1
|
Frey Y, Lungu C, Olayioye MA. Regulation and functions of the DLC family of RhoGAP proteins: Implications for development and cancer. Cell Signal 2025; 125:111505. [PMID: 39549821 DOI: 10.1016/j.cellsig.2024.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
The DLC (Deleted in Liver Cancer) family of RhoGAP (Rho GTPase-activating) proteins has been extensively studied since the identification of the first family member nearly 30 years ago. Rho GTPase signaling is essential for various cellular processes, including cytoskeletal dynamics, cell migration, and proliferation. Members of the DLC family are key regulators of this signaling pathway, with well-established roles in development and carcinogenesis. Here, we provide a comprehensive review of research into DLC regulation and cellular functions over the last three decades. In particular, we summarize control mechanisms of DLC gene expression at both the transcriptional and post-transcriptional level. Additionally, recent advances in understanding the post-translational regulation of DLC proteins that allow for tuning of protein activity and localization are highlighted. This detailed overview will serve as resource for future studies aimed at further elucidating the complex regulatory mechanisms of DLC family proteins and exploring their potential as targets for therapeutic applications.
Collapse
Affiliation(s)
- Yannick Frey
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; Medical University of Innsbruck, Institute of Pathophysiology, Innsbruck, Austria
| | - Cristiana Lungu
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Monilola A Olayioye
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany.
| |
Collapse
|
2
|
Hemkemeyer SA, Liu Z, Vollmer V, Xu Y, Lohmann B, Bähler M. The RhoGAP-myosin Myo9b regulates ocular lens pit morphogenesis. Dev Dyn 2022; 251:1897-1907. [PMID: 36008362 DOI: 10.1002/dvdy.522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND During eye development the lens placode invaginates to form the lens pit. Further bending of lens epithelium and separation from ectoderm leads eventually to a spherical lens vesicle with enclosed extracellular fluid. Changes in epithelial morphology involve the actin cytoskeleton and its regulators. The myosin Myo9b is simultaneously an actin-based motor and Rho GTPase-activating protein that regulates actin cytoskeleton organization. Myo9b-deficient adult mice and embryos were analyzed for eye malformations and alterations in lens development. RESULTS Myo9b-deficient mice showed a high incidence of microphthalmia and cataracts with occasional blepharitis. Formation of the lens vesicle during embryonic lens development was disordered in virtually all embryos. Lens placode invagination was less deep and gave rise to a conical structure instead of a spherical pit. At later stages either no lens vesicle was formed or a significantly smaller one that was not enclosed by the optic cup. Expression of the cell fate marker Pax6 was not altered. Staining of adherens junctions and F-actin was most intense at the tip of conical invaginations, suggesting that mechanical forces are not properly coordinated between epithelial cells that form the pit. CONCLUSIONS Myo9b is a critical regulator of ocular lens vesicle morphogenesis during eye development.
Collapse
Affiliation(s)
- Sandra A Hemkemeyer
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Zhijun Liu
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Veith Vollmer
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Yan Xu
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Birgit Lohmann
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Martin Bähler
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| |
Collapse
|
3
|
Beaven R, Denholm B. Early patterning followed by tissue growth establishes distal identity in Drosophila Malpighian tubules. Front Cell Dev Biol 2022; 10:947376. [PMID: 36060795 PMCID: PMC9437309 DOI: 10.3389/fcell.2022.947376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/28/2022] [Indexed: 12/03/2022] Open
Abstract
Specification and elaboration of proximo-distal (P-D) axes for structures or tissues within a body occurs secondarily from that of the main axes of the body. Our understanding of the mechanism(s) that pattern P-D axes is limited to a few examples such as vertebrate and invertebrate limbs. Drosophila Malpighian/renal tubules (MpTs) are simple epithelial tubules, with a defined P-D axis. How this axis is patterned is not known, and provides an ideal context to understand patterning mechanisms of a secondary axis. Furthermore, epithelial tubules are widespread, and their patterning is not well understood. Here, we describe the mechanism that establishes distal tubule and show this is a radically different mechanism to that patterning the proximal MpT. The distal domain is patterned in two steps: distal identity is specified in a small group of cells very early in MpT development through Wingless/Wnt signalling. Subsequently, this population is expanded by proliferation to generate the distal MpT domain. This mechanism enables distal identity to be established in the tubule in a domain of cells much greater than the effective range of Wingless.
Collapse
Affiliation(s)
| | - Barry Denholm
- Deanery of Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Chau JE, Vish KJ, Boggon TJ, Stiegler AL. SH3 domain regulation of RhoGAP activity: Crosstalk between p120RasGAP and DLC1 RhoGAP. Nat Commun 2022; 13:4788. [PMID: 35970859 PMCID: PMC9378701 DOI: 10.1038/s41467-022-32541-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
RhoGAP proteins are key regulators of Rho family GTPases and influence a variety of cellular processes, including cell migration, adhesion, and cytokinesis. These GTPase activating proteins (GAPs) downregulate Rho signaling by binding and enhancing the intrinsic GTPase activity of Rho proteins. Deleted in liver cancer 1 (DLC1) is a tumor suppressor and ubiquitously expressed RhoGAP protein; its activity is regulated in part by binding p120RasGAP, a GAP protein for the Ras GTPases. In this study, we report the co-crystal structure of the p120RasGAP SH3 domain bound directly to DLC1 RhoGAP, at a site partially overlapping the RhoA binding site and impinging on the catalytic arginine finger. We demonstrate biochemically that mutation of this interface relieves inhibition of RhoGAP activity by the SH3 domain. These results reveal the mechanism for inhibition of DLC1 RhoGAP activity by p120RasGAP and demonstrate the molecular basis for direct SH3 domain modulation of GAP activity.
Collapse
Affiliation(s)
- Jocelyn E Chau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kimberly J Vish
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Sotillos S, von der Decken I, Domenech Mercadé I, Srinivasan S, Sirokha D, Livshits L, Vanni S, Nef S, Biason-Lauber A, Rodríguez Gutiérrez D, Castelli-Gair Hombría J. A conserved function of Human DLC3 and Drosophila Cv-c in testis development. eLife 2022; 11:82343. [PMID: 36326091 PMCID: PMC9678365 DOI: 10.7554/elife.82343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
The identification of genes affecting gonad development is essential to understand the mechanisms causing Variations/Differences in Sex Development (DSD). Recently, a DLC3 mutation was associated with male gonadal dysgenesis in 46,XY DSD patients. We have studied the requirement of Cv-c, the Drosophila ortholog of DLC3, in Drosophila gonad development, as well as the functional capacity of DLC3 human variants to rescue cv-c gonad defects. We show that Cv-c is required to maintain testis integrity during fly development. We find that Cv-c and human DLC3 can perform the same function in fly embryos, as flies carrying wild type but not patient DLC3 variations can rescue gonadal dysgenesis, suggesting functional conservation. We also demonstrate that the StART domain mediates Cv-c's function in the male gonad independently from the GAP domain's activity. This work demonstrates a role for DLC3/Cv-c in male gonadogenesis and highlights a novel StART domain mediated function required to organize the gonadal mesoderm and maintain its interaction with the germ cells during testis development.
Collapse
Affiliation(s)
- Sol Sotillos
- Centro Andaluz de Biología del DesarrolloSevilleSpain
| | - Isabel von der Decken
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | - Ivan Domenech Mercadé
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | | | - Dmytro Sirokha
- Institute of Molecular Biology and Genetics, National Academy of Sciences of UkraineKyivUkraine
| | - Ludmila Livshits
- Institute of Molecular Biology and Genetics, National Academy of Sciences of UkraineKyivUkraine
| | - Stefano Vanni
- Department of Biology, University of FribourgFribourgSwitzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Anna Biason-Lauber
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | - Daniel Rodríguez Gutiérrez
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | | |
Collapse
|
6
|
Ojha S, Tapadia MG. Nonapoptotic role of caspase-3 in regulating Rho1GTPase-mediated morphogenesis of epithelial tubes of Drosophila renal system. Dev Dyn 2021; 251:777-794. [PMID: 34773432 DOI: 10.1002/dvdy.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Cells trigger caspase-mediated apoptosis to eliminate themselves from the system when tissue needs to be sculptured, or they detect any abnormality within them, thus preventing irreparable damage to the host. However, nonapoptotic activities of caspases are also involved in many cellular functions. Interestingly, Drosophila Malpighian tubules (MTs) express apoptotic proteins, without succumbing to cell death. RESULTS We show apoptosis-independent role of executioner caspase-3, Drice, in MT morphogenesis. Drice is required for precise cytoskeleton organization and convergent extension, failing which morphology, size, cell number, and arrangement get affected. Furthermore, characteristic stellate cell shape transformation in MTs is also governed by Drice. Genetic interaction study shows that Drice mediates its action by regulating Rho1GTPase functionally, and localization of polarity protein Disc large. Subsequently, downregulation of Rho1GTPase in Drice mutants significantly rescues the cystic MTs phenotype. The study shows a mechanism by which Drice governs tubulogenesis via Rho1GTPase-mediated coordinated organization of actin cytoskeleton and membrane stabilization. CONCLUSION Collectively our findings suggest a nonapoptotic function of caspase-3 in fine-tuning of cellular rearrangement during tubule development, and these results will add to the growing understanding of diverse roles of caspases during its evolution in metazoans.
Collapse
Affiliation(s)
- Shainy Ojha
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Madhu G Tapadia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
Montanari MP, Tran NV, Shimmi O. Regulation of spatial distribution of BMP ligands for pattern formation. Dev Dyn 2021; 251:198-212. [PMID: 34241935 DOI: 10.1002/dvdy.397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 12/25/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-ß (TGF-ß) family, have been shown to contribute to embryogenesis and organogenesis during animal development. Relevant studies provide support for the following concepts: (a) BMP signals are evolutionarily highly conserved as a genetic toolkit; (b) spatiotemporal distributions of BMP signals are precisely controlled at the post-translational level; and (c) the BMP signaling network has been co-opted to adapt to diversified animal development. These concepts originated from the historical findings of the Spemann-Mangold organizer and the subsequent studies about how this organizer functions at the molecular level. In this Commentary, we focus on two topics. First, we review how the BMP morphogen gradient is formed to sustain larval wing imaginal disc and early embryo growth and patterning in Drosophila. Second, we discuss how BMP signal is tightly controlled in a context-dependent manner, and how the signal and tissue dynamics are coupled to facilitate complex tissue structure formation. Finally, we argue how these concepts might be developed in the future for further understanding the significance of BMP signaling in animal development.
Collapse
Affiliation(s)
| | - Ngan Vi Tran
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Osamu Shimmi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
8
|
Platenkamp A, Detmar E, Sepulveda L, Ritz A, Rogers SL, Applewhite DA. The Drosophila melanogaster Rab GAP RN-tre cross-talks with the Rho1 signaling pathway to regulate nonmuscle myosin II localization and function. Mol Biol Cell 2020; 31:2379-2397. [PMID: 32816624 PMCID: PMC7851959 DOI: 10.1091/mbc.e20-03-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
To identify novel regulators of nonmuscle myosin II (NMII) we performed an image-based RNA interference screen using stable Drosophila melanogaster S2 cells expressing the enhanced green fluorescent protein (EGFP)-tagged regulatory light chain (RLC) of NMII and mCherry-Actin. We identified the Rab-specific GTPase-activating protein (GAP) RN-tre as necessary for the assembly of NMII RLC into contractile actin networks. Depletion of RN-tre led to a punctate NMII phenotype, similar to what is observed following depletion of proteins in the Rho1 pathway. Depletion of RN-tre also led to a decrease in active Rho1 and a decrease in phosphomyosin-positive cells by immunostaining, while expression of constitutively active Rho or Rho-kinase (Rok) rescues the punctate phenotype. Functionally, RN-tre depletion led to an increase in actin retrograde flow rate and cellular contractility in S2 and S2R+ cells, respectively. Regulation of NMII by RN-tre is only partially dependent on its GAP activity as overexpression of constitutively active Rabs inactivated by RN-tre failed to alter NMII RLC localization, while a GAP-dead version of RN-tre partially restored phosphomyosin staining. Collectively, our results suggest that RN-tre plays an important regulatory role in NMII RLC distribution, phosphorylation, and function, likely through Rho1 signaling and putatively serving as a link between the secretion machinery and actomyosin contractility.
Collapse
Affiliation(s)
| | - Elizabeth Detmar
- Department of Biology & Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Liz Sepulveda
- Department of Biology, Reed College, Portland, OR 97202
| | - Anna Ritz
- Department of Biology, Reed College, Portland, OR 97202
| | - Stephen L Rogers
- Department of Biology & Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | | |
Collapse
|
9
|
Cohen E, Sawyer JK, Peterson NG, Dow JAT, Fox DT. Physiology, Development, and Disease Modeling in the Drosophila Excretory System. Genetics 2020; 214:235-264. [PMID: 32029579 PMCID: PMC7017010 DOI: 10.1534/genetics.119.302289] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell-based injury repair, cancer-promoting processes, and communication between the intestine and nervous system.
Collapse
Affiliation(s)
| | - Jessica K Sawyer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | | | - Julian A T Dow
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, G12 8QQ, United Kingdom
| | - Donald T Fox
- Department of Cell Biology and
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| |
Collapse
|
10
|
Lyophilized açaí pulp (Euterpe oleracea Mart) attenuates colitis-associated colon carcinogenesis while its main anthocyanin has the potential to affect the motility of colon cancer cells. Food Chem Toxicol 2018; 121:237-245. [DOI: 10.1016/j.fct.2018.08.078] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022]
|
11
|
Sotillos S, Aguilar-Aragon M, Hombría JCG. Functional analysis of the Drosophila RhoGAP Cv-c protein and its equivalence to the human DLC3 and DLC1 proteins. Sci Rep 2018; 8:4601. [PMID: 29545526 PMCID: PMC5854602 DOI: 10.1038/s41598-018-22794-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/01/2018] [Indexed: 01/21/2023] Open
Abstract
RhoGAP proteins control the precise regulation of the ubiquitous small RhoGTPases. The Drosophila Crossveinless-c (Cv-c) RhoGAP is homologous to the human tumour suppressor proteins Deleted in Liver Cancer 1-3 (DLC1-3) sharing an identical arrangement of SAM, GAP and START protein domains. Here we analyse in Drosophila the requirement of each Cv-c domain to its function and cellular localization. We show that the basolateral membrane association of Cv-c is key for its epithelial function and find that the GAP domain targeted to the membrane can perform its RhoGAP activity independently of the rest of the protein, implying the SAM and START domains perform regulatory roles. We propose the SAM domain has a repressor effect over the GAP domain that is counteracted by the START domain, while the basolateral localization is mediated by a central, non-conserved Cv-c region. We find that DLC3 and Cv-c expression in the Drosophila ectoderm cause identical effects. In contrast, DLC1 is inactive but becomes functional if the central non-conserved DLC1 domain is substituted for that of Cv-c. Thus, these RhoGAP proteins are functionally equivalent, opening up the use of Drosophila as an in vivo model to analyse pharmacologically and genetically the human DLC proteins.
Collapse
Affiliation(s)
- Sol Sotillos
- CABD (CSIC/JA/Univ. Pablo de Olavide), Seville, Spain.
| | - Mario Aguilar-Aragon
- CABD (CSIC/JA/Univ. Pablo de Olavide), Seville, Spain.,The Francis Crick Institute, London, UK
| | | |
Collapse
|
12
|
Choubey PK, Roy JK. Rab11 is required for tubulogenesis of Malpighian tubules in Drosophila melanogaster. Genesis 2017; 55. [PMID: 28653473 DOI: 10.1002/dvg.23045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022]
Abstract
Intracellular vesicular trafficking is one of the important tools in maintaining polarity, adhesion, and shape of epithelial cells. Rab11, a subfamily of the Ypt/Rab gene family of ubiquitously expressed GTPases and a molecular marker of recycling endosomes, transports different components of plasma membrane. Here, we report that Rab11 affects tubulogenesis of Malpighian tubules (MTs). MTs are simple polarized epithelial tubular structures, considered as functional analogue of human kidney. Rab11 has pleiotropic effects on MTs development as down-regulation of Rab11 in principal cells (PCs) of MTs from embryonic stages of development results in reduced endoreplication, clustering of cells, disorganized cytoskeleton, and disruption of polarity leading to shortening of MTs in third instar larvae. Rab11 is also required for proper localization of different transporters in PCs, essential for physiological activity of MTs. Collectively, our data suggest that Rab11 plays a key role in the process of tubulogenesis of MTs in Drosophila.
Collapse
Affiliation(s)
- Praween Kumar Choubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005, Uttar Pradesh, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005, Uttar Pradesh, India
| |
Collapse
|
13
|
Sørensen IF, Edwards SM, Rohde PD, Sørensen P. Multiple Trait Covariance Association Test Identifies Gene Ontology Categories Associated with Chill Coma Recovery Time in Drosophila melanogaster. Sci Rep 2017; 7:2413. [PMID: 28546557 PMCID: PMC5445101 DOI: 10.1038/s41598-017-02281-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/10/2017] [Indexed: 12/29/2022] Open
Abstract
The genomic best linear unbiased prediction (GBLUP) model has proven to be useful for prediction of complex traits as well as estimation of population genetic parameters. Improved inference and prediction accuracy of GBLUP may be achieved by identifying genomic regions enriched for causal genetic variants. We aimed at searching for patterns in GBLUP-derived single-marker statistics, by including them in genetic marker set tests, that could reveal associations between a set of genetic markers (genomic feature) and a complex trait. GBLUP-derived set tests proved to be powerful for detecting genomic features, here defined by gene ontology (GO) terms, enriched for causal variants affecting a quantitative trait in a population with low degree of relatedness. Different set test approaches were compared using simulated data illustrating the impact of trait- and genomic feature-specific factors on detection power. We extended the most powerful single trait set test, covariance association test (CVAT), to a multiple trait setting. The multiple trait CVAT (MT-CVAT) identified functionally relevant GO categories associated with the quantitative trait, chill coma recovery time, in the unrelated, sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel.
Collapse
Affiliation(s)
- Izel Fourie Sørensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark.
| | - Stefan M Edwards
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| | - Palle Duun Rohde
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, 8000, Aarhus, Denmark.,iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000, Aarhus, Denmark
| | - Peter Sørensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| |
Collapse
|
14
|
Gui J, Huang Y, Shimmi O. Scribbled Optimizes BMP Signaling through Its Receptor Internalization to the Rab5 Endosome and Promote Robust Epithelial Morphogenesis. PLoS Genet 2016; 12:e1006424. [PMID: 27814354 PMCID: PMC5096713 DOI: 10.1371/journal.pgen.1006424] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022] Open
Abstract
Epithelial cells are characterized by apical-basal polarity. Intrinsic factors underlying apical-basal polarity are crucial for tissue homeostasis and have often been identified to be tumor suppressors. Patterning and differentiation of epithelia are key processes of epithelial morphogenesis and are frequently regulated by highly conserved extrinsic factors. However, due to the complexity of morphogenesis, the mechanisms of precise interpretation of signal transduction as well as spatiotemporal control of extrinsic cues during dynamic morphogenesis remain poorly understood. Wing posterior crossvein (PCV) formation in Drosophila serves as a unique model to address how epithelial morphogenesis is regulated by secreted growth factors. Decapentaplegic (Dpp), a conserved bone morphogenetic protein (BMP)-type ligand, is directionally trafficked from longitudinal veins (LVs) into the PCV region for patterning and differentiation. Our data reveal that the basolateral determinant Scribbled (Scrib) is required for PCV formation through optimizing BMP signaling. Scrib regulates BMP-type I receptor Thickveins (Tkv) localization at the basolateral region of PCV cells and subsequently facilitates Tkv internalization to Rab5 endosomes, where Tkv is active. BMP signaling also up-regulates scrib transcription in the pupal wing to form a positive feedback loop. Our data reveal a unique mechanism in which intrinsic polarity genes and extrinsic cues are coupled to promote robust morphogenesis. Epithelial morphogenesis is one of the key processes in animal development. Evolutionarily conserved growth factors frequently instruct patterning and differentiation in morphogenesis. However, little is known about how extracellular cues and epithelial morphogenesis are mutually coordinated in vivo. Wing posterior crossvein (PCV) development in Drosophila provides an excellent system for understanding how bone morphogenetic protein (BMP) signaling regulates patterning and differentiation of epithelia. We find that the apical-basal polarity gene Scribbled (Scrib) is required for PCV formation by optimizing BMP signaling in the PCV region as follows. First, Scrib regulates BMP type-I receptor Thickveins (Tkv) localization basally. Second, Scrib facilitates Tkv internalization to the Rab5 endosomes to optimize signal transduction after receptor-ligand binding. Third, BMP signaling up-regulates scrib transcription in the pupal wing to form a positive feedback loop. These results suggest that coupling between epithelial polarity genes and conserved growth factors play crucial roles in patterning and differentiation of epithelia.
Collapse
Affiliation(s)
- Jinghua Gui
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Yunxian Huang
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Osamu Shimmi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail: (OS)
| |
Collapse
|
15
|
Flores-Benitez D, Knust E. Crumbs is an essential regulator of cytoskeletal dynamics and cell-cell adhesion during dorsal closure in Drosophila. eLife 2015; 4. [PMID: 26544546 PMCID: PMC4718732 DOI: 10.7554/elife.07398] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 11/06/2015] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved Crumbs protein is required for epithelial polarity and morphogenesis. Here we identify a novel role of Crumbs as a negative regulator of actomyosin dynamics during dorsal closure in the Drosophila embryo. Embryos carrying a mutation in the FERM (protein 4.1/ezrin/radixin/moesin) domain-binding motif of Crumbs die due to an overactive actomyosin network associated with disrupted adherens junctions. This phenotype is restricted to the amnioserosa and does not affect other embryonic epithelia. This function of Crumbs requires DMoesin, the Rho1-GTPase, class-I p21-activated kinases and the Arp2/3 complex. Data presented here point to a critical role of Crumbs in regulating actomyosin dynamics, cell junctions and morphogenesis. DOI:http://dx.doi.org/10.7554/eLife.07398.001 A layer of epithelial cells covers the body surface of animals. Epithelial cells have a property known as polarity; this means that they have two different poles, one of which is in contact with the environment. Midway through embryonic development, the Drosophila embryo is covered by two kinds of epithelial sheets; the epidermis on the front, the belly and the sides of the embryo, and the amnioserosa on the back. In the second half of embryonic development, the amnioserosa is brought into the embryo in a process called dorsal closure, while the epidermis expands around the back of the embryo to encompass it. One of the major activities driving dorsal closure is the contraction of amnioserosa cells. This contraction depends on the highly dynamic activity of the protein network that helps give cells their shape, known as the actomyosin cytoskeleton. One major question in the field is how changes in the actomyosin cytoskeleton are controlled as tissues take shape (a process known as “morphogenesis”) and how the integrity of epithelial tissues is maintained during these processes. A key regulator of epidermal and amnioserosa polarity is an evolutionarily conserved protein called Crumbs. The epithelial tissues of mutant embryos that do not produce Crumbs lose polarity and integrity, and the embryos fail to develop properly. Flores-Benitez and Knust have now studied the role of Crumbs in the morphogenesis of the amnioserosa during dorsal closure. This revealed that fly embryos that produce a mutant Crumbs protein that cannot interact with a protein called Moesin (which links the cell membrane and the actomyosin cytoskeleton) are unable to complete dorsal closure. Detailed analyses showed that this failure of dorsal closure is due to the over-activity of the actomyosin cytoskeleton in the amnioserosa. This results in increased and uncoordinated contractions of the cells, and is accompanied by defects in cell-cell adhesion that ultimately cause the amnioserosa to lose integrity. Flores-Benitez and Knust’s genetic analyses further showed that several different signalling systems participate in this process. Flores-Benitez and Knust’s results reveal an unexpected role of Crumbs in coordinating polarity, actomyosin activity and cell-cell adhesion. Further work is now needed to understand the molecular mechanisms and interactions that enable Crumbs to coordinate these processes; in particular, to unravel how Crumbs influences the periodic contractions that drive changes in cell shape. It will also be important to investigate whether Crumbs is involved in similar mechanisms that operate in other developmental events in which actomyosin oscillations have been linked to tissue morphogenesis. DOI:http://dx.doi.org/10.7554/eLife.07398.002
Collapse
Affiliation(s)
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
16
|
Braun AC, Olayioye MA. Rho regulation: DLC proteins in space and time. Cell Signal 2015; 27:1643-51. [PMID: 25889896 DOI: 10.1016/j.cellsig.2015.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/08/2015] [Indexed: 12/19/2022]
Abstract
Rho GTPases function as molecular switches that connect changes of the external environment to intracellular signaling pathways. They are active at various subcellular sites and require fast and tight regulation to fulfill their role as transducers of extracellular stimuli. New imaging technologies visualizing the active states of Rho proteins in living cells elucidated the necessity of precise spatiotemporal activation of the GTPases. The local regulation of Rho proteins is coordinated by the interaction with different guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that turn on and off GTPase signaling to downstream effectors. GEFs and GAPs thus serve as critical signaling nodes that specify the amplitude and duration of a particular Rho signaling pathway. Despite their importance in Rho regulation, the molecular aspects underlying the spatiotemporal control of the regulators themselves are still largely elusive. In this review we will focus on the Deleted in Liver Cancer (DLC) family of RhoGAP proteins and summarize the evidence gathered over the past years revealing their different subcellular localizations that might account for isoform-specific functions. We will also highlight the importance of their tightly controlled expression in the context of neoplastic transformation.
Collapse
Affiliation(s)
- Anja C Braun
- University of Stuttgart, Institute of Cell Biology and Immunology, Allmandring 31, 70569 Stuttgart, Germany
| | - Monilola A Olayioye
- University of Stuttgart, Institute of Cell Biology and Immunology, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
17
|
Signaling by the engulfment receptor draper: a screen in Drosophila melanogaster implicates cytoskeletal regulators, Jun N-terminal Kinase, and Yorkie. Genetics 2014; 199:117-34. [PMID: 25395664 DOI: 10.1534/genetics.114.172544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Draper, the Drosophila melanogaster homolog of the Ced-1 protein of Caenorhabditis elegans, is a cell-surface receptor required for the recognition and engulfment of apoptotic cells, glial clearance of axon fragments and dendritic pruning, and salivary gland autophagy. To further elucidate mechanisms of Draper signaling, we screened chromosomal deficiencies to identify loci that dominantly modify the phenotype of overexpression of Draper isoform II (suppressed differentiation of the posterior crossvein in the wing). We found evidence for 43 genetic modifiers of Draper II. Twenty-four of the 37 suppressor loci and 3 of the 6 enhancer loci were identified. An additional 5 suppressors and 2 enhancers were identified among mutations in functionally related genes. These studies reveal positive contributions to Drpr signaling for the Jun N-terminal Kinase pathway, supported by genetic interactions with hemipterous, basket, jun, and puckered, and for cytoskeleton regulation as indicated by genetic interactions with rac1, rac2, RhoA, myoblast city, Wiskcott-Aldrich syndrome protein, and the formin CG32138, and for yorkie and expanded. These findings indicate that Jun N-terminal Kinase activation and cytoskeletal remodeling collaborate in Draper signaling. Relationships between Draper signaling and Decapentaplegic signaling, insulin signaling, Salvador/Warts/Hippo signaling, apical-basal cell polarity, and cellular responses to mechanical forces are also discussed.
Collapse
|
18
|
King B, Denholm B. Malpighian tubule development in the red flour beetle (Tribolium castaneum). ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:605-613. [PMID: 25242057 DOI: 10.1016/j.asd.2014.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/22/2014] [Accepted: 08/24/2014] [Indexed: 06/03/2023]
Abstract
Malpighian tubules (MpTs) are the major organ for excretion and osmoregulation in most insects. MpT development is characterised for Drosophila melanogaster, but not other species. We therefore do not know the extent to which the MpT developmental programme is conserved across insects. To redress this we provide a comprehensive description of MpT development in the beetle Tribolium castaneum (Coleoptera), a species separated from Drosophila by >315 million years. We identify similarities with Drosophila MpT development including: 1) the onset of morphological development, beginning when tubules bud from the gut and proliferate to increase organ size. 2) the tubule is shaped by convergent-extension movements and oriented cell divisions. 3) differentiated tip cells activate EGF-signalling in distal MpT cells through the ligand Spitz. 4) MpTs contain two main cell types - principal and stellate cells, differing in morphology and gene expression. We also describe development of the beetle cryptonephridial system, an adaptation for water conservation, which represents a major modification of the MpT ground plan characterised by intimate association between MpTs and rectum. This work establishes a new model to compare MpT development across insects, and provides a framework to help understand how an evolutionary novelty - the cryptonephridial system - arose during organ evolution.
Collapse
Affiliation(s)
- Benedict King
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | - Barry Denholm
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
19
|
Shimmi O, Matsuda S, Hatakeyama M. Insights into the molecular mechanisms underlying diversified wing venation among insects. Proc Biol Sci 2014; 281:20140264. [PMID: 25009057 PMCID: PMC4100500 DOI: 10.1098/rspb.2014.0264] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 06/09/2014] [Indexed: 11/12/2022] Open
Abstract
Insect wings are great resources for studying morphological diversities in nature as well as in fossil records. Among them, variation in wing venation is one of the most characteristic features of insect species. Venation is therefore, undeniably a key factor of species-specific functional traits of the wings; however, the mechanism underlying wing vein formation among insects largely remains unexplored. Our knowledge of the genetic basis of wing development is solely restricted to Drosophila melanogaster. A critical step in wing vein development in Drosophila is the activation of the decapentaplegic (Dpp)/bone morphogenetic protein (BMP) signalling pathway during pupal stages. A key mechanism is the directional transport of Dpp from the longitudinal veins into the posterior crossvein by BMP-binding proteins, resulting in redistribution of Dpp that reflects wing vein patterns. Recent works on the sawfly Athalia rosae, of the order Hymenoptera, also suggested that the Dpp transport system is required to specify fore- and hindwing vein patterns. Given that Dpp redistribution via transport is likely to be a key mechanism for establishing wing vein patterns, this raises the interesting possibility that distinct wing vein patterns are generated, based on where Dpp is transported. Experimental evidence in Drosophila suggests that the direction of Dpp transport is regulated by prepatterned positional information. These observations lead to the postulation that Dpp generates diversified insect wing vein patterns through species-specific positional information of its directional transport. Extension of these observations in some winged insects will provide further insights into the mechanisms underlying diversified wing venation among insects.
Collapse
Affiliation(s)
- Osamu Shimmi
- Institute of Biotechnology, University of Helsinki, PO Box 65 (Viikinkaari 1), Helsinki 00014, Finland
| | - Shinya Matsuda
- Institute of Biotechnology, University of Helsinki, PO Box 65 (Viikinkaari 1), Helsinki 00014, Finland
| | - Masatsugu Hatakeyama
- Division of Insect Sciences, National Institute of Agrobiological Sciences, Owashi, Tsukuba 305-8634, Japan
| |
Collapse
|
20
|
Swope D, Kramer J, King TR, Cheng YS, Kramer SG. Cdc42 is required in a genetically distinct subset of cardiac cells during Drosophila dorsal vessel closure. Dev Biol 2014; 392:221-32. [PMID: 24949939 DOI: 10.1016/j.ydbio.2014.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/19/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
The embryonic heart tube is formed by the migration and subsequent midline convergence of two bilateral heart fields. In Drosophila the heart fields are organized into two rows of cardioblasts (CBs). While morphogenesis of the dorsal ectoderm, which lies directly above the Drosophila dorsal vessel (DV), has been extensively characterized, the migration and concomitant fundamental factors facilitating DV formation remain poorly understood. Here we provide evidence that DV closure occurs at multiple independent points along the A-P axis of the embryo in a "buttoning" pattern, divergent from the zippering mechanism observed in the overlying epidermis during dorsal closure. Moreover, we demonstrate that a genetically distinct subset of CBs is programmed to make initial contact with the opposing row. To elucidate the cellular mechanisms underlying this process, we examined the role of Rho GTPases during cardiac migration using inhibitory and overexpression approaches. We found that Cdc42 shows striking cell-type specificity during DV formation. Disruption of Cdc42 function specifically prevents CBs that express the homeobox gene tinman from completing their dorsal migration, resulting in a failure to make connections with their partnering CBs. Conversely, neighboring CBs that express the orphan nuclear receptor, seven-up, are not sensitive to Cdc42 inhibition. Furthermore, this phenotype was specific to Cdc42 and was not observed upon perturbation of Rac or Rho function. Together with the observation that DV closure occurs through the initial contralateral pairing of tinman-expressing CBs, our studies suggest that the distinct buttoning mechanism we propose for DV closure is elaborated through signaling pathways regulating Cdc42 activity in this cell type.
Collapse
Affiliation(s)
- David Swope
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Joseph Kramer
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Tiffany R King
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA; Graduate Program in Cell and Developmental Biology, Rutgers Graduate School of Biomedical Sciences at Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Yi-Shan Cheng
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Sunita G Kramer
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA; Graduate Program in Cell and Developmental Biology, Rutgers Graduate School of Biomedical Sciences at Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA.
| |
Collapse
|
21
|
Abstract
Sleep is under homeostatic control, but the mechanisms that sense sleep need and correct sleep deficits remain unknown. Here, we report that sleep-promoting neurons with projections to the dorsal fan-shaped body (FB) form the output arm of Drosophila's sleep homeostat. Homeostatic sleep control requires the Rho-GTPase-activating protein encoded by the crossveinless-c (cv-c) gene in order to transduce sleep pressure into increased electrical excitability of dorsal FB neurons. cv-c mutants exhibit decreased sleep time, diminished sleep rebound, and memory deficits comparable to those after sleep loss. Targeted ablation and rescue of Cv-c in sleep-control neurons of the dorsal FB impair and restore, respectively, normal sleep patterns. Sleep deprivation increases the excitability of dorsal FB neurons, but this homeostatic adjustment is disrupted in short-sleeping cv-c mutants. Sleep pressure thus shifts the input-output function of sleep-promoting neurons toward heightened activity by modulating ion channel function in a mechanism dependent on Cv-c.
Collapse
|
22
|
|
23
|
Gavilan HS, Kulikauskas RM, Gutmann DH, Fehon RG. In vivo functional analysis of the human NF2 tumor suppressor gene in Drosophila. PLoS One 2014; 9:e90853. [PMID: 24595234 PMCID: PMC3942481 DOI: 10.1371/journal.pone.0090853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022] Open
Abstract
The proper control of tissue growth is essential during normal development and an important problem in human disease. Merlin, the product of the Neurofibromatosis 2 tumor suppressor gene, has been extensively studied to understand its functions in growth control. Here we describe experiments in which we used Drosophila as an in vivo system to test the functions of the normal human NF2 gene products and patient-derived mutant alleles. Although the predominant NF2 gene isoform, isoform 1, could functionally replace the Drosophila Merlin gene, a second isoform with a distinct C-terminal tail could not. Immunofluorescence studies show that the two isoforms have distinct subcellular localizations when expressed in the polarized imaginal epithelium, and function in genetic rescue assays correlates with apical localization of the NF2 protein. Interestingly, we found that a patient-derived missense allele, NF2L64P, appears to be temperature sensitive. These studies highlight the utility of Drosophila for in vivo functional analysis of highly conserved human disease genes.
Collapse
Affiliation(s)
- Heather S. Gavilan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Rima M. Kulikauskas
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
24
|
Weavers H, Skaer H. Tip cells act as dynamic cellular anchors in the morphogenesis of looped renal tubules in Drosophila. Dev Cell 2014; 27:331-44. [PMID: 24229645 PMCID: PMC3898071 DOI: 10.1016/j.devcel.2013.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/06/2013] [Accepted: 09/22/2013] [Indexed: 01/13/2023]
Abstract
Tissue morphogenesis involves both the sculpting of tissue shape and the positioning of tissues relative to one another in the body. Using the renal tubules of Drosophila, we show that a specific distal tubule cell regulates both tissue architecture and position in the body cavity. Focusing on the anterior tubules, we demonstrate that tip cells make transient contacts with alary muscles at abdominal segment boundaries, moving progressively forward as convergent extension movements lengthen the tubule. Tip cell anchorage antagonizes forward-directed, TGF-β-guided tubule elongation, thereby ensuring the looped morphology characteristic of renal tubules from worms to humans. Distinctive tip cell exploratory behavior, adhesion, and basement membrane clearing underlie target recognition and dynamic interactions. Defects in these features obliterate tip cell anchorage, producing misshapen and misplaced tubules with impaired physiological function. Tip cells stabilize elongating renal tubules by binding to specific muscle targets Tip cell anchorage antagonizes migration, producing excretory tubule looping Tip cell exploration and adhesion dynamics underpin regulated tubule morphogenesis Lack of continued anchorage results in deformed tubules with impaired function
Collapse
Affiliation(s)
- Helen Weavers
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | |
Collapse
|
25
|
Sánchez-Herrero E. Hox targets and cellular functions. SCIENTIFICA 2013; 2013:738257. [PMID: 24490109 PMCID: PMC3892749 DOI: 10.1155/2013/738257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function.
Collapse
Affiliation(s)
- Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
26
|
Denholm B, Hu N, Fauquier T, Caubit X, Fasano L, Skaer H. The tiptop/teashirt genes regulate cell differentiation and renal physiology in Drosophila. Development 2013; 140:1100-10. [PMID: 23404107 PMCID: PMC3583044 DOI: 10.1242/dev.088989] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The physiological activities of organs are underpinned by an interplay between the distinct cell types they contain. However, little is known about the genetic control of patterned cell differentiation during organ development. We show that the conserved Teashirt transcription factors are decisive for the differentiation of a subset of secretory cells, stellate cells, in Drosophila melanogaster renal tubules. Teashirt controls the expression of the water channel Drip, the chloride conductance channel CLC-a and the Leukokinin receptor (LKR), all of which characterise differentiated stellate cells and are required for primary urine production and responsiveness to diuretic stimuli. Teashirt also controls a dramatic transformation in cell morphology, from cuboidal to the eponymous stellate shape, during metamorphosis. teashirt interacts with cut, which encodes a transcription factor that underlies the differentiation of the primary, principal secretory cells, establishing a reciprocal negative-feedback loop that ensures the full differentiation of both cell types. Loss of teashirt leads to ineffective urine production, failure of homeostasis and premature lethality. Stellate cell-specific expression of the teashirt paralogue tiptop, which is not normally expressed in larval or adult stellate cells, almost completely rescues teashirt loss of expression from stellate cells. We demonstrate conservation in the expression of the family of tiptop/teashirt genes in lower insects and establish conservation in the targets of Teashirt transcription factors in mouse embryonic kidney.
Collapse
Affiliation(s)
- Barry Denholm
- Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Matsuda S, Blanco J, Shimmi O. A feed-forward loop coupling extracellular BMP transport and morphogenesis in Drosophila wing. PLoS Genet 2013; 9:e1003403. [PMID: 23555308 PMCID: PMC3605110 DOI: 10.1371/journal.pgen.1003403] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 02/06/2013] [Indexed: 11/18/2022] Open
Abstract
A variety of extracellular factors regulate morphogenesis during development. However, coordination between extracellular signaling and dynamic morphogenesis is largely unexplored. We address the fundamental question by studying posterior crossvein (PCV) development in Drosophila as a model, in which long-range BMP transport from the longitudinal veins plays a critical role during the pupal stages. Here, we show that RhoGAP Crossveinless-C (Cv-C) is induced at the PCV primordial cells by BMP signaling and mediates PCV morphogenesis cell-autonomously by inactivating members of the Rho-type small GTPases. Intriguingly, we find that Cv-C is also required non-cell-autonomously for BMP transport into the PCV region, while a long-range BMP transport is guided toward ectopic wing vein regions by loss of the Rho-type small GTPases. We present evidence that low level of ß-integrin accumulation at the basal side of PCV epithelial cells regulated by Cv-C provides an optimal extracellular environment for guiding BMP transport. These data suggest that BMP transport and PCV morphogenesis are tightly coupled. Our study reveals a feed-forward mechanism that coordinates the spatial distribution of extracellular instructive cues and morphogenesis. The coupling mechanism may be widely utilized to achieve precise morphogenesis during development and homeostasis. It has been extensively studied how tissue morphogenesis is regulated by a variety of extracellular cues. Given that dynamic morphogenesis coincides with arrival of extracellular factors, there must be also mechanisms that coordinate extracellular signaling and intracellular morphogenesis. However, the coordination is largely unknown, due to the complexity of morphogenesis in vivo. We addressed the fundamental question by studying posterior crossvein (PCV) development in Drosophila as a model, in which a long-range transport of bone morphogenetic protein (BMP) type ligands from adjacent longitudinal veins plays a critical role during the pupal stages. Here, we first showed that RhoGAP Crossveinless-C (Cv-C) is induced at the PCV region by BMP signal and mediates PCV morphogenesis. By modulating wing vein morphogenesis, we then found that PCV morphogenesis is required for BMP transport, while ectopic wing vein morphogenesis sufficiently guides a long-range BMP transport. These data suggest a feed-forward mechanism that coordinates the spatial distribution of extracellular instructive cues and morphogenesis. The coupling mechanism may be widely utilized to achieve precise tissue morphogenesis and tissue homeostasis.
Collapse
Affiliation(s)
- Shinya Matsuda
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jorge Blanco
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Osamu Shimmi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
28
|
Abstract
The Abdominal-B selector protein induces organogenesis of the posterior spiracles by coordinating an organ-specific gene network. The complexity of this network begs the questions of how it originated and what selective pressures drove its formation. Given that the network likely formed in a piecemeal fashion, with elements recruited sequentially, we studied the consequences of expressing individual effectors of this network in naive epithelial cells. We found that, with exception of the Crossveinless-c (Cv-c) Rho GTPase-activating protein, most effectors exert little morphogenetic effect by themselves. In contrast, Cv-c expression causes cell motility and down-regulates epithelial polarity and cell adhesion proteins. These effects differ in cells endogenously expressing Cv-c, which have acquired compensatory mechanisms. In spiracle cells, the down-regulation of polarity and E-cadherin expression caused by Cv-c-induced Rho1 inactivation are compensated for by the simultaneous spiracle up-regulation of guanine nucleotide exchange factor (GEF) proteins, cell polarity, and adhesion molecules. Other epithelial cells that have coopted Cv-c to their morphogenetic gene networks are also resistant to Cv-c's deleterious effects. We propose that cooption of a novel morphogenetic regulator to a selector cascade causes cellular instability, resulting in strong selective pressure that leads that same cascade to recruit molecules that compensate it. This experimental-based hypothesis proposes how the frequently observed complex organogenetic gene networks are put together.
Collapse
|
29
|
Denholm B. Shaping up for action: the path to physiological maturation in the renal tubules of Drosophila. Organogenesis 2013; 9:40-54. [PMID: 23445869 DOI: 10.4161/org.24107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Malpighian tubule is the main organ for excretion and osmoregulation in most insects. During a short period of embryonic development the tubules of Drosophila are shaped, undergo differentiation and become precisely positioned in the body cavity, so they become fully functional at the time of larval hatching a few hours later. In this review I explore three developmental events on the path to physiological maturation. First, I examine the molecular and cellular mechanisms that generate organ shape, focusing on the process of cell intercalation that drives tubule elongation, the roles of the cytoskeleton, the extracellular matrix and how intercalation is coordinated at the tissue level. Second, I look at the genetic networks that control the physiological differentiation of tubule cells and consider how distinctive physiological domains in the tubule are patterned. Finally, I explore how the organ is positioned within the body cavity and consider the relationship between organ position and function.
Collapse
Affiliation(s)
- Barry Denholm
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
30
|
Holeiter G, Bischoff A, Braun AC, Huck B, Erlmann P, Schmid S, Herr R, Brummer T, Olayioye MA. The RhoGAP protein Deleted in Liver Cancer 3 (DLC3) is essential for adherens junctions integrity. Oncogenesis 2012; 1:e13. [PMID: 23552697 PMCID: PMC3412646 DOI: 10.1038/oncsis.2012.13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epithelial cell-cell contacts are mediated by E-cadherin interactions, which are regulated by the balanced local activity of Rho GTPases. Despite the known function of Rho at adherens junctions (AJs), little is known about the spatial control of Rho activity at these sites. Here we provide evidence that in breast epithelial cells the Deleted in Liver Cancer 3 (DLC3) protein localizes to AJs and is essential for E-cadherin function. DLC3 is a still poorly characterized RhoA-specific GTPase-activating protein that is frequently downregulated in various types of cancer. We demonstrate that DLC3 depletion leads to mislocalization of E-cadherin and catenins, which was associated with impaired cell aggregation and increased migration. This is explained by aberrant local Rho signaling because ROCK inhibition restored cell-cell contacts in DLC3 knockdown cells. We thus identify DLC3 as a novel negative regulator of junctional Rho and propose that DLC3 loss contributes to carcinogenesis by compromising epithelial integrity.
Collapse
Affiliation(s)
- G Holeiter
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Matsuda S, Shimmi O. Directional transport and active retention of Dpp/BMP create wing vein patterns in Drosophila. Dev Biol 2012; 366:153-62. [PMID: 22542596 DOI: 10.1016/j.ydbio.2012.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 11/19/2022]
Abstract
The bone morphogenetic protein (BMP) family ligand decapentaplegic (Dpp) plays critical roles in wing vein development during pupal stages in Drosophila. However, how the diffusible Dpp specifies elaborate wing vein patterns remains unknown. Here, we visualized Dpp distribution in the pupal wing and found that it tightly reflects the wing vein patterns. We show that Dpp is directionally transported from the longitudinal veins (LVs) into the posterior crossvein (PCV) primordial region by the extracellular BMP-binding proteins, short gastrulation (Sog) and crossveinless (Cv). Another BMP-type ligand, glass bottom boat (Gbb), also moves into the PCV region and is required for Dpp distribution, presumably as a Dpp-Gbb heterodimer. In contrast, we found that most of the Dpp is actively retained in the LVs by the BMP type I receptor thickveins (Tkv) and a positive feedback mechanism. We provide evidence that the directionality of Dpp transport is manifested by sog transcription that prepatterns the PCV position in a Dpp signal-independent manner. Taken together, our data suggest that spatial distribution of Dpp is tightly regulated at the extracellular level by combination of long-range facilitated transport toward the PCV and short-range signaling by active retention in the LVs, thereby allowing diffusible ligands to form elaborate wing vein patterns.
Collapse
Affiliation(s)
- Shinya Matsuda
- Institute of Biotechnology, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | | |
Collapse
|
32
|
The RhoGAP crossveinless-c interacts with Dystrophin and is required for synaptic homeostasis at the Drosophila neuromuscular junction. J Neurosci 2011; 31:492-500. [PMID: 21228159 DOI: 10.1523/jneurosci.4732-10.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Duchenne muscular dystrophy is caused by mutations in the Dystrophin gene and is characterized by muscle degeneration and the occurrence of mental deficits in a significant number of patients. Although Dystrophin and its closely related ortholog Utrophin are present at a variety of synapses, little is known about their roles in the nervous system. Previously, we reported that absence of postsynaptic Dystrophin from the Drosophila neuromuscular junction (NMJ) disrupts synaptic homeostasis, resulting in increased stimulus-evoked neurotransmitter release. Here, we show that RhoGAP crossveinless-c (cv-c), a negative regulator of Rho GTPase signaling pathways, genetically interacts with Dystrophin. Electrophysiological characterization of the cv-c-deficient NMJ and the use of presynaptic- and postsynaptic-specific transgenic rescue versus RNA interference reveal that the absence of postsynaptic cv-c results in elevated evoked neurotransmitter release. The cv-c mutant NMJ exhibits an increased number of presynaptic neurotransmitter release sites and higher probability of vesicle release without apparent changes in postsynaptic glutamate receptor numbers or function. Moreover, we find that decreasing expression of the Rho GTPase Cdc42 suppresses the high neurotransmitter release in the cv-c and Dystrophin mutants, suggesting that Cdc42 is a substrate of Cv-c. These results indicate that Dystrophin and the Rho GTPase signaling pathway likely interact at the postsynaptic side of the NMJ to maintain synaptic homeostasis. The absence of this postsynaptic pathway results in presynaptic structural and functional alterations, suggesting that retrograde signaling mechanisms are affected.
Collapse
|
33
|
Greenberg L, Hatini V. Systematic expression and loss-of-function analysis defines spatially restricted requirements for Drosophila RhoGEFs and RhoGAPs in leg morphogenesis. Mech Dev 2011; 128:5-17. [PMID: 20851182 PMCID: PMC3029487 DOI: 10.1016/j.mod.2010.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 09/10/2010] [Accepted: 09/13/2010] [Indexed: 01/13/2023]
Abstract
The Drosophila leg imaginal disc consists of a peripheral region that contributes to adult body wall, and a central region that forms the leg proper. While the patterning signals and transcription factors that determine the identity of adult structures have been identified, the mechanisms that determine the shape of these structures remain largely unknown. The family of Rho GTPases, which consists of seven members in flies, modulates cell adhesion, actomyosin contractility, protrusive membrane activity, and cell-matrix adhesion to generate mechanical forces that shape adult structures. The Rho GTPases are ubiquitously expressed and it remains unclear how they orchestrate morphogenetic events. The Rho guanine nucleotide exchange factors (RhoGEFs) and Rho GTPase activating proteins (RhoGAPs), which respectively activate and deactivate corresponding Rho GTPases, have been proposed to regulate the activity of Rho signaling cascades in specific spatiotemporal patterns to orchestrate morphogenetic events. Here we identify restricted expression of 12 of the 20 RhoGEFs and 10 of the 22 Rho RhoGAPs encoded in Drosophila during metamorphosis. Expression of a subset of each family of RhoGTPase regulators was restricted to motile cell populations including tendon, muscle, trachea, and peripodial stalk cells. A second subset was restricted either to all presumptive joints or only to presumptive tarsal joints. Depletion of individual RhoGEFs and RhoGAPs in the epithelium of the disc proper identified several joint-specific genes, which act downstream of segmental patterning signals to control epithelial morphogenesis. Our studies provide a framework with which to understand how Rho signaling cascades orchestrate complex morphogenetic events in multi-cellular organisms, and evidence that patterning signals regulate these cascades to control apical constriction and epithelial invagination at presumptive joints.
Collapse
Affiliation(s)
- Lina Greenberg
- Department of Anatomy and Cellular Biology, Program in Cell, Molecular and Developmental Biology
| | - Victor Hatini
- Department of Anatomy and Cellular Biology, Program in Cell, Molecular and Developmental Biology
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston MA 02111
| |
Collapse
|
34
|
Hemocyte-secreted type IV collagen enhances BMP signaling to guide renal tubule morphogenesis in Drosophila. Dev Cell 2010; 19:296-306. [PMID: 20708591 PMCID: PMC2941037 DOI: 10.1016/j.devcel.2010.07.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/09/2010] [Accepted: 07/28/2010] [Indexed: 12/17/2022]
Abstract
Details of the mechanisms that determine the shape and positioning of organs in the body cavity remain largely obscure. We show that stereotypic positioning of outgrowing Drosophila renal tubules depends on signaling in a subset of tubule cells and results from enhanced sensitivity to guidance signals by targeted matrix deposition. VEGF/PDGF ligands from the tubules attract hemocytes, which secrete components of the basement membrane to ensheath them. Collagen IV sensitizes tubule cells to localized BMP guidance cues. Signaling results in pathway activation in a subset of tubule cells that lead outgrowth through the body cavity. Failure of hemocyte migration, loss of collagen IV, or abrogation of BMP signaling results in tubule misrouting and defective organ shape and positioning. Such regulated interplay between cell-cell and cell-matrix interactions is likely to have wide relevance in organogenesis and congenital disease.
Collapse
|
35
|
Abstract
Many genes and molecules that drive tissue patterning during organogenesis and tissue regeneration have been discovered. Yet, we still lack a full understanding of how these chemical cues induce the formation of living tissues with their unique shapes and material properties. Here, we review work based on the convergence of physics, engineering and biology that suggests that mechanical forces generated by living cells are as crucial as genes and chemical signals for the control of embryological development, morphogenesis and tissue patterning.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
36
|
Campbell K, Casanova J, Skaer H. Mesenchymal-to-epithelial transition of intercalating cells in Drosophila renal tubules depends on polarity cues from epithelial neighbours. Mech Dev 2010; 127:345-57. [PMID: 20382220 PMCID: PMC2963794 DOI: 10.1016/j.mod.2010.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/30/2010] [Accepted: 04/05/2010] [Indexed: 01/08/2023]
Abstract
The intercalation of mesenchymal cells into epithelia, through mesenchymal-to-epithelial transition (MET), underlies organogenesis, for example, in nephrogenesis, and tissue regeneration, during cell renewal and wound repair. Despite its importance, surprisingly little is known about the mechanisms that bring about MET in comparison with the related and much-studied, reverse process, epithelial-to-mesenchymal transition (EMT). We analyse the molecular events that regulate MET as stellate cells integrate into the established epithelium of the developing renal tubules in Drosophila. We show that stellate cells polarise as they integrate between epithelial principal cells and that the normal, localised expression of cell polarity proteins in principal cells is required for stellate cells to become epithelial. While the basolateral and apical membranes act as cues for stellate cell polarity, adherens junction integrity is required to regulate their movement through the epithelium; in the absence of these junctions stellate cells continue migrating into the tubule lumen. We also show that expression of basolateral proteins in stellate cells is a prerequisite for their ingression between principal cells. We present a model in which the contacts with successive principal cell membrane domains made by stellate cells as they integrate between them act as a cue for the elaboration of stellate cell polarity. We suggest that the formation of zonula adherens junctions between new cell neighbours establishes their apico-basal positions and stabilises them in the epithelium.
Collapse
Affiliation(s)
- Kyra Campbell
- Institut de Biologia Molecular de Barcelona-CSIC, Parc Cientific de Barcelona, 08028 Barcelona, Spain
| | | | | |
Collapse
|
37
|
Sato D, Sugimura K, Satoh D, Uemura T. Crossveinless-c, the Drosophila homolog of tumor suppressor DLC1, regulates directional elongation of dendritic branches via down-regulating Rho1 activity. Genes Cells 2010; 15:485-500. [PMID: 20384791 DOI: 10.1111/j.1365-2443.2010.01399.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diverse neuronal subtypes develop distinctive morphologies of dendritic arbors that receive synaptic or sensory inputs. Dendritic arbors of many subtypes take on a polarized shape, and one underlying mechanism is unidirectionally biased elongation of dendritic branches. As reported herein, we found that Drosophila Crossveinless-c (Cv-c) was a key regulator for such directional growth. In the cv-c mutant, two subclass of multidendritic sensory neurons examined formed dorsally directed branches; however, dendritic branches had difficulty in growing along the anterior-posterior (A-P) body axis. Cv-c belongs to the family of Rho GTPase-activating proteins (RhoGAPs) and is the homolog of human tumor suppressor DLC1. The RhoGAP activity of Cv-c was required cell-autonomously for the A-P-oriented growth, and Cv-c elevated the GTPase activity of Rho1 and Cdc42 in a cell-free assay. Our analysis of genetic interactions suggested that Rho1 was the target of Cv-c in vivo. All of our results suggest that Cv-c contributes to sprouting and subsequent growth of the A-P-oriented branches through negative regulation of Rho1. We discuss a role of Cv-c in dendritic growth in response to environmental cues.
Collapse
Affiliation(s)
- Daichi Sato
- Laboratory of Cell Recognition and Pattern Formation, Graduate School of Biostudies, South Campus Research Building (Building G), Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
38
|
The Drosophila LEM-domain protein MAN1 antagonizes BMP signaling at the neuromuscular junction and the wing crossveins. Dev Biol 2009; 339:1-13. [PMID: 20036230 DOI: 10.1016/j.ydbio.2009.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/17/2009] [Accepted: 11/19/2009] [Indexed: 01/31/2023]
Abstract
BMP signaling responses are refined by distinct secreted and intracellular antagonists in different cellular and temporal contexts. Here, we show that the nuclear LEM-domain protein MAN1 is a tissue-specific antagonist of BMP signaling in Drosophila. MAN1 contains two potential Mad-binding sites. We generated MAN1DeltaC mutants, harbouring a MAN1 protein that lacks part of the C-terminus including the RNA recognition motif, a putative Mad-binding domain. MAN1DeltaC mutants show wing crossvein (CV) patterning defects but no detectable alterations in nuclear morphology. MAN1(DeltaC) pupal wings display expanded phospho-Mad (pMad) accumulation and ectopic expression of the BMP-responsive gene crossveinless-2 (cv-2) indicating that MAN1 restricts BMP signaling. Conversely, MAN1 overexpression in wing imaginal discs inhibited crossvein development and BMP signaling responses. MAN1 is expressed at high levels in pupal wing veins and can be activated in intervein regions by ectopic BMP signaling. The specific upregulation of MAN1 in pupal wing veins may thus represent a negative feedback circuit that limits BMP signaling during CV formation. MAN1DeltaC flies also show reduced locomotor activity, and electrophysiology recordings in MAN1DeltaC larvae uncover a new presynaptic role of MAN1 at the neuromuscular junction (NMJ). Genetic interaction experiments suggest that MAN1 is a BMP signaling antagonist both at the NMJ and during CV formation.
Collapse
|
39
|
Chaperonin contributes to cold hardiness of the onion maggot Delia antiqua through repression of depolymerization of actin at low temperatures. PLoS One 2009; 4:e8277. [PMID: 20011606 PMCID: PMC2788269 DOI: 10.1371/journal.pone.0008277] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 11/21/2009] [Indexed: 01/07/2023] Open
Abstract
Winter-diapause and cold-acclimated non-diapause pupae of the onion maggot, Delia antiqua (Diptera: Anthomyiidae), show strong cold hardiness. To obtain insights into the mechanisms involved in the enhancement of cold hardiness, we investigated the expression patterns of genes encoding subunits of chaperonin (CCT) and the morphology of actin, a substrate of CCT, at low temperatures. Quantitative real-time PCR analyses showed the mRNA levels of CCT subunits in pupal tissues to be highly correlated with the cold hardiness of the pupae. While actin in the Malpighian tubules of non-cold-hardy pupae showed extensive depolymerization after a cold treatment, actin in the same tissue of cold-hardy pupae was not depolymerized. Damage to cell membranes became apparent after the depolymerization of actin. Moreover, administration of Latrunculin B, an inhibitor of actin polymerization, to the larvae markedly decreased the cold hardiness of the pupae obtained. These findings suggest that CCT contributes to the cold hardiness of D. antiqua through the repression of depolymerization of actin at low temperatures.
Collapse
|
40
|
Abstract
Rho GTPases are believed to make important contributions to the development and progression of human cancer, but direct evidence in the form of somatic mutations analogous to those affecting Ras has been lacking. A recent study in Genes & Development by Xue and colleagues (1439-1444) now provides in vivo evidence that DLC1, a negative regulator of Rho, is a tumor suppressor gene deleted almost as frequently as p53 in common cancers such as breast, colon, and lung.
Collapse
|
41
|
Durkin ME, Yuan BZ, Zhou X, Zimonjic DB, Lowy DR, Thorgeirsson SS, Popescu NC. DLC-1:a Rho GTPase-activating protein and tumour suppressor. J Cell Mol Med 2008; 11:1185-207. [PMID: 17979893 PMCID: PMC4401278 DOI: 10.1111/j.1582-4934.2007.00098.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The deleted in liver cancer 1 (DLC-1) gene encodes a GTPase activating protein that acts as a negative regulator of the Rho family of small GTPases. Rho proteins transduce signals that influence cell morphology and physiology, and their aberrant up-regulation is a key factor in the neoplastic process, including metastasis. Since its discovery, compelling evidence has accumulated that demonstrates a role for DLC-1 as a bona fide tumour suppressor gene in different types of human cancer. Loss of DLC-1 expression mediated by genetic and epigenetic mechanisms has been associated with the development of many human cancers, and restoration of DLC-1 expression inhibited the growth of tumour cells in vivo and in vitro. Two closely related genes, DLC-2 and DLC-3, may also be tumour suppressors. This review presents the current status of progress in understanding the biological functions of DLC-1 and its relatives and their roles in neoplasia.
Collapse
Affiliation(s)
- Marian E Durkin
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The positioning and elaboration of ectodermal veins in the wing of Drosophila melanogaster rely on widely utilized developmental signals, including those mediated by EGF, BMP, Hedgehog, Notch, and Wnt. Analysis of vein patterning mutants, using the molecular and genetic mosaic techniques available in Drosophila, has provided important insights into how a combination of short-range and long-range signaling can pattern a simple epidermal tissue. Moreover, venation has become a powerful system for isolating and analyzing novel components in these signaling pathways. I here review the basic events of vein patterning and give examples of how changes in venation have been used to identify important features of cell signaling pathways.
Collapse
Affiliation(s)
- Seth S Blair
- Department of Zoology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
43
|
Abstract
The Rho GTPases are implicated in almost every fundamental cellular process. They act as molecular switches that cycle between an active GTP-bound and an inactive GDP-bound state. Their slow intrinsic GTPase activity is greatly enhanced by RhoGAPs (Rho GTPase-activating proteins), thus causing their inactivation. To date, more than 70 RhoGAPs have been identified in eukaryotes, ranging from yeast to human, and based on sequence homology of their RhoGAP domain, we have grouped them into subfamilies. In the present Review, we discuss their regulation, biological functions and implication in human diseases.
Collapse
Affiliation(s)
- Joseph Tcherkezian
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2
| | | |
Collapse
|
44
|
Christoforou CP, Greer CE, Challoner BR, Charizanos D, Ray RP. The detached locus encodes Drosophila Dystrophin, which acts with other components of the Dystrophin Associated Protein Complex to influence intercellular signalling in developing wing veins. Dev Biol 2007; 313:519-32. [PMID: 18093579 DOI: 10.1016/j.ydbio.2007.09.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Revised: 09/24/2007] [Accepted: 09/24/2007] [Indexed: 11/29/2022]
Abstract
Dystrophin and Dystroglycan are the two central components of the multimeric Dystrophin Associated Protein Complex, or DAPC, that is thought to provide a mechanical link between the extracellular matrix and the actin cytoskeleton, disruption of which leads to muscular dystrophy in humans. We present the characterization of the Drosophila 'crossveinless' mutation detached (det), and show that the gene encodes the fly ortholog of Dystrophin. Our genetic analysis shows that, in flies, Dystrophin is a non-essential gene, and the sole overt morphological defect associated with null mutations in the locus is the variable loss of the posterior crossvein that has been described for alleles of det. Null mutations in Drosophila Dystroglycan (Dg) are similarly viable and exhibit this crossvein defect, indicating that both of the central DAPC components have been co-opted for this atypical function of the complex. In the developing wing, the Drosophila DAPC affects the intercellular signalling pathways involved in vein specification. In det and Dg mutant wings, the early BMP signalling that initiates crossvein specification is not maintained, particularly in the pro-vein territories adjacent to the longitudinal veins, and this results in the production of a crossvein fragment in the intervein between the two longitudinal veins. Genetic interaction studies suggest that the DAPC may exert this effect indirectly by down-regulating Notch signalling in pro-vein territories, leading to enhanced BMP signalling in the intervein by diffusion of BMP ligands from the longitudinal veins.
Collapse
Affiliation(s)
- Christina P Christoforou
- Department of Biology and Environmental Science, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | | | | | |
Collapse
|
45
|
Betson M, Settleman J. A rho-binding protein kinase C-like activity is required for the function of protein kinase N in Drosophila development. Genetics 2007; 176:2201-12. [PMID: 17507675 PMCID: PMC1950625 DOI: 10.1534/genetics.107.072967] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Rho GTPases interact with multiple downstream effectors to exert their biological functions, which include important roles in tissue morphogenesis during the development of multicellular organisms. Among the Rho effectors are the protein kinase N (PKN) proteins, which are protein kinase C (PKC)-like kinases that bind activated Rho GTPases. The PKN proteins are well conserved evolutionarily, but their biological role in any organism is poorly understood. We previously determined that the single Drosophila ortholog of mammalian PKN proteins, Pkn, is a Rho/Rac-binding kinase essential for Drosophila development. By performing "rescue" studies with various Pkn mutant constructs, we have defined the domains of Pkn required for its role during Drosophila development. These studies suggested that Rho, but not Rac binding is important for Pkn function in development. In addition, we determined that the kinase domain of PKC53E, a PKC family kinase, can functionally substitute for the kinase domain of Pkn during development, thereby exemplifying the evolutionary strategy of "combining" functional domains to produce proteins with distinct biological activities. Interestingly, we also identified a requirement for Pkn in wing morphogenesis, thereby revealing the first postembryonic function for Pkn.
Collapse
Affiliation(s)
- Martha Betson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | | |
Collapse
|
46
|
Kolesnikov T, Beckendorf SK. 18 wheeler regulates apical constriction of salivary gland cells via the Rho-GTPase-signaling pathway. Dev Biol 2007; 307:53-61. [PMID: 17512518 PMCID: PMC1986755 DOI: 10.1016/j.ydbio.2007.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 03/13/2007] [Accepted: 04/12/2007] [Indexed: 12/20/2022]
Abstract
Rho GTPase and its upstream activator, guanine nucleotide exchange factor 2 (RhoGEF2), have emerged as key regulators of actin rearrangements during epithelial folding and invagination (Nikolaidou, K.K., Barrett, K. (2004). A Rho-GTPase-signaling pathway is used reiteratively in epithelial folding and potentially selects the outcome of Rho activation. Curr. Biol. 14, 1822-1826). Here, we show that Drosophila 18 wheeler (18W), a Toll-like receptor protein, is a novel component of the Rho-signaling pathway involved in epithelial morphogenesis. 18w Mutant embryos have salivary gland invagination defects similar to embryos that lack components of the Rho pathway, and ubiquitous expression of 18W results in an upregulation of Rho signaling. Transheterozygous genetic interactions and double mutant analysis suggest that 18W affects the Rho-GTPase-signaling pathway not through Fog and RhoGEF2, but rather by inhibiting Rho GTPase activating proteins (RhoGAPs). We show that RhoGAP5A and RhoGAP88C/Crossveinless-c (CV-C) are required for proper salivary gland morphogenesis, implicating them as potential targets of 18W.
Collapse
|
47
|
Durkin ME, Ullmannova V, Guan M, Popescu NC. Deleted in liver cancer 3 (DLC-3), a novel Rho GTPase-activating protein, is downregulated in cancer and inhibits tumor cell growth. Oncogene 2007; 26:4580-9. [PMID: 17297465 DOI: 10.1038/sj.onc.1210244] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two related Rho GTPase-activating proteins, DLC-1 (deleted in liver cancer 1) and DLC-2, are emerging as bona fide tumor suppressor genes that inhibit cancer cell growth. In this report, we characterized a gene on chromosome Xq13 that encodes DLC-3 (also known as KIAA0189 and STARD8), a third member of the DLC family. The DLC-3 gene has transcripts with alternative 5' ends, one of which, DLC-3alpha, encodes an 1103-amino acid polypeptide highly similar to DLC-1 and DLC-2. A second isoform (DLC-3beta) would yield a protein lacking the N-terminal sterile alpha motif domain. The DLC-3 gene is widely expressed in normal tissues, but DLC-3 mRNA levels were low or absent in a significant number of breast, ovarian, liver and prostate cancer cell lines. Using a cancer profiling array to compare matched tumor and normal human tissues, downregulation of DLC-3 mRNA was observed in kidney, lung, ovarian, uterine and breast cancer samples. By quantitative reverse transcriptase-polymerase chain reaction, DLC-3 expression was reduced in primary prostate carcinomas relative to normal prostate tissue. Transfection of human breast and prostate cancer cells with a DLC-3alpha expression vector inhibited cell proliferation, colony formation and growth in soft agar. These results indicate that deregulation of DLC-3 may contribute to breast and prostate tumorigenesis.
Collapse
Affiliation(s)
- M E Durkin
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
48
|
Lovegrove B, Simões S, Rivas ML, Sotillos S, Johnson K, Knust E, Jacinto A, Hombría JCG. Coordinated control of cell adhesion, polarity, and cytoskeleton underlies Hox-induced organogenesis in Drosophila. Curr Biol 2007; 16:2206-16. [PMID: 17113384 DOI: 10.1016/j.cub.2006.09.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 09/05/2006] [Accepted: 09/07/2006] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hox genes control animal body plans by directing the morphogenesis of segment-specific structures. As transcription factors, HOX proteins achieve this through the activation of downstream target genes. Much research has been devoted to the search for these targets and the characterization of their roles in organogenesis. This has shown that the direct targets of Hox activation are often transcription factors or signaling molecules, which form hierarchical genetic networks directing the morphogenesis of particular organs. Importantly, very few of the direct Hox targets known are "realizator" genes involved directly in the cellular processes of organogenesis. RESULTS Here, we describe for the first time a complete network linking the Hox gene Abdominal-B to the realizator genes it controls during the organogenesis of the external respiratory organ of the larva. In this process, Abdominal-B induces the expression of four intermediate signaling molecules and transcription factors, and this expression results in the mosaic activation of several realizator genes. The ABD-B spiracle realizators include at least five cell-adhesion proteins, cell-polarity proteins, and GAP and GEF cytoskeleton regulators. Simultaneous ectopic expression of the Abd-B downstream targets can induce spiracle-like structure formation in the absence of ABD-B protein. CONCLUSION Hox realizators include cytoskeletal regulators and molecules required for the apico-basal cell organization. HOX-coordinated activation of these realizators in mosaic patterns confers to the organ primordium its assembling properties. We propose that during animal development, Hox-controlled genetic cascades coordinate the local cell-specific behaviors that result in organogenesis of segment-specific structures.
Collapse
Affiliation(s)
- Bridget Lovegrove
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Simões S, Denholm B, Azevedo D, Sotillos S, Martin P, Skaer H, Hombría JCG, Jacinto A. Compartmentalisation of Rho regulators directs cell invagination during tissue morphogenesis. Development 2006; 133:4257-67. [PMID: 17021037 DOI: 10.1242/dev.02588] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During development, small RhoGTPases control the precise cell shape changes and movements that underlie morphogenesis. Their activity must be tightly regulated in time and space, but little is known about how Rho regulators(RhoGEFs and RhoGAPs) perform this function in the embryo. Taking advantage of a new probe that allows the visualisation of small RhoGTPase activity in Drosophila, we present evidence that Rho1 is apically activated and essential for epithelial cell invagination, a common morphogenetic movement during embryogenesis. In the posterior spiracles of the fly embryo, this asymmetric activation is achieved by at least two mechanisms: the apical enrichment of Rho1; and the opposing distribution of Rho activators and inhibitors to distinct compartments of the cell membrane. At least two Rho1 activators, RhoGEF2 and RhoGEF64C are localised apically, whereas the Rho inhibitor RhoGAP Cv-c localises at the basolateral membrane. Furthermore, the mRNA of RhoGEF64C is also apically enriched, depending on signals present within its open reading frame, suggesting that apical transport of RhoGEF mRNA followed by local translation is a mechanism to spatially restrict Rho1 activity during epithelial cell invagination.
Collapse
Affiliation(s)
- Sérgio Simões
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Manak JR, Dike S, Sementchenko V, Kapranov P, Biemar F, Long J, Cheng J, Bell I, Ghosh S, Piccolboni A, Gingeras TR. Biological function of unannotated transcription during the early development of Drosophila melanogaster. Nat Genet 2006; 38:1151-8. [PMID: 16951679 DOI: 10.1038/ng1875] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 08/03/2006] [Indexed: 11/09/2022]
Abstract
Many animal and plant genomes are transcribed much more extensively than current annotations predict. However, the biological function of these unannotated transcribed regions is largely unknown. Approximately 7% and 23% of the detected transcribed nucleotides during D. melanogaster embryogenesis map to unannotated intergenic and intronic regions, respectively. Based on computational analysis of coordinated transcription, we conservatively estimate that 29% of all unannotated transcribed sequences function as missed or alternative exons of well-characterized protein-coding genes. We estimate that 15.6% of intergenic transcribed regions function as missed or alternative transcription start sites (TSS) used by 11.4% of the expressed protein-coding genes. Identification of P element mutations within or near newly identified 5' exons provides a strategy for mapping previously uncharacterized mutations to their respective genes. Collectively, these data indicate that at least 85% of the fly genome is transcribed and processed into mature transcripts representing at least 30% of the fly genome.
Collapse
|