1
|
Taylor OB, El-Hodiri HM, Palazzo I, Todd L, Fischer AJ. Regulating the formation of Müller glia-derived progenitor cells in the retina. Glia 2024. [PMID: 39448874 DOI: 10.1002/glia.24635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
We summarize recent findings in different animal models regarding the different cell-signaling pathways and gene networks that influence the reprogramming of Müller glia into proliferating, neurogenic progenitor cells in the retina. Not surprisingly, most of the cell-signaling pathways that guide the proliferation and differentiation of embryonic retinal progenitors also influence the ability of Müller glia to become proliferating Müller glia-derived progenitor cells (MGPCs). Further, the neuronal differentiation of MGPC progeny is potently inhibited by networks of neurogenesis-suppressing genes in chick and mouse models but occurs freely in zebrafish. There are important differences between the model systems, particularly pro-inflammatory signals that are active in mature Müller glia in damaged rodent and chick retinas, but less so in fish retinas. These pro-inflammatory signals are required to initiate the process of reprogramming, but if sustained suppress the potential of Müller glia to become neurogenic MGPCs. Further, there are important differences in how activated Müller glia up- or downregulate pro-glial transcription factors in the different model systems. We review recent findings regarding regulatory cell signaling and gene networks that influence the activation of Müller glia and the transition of these glia into proliferating progenitor cells with neurogenic potential in fish, chick, and mouse model systems.
Collapse
Affiliation(s)
- Olivia B Taylor
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Heithem M El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Isabella Palazzo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Massachusetts, USA
| | - Levi Todd
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Perez-Estrada JR, Tangeman JA, Proto-Newton M, Sanaka H, Smucker B, Del Rio-Tsonis K. Metabolic states influence chicken retinal pigment epithelium cell fate decisions. Development 2024; 151:dev202462. [PMID: 39120084 DOI: 10.1242/dev.202462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
During tissue regeneration, proliferation, dedifferentiation and reprogramming are necessary to restore lost structures. However, it is not fully understood how metabolism intersects with these processes. Chicken embryos can regenerate their retina through retinal pigment epithelium (RPE) reprogramming when treated with fibroblast factor 2 (FGF2). Using transcriptome profiling, we uncovered extensive regulation of gene sets pertaining to proliferation, neurogenesis and glycolysis throughout RPE-to-neural retina reprogramming. By manipulating cell media composition, we determined that glucose, glutamine or pyruvate are individually sufficient to support RPE reprogramming, identifying glycolysis as a requisite. Conversely, the activation of pyruvate dehydrogenase by inhibition of pyruvate dehydrogenase kinases, induces epithelial-to-mesenchymal transition, while simultaneously blocking the activation of neural retina fate. We also identified that epithelial-to-mesenchymal transition fate is partially driven by an oxidative environment. Our findings provide evidence that metabolism controls RPE cell fate decisions and provide insights into the metabolic state of RPE cells, which are prone to fate changes in regeneration and pathologies, such as proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- J Raúl Perez-Estrada
- Department of Biology, Miami University, Oxford, OH 45056, USA
- Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Jared A Tangeman
- Department of Biology, Miami University, Oxford, OH 45056, USA
- Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | | | | | - Byran Smucker
- Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
- Department of Statistics, Miami University, Oxford, OH 45056, USA
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University, Oxford, OH 45056, USA
- Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
3
|
Tangeman JA, Rebull SM, Grajales-Esquivel E, Weaver JM, Bendezu-Sayas S, Robinson ML, Lachke SA, Del Rio-Tsonis K. Integrated single-cell multiomics uncovers foundational regulatory mechanisms of lens development and pathology. Development 2024; 151:dev202249. [PMID: 38180241 PMCID: PMC10906490 DOI: 10.1242/dev.202249] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Ocular lens development entails epithelial to fiber cell differentiation, defects in which cause congenital cataracts. We report the first single-cell multiomic atlas of lens development, leveraging snRNA-seq, snATAC-seq and CUT&RUN-seq to discover previously unreported mechanisms of cell fate determination and cataract-linked regulatory networks. A comprehensive profile of cis- and trans-regulatory interactions, including for the cataract-linked transcription factor MAF, is established across a temporal trajectory of fiber cell differentiation. Furthermore, we identify an epigenetic paradigm of cellular differentiation, defined by progressive loss of the H3K27 methylation writer Polycomb repressive complex 2 (PRC2). PRC2 localizes to heterochromatin domains across master-regulator transcription factor gene bodies, suggesting it safeguards epithelial cell fate. Moreover, we demonstrate that FGF hyper-stimulation in vivo leads to MAF network activation and the emergence of novel lens cell states. Collectively, these data depict a comprehensive portrait of lens fiber cell differentiation, while defining regulatory effectors of cell identity and cataract formation.
Collapse
Affiliation(s)
- Jared A. Tangeman
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056, USA
| | - Sofia M. Rebull
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Jacob M. Weaver
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056, USA
| | - Stacy Bendezu-Sayas
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056, USA
| | - Michael L. Robinson
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056, USA
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE 19713, USA
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
4
|
Perez-Estrada JR, Tangeman JA, Proto-Newton M, Sanaka H, Smucker B, Del Rio-Tsonis K. DISTINCT METABOLIC STATES DIRECT RETINAL PIGMENT EPITHELIUM CELL FATE DECISIONS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559631. [PMID: 37808829 PMCID: PMC10557760 DOI: 10.1101/2023.09.26.559631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
During tissue regeneration, proliferation, dedifferentiation, and reprogramming are necessary to restore lost structures. However, it is not fully understood how metabolism intersects with these processes. Chicken embryos can regenerate their retina through retinal pigment epithelium (RPE) reprogramming when treated with fibroblast factor 2 (FGF2). Using transcriptome profiling, we uncovered extensive regulation of gene sets pertaining to proliferation, neurogenesis, and glycolysis throughout RPE-to-neural retina reprogramming. By manipulating cell media composition, we determined that glucose, glutamine, or pyruvate are sufficient to support RPE reprogramming identifying glycolysis as a requisite. Conversely, the induction of oxidative metabolism by activation of pyruvate dehydrogenase induces Epithelial-to-mesenchymal transition (EMT), while simultaneously blocking the activation of neural retina fate. We also identify that EMT is partially driven by an oxidative environment. Our findings provide evidence that metabolism controls RPE cell fate decisions and provide insights into the metabolic state of RPE cells, which are prone to fate changes in regeneration and pathologies, such as proliferative vitreoretinopathy.
Collapse
|
5
|
Gozlan S, Batoumeni V, Fournier T, Nanteau C, Potey A, Clémençon M, Orieux G, Sahel JA, Goureau O, Roger JE, Reichman S. Bankable human iPSC-derived retinal progenitors represent a valuable source of multipotent cells. Commun Biol 2023; 6:762. [PMID: 37479765 PMCID: PMC10362027 DOI: 10.1038/s42003-023-04956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/14/2023] [Indexed: 07/23/2023] Open
Abstract
Retinal progenitor cells (RPCs) are the source of all retinal cell types during retinogenesis. Until now, the isolation and expansion of RPCs has been at the expense of their multipotency. Here, we report simple methods and media for the generation, expansion, and cryopreservation of human induced pluripotent stem-cell derived-RPCs (hiRPCs). Thawed and passed hiRPCs maintained biochemical and transcriptional RPC phenotypes and their ability to differentiate into all retinal cell types. Specific conditions allowed the generation of large cultures of photoreceptor precursors enriched up to 90% within a few weeks and without a purification step. Combined RNA-seq analysis between hiRPCs and retinal organoids identified genes involved in developmental or degenerative retinal diseases. Thus, hiRPC lines could provide a valuable source of retinal cells for cell-based therapies or drug discovery and could be an advanced cellular tool to better understand retinal dystrophies.
Collapse
Affiliation(s)
- Sandy Gozlan
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Vivien Batoumeni
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Tara Fournier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Céline Nanteau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Anais Potey
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Marilou Clémençon
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Gaël Orieux
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, F-75012, Paris, France
- Fondation Ophtalmologique Adolphe de Rothschild, F-75019, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, US
| | - Olivier Goureau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France
| | - Jérôme E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, 91400, Saclay, France
| | - Sacha Reichman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012, Paris, France.
| |
Collapse
|
6
|
Tangeman JA, Rebull SM, Grajales-Esquivel E, Weaver JM, Bendezu-Sayas S, Robinson ML, Lachke SA, Rio-Tsonis KD. Integrated single-cell multiomics uncovers foundational regulatory mechanisms of lens development and pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548451. [PMID: 37502967 PMCID: PMC10369908 DOI: 10.1101/2023.07.10.548451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ocular lens development entails epithelial to fiber cell differentiation, defects in which cause congenital cataract. We report the first single-cell multiomic atlas of lens development, leveraging snRNA-seq, snATAC-seq, and CUT&RUN-seq to discover novel mechanisms of cell fate determination and cataract-linked regulatory networks. A comprehensive profile of cis- and trans-regulatory interactions, including for the cataract-linked transcription factor MAF, is established across a temporal trajectory of fiber cell differentiation. Further, we divulge a conserved epigenetic paradigm of cellular differentiation, defined by progressive loss of H3K27 methylation writer Polycomb repressive complex 2 (PRC2). PRC2 localizes to heterochromatin domains across master-regulator transcription factor gene bodies, suggesting it safeguards epithelial cell fate. Moreover, we demonstrate that FGF hyper-stimulation in vivo leads to MAF network activation and the emergence of novel lens cell states. Collectively, these data depict a comprehensive portrait of lens fiber cell differentiation, while defining regulatory effectors of cell identity and cataract formation.
Collapse
Affiliation(s)
- Jared A Tangeman
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056 USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 USA
| | - Sofia M Rebull
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056 USA
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056 USA
| | - Jacob M Weaver
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056 USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 USA
| | - Stacy Bendezu-Sayas
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056 USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 USA
| | - Michael L Robinson
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056 USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE 19713 USA
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056 USA
- Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH 45056 USA
| |
Collapse
|
7
|
Olmos-Carreño CL, Figueres-Oñate M, Scicolone GE, López-Mascaraque L. Cell Fate of Retinal Progenitor Cells: In Ovo UbC-StarTrack Analysis. Int J Mol Sci 2022; 23:ijms232012388. [PMID: 36293245 PMCID: PMC9604099 DOI: 10.3390/ijms232012388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022] Open
Abstract
Clonal cell analysis outlines the ontogenic potential of single progenitor cells, allowing the elucidation of the neural heterogeneity among different cell types and their lineages. In this work, we analyze the potency of retinal stem/progenitor cells through development using the chick embryo as a model. We implemented in ovo the clonal genetic tracing strategy UbC-StarTrack for tracking retinal cell lineages derived from individual progenitors of the ciliary margin at E3.5 (HH21-22). The clonal assignment of the derived-cell progeny was performed in the neural retina at E11.5-12 (HH38) through the identification of sibling cells as cells expressing the same combination of fluorophores. Moreover, cell types were assessed based on their cellular morphology and laminar location. Ciliary margin derived-cell progenies are organized in columnar associations distributed along the peripheral retina with a limited tangential dispersion. The analysis revealed that, at the early stages of development, this region harbors multipotent and committed progenitor cells.
Collapse
Affiliation(s)
- Cindy L. Olmos-Carreño
- Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), CONICET and Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
- Instituto Cajal-CSIC, Molecular, Cellular and Developmental Neurobiology Department, 28002 Madrid, Spain
| | - María Figueres-Oñate
- Instituto Cajal-CSIC, Molecular, Cellular and Developmental Neurobiology Department, 28002 Madrid, Spain
- Correspondence: (M.F.-O.); (L.L.-M.)
| | - Gabriel E. Scicolone
- Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), CONICET and Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Laura López-Mascaraque
- Instituto Cajal-CSIC, Molecular, Cellular and Developmental Neurobiology Department, 28002 Madrid, Spain
- Correspondence: (M.F.-O.); (L.L.-M.)
| |
Collapse
|
8
|
Sharma P, Ramachandran R. Retina regeneration: lessons from vertebrates. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac012. [PMID: 38596712 PMCID: PMC10913848 DOI: 10.1093/oons/kvac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 04/11/2024]
Abstract
Unlike mammals, vertebrates such as fishes and frogs exhibit remarkable tissue regeneration including the central nervous system. Retina being part of the central nervous system has attracted the interest of several research groups to explore its regenerative ability in different vertebrate models including mice. Fishes and frogs completely restore the size, shape and tissue structure of an injured retina. Several studies have unraveled molecular mechanisms underlying retina regeneration. In teleosts, soon after injury, the Müller glial cells of the retina reprogram to form a proliferating population of Müller glia-derived progenitor cells capable of differentiating into various neural cell types and Müller glia. In amphibians, the transdifferentiation of retinal pigment epithelium and differentiation of ciliary marginal zone cells contribute to retina regeneration. In chicks and mice, supplementation with external growth factors or genetic modifications cause a partial regenerative response in the damaged retina. The initiation of retina regeneration is achieved through sequential orchestration of gene expression through controlled modulations in the genetic and epigenetic landscape of the progenitor cells. Several developmental biology pathways are turned on during the Müller glia reprogramming, retinal pigment epithelium transdifferentiation and ciliary marginal zone differentiation. Further, several tumorigenic pathways and gene expression events also contribute to the complete regeneration cascade of events. In this review, we address the various retinal injury paradigms and subsequent gene expression events governed in different vertebrate species. Further, we compared how vertebrates such as teleost fishes and amphibians can achieve excellent regenerative responses in the retina compared with their mammalian counterparts.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| | - Rajesh Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| |
Collapse
|
9
|
Tangeman JA, Pérez-Estrada JR, Van Zeeland E, Liu L, Danciutiu A, Grajales-Esquivel E, Smucker B, Liang C, Del Rio-Tsonis K. A Stage-Specific OTX2 Regulatory Network and Maturation-Associated Gene Programs Are Inherent Barriers to RPE Neural Competency. Front Cell Dev Biol 2022; 10:875155. [PMID: 35517508 PMCID: PMC9062105 DOI: 10.3389/fcell.2022.875155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/28/2022] [Indexed: 12/30/2022] Open
Abstract
The retinal pigment epithelium (RPE) exhibits a diverse range of plasticity across vertebrates and is a potential source of cells for the regeneration of retinal neurons. Embryonic amniotes possess a transitory ability to regenerate neural retina through the reprogramming of RPE cells in an FGF-dependent manner. Chicken RPE can regenerate neural retina at embryonic day 4 (E4), but RPE neural competence is lost by embryonic day 5 (E5). To identify mechanisms that underlie loss of regenerative competence, we performed RNA and ATAC sequencing using E4 and E5 chicken RPE, as well as at both stages following retinectomy and FGF2 treatment. We find that genes associated with neural retina fate remain FGF2-inducible in the non-regenerative E5 RPE. Coinciding with fate restriction, RPE cells stably exit the cell cycle and dampen the expression of cell cycle progression genes normally expressed during regeneration, including E2F1. E5 RPE exhibits progressive activation of gene pathways associated with mature function independently of retinectomy or FGF2 treatment, including retinal metabolism, pigmentation synthesis, and ion transport. Moreover, the E5 RPE fails to efficiently repress OTX2 expression in response to FGF2. Predicted OTX2 binding motifs undergo robust accessibility increases in E5 RPE, many of which coincide with putative regulatory elements for genes known to facilitate RPE differentiation and maturation. Together, these results uncover widespread alterations in gene regulation that culminate in the loss of RPE neural competence and implicate OTX2 as a key determinant in solidifying the RPE fate. These results yield valuable insight to the basis of RPE lineage restriction during early development and will be of importance in understanding the varying capacities for RPE-derived retinal regeneration observed among vertebrates.
Collapse
Affiliation(s)
- Jared A. Tangeman
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| | - J. Raúl Pérez-Estrada
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| | - Emily Van Zeeland
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| | - Lin Liu
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| | - Alexandra Danciutiu
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| | - Byran Smucker
- Department of Statistics, Miami University, Oxford, OH, United States
| | - Chun Liang
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
- Department of Computer Science and Software Engineering, Miami University, Oxford, OH, United States
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH, United States
| |
Collapse
|
10
|
Grigoryan EN. Pigment Epithelia of the Eye: Cell-Type Conversion in Regeneration and Disease. Life (Basel) 2022; 12:life12030382. [PMID: 35330132 PMCID: PMC8955580 DOI: 10.3390/life12030382] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
Pigment epithelial cells (PECs) of the retina (RPE), ciliary body, and iris (IPE) are capable of altering their phenotype. The main pathway of phenotypic switching of eye PECs in vertebrates and humans in vivo and/or in vitro is neural/retinal. Besides, cells of amphibian IPE give rise to the lens and its derivatives, while mammalian and human RPE can be converted along the mesenchymal pathway. The PECs’ capability of conversion in vivo underlies the lens and retinal regeneration in lower vertebrates and retinal diseases such as proliferative vitreoretinopathy and fibrosis in mammals and humans. The present review considers these processes studied in vitro and in vivo in animal models and in humans. The molecular basis of conversion strategies in PECs is elucidated. Being predetermined onto- and phylogenetically, it includes a species-specific molecular context, differential expression of transcription factors, signaling pathways, and epigenomic changes. The accumulated knowledge regarding the mechanisms of PECs phenotypic switching allows the development of approaches to specified conversion for many purposes: obtaining cells for transplantation, creating conditions to stimulate natural regeneration of the retina and the lens, blocking undesirable conversions associated with eye pathology, and finding molecular markers of pathology to be targets of therapy.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
11
|
Neurospheres obtained from the ciliary margin of the chicken eye possess positional values and retinal ganglion cells differentiated from them respond to EphA/ephrin-A system. Exp Eye Res 2022; 217:108965. [DOI: 10.1016/j.exer.2022.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022]
|
12
|
Sherpa RD, Hui SP. An insight on established retinal injury mechanisms and prevalent retinal stem cell activation pathways in vertebrate models. Animal Model Exp Med 2021; 4:189-203. [PMID: 34557646 PMCID: PMC8446703 DOI: 10.1002/ame2.12177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Implementing different tools and injury mechanisms in multiple animal models of retina regeneration, researchers have discovered the existence of retinal stem/progenitor cells. Although they appear to be distributed uniformly across the vertebrate lineage, the reparative potential of the retina is mainly restricted to lower vertebrates. Regenerative repair post-injury requires the creation of a proliferative niche, vital for proper stem cell activation, propagation, and lineage differentiation. This seems to be lacking in mammals. Hence, in this review, we first discuss the many forms of retinal injuries that have been generated using animal models. Next, we discuss how they are utilized to stimulate regeneration and mimic eye disease pathologies. The key to driving stem cell activation in mammals relies on the information we can gather from these models. Lastly, we present a brief update about the genes, growth factors, and signaling pathways that have been brought to light using these models.
Collapse
Affiliation(s)
| | - Subhra Prakash Hui
- S. N. Pradhan Centre for NeurosciencesUniversity of CalcuttaKolkataIndia
| |
Collapse
|
13
|
Edgar A, Mitchell DG, Martindale MQ. Whole-Body Regeneration in the Lobate Ctenophore Mnemiopsis leidyi. Genes (Basel) 2021; 12:genes12060867. [PMID: 34198839 PMCID: PMC8228598 DOI: 10.3390/genes12060867] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/28/2023] Open
Abstract
Ctenophores (a.k.a. comb jellies) are one of the earliest branching extant metazoan phyla. Adult regenerative ability varies greatly within the group, with platyctenes undergoing both sexual and asexual reproduction by fission while others in the genus Beroe having completely lost the ability to replace missing body parts. We focus on the unique regenerative aspects of the lobate ctenophore, Mnemiopsis leidyi, which has become a popular model for its rapid wound healing and tissue replacement, optical clarity, and sequenced genome. M. leidyi’s highly mosaic, stereotyped development has been leveraged to reveal the polar coordinate system that directs whole-body regeneration as well as lineage restriction of replacement cells in various regenerating organs. Several cell signaling pathways known to function in regeneration in other animals are absent from the ctenophore’s genome. Further research will either reveal ancient principles of the regenerative process common to all animals or reveal novel solutions to the stability of cell fates and whole-body regeneration.
Collapse
|
14
|
Tangeman JA, Luz-Madrigal A, Sreeskandarajan S, Grajales-Esquivel E, Liu L, Liang C, Tsonis PA, Del Rio-Tsonis K. Transcriptome Profiling of Embryonic Retinal Pigment Epithelium Reprogramming. Genes (Basel) 2021; 12:genes12060840. [PMID: 34072522 PMCID: PMC8226911 DOI: 10.3390/genes12060840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/22/2021] [Indexed: 12/27/2022] Open
Abstract
The plasticity of human retinal pigment epithelium (RPE) has been observed during proliferative vitreoretinopathy, a defective repair process during which injured RPE gives rise to fibrosis. In contrast, following injury, the RPE of the embryonic chicken can be reprogrammed to regenerate neural retina in a fibroblast growth factor 2 (FGF2)-dependent manner. To better explore the mechanisms underlying embryonic RPE reprogramming, we used laser capture microdissection to isolate RNA from (1) intact RPE, (2) transiently reprogrammed RPE (t-rRPE) 6 h post-retinectomy, and (3) reprogrammed RPE (rRPE) 6 h post-retinectomy with FGF2 treatment. Using RNA-seq, we observed the acute repression of genes related to cell cycle progression in the injured t-rRPE, as well as up-regulation of genes associated with injury. In contrast, the rRPE was strongly enriched for mitogen-activated protein kinase (MAPK)-responsive genes and retina development factors, confirming that FGF2 and the downstream MAPK cascade are the main drivers of embryonic RPE reprogramming. Clustering and pathway enrichment analysis was used to create an integrated network of the core processes associated with RPE reprogramming, including key terms pertaining to injury response, migration, actin dynamics, and cell cycle progression. Finally, we employed gene set enrichment analysis to suggest a previously uncovered role for epithelial-mesenchymal transition (EMT) machinery in the initiation of embryonic chick RPE reprogramming. The EMT program is accompanied by extensive, coordinated regulation of extracellular matrix (ECM) associated factors, and these observations together suggest an early role for ECM and EMT-like dynamics during reprogramming. Our study provides for the first time an in-depth transcriptomic analysis of embryonic RPE reprogramming and will prove useful in guiding future efforts to understand proliferative disorders of the RPE and to promote retinal regeneration.
Collapse
Affiliation(s)
- Jared A. Tangeman
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
| | - Agustín Luz-Madrigal
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sutharzan Sreeskandarajan
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
| | - Lin Liu
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
| | - Chun Liang
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- Department of Computer Science and Software Engineering, Miami University, Oxford, OH 45056, USA
| | - Panagiotis A. Tsonis
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH 45469, USA;
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH 45056, USA; (J.A.T.); (A.L.-M.); (S.S.); (E.G.-E.); (L.L.); (C.L.)
- Correspondence: ; Tel.: +513-529-3128; Fax: +513-529-6900
| |
Collapse
|
15
|
George SM, Lu F, Rao M, Leach LL, Gross JM. The retinal pigment epithelium: Development, injury responses, and regenerative potential in mammalian and non-mammalian systems. Prog Retin Eye Res 2021; 85:100969. [PMID: 33901682 DOI: 10.1016/j.preteyeres.2021.100969] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Diseases that result in retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration (AMD), are among the leading causes of blindness worldwide. Atrophic (dry) AMD is the most prevalent form of AMD and there are currently no effective therapies to prevent RPE cell death or restore RPE cells lost from AMD. An intriguing approach to treat AMD and other RPE degenerative diseases is to develop therapies focused on stimulating endogenous RPE regeneration. For this to become feasible, a deeper understanding of the mechanisms underlying RPE development, injury responses and regenerative potential is needed. In mammals, RPE regeneration is extremely limited; small lesions can be repaired by the expansion of adjacent RPE cells, but large lesions cannot be repaired as remaining RPE cells are unable to functionally replace lost RPE tissue. In some injury paradigms, RPE cells proliferate but do not regenerate a morphologically normal monolayer, while in others, proliferation is pathogenic and results in further disruption to the retina. This is in contrast to non-mammalian vertebrates, which possess tremendous RPE regenerative potential. Here, we discuss what is known about RPE formation during development in mammalian and non-mammalian vertebrates, we detail the processes by which RPE cells respond to injury, and we describe examples of RPE-to-retina and RPE-to-RPE regeneration in non-mammalian vertebrates. Finally, we outline barriers to RPE-dependent regeneration in mammals that could potentially be overcome to stimulate a regenerative response from the RPE.
Collapse
Affiliation(s)
- Stephanie M George
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fangfang Lu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lyndsay L Leach
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
16
|
Singh RK, Nasonkin IO. Limitations and Promise of Retinal Tissue From Human Pluripotent Stem Cells for Developing Therapies of Blindness. Front Cell Neurosci 2020; 14:179. [PMID: 33132839 PMCID: PMC7513806 DOI: 10.3389/fncel.2020.00179] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The self-formation of retinal tissue from pluripotent stem cells generated a tremendous promise for developing new therapies of retinal degenerative diseases, which previously seemed unattainable. Together with use of induced pluripotent stem cells or/and CRISPR-based recombineering the retinal organoid technology provided an avenue for developing models of human retinal degenerative diseases "in a dish" for studying the pathology, delineating the mechanisms and also establishing a platform for large-scale drug screening. At the same time, retinal organoids, highly resembling developing human fetal retinal tissue, are viewed as source of multipotential retinal progenitors, young photoreceptors and just the whole retinal tissue, which may be transplanted into the subretinal space with a goal of replacing patient's degenerated retina with a new retinal "patch." Both approaches (transplantation and modeling/drug screening) were projected when Yoshiki Sasai demonstrated the feasibility of deriving mammalian retinal tissue from pluripotent stem cells, and generated a lot of excitement. With further work and testing of both approaches in vitro and in vivo, a major implicit limitation has become apparent pretty quickly: the absence of the uniform layer of Retinal Pigment Epithelium (RPE) cells, which is normally present in mammalian retina, surrounds photoreceptor layer and develops and matures first. The RPE layer polarize into apical and basal sides during development and establish microvilli on the apical side, interacting with photoreceptors, nurturing photoreceptor outer segments and participating in the visual cycle by recycling 11-trans retinal (bleached pigment) back to 11-cis retinal. Retinal organoids, however, either do not have RPE layer or carry patches of RPE mostly on one side, thus directly exposing most photoreceptors in the developing organoids to neural medium. Recreation of the critical retinal niche between the apical RPE and photoreceptors, where many retinal disease mechanisms originate, is so far unattainable, imposes clear limitations on both modeling/drug screening and transplantation approaches and is a focus of investigation in many labs. Here we dissect different retinal degenerative diseases and analyze how and where retinal organoid technology can contribute the most to developing therapies even with a current limitation and absence of long and functional outer segments, supported by RPE.
Collapse
|
17
|
Luz-Madrigal A, Grajales-Esquivel E, Tangeman J, Kosse S, Liu L, Wang K, Fausey A, Liang C, Tsonis PA, Del Rio-Tsonis K. DNA demethylation is a driver for chick retina regeneration. Epigenetics 2020; 15:998-1019. [PMID: 32290791 PMCID: PMC7518676 DOI: 10.1080/15592294.2020.1747742] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023] Open
Abstract
Cellular reprogramming resets the epigenetic landscape to drive shifts in transcriptional programmes and cell identity. The embryonic chick can regenerate a complete neural retina, after retinectomy, via retinal pigment epithelium (RPE) reprogramming in the presence of FGF2. In this study, we systematically analysed the reprogramming competent chick RPE prior to injury, and during different stages of reprogramming. In addition to changes in the expression of genes associated with epigenetic modifications during RPE reprogramming, we observed dynamic changes in histone marks associated with bivalent chromatin (H3K27me3/H3K4me3) and intermediates of the process of DNA demethylation including 5hmC and 5caC. Comprehensive analysis of the methylome by whole-genome bisulphite sequencing (WGBS) confirmed extensive rearrangements of DNA methylation patterns including differentially methylated regions (DMRs) found at promoters of genes associated with chromatin organization and fibroblast growth factor production. We also identified Tet methylcytosine dioxygenase 3 (TET3) as an important factor for DNA demethylation and retina regeneration, capable of reprogramming RPE in the absence of exogenous FGF2. In conclusion, we demonstrate that injury early in RPE reprogramming triggers genome-wide dynamic changes in chromatin, including bivalent chromatin and DNA methylation. In the presence of FGF2, these dynamic modifications are further sustained in the commitment to form a new retina. Our findings reveal active DNA demethylation as an important process that may be applied to remove the epigenetic barriers in order to regenerate retina in mammals. ABBREVIATIONS bp: Base pair; DMR: Differentially methylated region; DMC: Differentially methylated cytosines; GFP: Green fluorescent protein; PCR: Polymerase chain reaction. TET: Ten-eleven translocation; RPE: retinal pigment epithelium.
Collapse
Affiliation(s)
- Agustín Luz-Madrigal
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
- Department of Biology and Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Jared Tangeman
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Sarah Kosse
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Lin Liu
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Kai Wang
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Andrew Fausey
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Chun Liang
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
- Department of Computer Science and Software Engineering, Miami University, Oxford, OH, USA
| | - Panagiotis A. Tsonis
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH, USA
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| |
Collapse
|
18
|
Cigliola V, Ghila L, Chera S, Herrera PL. Tissue repair brakes: A common paradigm in the biology of regeneration. Stem Cells 2019; 38:330-339. [PMID: 31722129 DOI: 10.1002/stem.3118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/09/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022]
Abstract
To date, most attention on tissue regeneration has focused on the exploration of positive cues promoting or allowing the engagement of natural cellular restoration upon injury. In contrast, the signals fostering cell identity maintenance in the vertebrate body have been poorly investigated; yet they are crucial, for their counteraction could become a powerful method to induce and modulate regeneration. Here we review the mechanisms inhibiting pro-regenerative spontaneous adaptive cell responses in different model organisms and organs. The pharmacological or genetic/epigenetic modulation of such regenerative brakes could release a dormant but innate adaptive competence of certain cell types and therefore boost tissue regeneration in different situations.
Collapse
Affiliation(s)
- Valentina Cigliola
- Department of Cell Biology, Regeneration Next, Duke University Medical Center, Durham, North Carolina
| | - Luiza Ghila
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pedro L Herrera
- Department of Genetic Medicine & Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Tsai IC, Adams KA, Tzeng JA, Shennib O, Tan PL, Katsanis N. Genome-wide suppressor screen identifies USP35/USP38 as therapeutic candidates for ciliopathies. JCI Insight 2019; 4:130516. [PMID: 31723061 DOI: 10.1172/jci.insight.130516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
The ciliopathies are a group of phenotypically overlapping disorders caused by structural or functional defects in the primary cilium. Although disruption of numerous signaling pathways and cellular trafficking events have been implicated in ciliary pathology, treatment options for affected individuals remain limited. Here, we performed a genome-wide RNAi (RNA interference) screen to identify genetic suppressors of BBS4, one of the genes mutated in Bardet-Biedl syndrome (BBS). We discovered 10 genes that, when silenced, ameliorate BBS4-dependent pathology. One of these encodes USP35, a negative regulator of the ubiquitin proteasome system, suggesting that inhibition of a deubiquitinase, and subsequent facilitation of the clearance of signaling components, might ameliorate BBS-relevant phenotypes. Testing of this hypothesis in transient and stable zebrafish genetic models showed this posit to be true; suppression or ablation of usp35 ameliorated hallmark ciliopathy defects including impaired convergent extension (CE), renal tubule convolution, and retinal degeneration with concomitant clearance of effectors such as β-catenin and rhodopsin. Together, our findings reinforce a direct link between proteasome-dependent degradation and ciliopathies and suggest that augmentation of this system might offer a rational path to novel therapeutic modalities.
Collapse
Affiliation(s)
- I-Chun Tsai
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kevin A Adams
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joyce A Tzeng
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina, USA
| | - Omar Shennib
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina, USA
| | - Perciliz L Tan
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina, USA.,Rescindo Therapeutics, Durham, North Carolina, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University School of Medicine, Durham, North Carolina, USA.,Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Departments of Pediatrics and Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
20
|
Vutipongsatorn K, Yokoi T, Ohno-Matsui K. Current and emerging pharmaceutical interventions for myopia. Br J Ophthalmol 2019; 103:1539-1548. [DOI: 10.1136/bjophthalmol-2018-313798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/22/2019] [Accepted: 04/27/2019] [Indexed: 01/09/2023]
Abstract
Myopia is a major cause of visual impairment. Its prevalence is growing steadily, especially in East Asia. Despite the immense disease and economic burden, there are currently no Food and Drug Administration-approved drugs for myopia. This review aims to summarise pharmaceutical interventions of myopia at clinical and preclinical stages in the last decade and discuss challenges for preclinical myopia drugs to progress to clinical trials. Atropine and oral 7-methylxanthine are shown to reduce myopia progression in human studies. The former has been extensively studied and is arguably the most successful medication. However, it has side effects and trials on low-dose atropine are ongoing. Other pharmaceutical agents being investigated at a clinical trial level include ketorolac tromethamine, oral riboflavin and BHVI2 (an experimental drug). Since the pathophysiology of myopia is not fully elucidated, numerous drugs have been tested at the preclinical stage and can be broadly categorised based on the proposed mechanisms of myopisation, namely antimuscarinic, dopaminergic, anti-inflammatory and more. However, several agents were injected intravitreally or subconjunctivally, hindering their progress to human trials. Furthermore, with atropine being the most successful medication available, future preclinical interventions should be studied in combination with atropine to optimise the treatment of myopia.
Collapse
|
21
|
Grigoryan EN. Endogenous Cell Sources for Eye Retina Regeneration in Vertebrate Animals and Humans. Russ J Dev Biol 2019. [DOI: 10.1134/s106236041901003x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Hanovice NJ, Leach LL, Slater K, Gabriel AE, Romanovicz D, Shao E, Collery R, Burton EA, Lathrop KL, Link BA, Gross JM. Regeneration of the zebrafish retinal pigment epithelium after widespread genetic ablation. PLoS Genet 2019; 15:e1007939. [PMID: 30695061 PMCID: PMC6368336 DOI: 10.1371/journal.pgen.1007939] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/08/2019] [Accepted: 01/07/2019] [Indexed: 01/17/2023] Open
Abstract
The retinal pigment epithelium (RPE) is a specialized monolayer of pigmented cells within the eye that is critical for maintaining visual system function. Diseases affecting the RPE have dire consequences for vision, and the most prevalent of these is atrophic (dry) age-related macular degeneration (AMD), which is thought to result from RPE dysfunction and degeneration. An intriguing possibility for treating RPE degenerative diseases like atrophic AMD is the stimulation of endogenous RPE regeneration; however, very little is known about the mechanisms driving successful RPE regeneration in vivo. Here, we developed a zebrafish transgenic model (rpe65a:nfsB-eGFP) that enabled ablation of large swathes of mature RPE. RPE ablation resulted in rapid RPE degeneration, as well as degeneration of Bruch’s membrane and underlying photoreceptors. Using this model, we demonstrate for the first time that zebrafish are capable of regenerating a functional RPE monolayer after RPE ablation. Regenerated RPE cells first appear at the periphery of the RPE, and regeneration proceeds in a peripheral-to-central fashion. RPE ablation elicits a robust proliferative response in the remaining RPE. Subsequently, proliferative cells move into the injury site and differentiate into RPE. BrdU incorporation assays demonstrate that the regenerated RPE is likely derived from remaining peripheral RPE cells. Pharmacological disruption using IWR-1, a Wnt signaling antagonist, significantly reduces cell proliferation in the RPE and impairs overall RPE recovery. These data demonstrate that the zebrafish RPE possesses a robust capacity for regeneration and highlight a potential mechanism through which endogenous RPE regenerate in vivo. Diseases resulting in retinal pigment epithelium (RPE) degeneration are among the leading causes of blindness worldwide, and no therapy exists that can replace RPE or restore lost vision. One intriguing possibility is the development of therapies focused on stimulating endogenous RPE regeneration. For this to be possible, we must first gain a deeper understanding of the mechanisms underlying RPE regeneration. Here, we develop a transgenic zebrafish system through which we ablate large swathes of mature RPE and demonstrate that zebrafish regenerate RPE after widespread injury. Injury-adjacent RPE proliferate and regenerate RPE, suggesting that they are the source of regenerated tissue. Finally, we demonstrate that Wnt signaling may be involved in RPE regeneration. These findings establish a versatile in vivo model through which the molecular and cellular underpinnings of RPE regeneration can be further characterized.
Collapse
Affiliation(s)
- Nicholas J. Hanovice
- Department of Ophthalmology, Louis J Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lyndsay L. Leach
- Department of Ophthalmology, Louis J Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kayleigh Slater
- Department of Ophthalmology, Louis J Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Ana E. Gabriel
- Department of Ophthalmology, Louis J Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dwight Romanovicz
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, Texas, United States of America
| | - Enhua Shao
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Tsinghua University Medical School, Beijing, China
| | - Ross Collery
- Department of Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Edward A. Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Geriatric Research, Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, Pennsylvania, United States of America
| | - Kira L. Lathrop
- Department of Ophthalmology, Louis J Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, United States of America
| | - Brian A. Link
- Department of Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jeffrey M. Gross
- Department of Ophthalmology, Louis J Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
23
|
Ueda Y, Shimizu Y, Shimizu N, Ishitani T, Ohshima T. Involvement of sonic hedgehog and notch signaling in regenerative neurogenesis in adult zebrafish optic tectum after stab injury. J Comp Neurol 2018; 526:2360-2372. [PMID: 30014463 DOI: 10.1002/cne.24489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 01/11/2023]
Abstract
Unlike humans and other mammals, adult zebrafish have the superior capability to recover from central nervous system (CNS) injury. We previously found that proliferation of radial glia (RG) is induced in response to stab injury in optic tectum and that new neurons are generated from RG after stab injury. However, molecular mechanisms which regulate proliferation and differentiation of RG are not well known. In the present study, we investigated Shh and Notch signaling as potential mechanisms regulating regeneration in the optic tectum of adult zebrafish. We used Shh reporter fish and confirmed that canonical Shh signaling is activated specifically in RG after stab injury. Moreover, we have shown that Shh signaling promotes RG proliferation and suppresses their differentiation into neurons after stab injury. In contrast, Notch signaling was down-regulated after stab injury, indicated by the decrease in the expression level of her4 and her6, a target gene of Notch signaling. We also found that inhibition of Notch signaling after stab injury induced more proliferative RG, but that inhibition of Notch signaling inhibited generation of newborn neurons from RG after stab injury. These results suggest that high level of Notch signaling keeps RG quiescent and that appropriate level of Notch signaling is required for generation of newborn neurons from RG. Under physiological condition, activation of Shh signaling or inhibition of Notch signaling also induced RG proliferation. In adult optic tectum of zebrafish, canonical Shh signaling and Notch signaling play important roles in proliferation and differentiation of RG in physiological and regenerative conditions.
Collapse
Affiliation(s)
- Yuto Ueda
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Yuki Shimizu
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Nobuyuki Shimizu
- Division of Cell Regulation Systems, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tohru Ishitani
- Division of Cell Regulation Systems, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Lab of Integrated Signaling Systems, Department of Molecular Medicine, Institute for Molecular & Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| |
Collapse
|
24
|
Liu M, Chen X, Liu H, Di Y. Expression and significance of the Hedgehog signal transduction pathway in oxygen-induced retinal neovascularization in mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1337-1346. [PMID: 29861625 PMCID: PMC5968796 DOI: 10.2147/dddt.s149594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aim The aim of the study was to investigate the signal transduction mechanism of Hedgehog–vascular endothelial growth factor in oxygen-induced retinopathy (OIR) and the effects of cyclopamine on OIR. Methods An OIR model was established in C57BL/6J mice exposed to hyperoxia. Two hundred mice were randomly divided into a control group, an OIR group, an OIR-control group (treated with isometric phosphate-buffered saline by intravitreal injection), and a cyclopamine group (treated with cyclopamine by intravitreal injection), with 50 mice in each group. The retinal vascular morphology was observed using adenosine diphosphatase and number counting using hematoxylin and eosin-stained image. Quantitative real-time quantitative polymerase chain reaction was used to detect mRNA expression. Protein location and expression were evaluated using immunohistochemistry and Western blot. Results The OIR group and OIR-control group demonstrated large-area pathological neovascularization and nonperfused area when compared with the control group (both P<0.05). The area of nonperfusion and neovascularization in the cyclopamine group was significantly reduced compared with the OIR and OIR-control groups (both P<0.05). Compared with the control group, the OIR and OIR-control groups had more vascular endothelial cells breaking through the inner limiting membrane. The number of new blood vessel endothelial cell nuclei in the cyclopamine group was significantly reduced (both P<0.05) when compared with the OIR and OIR-control groups. The mRNA and protein expressions of Smoothened, Gli1, and vascular endothelial growth factor in the signal pathway of the OIR and OIR-control groups were significantly higher than those of the control group; however, in the cyclopamine group, these factors were reduced when compared with the OIR and OIR-control groups (all P<0.05). Conclusion Our data suggest that abnormal expression of the Hedgehog signaling pathway may be closely associated with the formation of OIR. Inhibiting the Smoothened receptor using cyclopamine could control retinal neovascularization, providing new ideas and measures for the prevention of oxygen-induced retinal neovascularization.
Collapse
Affiliation(s)
- Meilin Liu
- Department of Ophthalmology, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaolong Chen
- Department of Ophthalmology, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Henan Liu
- Department of Ophthalmology, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yu Di
- Department of Ophthalmology, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
25
|
Echeverri-Ruiz N, Haynes T, Landers J, Woods J, Gemma MJ, Hughes M, Del Rio-Tsonis K. A biochemical basis for induction of retina regeneration by antioxidants. Dev Biol 2017; 433:394-403. [PMID: 29291983 PMCID: PMC5753421 DOI: 10.1016/j.ydbio.2017.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
Abstract
The use of antioxidants in tissue regeneration has been studied, but their mechanism of action is not well understood. Here, we analyze the role of the antioxidant N-acetylcysteine (NAC) in retina regeneration. Embryonic chicks are able to regenerate their retina after its complete removal from retinal stem/progenitor cells present in the ciliary margin (CM) of the eye only if a source of exogenous factors, such as FGF2, is present. This study shows that NAC modifies the redox status of the CM, initiates self-renewal of the stem/progenitor cells, and induces regeneration in the absence of FGF2. NAC works as an antioxidant by scavenging free radicals either independently or through the synthesis of glutathione (GSH), and/or by reducing oxidized proteins through a thiol disulfide exchange activity. We dissected the mechanism used by NAC to induce regeneration through the use of inhibitors of GSH synthesis and the use of other antioxidants with different biochemical structures and modes of action, and found that NAC induces regeneration through its thiol disulfide exchange activity. Thus, our results provide, for the first time, a biochemical basis for induction of retina regeneration. Furthermore, NAC induction was independent of FGF receptor signaling, but dependent on the MAPK (pErk1/2) pathway.
Collapse
Affiliation(s)
- Nancy Echeverri-Ruiz
- Department of Biology and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA
| | - Tracy Haynes
- Department of Biology and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA
| | - Joseph Landers
- Department of Biology and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA
| | - Justin Woods
- Department of Biology and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA
| | - Michael J Gemma
- Department of Biology and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA
| | - Michael Hughes
- Department of Statistics and Statistical Consulting Center, Miami University, Oxford, OH 45056, USA
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| |
Collapse
|
26
|
Maddaluno L, Urwyler C, Werner S. Fibroblast growth factors: key players in regeneration and tissue repair. Development 2017; 144:4047-4060. [PMID: 29138288 DOI: 10.1242/dev.152587] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue injury initiates a complex repair process, which in some organisms can lead to the complete regeneration of a tissue. In mammals, however, the repair of most organs is imperfect and results in scar formation. Both regeneration and repair are orchestrated by a highly coordinated interplay of different growth factors and cytokines. Among the key players are the fibroblast growth factors (FGFs), which control the migration, proliferation, differentiation and survival of different cell types. In addition, FGFs influence the expression of other factors involved in the regenerative response. Here, we summarize current knowledge on the roles of endogenous FGFs in regeneration and repair in different organisms and in different tissues and organs. Gaining a better understanding of these FGF activities is important for appropriate modulation of FGF signaling after injury to prevent impaired healing and to promote organ regeneration in humans.
Collapse
Affiliation(s)
- Luigi Maddaluno
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Corinne Urwyler
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
27
|
Weed LS, Mills JA. Strategies for retinal cell generation from human pluripotent stem cells. Stem Cell Investig 2017; 4:65. [PMID: 28815176 DOI: 10.21037/sci.2017.07.02] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are specialized self-renewing cells that are generated by exogenously expressing pluripotency-associated transcription factors in somatic cells such as fibroblasts, peripheral blood mononuclear cells, or lymphoblastoid cell lines (LCLs). iPSCs are functionally similar to naturally pluripotent embryonic stem cells (ESCs) in their capacity to propagate indefinitely and potential to differentiate into all human cell types, and are devoid of the associated ethical complications of origin. iPSCs are useful for studying embryonic development, disease modeling, and drug screening. Additionally, iPSCs provide a personalized approach for pathological studies, particularly for diseases that lack appropriate animal models. Retinal cell differentiations using iPSCs have been successful in this regard. Several protocols to generate various retinal cells have been developed to maximize a specific cell type or, most recently, to mimic in vivo retinal structure and cellular environment. As differentiation protocols continue to improve we are likely to see an increase in our basic understanding of various retinal degenerative diseases and the utilization of iPSCs in clinical trials.
Collapse
Affiliation(s)
- Lindsey S Weed
- Center for Advanced Retinal and Ocular Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jason A Mills
- Center for Advanced Retinal and Ocular Therapeutics, F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Steinfeld J, Steinfeld I, Bausch A, Coronato N, Hampel ML, Depner H, Layer PG, Vogel-Höpker A. BMP-induced reprogramming of the neural retina into retinal pigment epithelium requires Wnt signalling. Biol Open 2017; 6:979-992. [PMID: 28546339 PMCID: PMC5550904 DOI: 10.1242/bio.018739] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/21/2017] [Indexed: 12/13/2022] Open
Abstract
In vertebrates, the retinal pigment epithelium (RPE) and photoreceptors of the neural retina (NR) comprise a functional unit required for vision. During vertebrate eye development, a conversion of the RPE into NR can be induced by growth factors in vivo at optic cup stages, but the reverse process, the conversion of NR tissue into RPE, has not been reported. Here, we show that bone morphogenetic protein (BMP) signalling can reprogram the NR into RPE at optic cup stages in chick. Shortly after BMP application, expression of Microphthalmia-associated transcription factor (Mitf) is induced in the NR and selective cell death on the basal side of the NR induces an RPE-like morphology. The newly induced RPE differentiates and expresses Melanosomalmatrix protein 115 (Mmp115) and RPE65. BMP-induced Wnt2b expression is observed in regions of the NR that become pigmented. Loss of function studies show that conversion of the NR into RPE requires both BMP and Wnt signalling. Simultaneous to the appearance of ectopic RPE tissue, BMP application reprogrammed the proximal RPE into multi-layered retinal tissue. The newly induced NR expresses visual segment homeobox-containing gene (Vsx2), and the ganglion and photoreceptor cell markers Brn3α and Visinin are detected. Our results show that high BMP concentrations are required to induce the conversion of NR into RPE, while low BMP concentrations can still induce transdifferentiation of the RPE into NR. This knowledge may contribute to the development of efficient standardized protocols for RPE and NR generation for cell replacement therapies.
Collapse
Affiliation(s)
- Jörg Steinfeld
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Ichie Steinfeld
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Alexander Bausch
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Nicola Coronato
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Meggi-Lee Hampel
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Heike Depner
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Paul G Layer
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| | - Astrid Vogel-Höpker
- Fachbereich Biologie, Abteilung Stammzell- und Entwicklungsbiologie, Schnittspahnstraße 13, Darmstadt 64287, Germany
| |
Collapse
|
29
|
Regulation of retinal pigment epithelial cell phenotype by Annexin A8. Sci Rep 2017; 7:4638. [PMID: 28680125 PMCID: PMC5498634 DOI: 10.1038/s41598-017-03493-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/28/2017] [Indexed: 12/30/2022] Open
Abstract
The retinoic acid derivative fenretinide (FR) is capable of transdifferentiating cultured retinal pigment epithelial (RPE) cells towards a neuronal-like phenotype, but the underlying mechanisms are not understood. To identify genes involved in this process we performed a microarray analysis of RPE cells pre- and post-FR treatment, and observed a marked down-regulation of AnnexinA8 (AnxA8) in transdifferentiated cells. To determine whether AnxA8 plays a role in maintaining RPE cell phenotype we directly manipulated AnxA8 expression in cultured and primary RPE cells using siRNA-mediated gene suppression, and over-expression of AnxA8-GFP in conjunction with exposure to FR. Treatment of RPE cells with AnxA8 siRNA recapitulated exposure to FR, with cell cycle arrest, neuronal transdifferentiation, and concomitant up-regulation of the neuronal markers calretinin and calbindin, as assessed by real-time PCR and immunofluorescence. In contrast, AnxA8 transient over-expression in ARPE-19 cells prevented FR-induced differentiation. Ectopic expression of AnxA8 in AnxA8-depleted cells led to decreased neuronal marker staining, and normal cell growth as judged by phosphohistone H3 staining, cell counting and cleaved caspase-3 levels. These data show that down-regulation of AnxA8 is both necessary and sufficient for neuronal transdifferentiation of RPE cells and reveal an essential role for AnxA8 as a key regulator of RPE phenotype.
Collapse
|
30
|
Tang X, Gao J, Jia X, Zhao W, Zhang Y, Pan W, He J. Bipotent progenitors as embryonic origin of retinal stem cells. J Cell Biol 2017; 216:1833-1847. [PMID: 28465291 PMCID: PMC5461025 DOI: 10.1083/jcb.201611057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/01/2017] [Accepted: 04/03/2017] [Indexed: 01/24/2023] Open
Abstract
In lower vertebrates, retinal stem cells (RSCs) capable of producing all retinal cell types are a resource for retinal tissue growth throughout life. However, the embryonic origin of RSCs remains largely elusive. Using a Zebrabow-based clonal analysis, we characterized the RSC niche in the ciliary marginal zone of zebrafish retina and illustrate that blood vessels associated with RSCs are required for the maintenance of actively proliferating RSCs. Full lineage analysis of RSC progenitors reveals lineage patterns of RSC production. Moreover, in vivo lineage analysis demonstrates that these RSC progenitors are the direct descendants of a set of bipotent progenitors in the medial epithelial layer of developing optic vesicles, suggesting the involvement of the mixed-lineage states in the RSC lineage specification.
Collapse
Affiliation(s)
- Xia Tang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianan Gao
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinling Jia
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wencao Zhao
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Yijie Zhang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weijun Pan
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Jie He
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
31
|
KIF13B establishes a CAV1-enriched microdomain at the ciliary transition zone to promote Sonic hedgehog signalling. Nat Commun 2017; 8:14177. [PMID: 28134340 PMCID: PMC5290278 DOI: 10.1038/ncomms14177] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/06/2016] [Indexed: 12/20/2022] Open
Abstract
Ciliary membrane composition is controlled by transition zone (TZ) proteins such as RPGRIP1, RPGRIPL and NPHP4, which are vital for balanced coordination of diverse signalling systems like the Sonic hedgehog (Shh) pathway. Activation of this pathway involves Shh-induced ciliary accumulation of Smoothened (SMO), which is disrupted by disease-causing mutations in TZ components. Here we identify kinesin-3 motor protein KIF13B as a novel member of the RPGRIP1N-C2 domain-containing protein family and show that KIF13B regulates TZ membrane composition and ciliary SMO accumulation. KIF13B is upregulated during ciliogenesis and is recruited to the ciliary base by NPHP4, which binds to two distinct sites in the KIF13B tail region, including an RPGRIP1N-C2 domain. KIF13B and NPHP4 are both essential for establishment of a CAV1 membrane microdomain at the TZ, which in turn is required for Shh-induced ciliary SMO accumulation. Thus KIF13B is a novel regulator of ciliary TZ configuration, membrane composition and Shh signalling.
Collapse
|
32
|
Chen J, Riazifar H, Guan MX, Huang T. Modeling autosomal dominant optic atrophy using induced pluripotent stem cells and identifying potential therapeutic targets. Stem Cell Res Ther 2016; 7:2. [PMID: 26738566 PMCID: PMC4704249 DOI: 10.1186/s13287-015-0264-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/29/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
Background Many retinal degenerative diseases are caused by the loss of retinal ganglion cells (RGCs). Autosomal dominant optic atrophy is the most common hereditary optic atrophy disease and is characterized by central vision loss and degeneration of RGCs. Currently, there is no effective treatment for this group of diseases. However, stem cell therapy holds great potential for replacing lost RGCs of patients. Compared with embryonic stem cells, induced pluripotent stem cells (iPSCs) can be derived from adult somatic cells, and they are associated with fewer ethical concerns and are less prone to immune rejection. In addition, patient-derived iPSCs may provide us with a cellular model for studying the pathogenesis and potential therapeutic agents for optic atrophy. Methods In this study, iPSCs were obtained from patients carrying an OPA1 mutation (OPA1+/−-iPSC) that were diagnosed with optic atrophy. These iPSCs were differentiated into putative RGCs, which were subsequently characterized by using RGC-specific expression markers BRN3a and ISLET-1. Results Mutant OPA1+/−-iPSCs exhibited significantly more apoptosis and were unable to efficiently differentiate into RGCs. However, with the addition of neural induction medium, Noggin, or estrogen, OPA1+/−-iPSC differentiation into RGCs was promoted. Conclusions Our results suggest that apoptosis mediated by OPA1 mutations plays an important role in the pathogenesis of optic atrophy, and both noggin and β-estrogen may represent potential therapeutic agents for OPA1-related optic atrophy. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0264-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Chen
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Hamidreza Riazifar
- Department of Pediatrics, Division of Human Genetics, University of California, Irvine, CA, 92697, USA.
| | - Min-Xin Guan
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
33
|
Human Retinal Pigment Epithelium Stem Cell (RPESC). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:557-62. [DOI: 10.1007/978-3-319-17121-0_74] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Zhu J, Lamba DA. Restoring Vision: Where are We with Stem Cells? CURRENT OPHTHALMOLOGY REPORTS 2015. [DOI: 10.1007/s40135-015-0078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Todd L, Fischer AJ. Hedgehog signaling stimulates the formation of proliferating Müller glia-derived progenitor cells in the chick retina. Development 2015; 142:2610-22. [PMID: 26116667 DOI: 10.1242/dev.121616] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/15/2015] [Indexed: 12/29/2022]
Abstract
Müller glia can be stimulated to de-differentiate and become proliferating progenitor cells that regenerate neurons in the retina. The signaling pathways that regulate the formation of proliferating Müller glia-derived progenitor cells (MGPCs) are beginning to be revealed. The purpose of this study was to investigate whether Hedgehog (Hh) signaling influences the formation of MGPCs in the chick retina. We find that Hh signaling is increased in damaged retinas where MGPCs are known to form. Sonic Hedgehog (Shh) is normally present in the axons of ganglion cells, but becomes associated with Müller glia and MGPCs following retinal damage. Activation of Hh signaling with recombinant human SHH (rhShh) or smoothened agonist (SAG) increased levels of Ptch1, Gli1, Gli2, Gli3, Hes1 and Hes5, and stimulated the formation of proliferating MGPCs in damaged retinas. In undamaged retinas, SAG or rhShh had no apparent effect upon the Müller glia. However, SAG combined with FGF2 potentiated the formation of MGPCs, whereas SAG combined with IGF1 stimulated the nuclear migration of Müller glia, but not the formation of MGPCs. Conversely, inhibition of Hh signaling with KAAD-cyclopamine, Gli antagonists or antibody to Shh reduced numbers of proliferating MGPCs in damaged and FGF2-treated retinas. Hh signaling potentiates Pax6, Klf4 and cFos expression in Müller glia during the formation of MGPCs. We find that FGF2/MAPK signaling recruits Hh signaling into the signaling network that drives the formation of proliferating MGPCs. Our findings implicate Hh signaling as a key component of the network of signaling pathways that promote the de-differentiation of Müller glia and proliferation of MGPCs.
Collapse
Affiliation(s)
- Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210, USA
| |
Collapse
|
36
|
β-Catenin inactivation is a pre-requisite for chick retina regeneration. PLoS One 2014; 9:e101748. [PMID: 25003522 PMCID: PMC4086939 DOI: 10.1371/journal.pone.0101748] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/11/2014] [Indexed: 11/19/2022] Open
Abstract
In the present study we explored the role of β-catenin in mediating chick retina regeneration. The chick can regenerate its retina by activating stem/progenitor cells present in the ciliary margin (CM) of the eye or via transdifferentiation of the retinal pigmented epithelium (RPE). Both modes require fibroblast growth factor 2 (FGF2). We observed, by immunohistochemistry, dynamic changes of nuclear β-catenin in the CM and RPE after injury (retinectomy). β-catenin nuclear accumulation was transiently lost in cells of the CM in response to injury alone, while the loss of nuclear β-catenin was maintained as long as FGF2 was present. However, nuclear β-catenin positive cells remained in the RPE in response to injury and were BrdU-/p27+, suggesting that nuclear β-catenin prevents those cells from entering the cell cycle. If FGF2 is present, the RPE undergoes dedifferentiation and proliferation concomitant with loss of nuclear β-catenin. Moreover, retinectomy followed by disruption of active β-catenin by using a signaling inhibitor (XAV939) or over-expressing a dominant negative form of Lef-1 induces regeneration from both the CM and RPE in the absence of FGF2. Our results imply that β-catenin protects cells of the CM and RPE from entering the cell cycle in the developing eye, and specifically for the RPE during injury. Thus inactivation of β-catenin is a pre-requisite for chick retina regeneration.
Collapse
|
37
|
Chen M, Qian Y, Dai J, Chu R. The sonic hedgehog signaling pathway induces myopic development by activating matrix metalloproteinase (MMP)-2 in Guinea pigs. PLoS One 2014; 9:e96952. [PMID: 24810957 PMCID: PMC4014572 DOI: 10.1371/journal.pone.0096952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/12/2014] [Indexed: 11/26/2022] Open
Abstract
Purpose To investigate whether the Sonic hedgehog (Shh) signaling induces myopic development by increasing the expression of matrix metalloproteinase (MMP)-2 in guinea pigs. Methods A translucent diffuser was glued onto the right eye to induce form-deprivation myopia (FDM) in 10 guinea pigs. Four guinea pigs were served as a control group. The other 100 guinea pigs were subdivided into 5 groups (20 per group) and received a 10 µl intravitreal injection every 2 days for 4 times. Two groups were injected with 20 or 50 µg/ml Shh amino-terminal peptide (Shh-N) into the right eye and 0.1% bovine serum albumin into the other. FDM was induced in the right eyes of the three cyclopamine-treated groups and both eyes were injected with 50, 100, or 200 µg/ml cyclopamine. Retinoscopic refraction and eye dimensions were assessed on Day 14 of treatment. MMP-2 protein expression was determined in both scleras by western blotting. Results Both concentrations of Shh-N stimulated myopic development and axial growth as compared with control eyes. Myopia and axial elongation were significantly greater in the 50 µg/ml than in the 20 µg/ml Shh-N group (P<0.001 and P = 0.0019, respectively). All three doses of cyclopamine significantly attenuated myopic development compared with the FDM group (P<0.0001). Cyclopamine at 100 or 200 µg/ml significantly reduced axial elongation compared with the FDM group (P = 0.044 and P = 0.001, respectively). FDM-induced myopia and axial elongation were significantly greater in the 50 µg/ml than in the 200 µg/ml cyclopamine group (P<0.0001 and P = 0.008, respectively). MMP-2 expression was significantly greater in Shh-N–treated eyes than in the control eyes, and was lower in the cyclopamine plus FDM groups than in the FDM group. Conclusions The Shh signaling pathway induces myopic development by activating MMP-2 in guinea pigs.
Collapse
Affiliation(s)
- Minjie Chen
- Department of Ophthalmology, EENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Yishan Qian
- Department of Ophthalmology, EENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, EENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- * E-mail:
| | - Renyuan Chu
- Department of Ophthalmology, EENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| |
Collapse
|
38
|
Fischer AJ, Bosse JL, El-Hodiri HM. Reprint of: the ciliary marginal zone (CMZ) in development and regeneration of the vertebrate eye. Exp Eye Res 2014; 123:115-20. [PMID: 24811219 DOI: 10.1016/j.exer.2014.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/25/2013] [Indexed: 10/25/2022]
Abstract
The ciliary marginal zone (CMZ) is a circumferential ring of cells found at the extreme periphery of the maturing and mature neural retina that consists of retinal stem and progenitor cells. It functions to add retinal neurons to the periphery of the neural retina in larval and adult fish, larval frogs, and birds. Additionally, the CMZ may contribute to regeneration of the damaged retina in frogs and fish. In mammals, cells from the ciliary epithelium can be induced to express retinal stem cell-like characteristics in culture but may not comprise a classically defined CMZ.
Collapse
Affiliation(s)
- Andy J Fischer
- Department of Neuroscience, The Ohio State University, USA; Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, USA
| | - Jennifer L Bosse
- Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, USA
| | - Heithem M El-Hodiri
- Department of Neuroscience, The Ohio State University, USA; Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, USA; Department of Pediatrics, The Ohio State University, USA; Center for Molecular and Human Genetics, Nationwide Children's Research Institute, Columbus, OH, USA.
| |
Collapse
|
39
|
Luz-Madrigal A, Grajales-Esquivel E, McCorkle A, DiLorenzo AM, Barbosa-Sabanero K, Tsonis PA, Del Rio-Tsonis K. Reprogramming of the chick retinal pigmented epithelium after retinal injury. BMC Biol 2014; 12:28. [PMID: 24742279 PMCID: PMC4026860 DOI: 10.1186/1741-7007-12-28] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/31/2014] [Indexed: 01/01/2023] Open
Abstract
Background One of the promises in regenerative medicine is to regenerate or replace damaged tissues. The embryonic chick can regenerate its retina by transdifferentiation of the retinal pigmented epithelium (RPE) and by activation of stem/progenitor cells present in the ciliary margin. These two ways of regeneration occur concomitantly when an external source of fibroblast growth factor 2 (FGF2) is present after injury (retinectomy). During the process of transdifferentiation, the RPE loses its pigmentation and is reprogrammed to become neuroepithelium, which differentiates to reconstitute the different cell types of the neural retina. Somatic mammalian cells can be reprogrammed to become induced pluripotent stem cells by ectopic expression of pluripotency-inducing factors such as Oct4, Sox2, Klf4, c-Myc and in some cases Nanog and Lin-28. However, there is limited information concerning the expression of these factors during natural regenerative processes. Organisms that are able to regenerate their organs could share similar mechanisms and factors with the reprogramming process of somatic cells. Herein, we investigate the expression of pluripotency-inducing factors in the RPE after retinectomy (injury) and during transdifferentiation in the presence of FGF2. Results We present evidence that upon injury, the quiescent (p27Kip1+/BrdU-) RPE cells transiently dedifferentiate and express sox2, c-myc and klf4 along with eye field transcriptional factors and display a differential up-regulation of alternative splice variants of pax6. However, this transient process of dedifferentiation is not sustained unless FGF2 is present. We have identified lin-28 as a downstream target of FGF2 during the process of retina regeneration. Moreover, we show that overexpression of lin-28 after retinectomy was sufficient to induce transdifferentiation of the RPE in the absence of FGF2. Conclusion These findings delineate in detail the molecular changes that take place in the RPE during the process of transdifferentiation in the embryonic chick, and specifically identify Lin-28 as an important factor in this process. We propose a novel model in which injury signals initiate RPE dedifferentiation, while FGF2 up-regulates Lin-28, allowing for RPE transdifferentiation to proceed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katia Del Rio-Tsonis
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| |
Collapse
|
40
|
Tanaka T, Arai M, Minemura S, Oyamada A, Saito K, Jiang X, Tsuboi M, Sazuka S, Maruoka D, Matsumura T, Nakagawa T, Sugaya S, Kanda T, Katsuno T, Kita K, Kishimoto T, Imazeki F, Kaneda A, Yokosuka O. Expression level of sonic hedgehog correlated with the speed of gastric mucosa regeneration in artificial gastric ulcers. J Gastroenterol Hepatol 2014; 29:736-41. [PMID: 24224878 DOI: 10.1111/jgh.12445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIM Gastric ulcer healing is a complex process involving cell proliferation and tissue remodeling. Sonic hedgehog (Shh) activates the Shh signaling pathway, which plays a key role in processes such as tissue repair. Shh and interleukin 1β (IL1β) have been reported to influence the proliferation of gastric mucosa. We evaluated the relationships between the speed of gastric ulcer healing and the levels of expression of Shh and IL1β. METHODS The study included 45 patients (mean age 71.9 ± 9.0 years; M/F, 30/15) who underwent endoscopic submucosal dissection (ESD) for gastric cancer, followed by standard dose of oral proton-pump inhibitor for 4 weeks. Subsequently, the size of ESD-induced artificial ulcers were measured to determine the speed of gastric ulcer healing, and regenerating mucosa around the ulcers and appropriately matched controls were collected from patients by endoscopic biopsy. Polymerase chain reaction (PCR) array analysis of genes in the Shh signaling pathway was performed, and quantitative reverse transcription (RT)-PCR was used to measure IL1β mRNA. RESULTS The levels of Shh and IL1β mRNA were 3.0 ± 2.7-fold and 2.5 ± 2.5-fold higher, respectively, in regenerating mucosa of artificial ulcers than in appropriately matched controls, with the two being positively correlated (r = 0.9, P < 0.001). Shh (r = 0.8, P < 0.001) and IL1β (r = 0.7, P < 0.005) expression was each positively correlated with the speed of gastric ulcer healing, but multivariate analysis showed that Shh expression was the only significant parameter (P = 0.045). CONCLUSIONS Expression of Shh was correlated with the speed of gastric ulcer healing, promoting the regeneration of gastric mucosa.
Collapse
Affiliation(s)
- Takeshi Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sherpa T, Lankford T, McGinn TE, Hunter SS, Frey RA, Sun C, Ryan M, Robison BD, Stenkamp DL. Retinal regeneration is facilitated by the presence of surviving neurons. Dev Neurobiol 2014; 74:851-76. [PMID: 24488694 DOI: 10.1002/dneu.22167] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 12/22/2022]
Abstract
Teleost fish regenerate their retinas after damage, in contrast to mammals. In zebrafish subjected to an extensive ouabain-induced lesion that destroys all neurons and spares Müller glia, functional recovery and restoration of normal optic nerve head (ONH) diameter take place at 100 days postinjury. Subsequently, regenerated retinas overproduce cells in the retinal ganglion cell (RGC) layer, and the ONH becomes enlarged. Here, we test the hypothesis that a selective injury, which spares photoreceptors and Müller glia, results in faster functional recovery and fewer long-term histological abnormalities. Following this selective retinal damage, recovery of visual function required 60 days, consistent with this hypothesis. In contrast to extensively damaged retinas, selectively damaged retinas showed fewer histological errors and did not overproduce neurons. Extensively damaged retinas had RGC axons that were delayed in pathfinding to the ONH, and showed misrouted axons within the ONH, suggesting that delayed functional recovery following an extensive lesion is related to defects in RGC axons exiting the eye and/or reaching their central targets. The atoh7, fgf8a, Sonic hedgehog (shha), and netrin-1 genes were differentially expressed, and the distribution of hedgehog protein was disrupted after extensive damage as compared with selective damage. Confirming a role for Shh signaling in supporting rapid regeneration, shha(t4) +/- zebrafish showed delayed functional recovery after selective damage. We suggest that surviving retinal neurons provide structural/molecular information to regenerating neurons, and that this patterning mechanism regulates factors such as Shh. These factors in turn control neuronal number, retinal lamination, and RGC axon pathfinding during retinal regeneration.
Collapse
Affiliation(s)
- Tshering Sherpa
- Department of Biological Sciences, University of Idaho, Moscow, Idaho; Department of Biological Sciences, Graduate Program in Neuroscience, University of Idaho, Moscow, Idaho
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hidalgo M, Locker M, Chesneau A, Perron M. Stem Cells and Regeneration in the Xenopus Retina. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2014. [DOI: 10.1007/978-1-4939-0787-8_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Fischer AJ, Bosse JL, El-Hodiri HM. The ciliary marginal zone (CMZ) in development and regeneration of the vertebrate eye. Exp Eye Res 2013; 116:199-204. [DOI: 10.1016/j.exer.2013.08.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/23/2013] [Accepted: 08/25/2013] [Indexed: 11/28/2022]
|
44
|
Fuhrmann S, Zou C, Levine EM. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res 2013; 123:141-50. [PMID: 24060344 DOI: 10.1016/j.exer.2013.09.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/05/2013] [Accepted: 09/07/2013] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium (RPE) is a simple epithelium interposed between the neural retina and the choroid. Although only 1 cell-layer in thickness, the RPE is a virtual workhorse, acting in several capacities that are essential for visual function and preserving the structural and physiological integrities of neighboring tissues. Defects in RPE function, whether through chronic dysfunction or age-related decline, are associated with retinal degenerative diseases including age-related macular degeneration. As such, investigations are focused on developing techniques to replace RPE through stem cell-based methods, motivated primarily because of the seemingly limited regeneration or self-repair properties of mature RPE. Despite this, RPE cells have an unusual capacity to transdifferentiate into various cell types, with the particular fate choices being highly context-dependent. In this review, we describe recent findings elucidating the mechanisms and steps of RPE development and propose a developmental framework for understanding the apparent contradiction in the capacity for low self-repair versus high transdifferentiation.
Collapse
Affiliation(s)
- Sabine Fuhrmann
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - ChangJiang Zou
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Edward M Levine
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
45
|
Gallina D, Todd L, Fischer AJ. A comparative analysis of Müller glia-mediated regeneration in the vertebrate retina. Exp Eye Res 2013; 123:121-30. [PMID: 23851023 DOI: 10.1016/j.exer.2013.06.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
This article reviews the current state of knowledge regarding the potential of Müller glia to become neuronal progenitor cells in the avian retina. We compare and contrast the remarkable proliferative and neurogenic capacity of Müller glia in the fish retina to the limited capacity of Müller glia in avian and rodent retinas. We summarize recent findings regarding the secreted factors, signaling pathways and cell intrinsic factors that have been implicated in the formation of Müller glia-derived progenitors. We discuss several key similarities and differences between the fish, rodent and chick model systems, highlighting several of the key transcription factors and signaling pathways that regulate the formation of Müller glia-derived progenitors.
Collapse
Affiliation(s)
- Donika Gallina
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210-1239, USA
| | - Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210-1239, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, 4190 Graves Hall, 333 West 10th Ave, Columbus, OH 43210-1239, USA.
| |
Collapse
|
46
|
Franco C, Soares R, Pires E, Koci K, Almeida AM, Santos R, Coelho AV. Understanding regeneration through proteomics. Proteomics 2013; 13:686-709. [DOI: 10.1002/pmic.201200397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 12/29/2022]
Affiliation(s)
- Catarina Franco
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Renata Soares
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Elisabete Pires
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Kamila Koci
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - André M. Almeida
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
- Instituto de Investigação Científica Tropical; Lisboa Portugal
| | - Romana Santos
- Unidade de Investigação em Ciências Orais e Biomédicas, Faculdade de Medicina Dentária; Universidade de Lisboa; Portugal
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| |
Collapse
|
47
|
Gullapalli VK, Khodair MA, Wang H, Sugino IK, Madreperla S, Zarbin MA. Transplantation Frontiers. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Haynes T, Luz-Madrigal A, Reis ES, Echeverri Ruiz NP, Grajales-Esquivel E, Tzekou A, Tsonis PA, Lambris JD, Del Rio-Tsonis K. Complement anaphylatoxin C3a is a potent inducer of embryonic chick retina regeneration. Nat Commun 2013; 4:2312. [PMID: 23942241 PMCID: PMC3753547 DOI: 10.1038/ncomms3312] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/16/2013] [Indexed: 12/16/2022] Open
Abstract
Identifying the initiation signals for tissue regeneration in vertebrates is one of the major challenges in regenerative biology. Much of the research thus far has indicated that certain growth factors have key roles. Here we show that complement fragment C3a is sufficient to induce complete regeneration of the embryonic chick retina from stem/progenitor cells present in the eye, independent of fibroblast growth factor receptor signaling. Instead, C3a induces retina regeneration via STAT3 activation, which in turn activates the injury- and inflammation-responsive factors, IL-6, IL-8 and TNF-α. This activation sets forth regulation of Wnt2b, Six3 and Sox2, genes associated with retina stem and progenitor cells. Thus, our results establish a mechanism for retina regeneration based on injury and inflammation signals. Furthermore, our results indicate a unique function for complement anaphylatoxins that implicate these molecules in the induction and complete regeneration of the retina, opening new avenues of experimentation in the field.
Collapse
Affiliation(s)
- Tracy Haynes
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, Ohio 45056, USA
| | - Agustin Luz-Madrigal
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, Ohio 45056, USA
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, Ohio 45469, USA
| | - Edimara S. Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nancy P. Echeverri Ruiz
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, Ohio 45056, USA
| | - Erika Grajales-Esquivel
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, Ohio 45056, USA
| | - Apostolia Tzekou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Panagiotis A. Tsonis
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, Ohio 45469, USA
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, Ohio 45056, USA
| |
Collapse
|
49
|
Abstract
Comparative studies of lens and retina regeneration have been conducted within a wide variety of animals over the last 100 years. Although amphibians, fish, birds and mammals have all been noted to possess lens- or retina-regenerative properties at specific developmental stages, lens or retina regeneration in adult animals is limited to lower vertebrates. The present review covers the newest perspectives on lens and retina regeneration from these different model organisms with a focus on future trends in regeneration research.
Collapse
|
50
|
Changes in fibroblast growth factor-2 and FGF receptors in the frog visual system during optic nerve regeneration. J Chem Neuroanat 2012; 46:35-44. [PMID: 22940608 DOI: 10.1016/j.jchemneu.2012.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 02/02/2023]
Abstract
We have previously shown that application of fibroblast growth factor-2 (FGF-2) to cut optic nerve axons enhances retinal ganglion cell (RGC) survival in the adult frog visual system. These actions are mediated via activation of its high affinity receptor FGFR1, enhanced BDNF and TrkB expression, increased CREB phosphorylation, and by promoting MAPK and PKA signaling pathways. The role of endogenous FGF-2 in this system is less well understood. In this study, we determine the distribution of FGF-2 and its receptors in normal animals and in animals at different times after optic nerve cut. Immunohistochemistry and Western blot analysis were conducted using specific antibodies against FGF-2 and its receptors in control retinas and optic tecta, and after one, three, and six weeks post nerve injury. FGF-2 was transiently increased in the retina while it was reduced in the optic tectum just one week after optic nerve transection. Axotomy induced a prolonged upregulation of FGFR1 and FGFR3 in both retina and tectum. FGFR4 levels decreased in the retina shortly after axotomy, whereas a significant increase was detected in the optic tectum. FGFR2 distribution was not affected by the optic nerve lesion. Changes in the presence of these proteins after axotomy suggest a potential role during regeneration.
Collapse
|