisions, there are also similarities found between them. These similarities include the reliance on a predominant signaling pathway to promote proliferation, negative feedback loops to rapidly shutoff proliferation-promoting cues, close association of the germ line stem cells with a somatic niche, cytoplasmic connections between cells, projections emanating from the niche cell, and multiple mechanisms to limit the spatial influence of the niche. A comparison between different systems may help to identify elements that are essential for a proper balance between proliferation and differentiation to be achieved and elements that may be achieved through various mechanisms.
Collapse
Affiliation(s)
- Ramya Singh
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, T2N 1N4.
| |
Collapse
|
32
|
Pushpa K, Kumar GA, Subramaniam K. Translational Control of Germ Cell Decisions. Results Probl Cell Differ 2017; 59:175-200. [PMID: 28247049 DOI: 10.1007/978-3-319-44820-6_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germline poses unique challenges to gene expression control at the transcriptional level. While the embryonic germline maintains a global hold on new mRNA transcription, the female adult germline produces transcripts that are not translated into proteins until embryogenesis of subsequent generation. As a consequence, translational control plays a central role in governing various germ cell decisions including the formation of primordial germ cells, self-renewal/differentiation decisions in the adult germline, onset of gametogenesis and oocyte maturation. Mechanistically, several common themes such as asymmetric localization of mRNAs, conserved RNA-binding proteins that control translation by 3' UTR binding, translational activation by the cytoplasmic elongation of the polyA tail and the assembly of mRNA-protein complexes called mRNPs have emerged from the studies on Caenorhabditis elegans, Xenopus and Drosophila. How mRNPs assemble, what influences their dynamics, and how a particular 3' UTR-binding protein turns on the translation of certain mRNAs while turning off other mRNAs at the same time and space are key challenges for future work.
Collapse
Affiliation(s)
- Kumari Pushpa
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Ganga Anil Kumar
- Indian Institute of Technology-Kanpur, Kanpur, India.,Indian Institute of Technology-Madras, Chennai, India
| | | |
Collapse
|
33
|
Abstract
The Caenorhabditis elegans germline is an excellent model for studying the regulation of a pool of stem cells and progression of cells from a stem cell state to a differentiated state. At the tissue level, the germline is organized in an assembly line with the germline stem cell (GSC) pool at one end and differentiated cells at the other. A simple mesenchymal niche caps the GSC region of the germline and maintains GSCs in an undifferentiated state by signaling through the conserved Notch pathway. Downstream of Notch signaling, key regulators include novel LST-1 and SYGL-1 proteins and a network of RNA regulatory proteins. In this chapter we present methods for characterizing the C. elegans GSC pool and early germ cell differentiation. The methods include examination of the germline in living and fixed worms, cell cycle analysis, and analysis of markers. We also discuss assays to separate mutants that affect the stem cell vs. differentiation decision from those that affect germ cell processes more generally.
Collapse
Affiliation(s)
- Sarah L Crittenden
- HHMI/Department of Biochemistry, Howard Hughes Medical Institute and University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706-1544, USA.
| | - Hannah S Seidel
- HHMI/Department of Biochemistry, Howard Hughes Medical Institute and University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706-1544, USA
| | - Judith Kimble
- HHMI/Department of Biochemistry, Howard Hughes Medical Institute and University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706-1544, USA
| |
Collapse
|
34
|
Seelk S, Adrian-Kalchhauser I, Hargitai B, Hajduskova M, Gutnik S, Tursun B, Ciosk R. Increasing Notch signaling antagonizes PRC2-mediated silencing to promote reprograming of germ cells into neurons. eLife 2016; 5. [PMID: 27602485 PMCID: PMC5045294 DOI: 10.7554/elife.15477] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022] Open
Abstract
Cell-fate reprograming is at the heart of development, yet very little is known about the molecular mechanisms promoting or inhibiting reprograming in intact organisms. In the C. elegans germline, reprograming germ cells into somatic cells requires chromatin perturbation. Here, we describe that such reprograming is facilitated by GLP-1/Notch signaling pathway. This is surprising, since this pathway is best known for maintaining undifferentiated germline stem cells/progenitors. Through a combination of genetics, tissue-specific transcriptome analysis, and functional studies of candidate genes, we uncovered a possible explanation for this unexpected role of GLP-1/Notch. We propose that GLP-1/Notch promotes reprograming by activating specific genes, silenced by the Polycomb repressive complex 2 (PRC2), and identify the conserved histone demethylase UTX-1 as a crucial GLP-1/Notch target facilitating reprograming. These findings have wide implications, ranging from development to diseases associated with abnormal Notch signaling. DOI:http://dx.doi.org/10.7554/eLife.15477.001 The DNA in genes encodes the basic information needed to build an organism or control its day-to-day operations. Most cells in an organism contain the same genetic information, but different types of cell use the information differently. For example, many of the genes that are active in a muscle cell are different from those that are active in a skin cell. These different patterns of gene activation largely determine a cell’s identity and are brought about by DNA-binding proteins or chemical modifications to the DNA (which are both forms of so-called epigenetic regulation). Nevertheless, cells occasionally change their identities – a phenomenon that is referred to as reprograming. This process allows tissues to be regenerated after wounding, but, due to technical difficulties, reprograming has been often studied in isolated cells grown in a dish. Seelk, Adrian-Kalchhauser et al. set out to understand how being surrounded by intact tissue influences reprograming. The experiments made use of C. elegans worms, because disturbing how this worm’s DNA is packaged can trigger its cells to undergo reprograming. Seelk, Adrian-Kalchhauser et al. show that a signaling pathway that is found in many different animals enhances this kind of reprograming in C. elegans. On the one hand, these findings help in understanding how epigenetic regulation can be altered by a specific tissue environment. On the other hand, the findings also suggest that abnormal signaling can result in altered epigenetic control of gene expression and lead to cells changing their identity. Indeed, increased signaling is linked to a major epigenetic mechanism seen in specific blood tumors, suggesting that the regulatory principles uncovered using this simple worm model could eventually provide insights into a human disease. A future challenge will be to determine precisely how the studied signaling pathway interacts with the epigenetic regulator that controls reprograming. Understanding this interaction in molecular detail could help to devise strategies for controlling reprograming. These strategies could in turn lead to treatments for people with conditions that cause specific cells types to be lost, such as Alzheimer’s disease or injuries. DOI:http://dx.doi.org/10.7554/eLife.15477.002
Collapse
Affiliation(s)
- Stefanie Seelk
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Balázs Hargitai
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Martina Hajduskova
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Silvia Gutnik
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Baris Tursun
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Rafal Ciosk
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
35
|
Magalhães LG, Morais ER, Machado CB, Gomes MS, Cabral FJ, Souza JM, Soares CS, Sá RG, Castro-Borges W, Rodrigues V. Uncovering Notch pathway in the parasitic flatworm Schistosoma mansoni. Parasitol Res 2016; 115:3951-61. [PMID: 27344453 DOI: 10.1007/s00436-016-5161-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/01/2016] [Indexed: 01/19/2023]
Abstract
Several signaling molecules that govern development in higher animals have been identified in the parasite Schistosoma mansoni, including the transforming growth factor β, protein tyrosine kinases, nuclear hormone receptors, among others. The Notch pathway is a highly conserved signaling mechanism which is involved in a wide variety of developmental processes including embryogenesis and oogenesis in worms and flies. Here we aimed to provide the molecular reconstitution of the Notch pathway in S. mansoni using the available transcriptome and genome databases. Our results also revealed the presence of the transcripts coded for SmNotch, SmSu(H), SmHes, and the gamma-secretase complex (SmNicastrin, SmAph-1, and SmPen-2), throughout all the life stages analyzed. Besides, it was observed that the viability and separation of adult worm pairs were not affected by treatment with N-[N(3,5)-difluorophenacetyl)-L-Alanyl]-S-phenylglycine t-butyl ester (DAPT), a Notch pathway inhibitor. Moreover, DAPT treatment decreased the production of phenotypically normal eggs and arrested their development in culture. Our results also showed a significant decrease in SmHes transcript levels in both adult worms and eggs treated with DAPT. These results provide, for the first time, functional validation of the Notch pathway in S. mansoni and suggest its involvement in parasite oogenesis and embryogenesis. Given the complexity of the Notch pathway, further experiments shall highlight the full repertoire of Notch-mediated cellular processes throughout the S. mansoni life cycle.
Collapse
Affiliation(s)
- Lizandra G Magalhães
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Avenida, Dr Armando Salles de Oliveira, 201 Franca, SP, Brazil.
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | - Enyara R Morais
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Patos de Minas, MG, Brazil
| | - Carla B Machado
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Matheus S Gomes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Patos de Minas, MG, Brazil
| | - Fernanda J Cabral
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Julia M Souza
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Avenida, Dr Armando Salles de Oliveira, 201 Franca, SP, Brazil
| | - Cláudia S Soares
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Renata G Sá
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - William Castro-Borges
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Vanderlei Rodrigues
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
36
|
Cecchetelli AD, Hugunin J, Tannoury H, Cram EJ. CACN-1 is required in the Caenorhabditis elegans somatic gonad for proper oocyte development. Dev Biol 2016; 414:58-71. [PMID: 27046631 PMCID: PMC4875861 DOI: 10.1016/j.ydbio.2016.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 12/16/2022]
Abstract
CACN-1/Cactin is a conserved protein identified in a genome-wide screen for genes that regulate distal tip cell migration in the nematode Caenorhabditis elegans. In addition to possessing distal tip cells that migrate past their correct stopping point, animals depleted of cacn-1 are sterile. In this study, we show that CACN-1 is needed in the soma for proper germ line development and maturation. When CACN-1 is depleted, sheath cells are absent and/or abnormal. When sheath cells are absent, hermaphrodites produce sperm, but do not switch appropriately to oocyte production. When sheath cells are abnormal, some oocytes develop but are not successfully ovulated and undergo endomitotic reduplication (Emo). Our previous proteomic studies show that CACN-1 interacts with a network of splicing factors. Here, these interactors were screened using RNAi. Depletion of many of these factors led to missing or abnormal sheath cells and germ line defects, particularly absent and/or Emo oocytes. These results suggest CACN-1 is part of a protein network that influences somatic gonad development and function through alternative splicing or post-transcriptional gene regulation.
Collapse
Affiliation(s)
| | - Julie Hugunin
- Department of Biology, Northeastern University, Boston, MA 02115, United States
| | - Hiba Tannoury
- Department of Biology, Northeastern University, Boston, MA 02115, United States
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115, United States.
| |
Collapse
|
37
|
Cinquin A, Zheng L, Taylor PH, Paz A, Zhang L, Chiang M, Snow JJ, Nie Q, Cinquin O. Semi-permeable Diffusion Barriers Enhance Patterning Robustness in the C. elegans Germline. Dev Cell 2016; 35:405-17. [PMID: 26609956 DOI: 10.1016/j.devcel.2015.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 07/15/2015] [Accepted: 10/28/2015] [Indexed: 01/29/2023]
Abstract
Positional information derived from local morphogen concentration plays an important role in patterning. A key question is how morphogen diffusion and gene expression regulation shape positional information into an appropriate profile with suitably low noise. We address this question using a model system--the C. elegans germline--whose regulatory network has been well characterized genetically but whose spatiotemporal dynamics are poorly understood. We show that diffusion within the germline syncytium is a critical control of stem cell differentiation and that semi-permeable diffusion barriers present at key locations make it possible--in combination with a feedback loop in the germline regulatory network--for mitotic zone size to be robust against spatial noise in Notch signaling. Spatial averaging within compartments defined by diffusion barriers is an advantageous patterning strategy, which attenuates noise while still allowing for sharp transitions between compartments. This strategy could apply to other organs.
Collapse
Affiliation(s)
- Amanda Cinquin
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California at Irvine, Irvine, CA 92697, USA
| | - Likun Zheng
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California at Irvine, Irvine, CA 92697, USA
| | - Pete H Taylor
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California at Irvine, Irvine, CA 92697, USA
| | - Adrian Paz
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California at Irvine, Irvine, CA 92697, USA
| | - Lei Zhang
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California at Irvine, Irvine, CA 92697, USA
| | - Michael Chiang
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California at Irvine, Irvine, CA 92697, USA
| | - Joshua J Snow
- Department of Biochemistry, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Qing Nie
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California at Irvine, Irvine, CA 92697, USA
| | - Olivier Cinquin
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California at Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
38
|
Germline Stem Cell Differentiation Entails Regional Control of Cell Fate Regulator GLD-1 in Caenorhabditis elegans. Genetics 2016; 202:1085-103. [PMID: 26757772 DOI: 10.1534/genetics.115.185678] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/07/2016] [Indexed: 12/18/2022] Open
Abstract
Germline stem cell differentiation in Caenorhabditis elegans is controlled by glp-1 Notch signaling. Cell fate regulator GLD-1 is sufficient to induce meiotic entry and expressed at a high level during meiotic prophase, inhibiting mitotic gene activity. glp-1 signaling and other regulators control GLD-1 levels post-transcriptionally (low in stem cells, high in meiotic prophase), but many aspects of GLD-1 regulation are uncharacterized, including the link between glp-1-mediated transcriptional control and post-transcriptional GLD-1 regulation. We established a sensitive assay to quantify GLD-1 levels across an ∼35-cell diameter field, where distal germline stem cells differentiate proximally into meiotic prophase cells in the adult C. elegans hermaphrodite, and applied the approach to mutants in known or proposed GLD-1 regulators. In wild-type GLD-1 levels elevated ∼20-fold in a sigmoidal pattern. We found that two direct transcriptional targets of glp-1 signaling, lst-1 and sygl-1, were individually required for repression of GLD-1. We determined that lst-1 and sygl-1 act in the same genetic pathway as known GLD-1 translational repressor fbf-1, while lst-1 also acts in parallel to fbf-1, linking glp-1-mediated transcriptional control and post-transcriptional GLD-1 repression. Additionally, we estimated the position in wild-type gonads where germ cells irreversibly commit to meiotic development based on GLD-1 levels in worms where glp-1 activity was manipulated to cause an irreversible fate switch. Analysis of known repressors and activators, as well as modeling the sigmoidal accumulation pattern, indicated that regulation of GLD-1 levels is largely regional, which we integrated with the current view of germline stem cell differentiation.
Collapse
|
39
|
Friday AJ, Henderson MA, Morrison JK, Hoffman JL, Keiper BD. Spatial and temporal translational control of germ cell mRNAs mediated by the eIF4E isoform IFE-1. J Cell Sci 2015; 128:4487-98. [PMID: 26542024 DOI: 10.1242/jcs.172684] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
Regulated mRNA translation is vital for germ cells to produce new proteins in the spatial and temporal patterns that drive gamete development. Translational control involves the de-repression of stored mRNAs and their recruitment by eukaryotic initiation factors (eIFs) to ribosomes. C. elegans expresses five eIF4Es (IFE-1-IFE-5); several have been shown to selectively recruit unique pools of mRNA. Individual IFE knockouts yield unique phenotypes due to inefficient translation of certain mRNAs. Here, we identified mRNAs preferentially translated through the germline-specific eIF4E isoform IFE-1. Differential polysome microarray analysis identified 77 mRNAs recruited by IFE-1. Among the IFE-1-dependent mRNAs are several required for late germ cell differentiation and maturation. Polysome association of gld-1, vab-1, vpr-1, rab-7 and rnp-3 mRNAs relies on IFE-1. Live animal imaging showed IFE-1-dependent selectivity in spatial and temporal translation of germline mRNAs. Altered MAPK activation in oocytes suggests dual roles for IFE-1, both promoting and suppressing oocyte maturation at different stages. This single eIF4E isoform exerts positive, selective translational control during germ cell differentiation.
Collapse
Affiliation(s)
- Andrew J Friday
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Melissa A Henderson
- Department of Molecular Sciences, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - J Kaitlin Morrison
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Jenna L Hoffman
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Brett D Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
40
|
Fox PM, Schedl T. Analysis of Germline Stem Cell Differentiation Following Loss of GLP-1 Notch Activity in Caenorhabditis elegans. Genetics 2015; 201:167-84. [PMID: 26158953 PMCID: PMC4566261 DOI: 10.1534/genetics.115.178061] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/01/2015] [Indexed: 11/18/2022] Open
Abstract
Stem cells generate the differentiated progeny cells of adult tissues. Stem cells in the Caenorhabditis elegans hermaphrodite germline are maintained within a proliferative zone of ∼230 cells, ∼20 cell diameters in length, through GLP-1 Notch signaling. The distal tip cell caps the germline and supplies GLP-1-activating ligand, and the distal-most germ cells that occupy this niche are likely self-renewing stem cells with active GLP-1 signaling. As germ cells are displaced from the niche, GLP-1 activity likely decreases, yet mitotically cycling germ cells are found throughout the proliferative zone prior to overt meiotic differentiation. Following loss of GLP-1 activity, it remains unclear whether stem cells undergo transit-amplifying (TA) divisions or more directly enter meiosis. To distinguish between these possibilities we employed a temperature-sensitive (ts) glp-1 mutant to manipulate GLP-1 activity. We characterized proliferative zone dynamics in glp-1(ts) mutants at permissive temperature and then analyzed the kinetics of meiotic entry of proliferative zone cells after loss of GLP-1. We found that entry of proliferative zone cells into meiosis following loss of GLP-1 activity is largely synchronous and independent of their distal-proximal position. Furthermore, the majority of cells complete only a single mitotic division before entering meiosis, independent of their distal-proximal position. We conclude that germ cells do not undergo TA divisions following loss of GLP-1 activity. We present a model for the dynamics of the proliferative zone that utilizes cell cycle rate and proliferative zone size and output and incorporates the more direct meiotic differentiation of germ cells following loss of GLP-1 activity.
Collapse
Affiliation(s)
- Paul M Fox
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
41
|
Levi-Ferber M, Gian H, Dudkevich R, Henis-Korenblit S. Transdifferentiation mediated tumor suppression by the endoplasmic reticulum stress sensor IRE-1 in C. elegans. eLife 2015; 4. [PMID: 26192965 PMCID: PMC4507713 DOI: 10.7554/elife.08005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/02/2015] [Indexed: 12/18/2022] Open
Abstract
Deciphering effective ways to suppress tumor progression and to overcome acquired apoptosis resistance of tumor cells are major challenges in the tumor therapy field. We propose a new concept by which tumor progression can be suppressed by manipulating tumor cell identity. In this study, we examined the effect of ER stress on apoptosis resistant tumorous cells in a Caenorhabditis elegans germline tumor model. We discovered that ER stress suppressed the progression of the lethal germline tumor by activating the ER stress sensor IRE-1. This suppression was associated with the induction of germ cell transdifferentiation into ectopic somatic cells. Strikingly, transdifferentiation of the tumorous germ cells restored their ability to execute apoptosis and enabled their subsequent removal from the gonad. Our results indicate that tumor cell transdifferentiation has the potential to combat cancer and overcome the escape of tumor cells from the cell death machinery. DOI:http://dx.doi.org/10.7554/eLife.08005.001 If a cell in the body becomes damaged or stops working properly, it can trigger its own destruction. This helps to prevent the accumulation of damaged cells. However, cancer cells can often tolerate much greater damage than normal cells. Toxic chemotherapies, which are often used to treat cancer, work by severely damaging the cells to help trigger their self-destruction. Unfortunately, chemotherapy does not work on all cancer cells, and the remaining treatment-resistant cells may continue to grow and spread in more aggressive ways. Now, Levi-Ferber et al. have found a way to change the identity of cancer cells, which makes them more likely to self-destruct. The experiments used roundworms called Caenorhabditis elegans that had a genetic mutation that causes them to develop tumors in their reproductive organs. Normally, the cells in these tumors do not self-destruct. Levi-Ferber et al. exposed tumor cells from the worms to chemicals or to genetic modifications that cause unfolded proteins to accumulate inside the cell. This build-up of proteins stresses a structure in the cell called the endoplasmic reticulum. Normally, if endoplasmic reticulum stress gets too high, the cell activates various pathways to relieve the stress, and if these fail, the cell self-destructs. Levi-Ferber et al. showed that a protein called IRE-1, which senses endoplasmic reticulum stress, caused the tumor cells to change into a type of non-cancerous cell. After the change, the cells were also more sensitive to self-destruction. This meant that tumors grew more slowly and ended up smaller, allowing the animals to survive longer. Together, the experiments suggest that treatments that force cancer cells to become a different cell type might be one way to prevent the emergence of treatment-resistant tumor cells. Future research will be needed to investigate exactly how IRE-1 causes the identity of the cell to change, and to see if this process could treat other kinds of cancer. DOI:http://dx.doi.org/10.7554/eLife.08005.002
Collapse
Affiliation(s)
- Mor Levi-Ferber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hai Gian
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Reut Dudkevich
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
42
|
PUF-8 Functions Redundantly with GLD-1 to Promote the Meiotic Progression of Spermatocytes in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2015; 5:1675-84. [PMID: 26068572 PMCID: PMC4528324 DOI: 10.1534/g3.115.019521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Successful meiotic progression of germ cells is crucial for gametogenesis. Defects in this process affect proper genetic transmission and sometimes lead to tumor formation in the germline. In Caenorhabditis elegans, the RNA-binding protein GLD-1 is essential for the meiotic development of oocytes. However, its role during spermatogenesis has not been understood. Here, we show that GLD-1 functions redundantly with the PUF family protein PUF-8 to ensure proper meiotic development of spermatocytes. When grown at 20°-the standard laboratory temperature for C. elegans growth-primary spermatocytes in both gld-1 and puf-8 single-mutant males and hermaphrodites complete the meiotic divisions normally. By contrast, some of the gld-1; puf-8 double-mutant spermatocytes exit meiosis and form germ cell tumors in both sexes. During larval development, gld-1; puf-8 double-mutant germ cells begin to express the meiotic marker HIM-3, lose P granules, and form the sperm-specific membranous organelle, which are characteristics of developing spermatocytes. However, some of these cells quickly lose HIM-3 and form germ cell tumors that lack membranous organelle but contain P granules. Mutations that block meiotic progression at late pachytene or diakinetic stage fail to arrest the tumorigenesis, suggesting that the gld-1; puf-8 double-mutant spermatocytes exit meiosis prior to the completion of pachytene. Together, results presented here uncover a novel function for gld-1 in the meiotic development of spermatocytes in both hermaphrodites and males.
Collapse
|
43
|
Gupta P, Leahul L, Wang X, Wang C, Bakos B, Jasper K, Hansen D. Proteasome regulation of the chromodomain protein MRG-1 controls the balance between proliferative fate and differentiation in the C. elegans germ line. Development 2015; 142:291-302. [PMID: 25564623 DOI: 10.1242/dev.115147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The level of stem cell proliferation must be tightly controlled for proper development and tissue homeostasis. Multiple levels of gene regulation are often employed to regulate stem cell proliferation to ensure that the amount of proliferation is aligned with the needs of the tissue. Here we focus on proteasome-mediated protein degradation as a means of regulating the activities of proteins involved in controlling the stem cell proliferative fate in the C. elegans germ line. We identify five potential E3 ubiquitin ligases, including the RFP-1 RING finger protein, as being involved in regulating proliferative fate. RFP-1 binds to MRG-1, a homologue of the mammalian chromodomain-containing protein MRG15 (MORF4L1), which has been implicated in promoting the proliferation of neural precursor cells. We find that C. elegans with reduced proteasome activity, or that lack RFP-1 expression, have increased levels of MRG-1 and a shift towards increased proliferation in sensitized genetic backgrounds. Likewise, reduction of MRG-1 partially suppresses stem cell overproliferation. MRG-1 levels are controlled independently of the spatially regulated GLP-1/Notch signalling pathway, which is the primary signal controlling the extent of stem cell proliferation in the C. elegans germ line. We propose a model in which MRG-1 levels are controlled, at least in part, by the proteasome, and that the levels of MRG-1 set a threshold upon which other spatially regulated factors act in order to control the balance between the proliferative fate and differentiation in the C. elegans germ line.
Collapse
Affiliation(s)
- Pratyush Gupta
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Lindsay Leahul
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Xin Wang
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Chris Wang
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Brendan Bakos
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Katie Jasper
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
44
|
Spike CA, Coetzee D, Eichten C, Wang X, Hansen D, Greenstein D. The TRIM-NHL protein LIN-41 and the OMA RNA-binding proteins antagonistically control the prophase-to-metaphase transition and growth of Caenorhabditis elegans oocytes. Genetics 2014; 198:1535-58. [PMID: 25261698 PMCID: PMC4256770 DOI: 10.1534/genetics.114.168831] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/26/2014] [Indexed: 01/24/2023] Open
Abstract
In many animals, oocytes enter meiosis early in their development but arrest in meiotic prophase I. Oocyte growth, which occurs during this arrest period, enables the acquisition of meiotic competence and the capacity to produce healthy progeny. Meiotic resumption, or meiotic maturation, involves the transition to metaphase I (M phase) and is regulated by intercellular signaling and cyclin-dependent kinase activation. Premature meiotic maturation would be predicted to diminish fertility as the timing of this event, which normally occurs after oocyte growth is complete, is crucial. In the accompanying article in this issue, we identify the highly conserved TRIM-NHL protein LIN-41 as a translational repressor that copurifies with OMA-1 and OMA-2, RNA-binding proteins redundantly required for normal oocyte growth and meiotic maturation. In this article, we show that LIN-41 enables the production of high-quality oocytes and plays an essential role in controlling and coordinating oocyte growth and meiotic maturation. lin-41 null mutants display a striking defect that is specific to oogenesis: pachytene-stage cells cellularize prematurely and fail to progress to diplotene. Instead, these cells activate CDK-1, enter M phase, assemble spindles, and attempt to segregate chromosomes. Translational derepression of the CDK-1 activator CDC-25.3 appears to contribute to premature M-phase entry in lin-41 mutant oocytes. Genetic and phenotypic analyses indicate that LIN-41 and OMA-1/2 exhibit an antagonistic relationship, and we suggest that translational regulation by these proteins could be important for controlling and coordinating oocyte growth and meiotic maturation.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Donna Coetzee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Carly Eichten
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Xin Wang
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - David Greenstein
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
45
|
Sorokin EP, Gasch AP, Kimble J. Competence for chemical reprogramming of sexual fate correlates with an intersexual molecular signature in Caenorhabditis elegans. Genetics 2014; 198:561-75. [PMID: 25146970 PMCID: PMC4196613 DOI: 10.1534/genetics.114.169409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/10/2014] [Indexed: 01/24/2023] Open
Abstract
In multicellular organisms, genetic programs guide cells to adopt cell fates as tissues are formed during development, maintained in adults, and repaired after injury. Here we explore how a small molecule in the environment can switch a genetic program from one fate to another. Wild-type Caenorhabditis elegans XX adult hermaphrodites make oocytes continuously, but certain mutant XX adults make sperm instead in an otherwise hermaphrodite soma. Thus, puf-8; lip-1 XX adults make only sperm, but they can be switched from sperm to oocyte production by treatment with a small-molecule MEK inhibitor. To ask whether this chemical reprogramming is common, we tested six XX sperm-only mutants, but found only one other capable of cell fate switching, fbf-1; lip-1. Therefore, reprogramming competence relies on genotype, with only certain mutants capable of responding to the MEK inhibitor with a cell fate change. To gain insight into the molecular basis of competence for chemical reprogramming, we compared polyadenylated transcriptomes of competent and noncompetent XX sperm-only mutants in the absence of the MEK inhibitor and hence in the absence of cell fate reprogramming. Despite their cellular production of sperm, competent mutants were enriched for oogenic messenger RNAs relative to mutants lacking competence for chemical reprogramming. In addition, competent mutants expressed the oocyte-specific protein RME-2, whereas those lacking competence did not. Therefore, mutants competent for reprogramming possess an intersexual molecular profile at both RNA and protein levels. We suggest that this intersexual molecular signature is diagnostic of an intermediate network state that poises the germline tissue for changing its cellular fate in response to environmental cues.
Collapse
Affiliation(s)
- Elena P Sorokin
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Judith Kimble
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706 Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
46
|
Millonigg S, Minasaki R, Nousch M, Eckmann CR. GLD-4-mediated translational activation regulates the size of the proliferative germ cell pool in the adult C. elegans germ line. PLoS Genet 2014; 10:e1004647. [PMID: 25254367 PMCID: PMC4177745 DOI: 10.1371/journal.pgen.1004647] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/04/2014] [Indexed: 12/26/2022] Open
Abstract
To avoid organ dysfunction as a consequence of tissue diminution or tumorous growth, a tight balance between cell proliferation and differentiation is maintained in metazoans. However, cell-intrinsic gene expression mechanisms controlling adult tissue homeostasis remain poorly understood. By focusing on the adult Caenorhabditis elegans reproductive tissue, we show that translational activation of mRNAs is a fundamental mechanism to maintain tissue homeostasis. Our genetic experiments identified the Trf4/5-type cytoplasmic poly(A) polymerase (cytoPAP) GLD-4 and its enzymatic activator GLS-1 to perform a dual role in regulating the size of the proliferative zone. Consistent with a ubiquitous expression of GLD-4 cytoPAP in proliferative germ cells, its genetic activity is required to maintain a robust proliferative adult germ cell pool, presumably by regulating many mRNA targets encoding proliferation-promoting factors. Based on translational reporters and endogenous protein expression analyses, we found that gld-4 activity promotes GLP-1/Notch receptor expression, an essential factor of continued germ cell proliferation. RNA-protein interaction assays documented also a physical association of the GLD-4/GLS-1 cytoPAP complex with glp-1 mRNA, and ribosomal fractionation studies established that GLD-4 cytoPAP activity facilitates translational efficiency of glp-1 mRNA. Moreover, we found that in proliferative cells the differentiation-promoting factor, GLD-2 cytoPAP, is translationally repressed by the stem cell factor and PUF-type RNA-binding protein, FBF. This suggests that cytoPAP-mediated translational activation of proliferation-promoting factors, paired with PUF-mediated translational repression of differentiation factors, forms a translational control circuit that expands the proliferative germ cell pool. Our additional genetic experiments uncovered that the GLD-4/GLS-1 cytoPAP complex promotes also differentiation, forming a redundant translational circuit with GLD-2 cytoPAP and the translational repressor GLD-1 to restrict proliferation. Together with previous findings, our combined data reveals two interconnected translational activation/repression circuitries of broadly conserved RNA regulators that maintain the balance between adult germ cell proliferation and differentiation. Throughout adulthood, animal tissue homeostasis requires adult stem cell activities. A tight balance between self-renewal and differentiation protects against tissue overgrowth or loss. This balance is strongly influenced by niche-mediated signaling pathways that primarily trigger a transcriptional response in stem cells to promote self-renewal/proliferation. However, the cell-intrinsic mechanisms that modulate signaling pathways to promote proliferation or differentiation are poorly understood. Recently, post-transcriptional mRNA regulation emerged in diverse germline stem cell systems as an important gene expression mechanism, primarily preventing the protein synthesis of factors that promote the switch to differentiation. In the adult C. elegans germ line, this study finds that the evolutionarily conserved cytoplasmic poly(A) polymerase, GLD-4, plays an crucial role in maintaining a healthy balance between proliferation and differentiation forces. This is in part due to translational activation of the mRNA that encodes the germ cell-expressed Notch signaling receptor, an essential regulator of proliferation. Moreover, GLD-4 activity is part of a redundant genetic network downstream of Notch that, together with several other conserved mRNA regulators, promotes differentiation onset. Given the widespread expression of these conserved RNA regulators in metazoans, cell fate balances that are reinforced by translational activation and repression circuitries may therefore be a general mechanism of adult tissue maintenance.
Collapse
Affiliation(s)
- Sophia Millonigg
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Ryuji Minasaki
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Marco Nousch
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Christian R. Eckmann
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
- * E-mail:
| |
Collapse
|
47
|
Two classes of gap junction channels mediate soma-germline interactions essential for germline proliferation and gametogenesis in Caenorhabditis elegans. Genetics 2014; 198:1127-53. [PMID: 25195067 PMCID: PMC4224157 DOI: 10.1534/genetics.114.168815] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In all animals examined, somatic cells of the gonad control multiple biological processes essential for germline development. Gap junction channels, composed of connexins in vertebrates and innexins in invertebrates, permit direct intercellular communication between cells and frequently form between somatic gonadal cells and germ cells. Gap junctions comprise hexameric hemichannels in apposing cells that dock to form channels for the exchange of small molecules. Here we report essential roles for two classes of gap junction channels, composed of five innexin proteins, in supporting the proliferation of germline stem cells and gametogenesis in the nematode Caenorhabditis elegans. Transmission electron microscopy of freeze-fracture replicas and fluorescence microscopy show that gap junctions between somatic cells and germ cells are more extensive than previously appreciated and are found throughout the gonad. One class of gap junctions, composed of INX-8 and INX-9 in the soma and INX-14 and INX-21 in the germ line, is required for the proliferation and differentiation of germline stem cells. Genetic epistasis experiments establish a role for these gap junction channels in germline proliferation independent of the glp-1/Notch pathway. A second class of gap junctions, composed of somatic INX-8 and INX-9 and germline INX-14 and INX-22, is required for the negative regulation of oocyte meiotic maturation. Rescue of gap junction channel formation in the stem cell niche rescues germline proliferation and uncovers a later channel requirement for embryonic viability. This analysis reveals gap junctions as a central organizing feature of many soma–germline interactions in C. elegans.
Collapse
|
48
|
Ivshina M, Lasko P, Richter JD. Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu Rev Cell Dev Biol 2014; 30:393-415. [PMID: 25068488 DOI: 10.1146/annurev-cellbio-101011-155831] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cytoplasmic polyadenylation element binding (CPEB) proteins are sequence-specific mRNA binding proteins that control translation in development, health, and disease. CPEB1, the founding member of this family, has become an important model for illustrating general principles of translational control by cytoplasmic polyadenylation in gametogenesis, cancer etiology, synaptic plasticity, learning, and memory. Although the biological functions of the other members of this protein family in vertebrates are just beginning to emerge, it is already evident that they, too, mediate important processes, such as cancer etiology and higher cognitive function. In Drosophila, the CPEB proteins Orb and Orb2 play key roles in oogenesis and in neuronal function, as do related proteins in Caenorhabditis elegans and Aplysia. We review the biochemical features of the CPEB proteins, discuss their activities in several biological systems, and illustrate how understanding CPEB activity in model organisms has an important impact on neurological disease.
Collapse
Affiliation(s)
- Maria Ivshina
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| | | | | |
Collapse
|
49
|
Wang X, Gupta P, Fairbanks J, Hansen D. Protein kinase CK2 both promotes robust proliferation and inhibits the proliferative fate in the C. elegans germ line. Dev Biol 2014; 392:26-41. [PMID: 24824786 DOI: 10.1016/j.ydbio.2014.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/02/2014] [Accepted: 05/02/2014] [Indexed: 11/18/2022]
Abstract
Stem cells are capable of both self-renewal (proliferation) and differentiation. Determining the regulatory mechanisms controlling the balance between stem cell proliferation and differentiation is not only an important biological question, but also holds the key for using stem cells as therapeutic agents. The Caenorhabditis elegans germ line has emerged as a valuable model to study the molecular mechanisms controlling stem cell behavior. In this study, we describe a large-scale RNAi screen that identified kin-10, which encodes the β subunit of protein kinase CK2, as a novel factor regulating stem cell proliferation in the C. elegans germ line. While a loss of kin-10 in an otherwise wild-type background results in a decrease in the number of proliferative cells, loss of kin-10 in sensitized genetic backgrounds results in a germline tumor. Therefore, kin-10 is not only necessary for robust proliferation, it also inhibits the proliferative fate. We found that kin-10's regulatory role in inhibiting the proliferative fate is carried out through the CK2 holoenzyme, rather than through a holoenzyme-independent function, and that it functions downstream of GLP-1/Notch signaling. We propose that a loss of kin-10 leads to a defect in CK2 phosphorylation of its downstream targets, resulting in abnormal activity of target protein(s) that are involved in the proliferative fate vs. differentiation decision. This eventually causes a shift towards the proliferative fate in the stem cell fate decision.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Pratyush Gupta
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Jared Fairbanks
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4.
| |
Collapse
|
50
|
Doh JH, Jung Y, Reinke V, Lee MH. C. elegans RNA-binding protein GLD-1 recognizes its multiple targets using sequence, context, and structural information to repress translation. WORM 2014; 2:e26548. [PMID: 24744981 DOI: 10.4161/worm.26548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022]
Abstract
Caenorhabditis elegans GLD-1, a maxi-KH motif containing RNA-binding protein, has various functions mainly during female germ cell development, suggesting that it likely controls the expression of a selective group of maternal mRNAs. To gain an insight into how GLD-1 specifically recognizes these mRNA targets, we identified 38 biochemically proven GLD-1 binding regions from multiple mRNA targets that are among over 100 putative targets co-immunoprecipitated with GLD-1. The sequence information of these regions revealed three over-represented and phylogenetically conserved sequence motifs. We found that two of the motifs, one of which is novel, are important for GLD-1 binding in several GLD-1 binding regions but not in other regions. Further analyses indicate that the importance of one of the sequence motifs is dependent on two aspects: (1) surrounding sequence information, likely acting as an accessory feature for GLD-1 to efficiently select the sequence motif and (2) RNA secondary structural environment where the sequence motif resides, which likely provides "binding-site accessibility" for GLD-1 to effectively recognize its targets. Our data suggest some mRNAs recruit GLD-1 by a distinct mechanism, which involves more than one sequence motif that needs to be embedded in the correct context and structural environment.
Collapse
Affiliation(s)
- Jung H Doh
- Department of Biological Sciences; University at Albany; SUNY; Albany, NY USA
| | - Yuchae Jung
- Department of Biological Sciences; University at Albany; SUNY; Albany, NY USA
| | - Valerie Reinke
- Department of Genetics; Yale University School of Medicine; New Haven, CT USA
| | - Min-Ho Lee
- Department of Biological Sciences; University at Albany; SUNY; Albany, NY USA
| |
Collapse
|