1
|
Gillespie W, Zhang Y, Ruiz OE, Cerda J, Ortiz-Guzman J, Turner WD, Largoza G, Sherman M, Mosser LE, Fujimoto E, Chien CB, Kwan KM, Arenkiel BR, Devine WP, Wythe JD. Multisite Assembly of Gateway Induced Clones (MAGIC): a flexible cloning toolbox with diverse applications in vertebrate model systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603267. [PMID: 39026881 PMCID: PMC11257631 DOI: 10.1101/2024.07.13.603267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here we present the Multisite Assembly of Gateway Induced Clones (MAGIC) system, which harnesses site-specific recombination-based cloning via Gateway technology for rapid, modular assembly of between 1 and 3 "Entry" vector components, all into a fourth, standard high copy "Destination" plasmid backbone. The MAGIC toolkit spans a range of in vitro and in vivo uses, from directing tunable gene expression, to driving simultaneous expression of microRNAs and fluorescent reporters, to enabling site-specific recombinase-dependent gene expression. All MAGIC system components are directly compatible with existing multisite gateway Tol2 systems currently used in zebrafish, as well as existing eukaryotic cell culture expression Destination plasmids, and available mammalian lentiviral and adenoviral Destination vectors, allowing rapid cross-species experimentation. Moreover, herein we describe novel vectors with flanking piggyBac transposon elements for stable genomic integration in vitro or in vivo when used with piggyBac transposase. Collectively, the MAGIC system facilitates transgenesis in cultured mammalian cells, electroporated mouse and chick embryos, as well as in injected zebrafish embryos, enabling the rapid generation of innovative DNA constructs for biological research due to a shared, common plasmid platform.
Collapse
|
2
|
Abstract
Cardiovascular disease still remains the leading cause of morbidity and mortality worldwide. Current pharmacological or interventional treatments help to tackle symptoms and even reduce mortality, but cardiovascular disease cases continue to rise. The emergence of novel therapeutic strategies that precisely and efficiently combat cardiovascular disease is therefore deemed more essential than ever. RNA editing, the cell-intrinsic deamination of adenosine or cytidine RNA residues, changes the molecular identity of edited nucleotides, severely altering the fate of RNA molecules involved in key biological processes. The most common type of RNA editing is the deamination of adenosine residue to inosine (A-to-I), which is catalysed by adenosine deaminases acting on RNA (ADARs). Recent efforts have convincingly liaised RNA editing-based mechanisms to the pathophysiology of the cardiovascular system. In this review, we will briefly introduce the basic concepts of the RNA editing field of research. We will particularly focus our discussion on the therapeutic exploitation of RNA editing as a novel therapeutic tool as well as the future perspectives for its use in cardiovascular disease treatment.
Collapse
|
3
|
Abstract
RNA is not always a faithful copy of DNA. Advances in tools enabling the interrogation of the exact RNA sequence have permitted revision of how genetic information is transferred. We now know that RNA is a dynamic molecule, amenable to chemical modifications of its four canonical nucleotides by dedicated RNA-binding enzymes. The ever-expanding catalogue of identified RNA modifications in mammals has led to a burst of studies in the past 5 years that have explored the biological relevance of the RNA modifications, also known as epitranscriptome. These studies concluded that chemical modification of RNA nucleotides alters several properties of RNA molecules including sequence, secondary structure, RNA-protein interaction, localization and processing. Importantly, a plethora of cellular functions during development, homeostasis and disease are controlled by RNA modification enzymes. Understanding the regulatory interface between a single-nucleotide modification and cellular function will pave the way towards the development of novel diagnostic, prognostic and therapeutic tools for the management of diseases, including cardiovascular disease. In this Review, we use two well-studied and abundant RNA modifications - adenosine-to-inosine RNA editing and N6-methyladenosine RNA methylation - as examples on which to base the discussion about the current knowledge on installation or removal of RNA modifications, their effect on biological processes related to cardiovascular health and disease, and the potential for development and application of epitranscriptome-based prognostic, diagnostic and therapeutic tools for cardiovascular disease.
Collapse
|
4
|
Akinaga K, Azumi Y, Mogi K, Toyoizumi R. Stage-dependent sequential organization of nascent smooth muscle cells and its implications for the gut coiling morphogenesis in Xenopus larva. ZOOLOGY 2021; 146:125905. [PMID: 33631602 DOI: 10.1016/j.zool.2021.125905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
In vertebrates, gut coiling proceeds left-right asymmetrically during expansion of the gastrointestinal tract with highly organized muscular structures facilitating peristalsis. In this report, we explored the mechanisms of larval gut coiling morphogenesis relevant to its nascent smooth muscle cells using highly transparent Xenopus early larvae. First, to visualize the dynamics of intestinal smooth muscle cells, whole-mount specimens were immunostained with anti-smooth muscle-specific actin (SM-actin) antibody. We found that the nascent gut of Xenopus early larvae gradually expands the SM-actin-positive region in a stage-dependent manner. Transverse orientation of smooth muscle cells was first established, and next, the cellular longitudinal orientation along the gut axis was followed to make a meshwork of the contractile cells. Finally, anisotropic torsion by the smooth muscle cells was generated in the center of gut coiling, suggesting that twisting force might be involved in the late phase of coiling morphogenesis of the gut. Administration of S-(-)-Blebbistatin to attenuate the actomyosin contraction in vivo resulted in cancellation of coiling of the gut. Development of decapitation embryos, trunk 'torso' explants, and gut-only explants revealed that initial coiling of the gut proceeds without interactions with the other parts of the body including the central nervous system. We newly developed an in vitro model to assess the gut coiling morphogenesis, indicating that coiling pattern of the nascent Xenopus gut is partially gut-autonomous. Using this gut explant culture technique, inhibition of actomyosin contraction was performed by administrating either actin polymerization inhibitor, myosin light chain kinase inhibitor, or calmodulin antagonist. All of these reagents decreased the extent of gut coiling morphogenesis in vitro. Taken together, these results suggest that the contraction force generated by actomyosin-rich intestinal smooth muscle cells during larval stages is essential for the normal coiling morphogenesis of this muscular tubular organ.
Collapse
Affiliation(s)
- Kaoru Akinaga
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka City, Kanagawa, 259-1293, Japan
| | - Yoshitaka Azumi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka City, Kanagawa, 259-1293, Japan; Research Institute for Integrated Science, Kanagawa University, Japan
| | - Kazue Mogi
- Research Institute for Integrated Science, Kanagawa University, Japan
| | - Ryuji Toyoizumi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka City, Kanagawa, 259-1293, Japan; Research Institute for Integrated Science, Kanagawa University, Japan.
| |
Collapse
|
5
|
Abstract
Analysis of the molecular mechanisms driving cell specification, differentiation, and other cellular processes can be difficult due to the heterogeneity of tissues and organs. Therefore, it is critical to isolate pure cell populations in order to properly assess the function of certain cell types in the context of a tissue. This protocol describes use of the INTACT (isolation of nuclei tagged in specific cell types) method in Xenopus, followed by proteomics analysis of nuclear protein complexes. The INTACT protocol utilizes two transgenes: (1) a three-part nuclear targeting fusion (NTF) consisting of a nuclear envelope protein (Nup35) that targets the NTF to the nuclear membrane, an enhanced green fluorescent protein (EGFP) cassette for NTF visualization in live animals, and a biotin ligase receptor protein (BLRP) that provides a substrate for the biotinylation of the NTF, and (2) the E. coli ligase BirA (which biotinylates the NTF) tagged to mCherry (for visualization). Either or both transgenes are driven by a tissue-specific promoter, making this protocol easily adaptable to proteomics analyses of immunoprecipitated complexes from INTACT-isolated nuclei of multiple tissue types to determine the composition of protein complexes in pure cell populations.
Collapse
Affiliation(s)
- Lauren Wasson
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599.,University of North Carolina McAllister Heart Institute, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599
| | - Nirav M Amin
- University of North Carolina McAllister Heart Institute, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599.,Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599
| | - Frank L Conlon
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599; .,University of North Carolina McAllister Heart Institute, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599.,Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
6
|
Feng S, Wang S, Wang Y, Yang Q, Wang D, Li H. Identification and expression of carbonic anhydrase 2, myosin regulatory light chain 2 and selenium-binding protein 1 in zebrafish Danio rerio: Implication for age-related biomarkers. Gene Expr Patterns 2018; 29:47-58. [PMID: 29738878 DOI: 10.1016/j.gep.2018.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/26/2018] [Accepted: 04/30/2018] [Indexed: 11/19/2022]
Abstract
Proteomic study has determined age-related changes in synthesis of carbonic anhydrase 2, myosin regulatory light chain 2 and selenium-binding protein 1 in muscle of post-menopausal women. However, little information is available regarding the expression and role of these proteins in early development and life span. In this study we showed that zebrafish ca2, myl2a, myl2b and selenbp1 were highly identical to their mammalian counterparts in primary and tertiary structures as well as genomic organization and syntenic map. They displayed distinct spatiotemporal expression patterns in embryos and larvae of zebrafish. Moreover, their transcription levels in the respective tissues were obviously remodeled in an age-dependent fashion, i.e. some mRNA levels were increased, while others remained unchanged or even decreased, suggesting that CA2, MYL2a, MYL2b and SELENBP1 can be used as aging biomarkers. Our study also lays a foundation for further illumination of the functions of these genes in early development and aging processes.
Collapse
Affiliation(s)
- Shuoqi Feng
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Su Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Yashuo Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Qingyun Yang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China
| | - Dejing Wang
- No. 2 High School of Qingdao, Shandong Province, China
| | - Hongyan Li
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Department of Marine Biology, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
7
|
Afouda BA, Lynch AT, de Paiva Alves E, Hoppler S. Genome-wide transcriptomics analysis identifies sox7 and sox18 as specifically regulated by gata4 in cardiomyogenesis. Dev Biol 2017; 434:108-120. [PMID: 29229250 PMCID: PMC5814753 DOI: 10.1016/j.ydbio.2017.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/12/2023]
Abstract
The transcription factors GATA4, GATA5 and GATA6 are important regulators of heart muscle differentiation (cardiomyogenesis), which function in a partially redundant manner. We identified genes specifically regulated by individual cardiogenic GATA factors in a genome-wide transcriptomics analysis. The genes regulated by gata4 are particularly interesting because GATA4 is able to induce differentiation of beating cardiomyocytes in Xenopus and in mammalian systems. Among the specifically gata4-regulated transcripts we identified two SoxF family members, sox7 and sox18. Experimental reinstatement of gata4 restores sox7 and sox18 expression, and loss of cardiomyocyte differentiation due to gata4 knockdown is partially restored by reinstating sox7 or sox18 expression, while (as previously reported) knockdown of sox7 or sox18 interferes with heart muscle formation. In order to test for conservation in mammalian cardiomyogenesis, we confirmed in mouse embryonic stem cells (ESCs) undergoing cardiomyogenesis that knockdown of Gata4 leads to reduced Sox7 (and Sox18) expression and that Gata4 is also uniquely capable of promptly inducing Sox7 expression. Taken together, we identify an important and conserved gene regulatory axis from gata4 to the SoxF paralogs sox7 and sox18 and further to heart muscle cell differentiation. Gata 4, 5 and 6 have redundant and non-redundant functions in heart development. RNA-seq analysis of Gata4, 5 and 6 knockdown experiments was carried out. Genes specifically regulated by Gata4, 5 and 6 were identified. The SoxF genes sox7 and sox18 were identified as specifically regulated by Gata4. Epistasis demonstrates a regulatory axis from Gata4 to Sox7/18 to cardiomyogenesis.
Collapse
Affiliation(s)
- Boni A Afouda
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Scotland, UK
| | - Adam T Lynch
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Scotland, UK
| | - Eduardo de Paiva Alves
- Centre for Genome-Enabled Biology and Medicine, King's College Campus, University of Aberdeen, Scotland, UK
| | - Stefan Hoppler
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Scotland, UK.
| |
Collapse
|
8
|
Caporilli S, Latinkic BV. Ventricular cell fate can be specified until the onset of myocardial differentiation. Mech Dev 2016; 139:31-41. [PMID: 26776863 PMCID: PMC4798847 DOI: 10.1016/j.mod.2016.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/24/2015] [Accepted: 01/07/2016] [Indexed: 02/03/2023]
Abstract
The mechanisms that govern specification of various cell types that constitute vertebrate heart are not fully understood. Whilst most studies of heart development have utilised the mouse embryo, we have used an alternative model, embryos of the frog Xenopus laevis, which permits direct experimental manipulation of a non-essential heart. We show that in this model pluripotent animal cap explants injected with cardiogenic factor GATA4 mRNA express pan-myocardial as well as ventricular and proepicardial markers. We found that cardiac cell fate diversification, as assessed by ventricular and proepicardial markers, critically depends on tissue integrity, as it is disrupted by dissociation but can be fully restored by inhibition of the BMP pathway and partially by Dkk-1. Ventricular and proepicardial cell fates can also be restored in reaggregated GATA4-expressing cells upon transplantation into a host embryo. The competence of the host embryo to induce ventricular and proepicardial markers gradually decreases with the age of the transplant and is lost by the onset of myocardial differentiation at the late tailbud stage (st. 28). The influence of the host on the transplant was not limited to diversification of cardiac cell fates, but also included induction of growth and rhythmic beating, resulting in generation of a secondary heart-like structure. Our results additionally show that efficient generation of secondary heart requires normal axial patterning of the host embryo. Furthermore, secondary hearts can be induced in a wide range of locations within the host, arguing that the host embryo provides a permissive environment for development of cardiac patterning, growth and physiological maturation. Our results have implications for a major goal of cardiac regenerative medicine, differentiation of ventricular myocardium. Ventricular and proepicardial fate can be induced by cardiogenic factor GATA4. This process requires tissue integrity. Ventricular and proepicardial cell fate can be restored by BMP inhibition. A secondary heart-like structure can be induced from GATA4-expressing cells.
Collapse
Affiliation(s)
- Simona Caporilli
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| | - Branko V Latinkic
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK.
| |
Collapse
|
9
|
Amin NM, Greco TM, Kuchenbrod LM, Rigney MM, Chung MI, Wallingford JB, Cristea IM, Conlon FL. Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types (INTACT). Development 2014; 141:962-73. [PMID: 24496632 DOI: 10.1242/dev.098327] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The proper dissection of the molecular mechanisms governing the specification and differentiation of specific cell types requires isolation of pure cell populations from heterogeneous tissues and whole organisms. Here, we describe a method for purification of nuclei from defined cell or tissue types in vertebrate embryos using INTACT (isolation of nuclei tagged in specific cell types). This method, previously developed in plants, flies and worms, utilizes in vivo tagging of the nuclear envelope with biotin and the subsequent affinity purification of the labeled nuclei. In this study we successfully purified nuclei of cardiac and skeletal muscle from Xenopus using this strategy. We went on to demonstrate the utility of this approach by coupling the INTACT approach with liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic methodologies to profile proteins expressed in the nuclei of developing hearts. From these studies we have identified the Xenopus orthologs of 12 human proteins encoded by genes, which when mutated in human lead to congenital heart disease. Thus, by combining these technologies we are able to identify tissue-specific proteins that are expressed and required for normal vertebrate organ development.
Collapse
Affiliation(s)
- Nirav M Amin
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Brody MJ, Cho E, Mysliwiec MR, Kim TG, Carlson CD, Lee KH, Lee Y. Lrrc10 is a novel cardiac-specific target gene of Nkx2-5 and GATA4. J Mol Cell Cardiol 2013; 62:237-46. [PMID: 23751912 PMCID: PMC3940241 DOI: 10.1016/j.yjmcc.2013.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/11/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
Cardiac gene expression is precisely regulated and its perturbation causes developmental defects and heart disease. Leucine-rich repeat containing 10 (Lrrc10) is a cardiac-specific factor that is crucial for proper cardiac development and deletion of Lrrc10 in mice results in dilated cardiomyopathy. However, the mechanisms regulating Lrrc10 expression in cardiomyocytes remain unknown. Therefore, we set out to determine trans-acting factors and cis-elements critical for mediating Lrrc10 expression. We identify Lrrc10 as a transcriptional target of Nkx2-5 and GATA4. The Lrrc10 promoter region contains two highly conserved cardiac regulatory elements, which are functional in cardiomyocytes but not in fibroblasts. In vivo, Nkx2-5 and GATA4 endogenously occupy the proximal and distal cardiac regulatory elements of Lrrc10 in the heart. Moreover, embryonic hearts of Nkx2-5 knockout mice have dramatically reduced expression of Lrrc10. These data demonstrate the importance of Nkx2-5 and GATA4 in regulation of Lrrc10 expression in vivo. The proximal cardiac regulatory element located at around -200bp is synergistically activated by Nkx2-5 and GATA4 while the distal cardiac regulatory element present around -3kb requires SRF in addition to Nkx2-5 and GATA4 for synergistic activation. Mutational analyses identify a pair of adjacent Nkx2-5 and GATA binding sites within the proximal cardiac regulatory element that are necessary to induce expression of Lrrc10. In contrast, only the GATA site is functional in the distal regulatory element. Taken together, our data demonstrate that the transcription factors Nkx2-5 and GATA4 cooperatively regulate cardiac-specific expression of Lrrc10.
Collapse
Affiliation(s)
- Matthew J. Brody
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, WI 53706, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, WI 53706, USA
| | - Eunjin Cho
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, WI 53706, USA
- Molecular and Cellular Pharmacology, University of Wisconsin-Madison, WI 53706, USA
| | - Matthew R. Mysliwiec
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, WI 53706, USA
| | - Tae-gyun Kim
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, WI 53706, USA
| | - Clayton D. Carlson
- Department of Biochemistry and the Genome Center of Wisconsin, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kyu-Ho Lee
- Department of Pediatrics, Division of Pediatric Cardiology, Children’s Hospital, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Youngsook Lee
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, WI 53706, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, WI 53706, USA
- Molecular and Cellular Pharmacology, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
11
|
Molecular and functional analyses of the fast skeletal myosin light chain2 gene of the Korean oily bitterling, Acheilognathus koreensis. Int J Mol Sci 2013; 14:16672-84. [PMID: 23945561 PMCID: PMC3759931 DOI: 10.3390/ijms140816672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/26/2013] [Accepted: 08/01/2013] [Indexed: 11/17/2022] Open
Abstract
We identified and characterized the primary structure of the Korean oily bitterling Acheilognathus koreensis fast skeletal myosin light chain 2 (Akmlc2f), gene. Encoded by seven exons spanning 3955 bp, the deduced 168-amino acid AkMLC2f polypeptide contained an EF-hand calcium-binding motif and showed strong homology (80%-98%) with the MLC2 proteins of Ictalurus punctatus and other species, including mammals. Akmlc2f mRNA was highly enriched in skeletal muscles, and was detectable in other tissues. The upstream regions of Akmlc2f included a TATA box, one copy of a putative MEF-2 binding site and several putative C/EBPβ binding sites. The functional activity of the promoter region of Akmlc2f was examined using luciferase and red fluorescent protein reporters. The Akmlc2f promoter-driven reporter expressions were detected and increased by the C/EBPβ transcription factor in HEK293T cells. The activity of the promoter of Akmlc2f was also confirmed in the developing zebrafish embryo. Although the detailed mechanism underlying the expression of Akmlc2f remains unknown, these results suggest the muscle-specific expression of Akmlc2f transcript and the functional activation of Akmlc2f promoter by C/EBPβ.
Collapse
|
12
|
Gregoire S, Karra R, Passer D, Deutsch MA, Krane M, Feistritzer R, Sturzu A, Domian I, Saga Y, Wu SM. Essential and unexpected role of Yin Yang 1 to promote mesodermal cardiac differentiation. Circ Res 2013; 112:900-10. [PMID: 23307821 DOI: 10.1161/circresaha.113.259259] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Cardiogenesis is regulated by a complex interplay between transcription factors. However, little is known about how these interactions regulate the transition from mesodermal precursors to cardiac progenitor cells (CPCs). OBJECTIVE To identify novel regulators of mesodermal cardiac lineage commitment. METHODS AND RESULTS We performed a bioinformatic-based transcription factor binding site analysis on upstream promoter regions of genes that are enriched in embryonic stem cell-derived CPCs. From 32 candidate transcription factors screened, we found that Yin Yang 1 (YY1), a repressor of sarcomeric gene expression, is present in CPCs in vivo. Interestingly, we uncovered the ability of YY1 to transcriptionally activate Nkx2.5, a key marker of early cardiogenic commitment. YY1 regulates Nkx2.5 expression via a 2.1-kb cardiac-specific enhancer as demonstrated by in vitro luciferase-based assays, in vivo chromatin immunoprecipitation, and genome-wide sequencing analysis. Furthermore, the ability of YY1 to activate Nkx2.5 expression depends on its cooperative interaction with Gata4 at a nearby chromatin. Cardiac mesoderm-specific loss-of-function of YY1 resulted in early embryonic lethality. This was corroborated in vitro by embryonic stem cell-based assays in which we showed that the overexpression of YY1 enhanced the cardiogenic differentiation of embryonic stem cells into CPCs. CONCLUSIONS These results demonstrate an essential and unexpected role for YY1 to promote cardiogenesis as a transcriptional activator of Nkx2.5 and other CPC-enriched genes.
Collapse
Affiliation(s)
- Serge Gregoire
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Heavy and light roles: myosin in the morphogenesis of the heart. Cell Mol Life Sci 2012; 70:1221-39. [PMID: 22955375 PMCID: PMC3602621 DOI: 10.1007/s00018-012-1131-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 01/10/2023]
Abstract
Myosin is an essential component of cardiac muscle, from the onset of cardiogenesis through to the adult heart. Although traditionally known for its role in energy transduction and force development, recent studies suggest that both myosin heavy-chain and myosin light-chain proteins are required for a correctly formed heart. Myosins are structural proteins that are not only expressed from early stages of heart development, but when mutated in humans they may give rise to congenital heart defects. This review will discuss the roles of myosin, specifically with regards to the developing heart. The expression of each myosin protein will be described, and the effects that altering expression has on the heart in embryogenesis in different animal models will be discussed. The human molecular genetics of the myosins will also be reviewed.
Collapse
|
14
|
Zhou J, Zhang G, Zhou Q. Molecular characterization of cytochrome P450 CYP6B47 cDNAs and 5'-flanking sequence from Spodoptera litura (Lepidoptera: Noctuidae): its response to lead stress. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:726-736. [PMID: 22391394 DOI: 10.1016/j.jinsphys.2012.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/22/2012] [Accepted: 02/22/2012] [Indexed: 05/31/2023]
Abstract
In insects, P450s are responsible for the oxidative metabolism of structurally diverse endogenous and exogenous compounds including plant allelochemicals and insecticides. A novel full-length P450 cDNA, CYP6B47, was cloned from Spodoptera litura (Lepidoptera: Noctuidae). The sequence is 1718 bp in length with an ORF of 1509 bp encoding 503 amino acid residues. The phylogenetic analysis indicated that CYP6B47 belongs to CYP3 clan and second clade of CYP6Bs which contain 11 P450s from Noctuidae. Quantitative real-time PCR showed that CYP6B47 was expressed only in larvae stages and had a high level of transcription in the midgut and fat body. In addition, we cloned a 2141-bp 5'-flanking regions and presented the basal luciferase activities of promoter. We also predicted multiple putative elements for transcription factors binding in the 5'-flanking region. Interestingly, the expression of CYP6B47 significantly increased in the midgut and fat body after lead (Pb) exposure for 5 generations. Larvae tolerance to the alpha-cypermethrin (35% increased in LC(50)) and fenvalerate (52% increased in LC(50)) were improved after pre-exposure to 50 mg/kg Pb. These dates suggested that lead increased tolerance of larvae to insecticides mainly through transcriptional induction of detoxification genes including CYP6B47.
Collapse
Affiliation(s)
- Jialiang Zhou
- State Key Laboratory of Biological Control and Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | | | | |
Collapse
|
15
|
Méreau A, Le Sommer C, Lerivray H, Lesimple M, Hardy S. Xenopus as a model to study alternative splicing in vivo. Biol Cell 2012; 99:55-65. [PMID: 17155935 DOI: 10.1042/bc20060073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An increasing number of genes are being identified for which the corresponding mRNAs contain different combinations of the encoded exons. This highly regulated exon choice, or alternative splicing, is often tissue-specific and potentially could differentially affect cellular functions. Alternative splicing is therefore not only a means to increase the coding capacity of the genome, but also to regulate gene expression during differentiation or development. To both evaluate the importance for cellular functions and define the regulatory pathways of alternative splicing, it is necessary to progress from the in vitro or ex vivo experimental models actually used towards in vivo whole-animal studies. We present here the amphibian, Xenopus, as an experimental model highly amenable for such studies. The various experimental approaches that can be used with Xenopus oocytes and embryos to characterize regulatory sequence elements and factors are presented and the advantages and drawbacks of these approaches are discussed. Finally, the real possibilities for large-scale identification of mRNAs containing alternatively spliced exons, the tissue-specific patterns of exon usage and the way in which these patterns are modified by perturbing the relative amount of splicing factors are discussed.
Collapse
Affiliation(s)
- Agnes Méreau
- UMR 6061 CNRS-Université de Rennes 1, IFR 140 Génétique Fonctionnelle, Agronomie et Santé, Faculté de Médecine, 2 avenue de Pr. Léon Bernard, 35043 Rennes cedex, France
| | | | | | | | | |
Collapse
|
16
|
Takagaki Y, Yamagishi H, Matsuoka R. Factors Involved in Signal Transduction During Vertebrate Myogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:187-272. [DOI: 10.1016/b978-0-12-394307-1.00004-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Denz CR, Zhang C, Jia P, Du J, Huang X, Dube S, Thomas A, Poiesz BJ, Dube DK. Absence of mutation at the 5'-upstream promoter region of the TPM4 gene from cardiac mutant axolotl (Ambystoma mexicanum). Cardiovasc Toxicol 2011; 11:235-43. [PMID: 21626230 DOI: 10.1007/s12012-011-9117-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tropomyosins are a family of actin-binding proteins that show cell-specific diversity by a combination of multiple genes and alternative RNA splicing. Of the 4 different tropomyosin genes, TPM4 plays a pivotal role in myofibrillogenesis as well as cardiac contractility in amphibians. In this study, we amplified and sequenced the upstream regulatory region of the TPM4 gene from both normal and mutant axolotl hearts. To identify the cis-elements that are essential for the expression of the TPM4, we created various deletion mutants of the TPM4 promoter DNA, inserted the deleted segments into PGL3 vector, and performed promoter-reporter assay using luciferase as the reporter gene. Comparison of sequences of the promoter region of the TPM4 gene from normal and mutant axolotl revealed no mutations in the promoter sequence of the mutant TPM4 gene. CArG box elements that are generally involved in controlling the expression of several other muscle-specific gene promoters were not found in the upstream regulatory region of the TPM4 gene. In deletion experiments, loss of activity of the reporter gene was noted upon deletion which was then restored upon further deletion suggesting the presence of both positive and negative cis-elements in the upstream regulatory region of the TPM4 gene. We believe that this is the first axolotl promoter that has ever been cloned and studied with clear evidence that it functions in mammalian cell lines. Although striated muscle-specific cis-acting elements are absent from the promoter region of TPM4 gene, our results suggest the presence of positive and negative cis-elements in the promoter region, which in conjunction with positive and negative trans-elements may be involved in regulating the expression of TPM4 gene in a tissue-specific manner.
Collapse
Affiliation(s)
- Christopher R Denz
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kaltenbrun E, Tandon P, Amin NM, Waldron L, Showell C, Conlon FL. Xenopus: An emerging model for studying congenital heart disease. ACTA ACUST UNITED AC 2011; 91:495-510. [PMID: 21538812 DOI: 10.1002/bdra.20793] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/18/2011] [Accepted: 01/28/2011] [Indexed: 02/02/2023]
Abstract
Congenital heart defects affect nearly 1% of all newborns and are a significant cause of infant death. Clinical studies have identified a number of congenital heart syndromes associated with mutations in genes that are involved in the complex process of cardiogenesis. The African clawed frog, Xenopus, has been instrumental in studies of vertebrate heart development and provides a valuable tool to investigate the molecular mechanisms underlying human congenital heart diseases. In this review, we discuss the methodologies that make Xenopus an ideal model system to investigate heart development and disease. We also outline congenital heart conditions linked to cardiac genes that have been well studied in Xenopus and describe some emerging technologies that will further aid in the study of these complex syndromes.
Collapse
Affiliation(s)
- Erin Kaltenbrun
- University of North Carolina McAllister Heart Institute, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
19
|
Smith SJ, Mohun TJ. Early cardiac morphogenesis defects caused by loss of embryonic macrophage function in Xenopus. Mech Dev 2011; 128:303-15. [PMID: 21515365 PMCID: PMC3157588 DOI: 10.1016/j.mod.2011.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 11/26/2022]
Abstract
The heart-forming mesoderm in Xenopus embryos lies adjacent to the source of the first embryonic population of macrophages. Such macrophages underlie the bilateral myocardial cell layers as they converge to form a linear heart tube. We have examined whether such macrophages participate in early cardiac morphogenesis, combining morpholino oligonucleotides that inhibit macrophage differentiation or function with transgenic reporters to assess macrophage numbers in living embryos. We show that loss of macrophage production through tadpole stages of development by morpholino-mediated knockdown of the spib transcription factor results in an arrest of heart formation. The myocardium fails to form the fused, wedge-shaped trough that precedes heart tube formation and in the most severe cases, myocardial differentiation is also impaired. Knockdown of the Ly6 protein lurp1, an early, secreted product from differentiated macrophages, produces a similar arrest to myocardial morphogenesis. Heart development can moreover be rescued by surgical-transfer of normal macrophage domains into morpholino-injected embryos. Together, these results demonstrate that amphibian heart formation depends on the presence and activity of the macrophage population, indicating that these cells may be an important source of growth cues necessary for early cardiac morphogenesis.
Collapse
Affiliation(s)
- Stuart J Smith
- Division of Developmental Biology, MRC-National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | |
Collapse
|
20
|
Martin J, Afouda BA, Hoppler S. Wnt/beta-catenin signalling regulates cardiomyogenesis via GATA transcription factors. J Anat 2010; 216:92-107. [PMID: 20402826 DOI: 10.1111/j.1469-7580.2009.01171.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A functioning heart muscle is required continuously throughout life. During embryonic development the heart muscle tissue differentiates from mesoderm that has heart-forming potential. Heart-forming potential in the embryonic mesoderm is regulated by pro-cardiogenic transcription factors, such as members of the GATA and NK-2 transcription factor families. Subsequent heart muscle differentiation involves the expression of cytoskeletal proteins, including myosins and troponins. Different Wnt signalling pathways have various functions in heart development. So-called 'canonical' (Wnt/beta-catenin-mediated) signalling has a conserved role in vertebrate heart development, regulating and restricting heart development and subsequent heart muscle differentiation. Here we investigated the way in which Wnt/beta-catenin signalling functionally interacts with the GATA family of pro-cardiogenic transcription factors to regulate subsequent heart muscle differentiation. We used whole Xenopus embryos as an accessible experimental model system for vertebrate heart development. Our experiments confirmed that activation of Wnt signalling results in reduced gata gene expression, as well as reduced gene expression of other pro-cardiogenic transcription factors and heart muscle differentiation markers. Remarkably, we discovered that when GATA function is experimentally restored, the expression of other pro-cardiogenic transcription factors and heart muscle differentiation markers is rescued. These findings, obtained from whole-embryo experiments, show that Wnt signalling regulates heart development at the level of GATA factors, confirming earlier results from tissue-culture experiments. Furthermore, our rescue experiments in Xenopus embryos revealed differences in functional activity between the various GATA transcription factors involved in heart development. We discovered that GATA4 is more efficient at reinstating the gene expression of other pro-cardiogenic transcription factors, whereas GATA6 is more potent at promoting the expression of genes associated with terminal heart muscle differentiation. In conclusion, our findings show that the inhibition of heart development by Wnt/beta-catenin signalling during organogenesis is mediated by the loss of expression of GATA pro-cardiogenic transcription factors and reveal functional differences between those GATA factors in heart development.
Collapse
Affiliation(s)
- Jennifer Martin
- Cell and Developmental Biology Research Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | | | | |
Collapse
|
21
|
Park JS, Kim HS, Kim JD, Seo J, Chung KS, Lee HS, Huh TL, Jo I, Kim YO. Isolation of a ventricle-specific promoter for the zebrafish ventricular myosin heavy chain (vmhc) gene and its regulation by GATA factors during embryonic heart development. Dev Dyn 2009; 238:1574-81. [PMID: 19441085 DOI: 10.1002/dvdy.21964] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We investigated chamber-specific gene expression by isolating a 2.2-kb polymerase chain reaction product containing the 5'-flanking region of the zebrafish ventricular myosin heavy-chain gene (vmhc). Promoter analysis revealed that the fragment, consisting of nucleotides from -301 to +26, is sufficient for vmhc promoter activity. Among several putative cis-acting elements in the region, a GATA-binding site was identified to be crucial for the activity of the promoter, as evidenced by the complete abolishment of promoter activity by a single nucleotide substitution of GATA-binding site (-287, C-->T). Knockdown of GATA-binding proteins 4 and 6 (GATA4 and -6) by their antisense morpholino oligonucleotides resulted in reduced green fluorescent protein (GFP) reporter gene and endogenous vmhc expression. These findings suggest that GATA4 and -6 play a key role in the regulation of vmhc expression in the ventricle. In addition, the vmhc promoter and the transgenic zebrafish (vmhc:gfp) are useful tools to study the formation and function of the ventricle. Developmental Dynamics 238:1574-1581, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jae-Sun Park
- Division of Intractable Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tbx2 misexpression impairs deployment of second heart field derived progenitor cells to the arterial pole of the embryonic heart. Dev Biol 2009; 333:121-31. [PMID: 19563797 DOI: 10.1016/j.ydbio.2009.06.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 11/22/2022]
Abstract
Tbx2 is a member of the T-box family of transcription factors that play important roles during heart development. In the embryonic heart tube, Tbx2 is expressed in non-chamber myocardium (outflow tract and interventricular canal) and has been shown to block chamber formation. We have developed a genetic system to conditionally misexpress Tbx2 in the embryonic mouse heart at early stages of development. We show that Tbx2 expression throughout the myocardium of the heart tube both represses proliferation and impairs secondary heart field (SHF) progenitor cell deployment into the outflow tract (OFT). Repression of proliferation is accompanied by the upregulation of Ndrg2 and downregulation of Ndrg4 expression, both genes believed to be involved in cell growth and proliferation. Impaired deployment of SHF cells from the pharyngeal mesoderm is accompanied by downregulation of the cell adhesion molecules Alcam and N-cadherin in the anterior part of the embryonic heart. Tbx2 misexpression also results in downregulation of Tbx20 within the OFT, indicating complex and region-specific transcriptional cross-regulation between the two T-box genes.
Collapse
|
23
|
Breckenridge RA, Zuberi Z, Gomes J, Orford R, Dupays L, Felkin LE, Clark JE, Magee AI, Ehler E, Birks EJ, Barton PJR, Tinker A, Mohun TJ. Overexpression of the transcription factor Hand1 causes predisposition towards arrhythmia in mice. J Mol Cell Cardiol 2009; 47:133-41. [PMID: 19376125 DOI: 10.1016/j.yjmcc.2009.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 03/30/2009] [Accepted: 04/01/2009] [Indexed: 11/28/2022]
Abstract
Elevated levels of the cardiac transcription factor Hand1 have been reported in several adult cardiac diseases but it is unclear whether this change is itself maladaptive with respect to heart function. To test this possibility, we have developed a novel, inducible transgenic system, and used it to overexpress Hand1 in adult mouse hearts. Overexpression of Hand1 in the adult mouse heart leads to mild cardiac hypertrophy and a reduction in life expectancy. Treated mice show no significant fibrosis, myocyte disarray or congestive heart failure, but have a greatly reduced threshold for induced ventricular tachycardia, indicating a predisposition to cardiac arrhythmia. Within 48 h, they show a significant loss of connexin43 protein from cardiac intercalated discs, with increased intercalated disc beta-catenin expression at protein and RNA levels. These changes are sustained during prolonged Hand1 overexpression. We propose that cardiac overexpression of Hand1 offers a useful mouse model of arrhythmogenesis and elevated HAND1 may provide one of the molecular links between the failing heart and arrhythmia.
Collapse
|
24
|
Lavery DL, Martin J, Turnbull YD, Hoppler S. Wnt6 signaling regulates heart muscle development during organogenesis. Dev Biol 2008; 323:177-88. [PMID: 18804460 PMCID: PMC2593796 DOI: 10.1016/j.ydbio.2008.08.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 08/15/2008] [Accepted: 08/20/2008] [Indexed: 11/07/2022]
Abstract
Mesodermal tissue with heart forming potential (cardiogenic mesoderm) is induced during gastrulation. This cardiogenic mesoderm later differentiates into heart muscle tissue (myocardium) and non-muscular heart tissue. Inhibition of Wnt/β-catenin signaling is known to be required early for induction of cardiogenic mesoderm; however, the identity of the inhibiting Wnt signal itself is still elusive. We have identified Wnt6 in Xenopus as an endogenous Wnt signal, which is expressed in tissues close to and later inside the developing heart. Our loss-of-function experiments show that Wnt6 function is required in the embryo to prevent development of an abnormally large heart muscle. We find, however, that Wnt6 is not required as expected during gastrulation stages, but later during organogenesis stages just before cells of the cardiogenic mesoderm begin to differentiate into heart muscle (myocardium). Our gain-of-function experiments show that Wnt6 and also activated canonical Wnt/β-catenin signaling are capable of restricting heart muscle development at these relatively late stages of development. This repressive role of Wnt signaling is mediated initially via repression of cardiogenic transcription factors, since reinstatement of GATA function can rescue expression of other cardiogenic transcription factors and downstream cardiomyogenic differentiation genes.
Collapse
Affiliation(s)
- Danielle L Lavery
- Institute of Medical Sciences, Cell and Developmental Biology Research Programme, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK
| | | | | | | |
Collapse
|
25
|
Smith SJ, Kotecha S, Towers N, Mohun TJ. Targeted cell-ablation in Xenopus embryos using the conditional, toxic viral protein M2(H37A). Dev Dyn 2007; 236:2159-71. [PMID: 17615576 DOI: 10.1002/dvdy.21233] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Harnessing toxic proteins to destroy selective cells in an embryo is an attractive method for exploring details of cell fate and cell-cell interdependency. However, no existing "suicide gene" system has proved suitable for aquatic vertebrates. We use the M2(H37A) toxic ion channel of the influenza-A virus to induce cell-ablations in Xenopus laevis. M2(H37A) RNA injected into blastomeres of early stage embryos causes death of their progeny by late-blastula stages. Moreover, M2(H37A) toxicity can be controlled using the M2 inhibitor rimantadine. We have tested the ablation system using transgenesis to target M2(H37A) expression to selected cells in the embryo. Using the myocardial MLC2 promoter, M2(H37A)-mediated cell death causes dramatic loss of cardiac structure and function by stage 39. With the LURP1 promoter, we induce cell-ablations of macrophages. These experiments demonstrate the effectiveness of M2(H37A)-ablation in Xenopus and its utility in monitoring the progression of developmental abnormalities during targeted cell death experiments.
Collapse
Affiliation(s)
- Stuart J Smith
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | | | | | | |
Collapse
|
26
|
Furman C, Sieminski AL, Kwiatkowski AV, Rubinson DA, Vasile E, Bronson RT, Fässler R, Gertler FB. Ena/VASP is required for endothelial barrier function in vivo. ACTA ACUST UNITED AC 2007; 179:761-75. [PMID: 17998398 PMCID: PMC2080895 DOI: 10.1083/jcb.200705002] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) proteins are key actin regulators that localize at regions of dynamic actin remodeling, including cellular protrusions and cell–cell and cell–matrix junctions. Several studies have suggested that Ena/VASP proteins are involved in the formation and function of cellular junctions. Here, we establish the importance of Ena/VASP in endothelial junctions in vivo by analysis of Ena/VASP-deficient animals. In the absence of Ena/VASP, the vasculature exhibits patterning defects and lacks structural integrity, leading to edema, hemorrhaging, and late stage embryonic lethality. In endothelial cells, we find that Ena/VASP activity is required for normal F-actin content, actomyosin contractility, and proper response to shear stress. These findings demonstrate that Ena/VASP is critical for actin cytoskeleton remodeling events involved in the maintenance of functional endothelia.
Collapse
Affiliation(s)
- Craig Furman
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Smith SJ, Fairclough L, Latinkic BV, Sparrow DB, Mohun TJ. Xenopus laevis transgenesis by sperm nuclear injection. Nat Protoc 2007; 1:2195-203. [PMID: 17406457 DOI: 10.1038/nprot.2006.325] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The stable integration of transgenes into embryos of the frog Xenopus laevis is achieved using the procedure described here. Linear DNA containing the transgene is incorporated randomly into sperm nuclei that have had their membranes disrupted with detergent treatment. Microinjection of these nuclei into unfertilized eggs produces viable embryos that can be screened for activity of the transgene. The proportion of embryos that harbor the transgene varies from 10 to 40% of the total number of surviving embryos. Multiple copies of the transgene can integrate as a concatemer into the sperm genome, and more than one site of DNA integration might occur within resulting animals. Germ cell transmission of the transgene is routine and the procedure is well suited to the production of transgenic reporter frog lines. One day should be allocated for the preparation of the sperm nuclei, which are stored as aliquots for future use. The transgenesis reaction and egg injection take one morning.
Collapse
Affiliation(s)
- Stuart J Smith
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | |
Collapse
|
28
|
He Y, Dupree J, Wang J, Sandoval J, Li J, Liu H, Shi Y, Nave KA, Casaccia-Bonnefil P. The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron 2007; 55:217-30. [PMID: 17640524 PMCID: PMC2034312 DOI: 10.1016/j.neuron.2007.06.029] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 05/24/2007] [Accepted: 06/21/2007] [Indexed: 11/17/2022]
Abstract
The progression of progenitors to oligodendrocytes requires proliferative arrest and the activation of a transcriptional program of differentiation. While regulation of cell cycle exit has been extensively characterized, the molecular mechanisms responsible for the initiation of differentiation remain ill-defined. Here, we identify the transcription factor Yin Yang 1 (YY1) as a critical regulator of oligodendrocyte progenitor differentiation. Conditional ablation of yy1 in the oligodendrocyte lineage in vivo induces a phenotype characterized by defective myelination, ataxia, and tremor. At the cellular level, lack of yy1 arrests differentiation of oligodendrocyte progenitors after they exit from the cell cycle. At the molecular level, YY1 acts as a lineage-specific repressor of transcriptional inhibitors of myelin gene expression (Tcf4 and Id4), by recruiting histone deacetylase-1 to their promoters during oligodendrocyte differentiation. Thus, we identify YY1 as an essential component of the transcriptional network regulating the transition of oligodendrocyte progenitors from cell cycle exit to differentiation.
Collapse
Affiliation(s)
- Ye He
- Department of Neuroscience and Cell Biology, R. Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nagao K, Taniyama Y, Koibuchi N, Morishita R. Constitutive over-expression of VEGF results in reduced expression of Hand-1 during cardiac development in Xenopus. Biochem Biophys Res Commun 2007; 359:431-7. [PMID: 17544370 DOI: 10.1016/j.bbrc.2007.05.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
During heart development, various signaling cascades are tightly regulated in a stage- and region-dependent manner. Vascular endothelial growth factor (VEGF) is one of the important molecules required for both vascular development and cardiac morphogenesis. VEGF receptors are present in the embryonic heart, so we focused on heart formation in VEGF-over-expressing Xenopus embryos. Over-expression of VEGF(170) caused disorganized vessels, while the expression of an endothelial marker, Tie-2, was increased. The embryo's heart was distinctly larger than that of control, and showed abnormal morphology. Histological analysis of these embryos showed failure of heart looping. In situ hybridization with Hand-1, which controls intrinsic morphogenetic pathways, revealed that the expression level of Hand-1 was decreased in the heart region. These results suggest that increased VEGF(170) levels disturb Hand-1 expression in the region required for normal heart morphogenesis. VEGF expression level may be important in heart morphology during embryonic development.
Collapse
Affiliation(s)
- Kaori Nagao
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | | | | | | |
Collapse
|
30
|
Breckenridge R, Kotecha S, Towers N, Bennett M, Mohun T. Pan-myocardial expression of Cre recombinase throughout mouse development. Genesis 2007; 45:135-44. [PMID: 17334998 DOI: 10.1002/dvg.20275] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mouse-lines expressing Cre recombinase in a tissue-specific manner are a powerful tool in developmental biology. Here, we report that a 3 kb fragment of the Xenopus laevis myosin light-chain 2 (XMLC2) promoter drives Cre recombinase expression in a cardiac-restricted fashion in the mouse embryo. We have isolated two XMLC2-Cre lines that express recombinase exclusively within cardiomyocytes, from the onset of their differentiation in the cardiac crescent of the early embryo. Expression is maintained throughout the myocardium of the embryonic heart tube and subsequently the mature myocardium of the chambered heart. Recombinase activity is detected in all myocardial tissue, including the pulmonary veins. One XMLC2-Cre line shows uniform expression while the other only expresses recombinase in a mosaic fashion encompassing less than 50% of the myocardial cells. Both lines cause severe cardiac malformations when crossed to a conditional Tbx5 line, resulting in embryonic death at midgestation. Optical projection tomography reveals that the spectrum of developmental abnormalities includes a shortening of the outflow tract and its abnormal alignment, along with a dramatic reduction in trabeculation of the ventricular segment of the looping heart tube.
Collapse
Affiliation(s)
- Ross Breckenridge
- Division of Developmental Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill,London, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Abstract
The African clawed frog, Xenopus laevis, is a valuable model system for studies of vertebrate heart development. In the following review, we describe a range of embryological and molecular methodologies that are used in Xenopus research and discuss key discoveries relating to heart development that have been made using this model system. We also discuss how the sequence of the Xenopus tropicalis genome provides a valuable tool for identification of orthologous genes and for identification of evolutionarily conserved promoter elements. Finally, both forward and reverse genetic approaches are currently being applied to Xenopus for the study of vertebrate heart development.
Collapse
Affiliation(s)
- Andrew S Warkman
- Department of Cell Biology and Anatomy, University of Arizona Health Sciences Center, 1501 N. Campbell Avenue, P.O. Box 245044, Tucson, AZ 85724, USA.
| | | |
Collapse
|
32
|
Pasquet S, Naye F, Faucheux C, Bronchain O, Chesneau A, Thiébaud P, Thézé N. Transcription Enhancer Factor-1-dependent Expression of the α-Tropomyosin Gene in the Three Muscle Cell Types. J Biol Chem 2006; 281:34406-20. [PMID: 16959782 DOI: 10.1074/jbc.m602282200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In vertebrates, the actin-binding proteins tropomyosins are encoded by four distinct genes that are expressed in a complex pattern during development and muscle differentiation. In this study, we have characterized the transcriptional machinery of the alpha-tropomyosin (alpha-Tm) gene in muscle cells. Promoter analysis revealed that a 284-bp proximal promoter region of the Xenopus laevis alpha-Tm gene is sufficient for maximal activity in the three muscle cell types. The transcriptional activity of this promoter in the three muscle cell types depends on both distinct and common cis-regulatory sequences. We have identified a 30-bp conserved sequence unique to all vertebrate alpha-Tm genes that contains an MCAT site that is critical for expression of the gene in all muscle cell types. This site can bind transcription enhancer factor-1 (TEF-1) present in muscle cells both in vitro and in vivo. In serum-deprived differentiated smooth muscle cells, TEF-1 was redistributed to the nucleus, and this correlated with increased activity of the alpha-Tm promoter. Overexpression of TEF-1 mRNA in Xenopus embryonic cells led to activation of both the endogenous alpha-Tm gene and the exogenous 284-bp promoter. Finally, we show that, in transgenic embryos and juveniles, an intact MCAT sequence is required for correct temporal and spatial expression of the 284-bp gene promoter. This study represents the first analysis of the transcriptional regulation of the alpha-Tm gene in vivo and highlights a common TEF-1-dependent regulatory mechanism necessary for expression of the gene in the three muscle lineages.
Collapse
|
33
|
Wang CC, Chen JJW, Yang PC. Multifunctional transcription factor YY1: a therapeutic target in human cancer? Expert Opin Ther Targets 2006; 10:253-66. [PMID: 16548774 DOI: 10.1517/14728222.10.2.253] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The multifunctional transcription factor Yin Yang 1 (YY1) is a complex protein that has been shown to play pivotal roles in development, differentiation, cellular proliferation and apoptosis. It can act as a transcriptional repressor, an activator, or an initiator element binding protein that directs and initiates transcription of numerous cellular and viral genes. Because the expression and function of YY1 are known to be intimately associated with cell-cycle progression, the physiological significance of YY1 activity has recently been applied to models of cancer biology. Several lines of evidence imply that YY1 expression and/or activation is associated with tumourigenesis, in addition to its regulatory roles in normal biological processes. However, controversial results also raised and indicated that further studies are still needed to piece all of the seemingly contradictory data into a complete picture. On the basis of YY1 regulations and functions, novel drugs and specific treatment strategies may be developed with new therapeutic applications for tumour patients in the future.
Collapse
Affiliation(s)
- Chi-Chung Wang
- National Taiwan University College of Medicine, NTU Center for Genomic Medicine, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
34
|
Rottbauer W, Wessels G, Dahme T, Just S, Trano N, Hassel D, Burns CG, Katus HA, Fishman MC. Cardiac myosin light chain-2: a novel essential component of thick-myofilament assembly and contractility of the heart. Circ Res 2006; 99:323-31. [PMID: 16809551 DOI: 10.1161/01.res.0000234807.16034.fe] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although it is well known that mutations in the cardiac regulatory myosin light chain-2 (mlc-2) gene cause hypertrophic cardiomyopathy, the precise in vivo structural and functional roles of MLC-2 in the heart are only poorly understood. We have isolated a mutation in zebrafish, tell tale heart (tel(m225)), which selectively perturbs contractility of the embryonic heart. By positional cloning, we identified tel to encode the zebrafish mlc-2 gene. In contrast to mammals, zebrafish have only 1 cardiac-specific mlc-2 gene, which we find to be expressed in atrial and ventricular cardiomyocytes during early embryonic development, but also in the adult heart. Accordingly, loss of zMLC-2 function cannot be compensated for by upregulation of another mlc-2 gene. Surprisingly, ultrastructural analysis of tel cardiomyocytes reveals complete absence of organized thick myofilaments. Thus, our findings provide the first in vivo evidence that cardiac MLC-2 is required for thick-filament stabilization and contractility in the vertebrate heart.
Collapse
|
35
|
Gómez-Skarmeta JL, Lenhard B, Becker TS. New technologies, new findings, and new concepts in the study of vertebrate cis-regulatory sequences. Dev Dyn 2006; 235:870-85. [PMID: 16395688 DOI: 10.1002/dvdy.20659] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
All vertebrates share a similar early embryonic body plan and use the same regulatory genes for their development. The availability of numerous sequenced vertebrate genomes and significant advances in bioinformatics have resulted in the finding that the genomic regions of many of these developmental regulatory genes also contain highly conserved noncoding sequence. In silico discovery of conserved noncoding regions and of transcription factor binding sites as well as the development of methods for high throughput transgenesis in Xenopus and zebrafish are dramatically increasing the speed with which regulatory elements can be discovered, characterized, and tested in the context of whole live embryos. We review here some of the recent technological developments that will likely lead to a surge in research on how vertebrate genomes encode regulation of transcriptional activity, how regulatory sequences constrain genomic architecture, and ultimately how vertebrate form has evolved.
Collapse
|
36
|
Zhang Z, Li M, Rayburn ER, Hill DL, Zhang R, Wang H. Oncogenes as novel targets for cancer therapy (part III): transcription factors. ACTA ACUST UNITED AC 2005; 5:327-38. [PMID: 16196502 DOI: 10.2165/00129785-200505050-00005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This is the third paper in a four-part serial review on potential therapeutic targeting of oncogenes. The previous parts described the involvement of oncogenes in different aspects of cancer growth and development, and considered the new technologies responsible for the advancement of oncogene identification, target validation, and drug design. Because of such advances, new specific and more efficient therapeutic agents can be developed for cancer. This part of the review continues the exploration of various oncogenes that we have grouped within seven categories: growth factors, tyrosine kinases, intermediate signaling molecules, transcription factors, cell cycle regulators, DNA damage repair genes, and genes involved in apoptosis. Part one discussed growth factors and tyrosine kinases and part two discussed intermediate signaling molecules. This portion of the review covers transcription factors and the various strategies being used to inhibit their expression or decrease their activities.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Pharmacology and Toxicology and Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | | | |
Collapse
|
37
|
Adameyko II, Mudry RE, Houston-Cummings NRM, Veselov AP, Gregorio CC, Tevosian SG. Expression and regulation of mouse SERDIN1, a highly conserved cardiac-specific leucine-rich repeat protein. Dev Dyn 2005; 233:540-52. [PMID: 15830381 DOI: 10.1002/dvdy.20368] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Despite recent progress, the precise mechanisms responsible for vertebrate cardiac development are still enigmatic. Better understanding of cardiac biology and disease necessitates identification and analysis of a full spectrum of regulatory and structural proteins specific to the developing heart. By performing an in silico screen, we identified a cardiac-specific gene we named Serdin1. The Serdin1 gene is conserved, and the message is restricted to the heart in several vertebrate species, thus implicating Serdin1 as an important gene in cardiac development. In situ hybridization confirmed that the Serdin1 message is cardiac-specific in mice as early as embryonic day 8.5. Antibody staining demonstrated predominantly nuclear staining in immortalized cardiac cell lines (P19 and HL-1) and proliferating cultured cardiomyocytes, whereas in vivo SERDIN1 localizes to I bands of the sarcomere. Seven kilobases of the upstream regulatory sequence of Serdin1 is sufficient for cardiac-specific expression. Computer analysis revealed an 80-bp homologous region between the mouse and the human Serdin genes that contains GATA, SRF, and MEF sites. Cardiac specificity and localization patterns suggest that SERDIN1 is intimately integrated with the molecular pathways controlling cardiogenesis in vertebrates.
Collapse
Affiliation(s)
- Igor I Adameyko
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
38
|
Smith SJ, Ataliotis P, Kotecha S, Towers N, Sparrow DB, Mohun TJ. The MLC1v gene provides a transgenic marker of myocardium formation within developing chambers of the Xenopus heart. Dev Dyn 2005; 232:1003-12. [PMID: 15736168 DOI: 10.1002/dvdy.20274] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many details of cardiac chamber morphogenesis could be revealed if muscle fiber development could be visualized directly within the hearts of living vertebrate embryos. To achieve this end, we have used the active promoter of the MLC1v gene to drive expression of green fluorescent protein (GFP) in the developing tadpole heart. By using a line of Xenopus laevis frogs transgenic for the MLC1v-EGFP reporter, we have observed regionalized patterns of muscle formation within the ventricular chamber and maturation of the atrial chambers, from the onset of chamber formation through to the adult frog. In f1 generation MLC1v-EGFP animals, promoter activity is first detected within the looping heart tube and delineates the forming ventricular chamber and proximal outflow tract throughout their development. The 8-kb MLC1v promoter faithfully reproduces the embryonic expression of the endogenous MLC1v mRNA. At later larval stages, weak patches of EGFP fluorescence are found on the atrial side of the atrioventricular boundary. Subsequently, an extensive lattice of MLC1v-expressing fibers extend across the mature atrial chambers of adult frog hearts and the transgene reveals the differing arrangement of muscle fibers in chamber versus outflow myocardium. The complete activity of the promoter resides within the proximal 4.5 kb of the MLC1v DNA fragment, whereas key elements regulating chamber-specific expression are present in the proximal-most 1.5 kb. Finally, we demonstrate how cardiac and craniofacial muscle expression of the MLC1v promoter can be used to diagnose mutant phenotypes in living embryos, using the injection of RNA encoding a Tbx1-engrailed repressor-fusion protein as an example.
Collapse
Affiliation(s)
- Stuart J Smith
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | |
Collapse
|
39
|
Huot ME, Bisson N, Davidovic L, Mazroui R, Labelle Y, Moss T, Khandjian EW. The RNA-binding protein fragile X-related 1 regulates somite formation in Xenopus laevis. Mol Biol Cell 2005; 16:4350-61. [PMID: 16000371 PMCID: PMC1196343 DOI: 10.1091/mbc.e05-04-0304] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Fragile X-related 1 protein (FXR1P) is a member of a small family of RNA-binding proteins that includes the Fragile X mental retardation 1 protein (FMR1P) and the Fragile X-related 2 protein (FXR2P). These proteins are thought to transport mRNA and to control their translation. While FMR1P is highly expressed in neurons, substantial levels of FXR1P are found in striated muscles and heart, which are devoid of FMRP and FXR2P. However, little is known about the functions of FXR1P. We have isolated cDNAs for Xenopus Fxr1 and found that two specific splice variants are conserved in evolution. Knockdown of xFxr1p in Xenopus had highly muscle-specific effects, normal MyoD expression being disrupted, somitic myotomal cell rotation and segmentation being inhibited, and dermatome formation being abnormal. Consistent with the absence of the long muscle-specific xFxr1p isoform during early somite formation, these effects could be rescued by both the long and short mRNA variants. Microarray analyses showed that xFxr1p depletion affected the expression of 129 known genes of which 50% were implicated in muscle and nervous system formation. These studies shed significant new light on Fxr1p function(s).
Collapse
Affiliation(s)
- Marc-Etienne Huot
- Unité de recherche en génétique humaine et moléculaire, CHUQ-St-François d'Assise, Québec, Québec G1L 3L5, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Small EM, Warkman AS, Wang DZ, Sutherland LB, Olson EN, Krieg PA. Myocardin is sufficient and necessary for cardiac gene expression in Xenopus. Development 2005; 132:987-97. [PMID: 15673566 DOI: 10.1242/dev.01684] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myocardin is a cardiac- and smooth muscle-specific cofactor for the ubiquitous transcription factor serum response factor (SRF). Using gain-of-function approaches in the Xenopus embryo, we show that myocardin is sufficient to activate transcription of a wide range of cardiac and smooth muscle differentiation markers in non-muscle cell types. We also demonstrate that, for the myosin light chain 2 gene (MLC2), myocardin cooperates with the zinc-finger transcription factor Gata4 to activate expression. Inhibition of myocardin activity in Xenopus embryos using morpholino knockdown methods results in inhibition of cardiac development and the absence of expression of cardiac differentiation markers and severe disruption of cardiac morphological processes. We conclude that myocardin is an essential component of the regulatory pathway for myocardial differentiation.
Collapse
Affiliation(s)
- Eric M Small
- Department of Cell Biology and Anatomy, University of Arizona Health Sciences Center, 1501 N. Campbell Avenue, PO Box 245044, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
41
|
Peterkin T, Gibson A, Loose M, Patient R. The roles of GATA-4, -5 and -6 in vertebrate heart development. Semin Cell Dev Biol 2004; 16:83-94. [PMID: 15659343 DOI: 10.1016/j.semcdb.2004.10.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The transcription factors GATA-4, -5 and -6 are expressed very early in heart tissue. Essential GATA sites have been detected in several cardiac genes and the cardiac GATA factors interact with a wide variety of cofactors which synergistically increase gene expression. These multi-protein transcriptional complexes confer promoter-specificity on the GATA factors and also on the more broadly expressed cofactors. Here we summarise the data on these interactions and represent the conclusions as a GATA factor-based genetic regulatory network for the heart. Of the three cardiac GATAs, GATA-4 is by far the most extensively studied, however, loss-of-function data question its presumed dominance during heart development as opposed to hypertrophy.
Collapse
Affiliation(s)
- Tessa Peterkin
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS
| | | | | | | |
Collapse
|
42
|
Sakamaki K, Takagi C, Kominami K, Sakata SI, Yaoita Y, Kubota HY, Nozaki M, Yonehara S, Ueno N. The adaptor molecule FADD from Xenopus laevis demonstrates evolutionary conservation of its pro-apoptotic activity. Genes Cells 2004; 9:1249-64. [PMID: 15569156 DOI: 10.1111/j.1365-2443.2004.00802.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
FADD is an adaptor protein that transmits apoptotic signals from death receptors such as Fas to downstream initiator caspases in mammals. We have identified and characterized the Xenopus orthologue of mammalian FADD (xFADD). xFADD contains both a death effector domain (DED) and a death domain (DD) that are structurally homologous to those of mammalian FADD. We observed xFADD binding to Xenopus caspase-8 and caspase-10 as well as to human caspase-8 and Fas through interactions with their homophilic DED and DD domains. When over-expressed, xFADD was also able to induce apoptosis in wild-type mouse embryonic fibroblasts (MEF), but not in caspase-8-deficient MEF cells. In contrast, DED-deficient xFADD (xFADDdn) acted as a dominant-negative mutant and prevented Fas-mediated apoptosis in mammalian cell lines. These results indicate that xFADD transmits apoptotic signals from Fas to caspase-8. Furthermore, we found that transgenic animals expressing xFADD in the developing heart or eye under the control of tissue-specific promoters show abnormal phenotypes. Taken together, these results suggest that xFADD can substitute functionally for its mammalian homologue in death receptor-mediated apoptosis, and we suggest that xFADD functions as a pro-apoptotic adaptor molecule in frogs. Thus, the structural and functional similarities between xFADD and mammalian FADD provide evidence that the apoptotic pathways are evolutionally conserved across vertebrate species.
Collapse
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lee KH, Evans S, Ruan TY, Lassar AB. SMAD-mediated modulation of YY1 activity regulates the BMP response and cardiac-specific expression of a GATA4/5/6-dependent chick Nkx2.5enhancer. Development 2004; 131:4709-23. [PMID: 15329343 DOI: 10.1242/dev.01344] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Prior work has indicated that BMP signals act in concert with FGF8, WNT11 and WNT antagonists to induce the formation of cardiac tissue in the vertebrate embryo. In an effort to understand how these signaling pathways control the expression of key cardiac regulators, we have characterized the cis-regulatory elements of the chick tinman homolog chick Nkx2.5. We find that at least three distinct cardiac activating regions (CARs) of chick Nkx2.5 cooperate to regulate early expression in the cardiac crescent and later segmental expression in the developing heart. In this report, we focus our attention on a 3′ BMP-responsive enhancer, termed CAR3, which directs robust cardiac transgene expression. By systematic mutagenesis and gel shift analysis of this enhancer, we demonstrate that GATA4/5/6, YY1 and SMAD1/4 are all necessary for BMP-mediated induction and heart-specific expression of CAR3. Adjacent YY1 and SMAD-binding sites within CAR3 constitute a minimal BMP response element, and interaction of SMAD1/4 with the N terminus of YY1 is required for BMP-mediated induction of CAR3. Our data suggest that BMP-mediated activation of this regulatory region reflects both the induction of GATA genes by BMP signals, as well as modulation of the transcriptional activity of YY1 by direct interaction of this transcription factor with BMP-activated SMADs.
Collapse
Affiliation(s)
- Kyu-Ho Lee
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue Boston, MA 02115, USA
| | | | | | | |
Collapse
|
44
|
Morgan MJ, Woltering JM, In der Rieden PMJ, Durston AJ, Thiery JP. YY1 regulates the neural crest-associated slug gene in Xenopus laevis. J Biol Chem 2004; 279:46826-34. [PMID: 15326190 DOI: 10.1074/jbc.m406140200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
slug gene expression is associated with the specification and migration of neural crest cells in the African clawed frog Xenopus laevis. We provide evidence that the protein Ying-Yang 1 (YY1) regulates the slug gene expression both indirectly and directly, via a YY1 cis-element in the slug promoter, during Xenopus development. The ability of the YY1 to bind this YY1 cis-element was confirmed by electromobility shift assays and reporter assays. YY1 was detected in the nuclei of ectodermal cells contemporaneously with the process of neural crest specification. The injection of anti-YY1 morpholino, which targeted both YY1alpha and YY1beta gene products, depleted YY1 expression below 20% and was lethal at gastrulation. Sublethal depletion of YY1 reduced the length of the anterior-posterior axis and severely inhibited the expression of the neural marker Nrp1 and of the slug gene. Overexpression of YY1 or mutation of the YY1 cis-element reduced the restricted spatial expression of the slug reporter gene in the neural ectoderm border and provoked its expression in the nonneural ectoderm. Chromatin immunoprecipitation indicated that endogenous YY1 interacts directly with the YY1 cis-element of the endogenous slug gene and with the slug gene reporter sequence injected into embryos. The results suggest that YY1 is essential for Xenopus development; is necessary for neural ectoderm differentiation, a prerequisite for neural crest specification; and restricts which cells can form neural crest mesenchyme through directly blocking slug gene activity.
Collapse
Affiliation(s)
- Matthew J Morgan
- Institut Curie-CNRS UMR144, Morphogénèse Cellulaire et Progression Tumorale, 26 Rue d'Ulm, 75248 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|