1
|
Donati A, Schneider-Maunoury S, Vesque C. Centriole Translational Planar Polarity in Monociliated Epithelia. Cells 2024; 13:1403. [PMID: 39272975 PMCID: PMC11393834 DOI: 10.3390/cells13171403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Ciliated epithelia are widespread in animals and play crucial roles in many developmental and physiological processes. Epithelia composed of multi-ciliated cells allow for directional fluid flow in the trachea, oviduct and brain cavities. Monociliated epithelia play crucial roles in vertebrate embryos, from the establishment of left-right asymmetry to the control of axis curvature via cerebrospinal flow motility in zebrafish. Cilia also have a central role in the motility and feeding of free-swimming larvae in a variety of marine organisms. These diverse functions rely on the coordinated orientation (rotational polarity) and asymmetric localization (translational polarity) of cilia and of their centriole-derived basal bodies across the epithelium, both being forms of planar cell polarity (PCP). Here, we review our current knowledge on the mechanisms of the translational polarity of basal bodies in vertebrate monociliated epithelia from the molecule to the whole organism. We highlight the importance of live imaging for understanding the dynamics of centriole polarization. We review the roles of core PCP pathways and of apicobasal polarity proteins, such as Par3, whose central function in this process has been recently uncovered. Finally, we emphasize the importance of the coordination between polarity proteins, the cytoskeleton and the basal body itself in this highly dynamic process.
Collapse
Affiliation(s)
- Antoine Donati
- Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sylvie Schneider-Maunoury
- Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France
| | - Christine Vesque
- Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France
| |
Collapse
|
2
|
Vuong LT, Mlodzik M. The complex relationship of Wnt-signaling pathways and cilia. Curr Top Dev Biol 2023; 155:95-125. [PMID: 38043953 PMCID: PMC11287783 DOI: 10.1016/bs.ctdb.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Wnt family proteins are secreted glycolipoproteins that signal through multitude of signal transduction pathways. The Wnt-pathways are conserved and critical in all metazoans. They are essential for embryonic development, organogenesis and homeostasis, and associated with many diseases when defective or deregulated. Wnt signaling pathways comprise the canonical Wnt pathway, best known for its stabilization of β-catenin and associated nuclear β-catenin activity in gene regulation, and several non-canonical signaling branches. Wnt-Planar Cell Polarity (PCP) signaling has received the most attention among the non-canonical Wnt pathways. The relationship of cilia to Wnt-signaling is complex. While it was suggested that canonical Wnt signaling requires cilia this notion was always challenged by results suggesting the opposite. Recent developments provide insight and clarification to the relationship of Wnt signaling pathways and cilia. First, it has been now demonstrated that while ciliary proteins, in particular the IFT-A complex, are required for canonical Wnt/β-catenin signaling, the cilium as a structure is not. In contrast, recent work has defined a diverged canonical signaling branch (not affecting β-catenin) to be required for ciliary biogenesis and cilia function. Furthermore, the non-canonical Wnt-PCP pathway does not affect cilia biogenesis per se, but it regulates the position of cilia within cells in many cell types, possibly in all cells where it is active, with cilia being placed near the side of the cell that has the Frizzled-Dishevelled complex. This Wnt/PCP feature is conserved with both centrioles and basal bodies/cilia being positioned accordingly, and it is also used to align mitotic spindles within the Wnt-PCP polarization axis. It also coordinates the alignment of cilia in multiciliated cells. This article addresses these new insights and different links and relationships between cilia and Wnt signaling.
Collapse
Affiliation(s)
- Linh T Vuong
- Department of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marek Mlodzik
- Department of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
3
|
Darnat P, Burg A, Sallé J, Lacoste J, Louvet-Vallée S, Gho M, Audibert A. Cortical Cyclin A controls spindle orientation during asymmetric cell divisions in Drosophila. Nat Commun 2022; 13:2723. [PMID: 35581185 PMCID: PMC9114397 DOI: 10.1038/s41467-022-30182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
The coordination between cell proliferation and cell polarity is crucial to orient the asymmetric cell divisions to generate cell diversity in epithelia. In many instances, the Frizzled/Dishevelled planar cell polarity pathway is involved in mitotic spindle orientation, but how this is spatially and temporally coordinated with cell cycle progression has remained elusive. Using Drosophila sensory organ precursor cells as a model system, we show that Cyclin A, the main Cyclin driving the transition to M-phase of the cell cycle, is recruited to the apical-posterior cortex in prophase by the Frizzled/Dishevelled complex. This cortically localized Cyclin A then regulates the orientation of the division by recruiting Mud, a homologue of NuMA, the well-known spindle-associated protein. The observed non-canonical subcellular localization of Cyclin A reveals this mitotic factor as a direct link between cell proliferation, cell polarity and spindle orientation. The Frizzled/Dishevelled planar cell polarity pathway is involved in mitotic spindle orientation, but how this is coordinated with the cell cycle is unclear. Here, the authors show with Drosophila sensory organ precursor cells that Cyclin A is recruited in prophase by Frizzled/Dishevelled, regulating division orientation.
Collapse
Affiliation(s)
- Pénélope Darnat
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France
| | - Angélique Burg
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France
| | - Jérémy Sallé
- Institut Jacques Monod, Université Paris Diderot/CNRS, Cellular Spatial Organization Team, F-75005, Paris, France
| | - Jérôme Lacoste
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France
| | - Sophie Louvet-Vallée
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France
| | - Michel Gho
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France.
| | - Agnès Audibert
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine (LBD-IBPS), Cell cycle and cell determination Team, F-75005, Paris, France.
| |
Collapse
|
4
|
Dreyer CA, VanderVorst K, Carraway KL. Vangl as a Master Scaffold for Wnt/Planar Cell Polarity Signaling in Development and Disease. Front Cell Dev Biol 2022; 10:887100. [PMID: 35646914 PMCID: PMC9130715 DOI: 10.3389/fcell.2022.887100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
The establishment of polarity within tissues and dynamic cellular morphogenetic events are features common to both developing and adult tissues, and breakdown of these programs is associated with diverse human diseases. Wnt/Planar cell polarity (Wnt/PCP) signaling, a branch of non-canonical Wnt signaling, is critical to the establishment and maintenance of polarity in epithelial tissues as well as cell motility events critical to proper embryonic development. In epithelial tissues, Wnt/PCP-mediated planar polarity relies upon the asymmetric distribution of core proteins to establish polarity, but the requirement for this distribution in Wnt/PCP-mediated cell motility remains unclear. However, in both polarized tissues and migratory cells, the Wnt/PCP-specific transmembrane protein Vangl is required and appears to serve as a scaffold upon which the core pathway components as well as positive and negative regulators of Wnt/PCP signaling assemble. The current literature suggests that the multiple interaction domains of Vangl allow for the binding of diverse signaling partners for the establishment of context- and tissue-specific complexes. In this review we discuss the role of Vangl as a master scaffold for Wnt/PCP signaling in epithelial tissue polarity and cellular motility events in developing and adult tissues, and address how these programs are dysregulated in human disease.
Collapse
Affiliation(s)
| | | | - Kermit L. Carraway
- Department of Biochemistry and Molecular Medicine and the UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
5
|
Warrington SJ, Strutt H, Strutt D. Use of Fluorescence Recovery After Photobleaching (FRAP) to Measure In Vivo Dynamics of Cell Junction-Associated Polarity Proteins. Methods Mol Biol 2022; 2438:1-30. [PMID: 35147932 DOI: 10.1007/978-1-0716-2035-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Here, we present a detailed protocol for fluorescence recovery after photobleaching (FRAP) to measure the dynamics of junctional populations of proteins in living tissue. Specifically, we describe how to perform FRAP in Drosophila pupal wings on fluorescently tagged core planar polarity proteins, which exhibit relatively slow junctional turnover. We provide a step-by-step practical guide to performing FRAP, and list a series of controls and optimizations to do before conducting a FRAP experiment. Finally, we describe how to present the FRAP data for publication.
Collapse
Affiliation(s)
| | - Helen Strutt
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - David Strutt
- School of Biosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
6
|
Bell IJ, Horn MS, Van Raay TJ. Bridging the gap between non-canonical and canonical Wnt signaling through Vangl2. Semin Cell Dev Biol 2021; 125:37-44. [PMID: 34736823 DOI: 10.1016/j.semcdb.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
Non-canonical Wnt signaling (encompassing Wnt/PCP and WntCa2+) has a dual identity in the literature. One stream of research investigates its role in antagonizing canonical Wnt/β-catenin signaling in cancer, typically through Ca2+, while the other stream investigates its effect on polarity in development, typically through Vangl2. Rarely do these topics intersect or overlap. What has become clear is that Wnt5a can mobilize intracellular calcium stores to inhibit Wnt/β-catenin in cancer cells but there is no evidence that Vangl2 is involved in this process. Conversely, Wnt5a can independently activate Vangl2 to affect polarity and migration but the role of calcium in this process is also limited. Further, Vangl2 has also been implicated in inhibiting Wnt/β-catenin signaling in development. The consensus is that a cell can differentiate between canonical and non-canonical Wnt signaling when presented with a choice, always choosing non-canonical at the expense of canonical Wnt signaling. However, these are rare events in vivo. Given the shared resources between non-canonical and canonical Wnt signaling it is perplexing that there is not more in vivo evidence for cross talk between these two pathways. In this review we discuss the intersection of non-canonical Wnt, with a focus on Wnt/PCP, and Wnt/β-catenin signaling in an attempt to shed some light on pathways that rarely meet at a crossroads in vivo.
Collapse
Affiliation(s)
- Ian James Bell
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1
| | - Matthew Sheldon Horn
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1
| | - Terence John Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
7
|
Torban E, Sokol SY. Planar cell polarity pathway in kidney development, function and disease. Nat Rev Nephrol 2021; 17:369-385. [PMID: 33547419 PMCID: PMC8967065 DOI: 10.1038/s41581-021-00395-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) refers to the coordinated orientation of cells in the tissue plane. Originally discovered and studied in Drosophila melanogaster, PCP is now widely recognized in vertebrates, where it is implicated in organogenesis. Specific sets of PCP genes have been identified. The proteins encoded by these genes become asymmetrically distributed to opposite sides of cells within a tissue plane and guide many processes that include changes in cell shape and polarity, collective cell movements or the uniform distribution of cell appendages. A unifying characteristic of these processes is that they often involve rearrangement of actomyosin. Mutations in PCP genes can cause malformations in organs of many animals, including humans. In the past decade, strong evidence has accumulated for a role of the PCP pathway in kidney development including outgrowth and branching morphogenesis of ureteric bud and podocyte development. Defective PCP signalling has been implicated in the pathogenesis of developmental kidney disorders of the congenital anomalies of the kidney and urinary tract spectrum. Understanding the origins, molecular constituents and cellular targets of PCP provides insights into the involvement of PCP molecules in normal kidney development and how dysfunction of PCP components may lead to kidney disease.
Collapse
Affiliation(s)
- Elena Torban
- McGill University and McGill University Health Center Research Institute, 1001 Boulevard Decarie, Block E, Montreal, Quebec, Canada, H4A3J1.,Corresponding authors: Elena Torban (); Sergei Sokol ()
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, USA,Corresponding authors: Elena Torban (); Sergei Sokol ()
| |
Collapse
|
8
|
Wavreil FDM, Yajima M. Diversity of activator of G-protein signaling (AGS)-family proteins and their impact on asymmetric cell division across taxa. Dev Biol 2020; 465:89-99. [PMID: 32687894 DOI: 10.1016/j.ydbio.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/18/2022]
Abstract
Asymmetric cell division (ACD) is a cellular process that forms two different cell types through a cell division and is thus critical for the development of all multicellular organisms. Not all but many of the ACD processes are mediated by proper orientation of the mitotic spindle, which segregates the fate determinants asymmetrically into daughter cells. In many cell types, the evolutionarily conserved protein complex of Gαi/AGS-family protein/NuMA-like protein appears to play critical roles in orienting the spindle and/or generating the polarized cortical forces to regulate ACD. Studies in various organisms reveal that this conserved protein complex is slightly modified in each phylum or even within species. In particular, AGS-family proteins appear to be modified with a variable number of motifs in their functional domains across taxa. This apparently creates different molecular interactions and mechanisms of ACD in each developmental program, ultimately contributing to developmental diversity across species. In this review, we discuss how a conserved ACD machinery has been modified in each phylum over the course of evolution with a major focus on the molecular evolution of AGS-family proteins and its impact on ACD regulation.
Collapse
Affiliation(s)
- Florence D M Wavreil
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02906, USA
| | - Mamiko Yajima
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02906, USA.
| |
Collapse
|
9
|
Box K, Joyce BW, Devenport D. Epithelial geometry regulates spindle orientation and progenitor fate during formation of the mammalian epidermis. eLife 2019; 8:47102. [PMID: 31187731 PMCID: PMC6592681 DOI: 10.7554/elife.47102] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/12/2019] [Indexed: 12/27/2022] Open
Abstract
The control of cell fate through oriented cell division is imperative for proper organ development. Basal epidermal progenitor cells divide parallel or perpendicular to the basement membrane to self-renew or produce differentiated stratified layers, but the mechanisms regulating the choice between division orientations are unknown. Using time-lapse imaging to follow divisions and fates of basal progenitors, we find that mouse embryos defective for the planar cell polarity (PCP) gene, Vangl2, exhibit increased perpendicular divisions and hyperthickened epidermis. Surprisingly, this is not due to defective Vangl2 function in the epidermis, but to changes in cell geometry and packing that arise from the open neural tube characteristic of PCP mutants. Through regional variations in epidermal deformation and physical manipulations, we show that local tissue architecture, rather than cortical PCP cues, regulates the decision between symmetric and stratifying divisions, allowing flexibility for basal cells to adapt to the needs of the developing tissue.
Collapse
Affiliation(s)
- Kimberly Box
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Bradley W Joyce
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
10
|
Chuykin I, Ossipova O, Sokol SY. Par3 interacts with Prickle3 to generate apical PCP complexes in the vertebrate neural plate. eLife 2018; 7:37881. [PMID: 30256191 PMCID: PMC6175575 DOI: 10.7554/elife.37881] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
Vertebrate neural tube formation depends on the coordinated orientation of cells in the tissue known as planar cell polarity (PCP). In the Xenopus neural plate, PCP is marked by the enrichment of the conserved proteins Prickle3 and Vangl2 at anterior cell boundaries. Here we show that the apical determinant Par3 is also planar polarized in the neuroepithelium, suggesting a role for Par3 in PCP. Consistent with this hypothesis, interference with Par3 activity inhibited asymmetric distribution of PCP junctional complexes and caused neural tube defects. Importantly, Par3 physically associated with Prickle3 and promoted its apical localization, whereas overexpression of a Prickle3-binding Par3 fragment disrupted PCP in the neural plate. We also adapted proximity biotinylation assay for use in Xenopus embryos and show that Par3 functions by enhancing the formation of the anterior apical PCP complex. These findings describe a mechanistic link between the apical localization of PCP components and morphogenetic movements underlying neurulation.
Collapse
Affiliation(s)
- Ilya Chuykin
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Olga Ossipova
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
11
|
Stephens R, Lim K, Portela M, Kvansakul M, Humbert PO, Richardson HE. The Scribble Cell Polarity Module in the Regulation of Cell Signaling in Tissue Development and Tumorigenesis. J Mol Biol 2018; 430:3585-3612. [PMID: 29409995 DOI: 10.1016/j.jmb.2018.01.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 01/22/2023]
Abstract
The Scribble cell polarity module, comprising Scribbled (Scrib), Discs-large (Dlg) and Lethal-2-giant larvae (Lgl), has a tumor suppressive role in mammalian epithelial cancers. The Scribble module proteins play key functions in the establishment and maintenance of different modes of cell polarity, as well as in the control of tissue growth, differentiation and directed cell migration, and therefore are major regulators of tissue development and homeostasis. Whilst molecular details are known regarding the roles of Scribble module proteins in cell polarity regulation, their precise mode of action in the regulation of other key cellular processes remains enigmatic. An accumulating body of evidence indicates that Scribble module proteins play scaffolding roles in the control of various signaling pathways, which are linked to the control of tissue growth, differentiation and cell migration. Multiple Scrib, Dlg and Lgl interacting proteins have been discovered, which are involved in diverse processes, however many function in the regulation of cellular signaling. Herein, we review the components of the Scrib, Dlg and Lgl protein interactomes, and focus on the mechanism by which they regulate cellular signaling pathways in metazoans, and how their disruption leads to cancer.
Collapse
Affiliation(s)
- Rebecca Stephens
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Krystle Lim
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Avenida Doctor Arce, 37, Madrid 28002, Spain
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Anatomy & Neurobiology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
12
|
Banerjee JJ, Aerne BL, Holder MV, Hauri S, Gstaiger M, Tapon N. Meru couples planar cell polarity with apical-basal polarity during asymmetric cell division. eLife 2017; 6:e25014. [PMID: 28665270 PMCID: PMC5493435 DOI: 10.7554/elife.25014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/14/2017] [Indexed: 12/15/2022] Open
Abstract
Polarity is a shared feature of most cells. In epithelia, apical-basal polarity often coexists, and sometimes intersects with planar cell polarity (PCP), which orients cells in the epithelial plane. From a limited set of core building blocks (e.g. the Par complexes for apical-basal polarity and the Frizzled/Dishevelled complex for PCP), a diverse array of polarized cells and tissues are generated. This suggests the existence of little-studied tissue-specific factors that rewire the core polarity modules to the appropriate conformation. In Drosophila sensory organ precursors (SOPs), the core PCP components initiate the planar polarization of apical-basal determinants, ensuring asymmetric division into daughter cells of different fates. We show that Meru, a RASSF9/RASSF10 homologue, is expressed specifically in SOPs, recruited to the posterior cortex by Frizzled/Dishevelled, and in turn polarizes the apical-basal polarity factor Bazooka (Par3). Thus, Meru belongs to a class of proteins that act cell/tissue-specifically to remodel the core polarity machinery.
Collapse
Affiliation(s)
- Jennifer J Banerjee
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Birgit L Aerne
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Maxine V Holder
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Simon Hauri
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
- Competence Center Personalized Medicine UZH/ETH, Zürich, Switzerland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
- Competence Center Personalized Medicine UZH/ETH, Zürich, Switzerland
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
13
|
Carvajal-Gonzalez JM, Mulero-Navarro S, Mlodzik M. Centriole positioning in epithelial cells and its intimate relationship with planar cell polarity. Bioessays 2016; 38:1234-1245. [PMID: 27774671 DOI: 10.1002/bies.201600154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Planar cell polarity (PCP)-signaling and associated tissue polarization are evolutionarily conserved. A well documented feature of PCP-signaling in vertebrates is its link to centriole/cilia positioning, although the relationship of PCP and ciliogenesis is still debated. A recent report in Drosophila established that Frizzled (Fz)-PCP core signaling has an instructive input to polarized centriole positioning in non-ciliated Drosophila wing epithelia as a PCP read-out. Here, we review the impact of this observation in the context of recent descriptions of the relationship(s) of core Fz-PCP signaling and cilia/centriole positioning in epithelial and non-epithelial cells. All existing data are consistent with a model where Fz-PCP signaling functions upstream of centriole/cilia positioning, independent of ciliogenesis. The combined data sets indicate that the Fz-Dsh PCP complex is instructive for centriole/ciliary positioning via an actin-based mechanism. Thereby, centriole/cilia/centrosome positioning can be considered an evolutionarily conserved readout and common downstream effect of PCP-signaling from flies to mammals.
Collapse
Affiliation(s)
- Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Marek Mlodzik
- Department of Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
The PCP pathway regulates Baz planar distribution in epithelial cells. Sci Rep 2016; 6:33420. [PMID: 27624969 PMCID: PMC5022056 DOI: 10.1038/srep33420] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/26/2016] [Indexed: 01/05/2023] Open
Abstract
The localisation of apico-basal polarity proteins along the Z-axis of epithelial cells is well understood while their distribution in the plane of the epithelium is poorly characterised. Here we provide a systematic description of the planar localisation of apico-basal polarity proteins in the Drosophila ommatidial epithelium. We show that the adherens junction proteins Shotgun and Armadillo, as well as the baso-lateral complexes, are bilateral, i.e. present on both sides of cell interfaces. In contrast, we report that other key adherens junction proteins, Bazooka and the myosin regulatory light chain (Spaghetti squash) are unilateral, i.e. present on one side of cell interfaces. Furthermore, we demonstrate that planar cell polarity (PCP) and not the apical determinants Crumbs and Par-6 control Bazooka unilaterality in cone cells. Altogether, our work unravels an unexpected organisation and combination of apico-basal, cytoskeletal and planar polarity proteins that is different on either side of cell-cell interfaces and unique for the different contacts of the same cell.
Collapse
|
15
|
Chu CW, Ossipova O, Ioannou A, Sokol SY. Prickle3 synergizes with Wtip to regulate basal body organization and cilia growth. Sci Rep 2016; 6:24104. [PMID: 27062996 PMCID: PMC4827067 DOI: 10.1038/srep24104] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/21/2016] [Indexed: 12/21/2022] Open
Abstract
PCP proteins maintain planar polarity in many epithelial tissues and have been implicated in cilia development in vertebrate embryos. In this study we examine Prickle3 (Pk3), a vertebrate homologue of Drosophila Prickle, in Xenopus gastrocoel roof plate (GRP). GRP is a tissue equivalent to the mouse node, in which cilia-generated flow promotes left-right patterning. We show that Pk3 is enriched at the basal body of GRP cells but is recruited by Vangl2 to anterior cell borders. Interference with Pk3 function disrupted the anterior polarization of endogenous Vangl2 and the posterior localization of cilia in GRP cells, demonstrating its role in PCP. Strikingly, in cells with reduced Pk3 activity, cilia growth was inhibited and γ-tubulin and Nedd1 no longer associated with the basal body, suggesting that Pk3 has a novel function in basal body organization. Mechanistically, this function of Pk3 may involve Wilms tumor protein 1-interacting protein (Wtip), which physically associates with and cooperates with Pk3 to regulate ciliogenesis. We propose that, in addition to cell polarity, PCP components control basal body organization and function.
Collapse
Affiliation(s)
- Chih-Wen Chu
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andriani Ioannou
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
16
|
Devenport D. Tissue morphodynamics: Translating planar polarity cues into polarized cell behaviors. Semin Cell Dev Biol 2016; 55:99-110. [PMID: 26994528 DOI: 10.1016/j.semcdb.2016.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
The ability of cells to collectively orient and align their behaviors is essential in multicellular organisms for unidirectional cilia beating, collective cell movements, oriented cell divisions, and asymmetric cell fate specification. The planar cell polarity pathway coordinates a vast and diverse array of collective cell behaviors by intersecting with downstream pathways that regulate cytoskeletal dynamics and intercellular signaling. How the planar polarity pathway translates directional cues to produce polarized cell behaviors is the focus of this review.
Collapse
Affiliation(s)
- Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
17
|
Ossipova O, Chu CW, Fillatre J, Brott BK, Itoh K, Sokol SY. The involvement of PCP proteins in radial cell intercalations during Xenopus embryonic development. Dev Biol 2015; 408:316-27. [PMID: 26079437 PMCID: PMC4810801 DOI: 10.1016/j.ydbio.2015.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/19/2022]
Abstract
The planar cell polarity (PCP) pathway orients cells in diverse epithelial tissues in Drosophila and vertebrate embryos and has been implicated in many human congenital defects and diseases, such as ciliopathies, polycystic kidney disease and malignant cancers. During vertebrate gastrulation and neurulation, PCP signaling is required for convergent extension movements, which are primarily driven by mediolateral cell intercalations, whereas the role for PCP signaling in radial cell intercalations has been unclear. In this study, we examine the function of the core PCP proteins Vangl2, Prickle3 (Pk3) and Disheveled in the ectodermal cells, which undergo radial intercalations during Xenopus gastrulation and neurulation. In the epidermis, multiciliated cell (MCC) progenitors originate in the inner layer, but subsequently migrate to the embryo surface during neurulation. We find that the Vangl2/Pk protein complexes are enriched at the apical domain of intercalating MCCs and are essential for the MCC intercalatory behavior. Addressing the underlying mechanism, we identified KIF13B, as a motor protein that binds Disheveled. KIF13B is required for MCC intercalation and acts synergistically with Vangl2 and Disheveled, indicating that it may mediate microtubule-dependent trafficking of PCP proteins necessary for cell shape regulation. In the neural plate, the Vangl2/Pk complexes were also concentrated near the outermost surface of deep layer cells, suggesting a general role for PCP in radial intercalation. Consistent with this hypothesis, the ectodermal tissues deficient in Vangl2 or Disheveled functions contained more cell layers than normal tissues. We propose that PCP signaling is essential for both mediolateral and radial cell intercalations during vertebrate morphogenesis. These expanded roles underscore the significance of vertebrate PCP proteins as factors contributing to a number of diseases, including neural tube defects, tumor metastases, and various genetic syndromes characterized by abnormal migratory cell behaviors.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chih-Wen Chu
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Fillatre
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Barbara K Brott
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keiji Itoh
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
18
|
Oriented cell division: new roles in guiding skin wound repair and regeneration. Biosci Rep 2015; 35:BSR20150225. [PMID: 26582817 PMCID: PMC4708010 DOI: 10.1042/bsr20150225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/12/2015] [Indexed: 01/14/2023] Open
Abstract
Tissue morphogenesis depends on precise regulation and timely co-ordination of cell division and also on the control of the direction of cell division. Establishment of polarity division axis, correct alignment of the mitotic spindle, segregation of fate determinants equally or unequally between daughter cells, are essential for the realization of oriented cell division. Furthermore, oriented cell division is regulated by intrinsic cues, extrinsic cues and other cues, such as cell geometry and polarity. However, dysregulation of cell division orientation could lead to abnormal tissue development and function. In the present study, we review recent studies on the molecular mechanism of cell division orientation and explain their new roles in skin repair and regeneration.
Collapse
|
19
|
Tamada M, Zallen JA. Square Cell Packing in the Drosophila Embryo through Spatiotemporally Regulated EGF Receptor Signaling. Dev Cell 2015; 35:151-61. [PMID: 26506305 PMCID: PMC4939091 DOI: 10.1016/j.devcel.2015.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/11/2015] [Accepted: 09/23/2015] [Indexed: 01/05/2023]
Abstract
Cells display dynamic and diverse morphologies during development, but the strategies by which differentiated tissues achieve precise shapes and patterns are not well understood. Here we identify a developmental program that generates a highly ordered square cell grid in the Drosophila embryo through sequential and spatially regulated cell alignment, oriented cell division, and apicobasal cell elongation. The basic leucine zipper transcriptional regulator Cnc is necessary and sufficient to produce a square cell grid in the presence of a midline signal provided by the EGF receptor ligand Spitz. Spitz orients cell divisions through a Pins/LGN-dependent spindle-positioning mechanism and controls cell shape and alignment through a transcriptional pathway that requires the Pointed ETS domain protein. These results identify a strategy for producing ordered square cell packing configurations in epithelia and reveal a molecular mechanism by which organized tissue structure is generated through spatiotemporally regulated responses to EGF receptor activation.
Collapse
Affiliation(s)
- Masako Tamada
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
20
|
Wright CE, Kushner EJ, Du Q, Bautch VL. LGN Directs Interphase Endothelial Cell Behavior via the Microtubule Network. PLoS One 2015; 10:e0138763. [PMID: 26398908 PMCID: PMC4580422 DOI: 10.1371/journal.pone.0138763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 09/03/2015] [Indexed: 12/24/2022] Open
Abstract
Angiogenic sprouts require coordination of endothelial cell (EC) behaviors as they extend and branch. Microtubules influence behaviors such as cell migration and cell-cell interactions via regulated growth and shrinkage. Here we investigated the role of the mitotic polarity protein LGN in EC behaviors and sprouting angiogenesis. Surprisingly, reduced levels of LGN did not affect oriented division of EC within a sprout, but knockdown perturbed overall sprouting. At the cell level, LGN knockdown compromised cell-cell adhesion and migration. EC with reduced LGN levels also showed enhanced growth and stabilization of microtubules that correlated with perturbed migration. These results fit a model whereby LGN influences interphase microtubule dynamics in endothelial cells to regulate migration, cell adhesion, and sprout extension, and reveal a novel non-mitotic role for LGN in sprouting angiogenesis.
Collapse
Affiliation(s)
- Catherine E. Wright
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Erich J. Kushner
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Quansheng Du
- Department of Neurology, Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia, United States of America
| | - Victoria L. Bautch
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
21
|
PDZ interaction of Vangl2 links PSD-95 and Prickle2 but plays only a limited role in the synaptic localisation of Vangl2. Sci Rep 2015; 5:12916. [PMID: 26257100 PMCID: PMC4530445 DOI: 10.1038/srep12916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/14/2015] [Indexed: 02/02/2023] Open
Abstract
Postsynaptic density-95/Discs large/Zonula occludens-1 (PDZ) domain-mediated protein interactions play pivotal roles in various molecular biological events, including protein localisation, assembly, and signal transduction. Although the vertebrate regulator of planar cell polarity Van Gogh-like 2 (Vangl2) was recently described as a postsynaptic molecule with a PDZ-binding motif, the role of its PDZ interaction at the synapse is unknown. In this report, we demonstrate that the PDZ interaction was dispensable for the normal cluster formation of Vangl2 and not absolutely required for the synapse-associated localisation of Vangl2 in cultured hippocampal neurons. We further showed that the synaptic localisation of Vangl2 was categorised into two types: overlapping co-localisation with postsynaptic density (PSD)-95 or highly correlated but complementary pattern of association with PSD-95. Only the former was significantly sensitive to deletion of the PDZ-binding motif. In addition, the PDZ interaction enhanced the protein interactions between PSD-95 and Prickle2, which is another planar cell polarity factor that is localised at the postsynaptic density. Taken together with our recent report that the density of PSD-95 clusters was reduced in Vangl2-silenced neurons, these results suggest that Vangl2 determines the complex formation and clustering of postsynaptic molecules for synaptogenesis in mammalian brains.
Collapse
|
22
|
Besson C, Bernard F, Corson F, Rouault H, Reynaud E, Keder A, Mazouni K, Schweisguth F. Planar Cell Polarity Breaks the Symmetry of PAR Protein Distribution prior to Mitosis in Drosophila Sensory Organ Precursor Cells. Curr Biol 2015; 25:1104-10. [PMID: 25843034 DOI: 10.1016/j.cub.2015.02.073] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/31/2015] [Accepted: 02/25/2015] [Indexed: 01/22/2023]
Abstract
During development, cell-fate diversity can result from the unequal segregation of fate determinants at mitosis. Polarization of the mother cell is essential for asymmetric cell division (ACD). It often involves the formation of a cortical domain containing the PAR complex proteins Par3, Par6, and atypical protein kinase C (aPKC). In the fly notum, sensory organ precursor cells (SOPs) divide asymmetrically within the plane of the epithelium and along the body axis to generate two distinct cells. Fate asymmetry depends on the asymmetric localization of the PAR complex. In the absence of planar cell polarity (PCP), SOPs divide with a random planar orientation but still asymmetrically, showing that PCP is dispensable for PAR asymmetry at mitosis. To study when and how the PAR complex localizes asymmetrically, we have used a quantitative imaging approach to measure the planar polarization of the proteins Bazooka (Baz, fly Par3), Par6, and aPKC in living pupae. By using imaging of functional GFP-tagged proteins with image processing and computational modeling, we find that Baz, Par6, and aPKC become planar polarized prior to mitosis in a manner independent of the AuroraA kinase and that PCP is required for the planar polarization of Baz, Par6, and aPKC during interphase. This indicates that a "mitosis rescue" mechanism establishes asymmetry at mitosis in PCP mutants. This study therefore identifies PCP as the initial symmetry-breaking signal for the planar polarization of PAR proteins in asymmetrically dividing SOPs.
Collapse
Affiliation(s)
- Charlotte Besson
- Institut Pasteur, rue du Dr Roux, 75015 Paris, France; CNRS, URA2578, rue du Dr Roux, 75015 Paris, France; UPMC, Cellule Pasteur, rue du Dr Roux, 75015 Paris, France
| | - Fred Bernard
- Institut Pasteur, rue du Dr Roux, 75015 Paris, France; CNRS, URA2578, rue du Dr Roux, 75015 Paris, France
| | | | - Hervé Rouault
- Institut Pasteur, rue du Dr Roux, 75015 Paris, France; CNRS, URA2578, rue du Dr Roux, 75015 Paris, France
| | - Elodie Reynaud
- Institut Pasteur, rue du Dr Roux, 75015 Paris, France; CNRS, URA2578, rue du Dr Roux, 75015 Paris, France
| | - Alyona Keder
- Institut Pasteur, rue du Dr Roux, 75015 Paris, France; CNRS, URA2578, rue du Dr Roux, 75015 Paris, France
| | - Khalil Mazouni
- Institut Pasteur, rue du Dr Roux, 75015 Paris, France; CNRS, URA2578, rue du Dr Roux, 75015 Paris, France
| | - François Schweisguth
- Institut Pasteur, rue du Dr Roux, 75015 Paris, France; CNRS, URA2578, rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|
23
|
Schweisguth F. Asymmetric cell division in the Drosophila bristle lineage: from the polarization of sensory organ precursor cells to Notch-mediated binary fate decision. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:299-309. [PMID: 25619594 PMCID: PMC4671255 DOI: 10.1002/wdev.175] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 12/11/2014] [Accepted: 12/19/2014] [Indexed: 12/26/2022]
Abstract
Asymmetric cell division (ACD) is a simple and evolutionary conserved process whereby a mother divides to generate two daughter cells with distinct developmental potentials. This process can generate cell fate diversity during development. Fate asymmetry may result from the unequal segregation of molecules and/or organelles between the two daughter cells. Here, I will review how fate asymmetry is regulated in the sensory bristle lineage in Drosophila and focus on the molecular mechanisms underlying ACD of the sensory organ precursor cells (SOPs). WIREs Dev Biol 2015, 4:299–309. doi: 10.1002/wdev.175 For further resources related to this article, please visit theWIREs website. Conflict of interest: The author has declared no conflicts of interest for this article.
Collapse
|
24
|
Ossipova O, Chuykin I, Chu CW, Sokol SY. Vangl2 cooperates with Rab11 and Myosin V to regulate apical constriction during vertebrate gastrulation. Development 2014; 142:99-107. [PMID: 25480917 DOI: 10.1242/dev.111161] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Core planar cell polarity (PCP) proteins are well known to regulate polarity in Drosophila and vertebrate epithelia; however, their functions in vertebrate morphogenesis remain poorly understood. In this study, we describe a role for PCP signaling in the process of apical constriction during Xenopus gastrulation. The core PCP protein Vangl2 is detected at the apical surfaces of cells at the blastopore lip, and it functions during blastopore formation and closure. Further experiments show that Vangl2, as well as Daam1 and Rho-associated kinase (Rock), regulate apical constriction of bottle cells at the blastopore and ectopic constriction of ectoderm cells triggered by the actin-binding protein Shroom3. At the blastopore lip, Vangl2 is required for the apical accumulation of the recycling endosome marker Rab11. We also show that Rab11 and the associated motor protein Myosin V play essential roles in both endogenous and ectopic apical constriction, and might be involved in Vangl2 trafficking to the cell surface. Overexpression of Rab11 RNA was sufficient to partly restore normal blastopore formation in Vangl2-deficient embryos. These observations suggest that Vangl2 affects Rab11 to regulate apical constriction during blastopore formation.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ilya Chuykin
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chih-Wen Chu
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
25
|
Garcia JD, Dewey EB, Johnston CA. Dishevelled binds the Discs large 'Hook' domain to activate GukHolder-dependent spindle positioning in Drosophila. PLoS One 2014; 9:e114235. [PMID: 25461409 PMCID: PMC4252473 DOI: 10.1371/journal.pone.0114235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/05/2014] [Indexed: 11/19/2022] Open
Abstract
Communication between cortical cell polarity cues and the mitotic spindle ensures proper orientation of cell divisions within complex tissues. Defects in mitotic spindle positioning have been linked to various developmental disorders and have recently emerged as a potential contributor to tumorigenesis. Despite the importance of this process to human health, the molecular mechanisms that regulate spindle orientation are not fully understood. Moreover, it remains unclear how diverse cortical polarity complexes might cooperate to influence spindle positioning. We and others have demonstrated spindle orientation roles for Dishevelled (Dsh), a key regulator of planar cell polarity, and Discs large (Dlg), a conserved apico-basal cell polarity regulator, effects which were previously thought to operate within distinct molecular pathways. Here we identify a novel direct interaction between the Dsh-PDZ domain and the alternatively spliced “I3-insert” of the Dlg-Hook domain, thus establishing a potential convergent Dsh/Dlg pathway. Furthermore, we identify a Dlg sequence motif necessary for the Dsh interaction that shares homology to the site of Dsh binding in the Frizzled receptor. Expression of Dsh enhanced Dlg-mediated spindle positioning similar to deletion of the Hook domain. This Dsh-mediated activation was dependent on the Dlg-binding partner, GukHolder (GukH). These results suggest that Dsh binding may regulate core interdomain conformational dynamics previously described for Dlg. Together, our results identify Dlg as an effector of Dsh signaling and demonstrate a Dsh-mediated mechanism for the activation of Dlg/GukH-dependent spindle positioning. Cooperation between these two evolutionarily-conserved cell polarity pathways could have important implications to both the development and maintenance of tissue homeostasis in animals.
Collapse
Affiliation(s)
- Joshua D. Garcia
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Evan B. Dewey
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Christopher A. Johnston
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
26
|
Ezan J, Montcouquiol M. Les liens multiples entre les cils et la polarité planaire cellulaire. Med Sci (Paris) 2014; 30:1004-10. [DOI: 10.1051/medsci/20143011015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Mauri F, Reichardt I, Mummery-Widmer JL, Yamazaki M, Knoblich JA. The conserved discs-large binding partner Banderuola regulates asymmetric cell division in Drosophila. Curr Biol 2014; 24:1811-25. [PMID: 25088559 DOI: 10.1016/j.cub.2014.06.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 03/08/2014] [Accepted: 06/23/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Asymmetric cell division (ACD) is a key process that allows different cell types to be generated at precisely defined times and positions. In Drosophila, neural precursor cells rely heavily on ACD to generate the different cell types in the nervous system. A conserved protein machinery that regulates ACD has been identified in Drosophila, but how this machinery acts to allow the establishment of differential cell fates is not entirely understood. RESULTS To identify additional proteins required for ACD, we have carried out an in vivo live imaging RNAi screen for genes affecting the asymmetric segregation of Numb in Drosophila sensory organ precursor cells. We identify Banderuola (Bnd), an essential regulator of cell polarization, spindle orientation, and asymmetric protein localization in Drosophila neural precursor cells. Genetic and biochemical experiments show that Bnd acts together with the membrane-associated tumor suppressor Discs-large (Dlg) to establish antagonistic cortical domains during ACD. Inhibiting Bnd strongly enhances the dlg phenotype, causing massive brain tumors upon knockdown of both genes. Because the mammalian homologs of Bnd and Dlg are interacting as well, Bnd function might be conserved in vertebrates, and it might also regulate cell polarity in higher organisms. CONCLUSIONS Bnd is a novel regulator of ACD in different types of cells. Our data place Bnd at the top of the hierarchy of the factors involved in ACD, suggesting that its main function is to mediate the localization and function of the Dlg tumor suppressor. Bnd has an antioncogenic function that is redundant with Dlg, and the physical interaction between the two proteins is conserved in evolution.
Collapse
Affiliation(s)
- Federico Mauri
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Ilka Reichardt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | | | - Masakazu Yamazaki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria.
| |
Collapse
|
28
|
Abstract
During cellular division, centrosomes are tasked with building the bipolar mitotic spindle, which partitions the cellular contents into two daughter cells. While every cell will receive an equal complement of chromosomes, not every organelle is symmetrically passaged to the two progeny in many cell types. In this review, we highlight the conservation of nonrandom centrosome segregation in asymmetrically dividing stem cells, and we discuss how the asymmetric function of centrosomes could mediate nonrandom segregation of organelles and mRNA. We propose that such a mechanism is critical for insuring proper cell fitness, function, and fate.
Collapse
|
29
|
Singh J, Mlodzik M. Planar cell polarity signaling: coordination of cellular orientation across tissues. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:479-99. [PMID: 23066429 DOI: 10.1002/wdev.32] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Establishment of Planar Cell Polarity (PCP) in epithelia, in the plane of an epithelium, is an important feature of the development and homeostasis of most organs. Studies in different model organisms have contributed a wealth of information regarding the mechanisms that govern PCP regulation. Genetic studies in Drosophila have identified two signaling systems, the Fz/PCP and Fat/Dachsous system, which are both required for PCP establishment in many different tissues in a largely non-redundant manner. Recent advances in vertebrate PCP studies have added novel factors of PCP regulation and also new cellular features requiring PCP-signaling input, including the positioning and orientation of the primary cilium of many epithelial cells. This review focuses mostly on several recent advances made in the Drosophila and vertebrate PCP field and integrates these within the existing PCP-signaling framework.
Collapse
Affiliation(s)
- Jaskirat Singh
- Department of Developmental & Regenerative Biology, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
30
|
Chin ML, Mlodzik M. The Drosophila selectin furrowed mediates intercellular planar cell polarity interactions via frizzled stabilization. Dev Cell 2013; 26:455-68. [PMID: 23973164 DOI: 10.1016/j.devcel.2013.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 05/17/2013] [Accepted: 07/09/2013] [Indexed: 11/18/2022]
Abstract
Establishment of planar cell polarity (PCP) in a tissue requires coordination of directional signals from cell to cell. It is thought that this is mediated by the core PCP factors, which include cell-adhesion molecules. Here, we demonstrate that furrowed, the Drosophila selectin, is required for PCP generation. Disruption of PCP in furrowed-deficient flies results from a primary defect in Fz levels and cell adhesion. Furrowed localizes at or near apical junctions, largely colocalizing with Frizzled and Flamingo (Fmi). It physically interacts with and stabilizes Frizzled, and it mediates intercellular Frizzled-Van Gogh (Vang)/Strabismus interactions, similarly to Fmi. Furrowed does so through a homophilic cell-adhesion role that is distinct from its known carbohydrate-binding function described during vertebrate blood-cell/endothelial cell interactions. Importantly, the carbohydrate function is dispensable for PCP establishment. In vivo studies suggest that Furrowed functions partially redundantly with Fmi, mediating intercellular Frizzled-Vang interactions between neighboring cells.
Collapse
Affiliation(s)
- Mei-Ling Chin
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
31
|
Jauffred B, Llense F, Sommer B, Wang Z, Martin C, Bellaiche Y. Regulation of centrosome movements by Numb and the Collapsin Response Mediator Protein during Drosophila sensory progenitor asymmetric division. Development 2013; 140:2657-68. [DOI: 10.1242/dev.087338] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Asymmetric cell division generates cell fate diversity during development and adult life. Recent findings have demonstrated that during stem cell divisions, the movement of centrosomes is asymmetric in prophase and that such asymmetry participates in mitotic spindle orientation and cell polarization. Here, we have investigated the dynamics of centrosomes during Drosophila sensory organ precursor asymmetric divisions and find that centrosome movements are asymmetric during cytokinesis. We demonstrate that centrosome movements are controlled by the cell fate determinant Numb, which does not act via its classical effectors, Sanpodo and α-Adaptin, but via the Collapsin Response Mediator Protein (CRMP). Furthermore, we find that CRMP is necessary for efficient Notch signalling and that it regulates the duration of the pericentriolar accumulation of Rab11-positive endosomes, through which the Notch ligand, Delta is recycled. Our work characterizes an additional mode of asymmetric centrosome movement during asymmetric divisions and suggests a model whereby the asymmetry in centrosome movements participates in differential Notch activation to regulate cell fate specification.
Collapse
Affiliation(s)
- Bertrand Jauffred
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Flora Llense
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Bernhard Sommer
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Zhimin Wang
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Charlotte Martin
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Yohanns Bellaiche
- Polarity, Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
32
|
Bardet PL, Guirao B, Paoletti C, Serman F, Léopold V, Bosveld F, Goya Y, Mirouse V, Graner F, Bellaïche Y. PTEN controls junction lengthening and stability during cell rearrangement in epithelial tissue. Dev Cell 2013; 25:534-46. [PMID: 23707736 DOI: 10.1016/j.devcel.2013.04.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 03/12/2013] [Accepted: 04/22/2013] [Indexed: 12/18/2022]
Abstract
Planar cell rearrangements control epithelial tissue morphogenesis and cellular pattern formation. They lead to the formation of new junctions whose length and stability determine the cellular pattern of tissues. Here, we show that during Drosophila wing development the loss of the tumor suppressor PTEN disrupts cell rearrangements by preventing the lengthening of newly formed junctions that become unstable and keep on rearranging. We demonstrate that the failure to lengthen and to stabilize is caused by the lack of a decrease of Myosin II and Rho-kinase concentration at the newly formed junctions. This defect results in a heterogeneous cortical contractility at cell junctions that disrupts regular hexagonal pattern formation. By identifying PTEN as a specific regulator of junction lengthening and stability, our results uncover how a homogenous distribution of cortical contractility along the cell cortex is restored during cell rearrangement to control the formation of epithelial cellular pattern.
Collapse
Affiliation(s)
- Pierre-Luc Bardet
- Polarity Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tissir F, Goffinet AM. Atypical Cadherins Celsr1–3 and Planar Cell Polarity in Vertebrates. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:193-214. [DOI: 10.1016/b978-0-12-394311-8.00009-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
D'Angelo A, De Angelis A, Avallone B, Piscopo I, Tammaro R, Studer M, Franco B. Ofd1 controls dorso-ventral patterning and axoneme elongation during embryonic brain development. PLoS One 2012; 7:e52937. [PMID: 23300826 PMCID: PMC3531334 DOI: 10.1371/journal.pone.0052937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 11/26/2012] [Indexed: 01/04/2023] Open
Abstract
Oral-facial-digital type I syndrome (OFDI) is a human X-linked dominant-male-lethal developmental disorder caused by mutations in the OFD1 gene. Similar to other inherited disorders associated to ciliary dysfunction OFD type I patients display neurological abnormalities. We characterized the neuronal phenotype that results from Ofd1 inactivation in early phases of mouse embryonic development and at post-natal stages. We determined that Ofd1 plays a crucial role in forebrain development, and in particular, in the control of dorso-ventral patterning and early corticogenesis. We observed abnormal activation of Sonic hedgehog (Shh), a major pathway modulating brain development. Ultrastructural studies demonstrated that early Ofd1 inactivation results in the absence of ciliary axonemes despite the presence of mature basal bodies that are correctly orientated and docked. Ofd1 inducible-mediated inactivation at birth does not affect ciliogenesis in the cortex, suggesting a developmental stage-dependent role for a basal body protein in ciliogenesis. Moreover, we showed defects in cytoskeletal organization and apical-basal polarity in Ofd1 mutant embryos, most likely due to lack of ciliary axonemes. Thus, the present study identifies Ofd1 as a developmental disease gene that is critical for forebrain development and ciliogenesis in embryonic life, and indicates that Ofd1 functions after docking and before elaboration of the axoneme in vivo.
Collapse
Affiliation(s)
- Anna D'Angelo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Pietro Castellino 111, Naples, Italy
| | - Amalia De Angelis
- Telethon Institute of Genetics and Medicine (TIGEM), Via Pietro Castellino 111, Naples, Italy
| | - Bice Avallone
- Department of Biological Science, University of Naples “Federico II”, Naples, Italy
| | - Immacolata Piscopo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Pietro Castellino 111, Naples, Italy
| | - Roberta Tammaro
- Telethon Institute of Genetics and Medicine (TIGEM), Via Pietro Castellino 111, Naples, Italy
| | - Michèle Studer
- Telethon Institute of Genetics and Medicine (TIGEM), Via Pietro Castellino 111, Naples, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Pietro Castellino 111, Naples, Italy
- Medical Genetics, Department of Pediatrics, Federico II University, Naples, Italy
- * E-mail:
| |
Collapse
|
35
|
Yin H, Copley CO, Goodrich LV, Deans MR. Comparison of phenotypes between different vangl2 mutants demonstrates dominant effects of the Looptail mutation during hair cell development. PLoS One 2012; 7:e31988. [PMID: 22363783 PMCID: PMC3282788 DOI: 10.1371/journal.pone.0031988] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/16/2012] [Indexed: 11/30/2022] Open
Abstract
Experiments utilizing the Looptail mutant mouse, which harbors a missense mutation in the vangl2 gene, have been essential for studies of planar polarity and linking the function of the core planar cell polarity proteins to other developmental signals. Originally described as having dominant phenotypic traits, the molecular interactions underlying the Looptail mutant phenotype are unclear because Vangl2 protein levels are significantly reduced or absent from mutant tissues. Here we introduce a vangl2 knockout mouse and directly compare the severity of the knockout and Looptail mutant phenotypes by intercrossing the two lines and assaying the planar polarity of inner ear hair cells. Overall the vangl2 knockout phenotype is milder than the phenotype of compound mutants carrying both the Looptail and vangl2 knockout alleles. In compound mutants a greater number of hair cells are affected and changes in the orientation of individual hair cells are greater when quantified. We further demonstrate in a heterologous cell system that the protein encoded by the Looptail mutation (Vangl2S464N) disrupts delivery of Vangl1 and Vangl2 proteins to the cell surface as a result of oligomer formation between Vangl1 and Vangl2S464N, or Vangl2 and Vangl2S464N, coupled to the intracellular retention of Vangl2S464N. As a result, Vangl1 protein is missing from the apical cell surface of vestibular hair cells in Looptail mutants, but is retained at the apical cell surface of hair cells in vangl2 knockouts. Similarly the distribution of Prickle-like2, a putative Vangl2 interacting protein, is differentially affected in the two mutant lines. In summary, we provide evidence for a direct physical interaction between Vangl1 and Vangl2 through a combination of in vitro and in vivo approaches and propose that this interaction underlies the dominant phenotypic traits associated with the Looptail mutation.
Collapse
Affiliation(s)
- Haifeng Yin
- The Departments of Neuroscience and Otolaryngology-Head and Neck Surgery, the Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Catherine O. Copley
- The Departments of Neuroscience and Otolaryngology-Head and Neck Surgery, the Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Lisa V. Goodrich
- The Department of Neurobiology, Harvard Medical School, Boston, Maryland, United States of America
| | - Michael R. Deans
- The Departments of Neuroscience and Otolaryngology-Head and Neck Surgery, the Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Abstract
Branching morphology is a hallmark feature of axons and dendrites and is essential for neuronal connectivity. To understand how this develops, I analyzed the stereotyped pattern of Drosophila mushroom body (MB) neurons, which have single axons branches that extend dorsally and medially. I found that components of the Wnt/Planar Cell Polarity (PCP) pathway control MB axon branching. frizzled mutant animals showed a predominant loss of dorsal branch extension, whereas strabismus (also known as Van Gogh) mutants preferentially lost medial branches. Further results suggest that Frizzled and Strabismus act independently. Nonetheless, branching fates are determined by complex Wnt/PCP interactions, including interactions with Dishevelled and Prickle that function in a context-dependent manner. Branching decisions are MB-autonomous but non-cell-autonomous as mutant and non-mutant neurons regulate these decisions collectively. I found that Wnt/PCP components do not need to be asymmetrically localized to distinct branches to execute branching functions. However, Prickle axonal localization depends on Frizzled and Strabismus.
Collapse
Affiliation(s)
- Julian Ng
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
37
|
Abstract
In the Drosophila embryonic central nervous system, the neural precursor cells called neuroblasts undergo a number of asymmetric divisions along the apical-basal axis to give rise to different daughter cells of distinct fates. This review summarizes recent progress in understanding the mechanisms of these asymmetric cell divisions. We discuss proteins that are localized at distinct domains of cortex in the neuroblasts and their role in generating asymmetry. We also review uniformly cortical localized factors and actin cytoskeleton-associated motor proteins with regard to their potential role to serve as a link between distinct cortical domains in the neuroblasts. In this review, asymmetric divisions of sensory organ precursor and larval neuroblasts are also briefly discussed.
Collapse
Affiliation(s)
- Hongyan Wang
- Temasek Life Sciences Laboratory, 1 Research Link, The National University of Singapore, Singapore 117604
| | | |
Collapse
|
38
|
Poulson ND, Lechler T. Asymmetric cell divisions in the epidermis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:199-232. [PMID: 22449491 DOI: 10.1016/b978-0-12-394306-4.00012-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Generation of three-dimensional tissues with distinct cell types is required for the development of all organs. On its own, mitotic spindle orientation allows tissues to change in length or shape. In combination with intrinsic or extrinsic cues, this can also be coupled to the generation of diverse cell fates-a process known as asymmetric cell division (ACD). Understanding ACDs has been greatly aided by studies in invertebrate model systems, where genetics and live imaging have provided the basis for much of what we know. ACDs also drive the development and differentiation of the epidermis in mammals. While similar to the invertebrate models, the epidermis is distinct in balancing symmetric and asymmetric divisions to yield a tissue of the correct surface area and thickness. Here, we review the roles of spindle orientation in driving both morphogenesis and cell fate decisions. We highlight the epidermis as a unique model system to study not only basic mechanisms of ACD but also their regulation during development.
Collapse
Affiliation(s)
- Nicholas D Poulson
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
39
|
Peng Y, Axelrod JD. Asymmetric protein localization in planar cell polarity: mechanisms, puzzles, and challenges. Curr Top Dev Biol 2012; 101:33-53. [PMID: 23140624 DOI: 10.1016/b978-0-12-394592-1.00002-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The polarization of epithelial cells along an axis orthogonal to their apical-basal axis is increasingly recognized for roles in a variety of developmental events and physiological functions. While now studied in many model organisms, mechanistic understanding is rooted in intensive investigations of planar cell polarity (PCP) in Drosophila. Consensus has emerged that two molecular modules, referred to here as the global and core modules, operate upstream of effector proteins to produce morphological PCP. Proteins of the core module develop subcellular asymmetry, accumulating in two groups on opposite sides of cells, consistent with proposed functions in producing cell polarity and in communicating that polarity between neighboring cells. Less clear are the molecular and cell biological mechanisms underlying core module function in the generation and communication of subcellular asymmetry and the relationship between the global and the core modules. In this review, we discuss these two unresolved questions, highlighting important studies and potentially enlightening avenues for further investigation. It is likely that results from Drosophila will continue to inform our views of the growing list of examples of PCP in vertebrate systems.
Collapse
Affiliation(s)
- Ying Peng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
40
|
Cho KO, Kim GW, Lee OK. Wolbachia bacteria reside in host Golgi-related vesicles whose position is regulated by polarity proteins. PLoS One 2011; 6:e22703. [PMID: 21829485 PMCID: PMC3145749 DOI: 10.1371/journal.pone.0022703] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 07/05/2011] [Indexed: 02/07/2023] Open
Abstract
Wolbachia pipientis are intracellular symbiotic bacteria extremely common in various organisms including Drosophila melanogaster, and are known for their ability to induce changes in host reproduction. These bacteria are present in astral microtubule-associated vesicular structures in host cytoplasm, but little is known about the identity of these vesicles. We report here that Wolbachia are restricted only to a group of Golgi-related vesicles concentrated near the site of membrane biogenesis and minus-ends of microtubules. The Wolbachia vesicles were significantly mislocalized in mutant embryos defective in cell/planar polarity genes suggesting that cell/tissue polarity genes are required for apical localization of these Golgi-related vesicles. Furthermore, two of the polarity proteins, Van Gogh/Strabismus and Scribble, appeared to be present in these Golgi-related vesicles. Thus, establishment of polarity may be closely linked to the precise insertion of Golgi vesicles into the new membrane addition site.
Collapse
Affiliation(s)
- Kyung-Ok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Korea.
| | | | | |
Collapse
|
41
|
Werts AD, Goldstein B. How signaling between cells can orient a mitotic spindle. Semin Cell Dev Biol 2011; 22:842-9. [PMID: 21807106 DOI: 10.1016/j.semcdb.2011.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/13/2011] [Accepted: 07/15/2011] [Indexed: 10/25/2022]
Abstract
In multicellular animals, cell communication sometimes serves to orient the direction in which cells divide. Control of division orientation has been proposed to be critical for partitioning developmental determinants and for maintaining epithelial architecture. Surprisingly, there are few cases where we understand the mechanisms by which external cues, transmitted by intercellular signaling, specify the division orientation of animal cells. One would predict that cytosolic molecules or complexes exist that are capable of interpreting extrinsic cues, translating the positions of these cues into forces on microtubules of the mitotic spindle. In recent years, a key intracellular complex has been identified that is required for pulling forces on mitotic spindles in Drosophila, Caenorhabditis elegans and vertebrate systems. One member of this complex, a protein with tetratricopeptide repeat (TPR) and GoLoco (Gα-binding) domains, has been found localized in positions that coincide with the positions of spindle-orienting extracellular cues. Do TPR-GoLoco proteins function as conserved, spatially regulated mediators of spindle orientation by intercellular signaling? Here, we review the relevant evidence among cases from diverse animal systems where this protein complex has been found to localize to specific cell-cell contacts and to be involved in orienting mitotic spindles.
Collapse
Affiliation(s)
- Adam D Werts
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
42
|
Devenport D, Oristian D, Heller E, Fuchs E. Mitotic internalization of planar cell polarity proteins preserves tissue polarity. Nat Cell Biol 2011; 13:893-902. [PMID: 21743464 PMCID: PMC3149741 DOI: 10.1038/ncb2284] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/27/2011] [Indexed: 12/15/2022]
Abstract
Planar cell polarity (PCP) is the collective polarization of cells along the epithelial plane, a process best understood in the terminally differentiated Drosophila wing. Proliferative tissues such as mammalian skin also show PCP, but the mechanisms that preserve tissue polarity during proliferation are not understood. During mitosis, asymmetrically distributed PCP components risk mislocalization or unequal inheritance, which could have profound consequences for the long-range propagation of polarity. Here, we show that when mouse epidermal basal progenitors divide PCP components are selectively internalized into endosomes, which are inherited equally by daughter cells. Following mitosis, PCP proteins are recycled to the cell surface, where asymmetry is re-established by a process reliant on neighbouring PCP. A cytoplasmic dileucine motif governs mitotic internalization of atypical cadherin Celsr1, which recruits Vang2 and Fzd6 to endosomes. Moreover, embryos transgenic for a Celsr1 that cannot mitotically internalize exhibit perturbed hair-follicle angling, a hallmark of defective PCP. This underscores the physiological relevance and importance of this mechanism for regulating polarity during cell division.
Collapse
Affiliation(s)
- Danelle Devenport
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology & Development, The Rockefeller University, 1230 York Avenue, Box 300, New York, New York 10065, USA
| | | | | | | |
Collapse
|
43
|
Mitotic Spindle Orientation in Asymmetric and Symmetric Cell Divisions during Animal Development. Dev Cell 2011; 21:102-19. [DOI: 10.1016/j.devcel.2011.06.012] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 11/17/2022]
|
44
|
Abstract
In all multicellular organisms, epithelial cells are not only polarized along the apical-basal axis, but also within the epithelial plane, giving cells a sense of direction. Planar cell polarity (PCP) signaling regulates establishment of polarity within the plane of an epithelium. The outcomes of PCP signaling are diverse and include the determination of cell fates, the generation of asymmetric but highly aligned structures, such as the stereocilia in the human inner ear or the hairs on a fly wing, or the directional migration of cells during convergence and extension during vertebrate gastrulation. In humans, aberrant PCP signaling can result in severe developmental defects, such as open neural tubes (spina bifida), and can cause cystic kidneys. In this review, we discuss the basic mechanism and more recent findings of PCP signaling focusing on Drosophila melanogaster, the model organism in which most key PCP components were initially identified.
Collapse
Affiliation(s)
- Saw Myat Thanda W Maung
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY, USA
| | | |
Collapse
|
45
|
Abstract
Planar polarity describes the coordinated polarisation of cells or structures in the plane of a tissue. The patterning mechanisms that underlie planar polarity are well characterised in Drosophila, where many events are regulated by two pathways: the 'core' planar polarity complex and the Fat/Dachsous system. Components of both pathways also function in vertebrates and are implicated in diverse morphogenetic processes, some of which self-evidently involve planar polarisation and some of which do not. Here, we review the molecular mechanisms and cellular consequences of planar polarisation in diverse contexts, seeking to identify the common principles across the animal kingdom.
Collapse
Affiliation(s)
- Lisa V. Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David Strutt
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
46
|
Bukharina TA, Furman DP. Asymmetric cell division in the morphogenesis of Drosophila melanogaster macrochaetae. Russ J Dev Biol 2011. [DOI: 10.1134/s1062360411010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Olguín P, Glavic A, Mlodzik M. Intertissue mechanical stress affects Frizzled-mediated planar cell polarity in the Drosophila notum epidermis. Curr Biol 2011; 21:236-42. [PMID: 21276726 DOI: 10.1016/j.cub.2011.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 11/09/2010] [Accepted: 12/31/2010] [Indexed: 10/18/2022]
Abstract
Frizzled/planar cell polarity (Fz/PCP) signaling controls the orientation of sensory bristles and cellular hairs (trichomes) along the anteroposterior axis of the Drosophila thorax (notum). A subset of the trichome-producing notum cells differentiate as "tendon cells," serving as attachment sites for the indirect flight muscles (IFMs) to the exoskeleton. Through the analysis of chascon (chas), a gene identified by its ability to disrupt Fz/PCP signaling under overexpression conditions, and jitterbug (jbug)/filamin, we show that maintenance of anteroposterior planar polarization requires the notum epithelia to balance mechanical stress generated by the attachment of the IFMs. chas is expressed in notum tendon cells, and its loss of function disturbs cellular orientation at and near the regions where IFMs attach to the epidermis. This effect is independent of the Fz/PCP and fat/dachsous systems. The chas phenotype arises during normal shortening of the IFMs and is suppressed by genetic ablation of the IFMs. chas acts through jbug/filamin and cooperates with MyosinII to modulate the mechanoresponse of notum tendon cells. These observations support the notion that the ability of epithelia to respond to mechanical stress generated by one or more interactions with other tissues during development and organogenesis influences the maintenance of its shape and PCP features.
Collapse
Affiliation(s)
- Patricio Olguín
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|
48
|
The Fz-Dsh planar cell polarity pathway induces oriented cell division via Mud/NuMA in Drosophila and zebrafish. Dev Cell 2010; 19:740-52. [PMID: 21074723 PMCID: PMC3008569 DOI: 10.1016/j.devcel.2010.10.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 08/27/2010] [Accepted: 10/02/2010] [Indexed: 01/20/2023]
Abstract
The Frizzled receptor and Dishevelled effector regulate mitotic spindle orientation in both vertebrates and invertebrates, but how Dishevelled orients the mitotic spindle is unknown. Using the Drosophila S2 cell "induced polarity" system, we find that Dishevelled cortical polarity is sufficient to orient the spindle and that Dishevelled's DEP domain mediates this function. This domain binds a C-terminal domain of Mud (the Drosophila NuMA ortholog), and Mud is required for Dishevelled-mediated spindle orientation. In Drosophila, Frizzled-Dishevelled planar cell polarity (PCP) orients the sensory organ precursor (pI) spindle along the anterior-posterior axis. We show that Dishevelled and Mud colocalize at the posterior cortex of pI, Mud localization at the posterior cortex requires Dsh, and Mud loss-of-function randomizes spindle orientation. During zebrafish gastrulation, the Wnt11-Frizzled-Dishevelled PCP pathway orients spindles along the animal-vegetal axis, and reducing NuMA levels disrupts spindle orientation. Overall, we describe a Frizzled-Dishevelled-NuMA pathway that orients division from Drosophila to vertebrates.
Collapse
|
49
|
Planar cell polarity signaling in neural development. Curr Opin Neurobiol 2010; 20:572-7. [DOI: 10.1016/j.conb.2010.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 11/15/2022]
|
50
|
Vladar EK, Antic D, Axelrod JD. Planar cell polarity signaling: the developing cell's compass. Cold Spring Harb Perspect Biol 2010; 1:a002964. [PMID: 20066108 DOI: 10.1101/cshperspect.a002964] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cells of many tissues acquire cellular asymmetry to execute their physiologic functions. The planar cell polarity system, first characterized in Drosophila, is important for many of these events. Studies in Drosophila suggest that an upstream system breaks cellular symmetry by converting tissue gradients to subcellular asymmetry, whereas a downstream system amplifies subcellular asymmetry and communicates polarity between cells. In this review, we discuss apparent similarities and differences in the mechanism that controls PCP as it has been adapted to a broad variety of morphological cellular asymmetries in various organisms.
Collapse
Affiliation(s)
- Eszter K Vladar
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | | | | |
Collapse
|