1
|
Han Z, Hu H, Yin M, Lin Y, Yan Y, Han P, Liu B, Jing B. HOXA1 participates in VSMC-to-macrophage-like cell transformation via regulation of NF-κB p65 and KLF4: a potential mechanism of atherosclerosis pathogenesis. Mol Med 2023; 29:104. [PMID: 37528397 PMCID: PMC10394793 DOI: 10.1186/s10020-023-00685-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Macrophage-like transformation of vascular smooth muscle cells (VSMCs) is a risk factor of atherosclerosis (AS) progression. Transcription factor homeobox A1 (HOXA1) plays functional roles in differentiation and development. This study aims to explore the role of HOXA1 in VSMC transformation, thereby providing evidence for the potential mechanism of AS pathogenesis. METHODS High fat diet (HFD)-fed apolipoprotein E knockout (ApoE-/-) mice were applied as an in vivo model to imitate AS, while 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POV-PC)-treated VSMCs were applied as an in vitro model. Recombinant adeno-associated-virus-1 (AAV-1) vectors that express short-hairpin RNAs targeting HOXA1, herein referred as AAV1-shHOXA1, were generated for the loss-of-function experiments throughout the study. RESULTS In the aortic root of AS mice, lipid deposition was severer and HOXA1 expression was higher than the wide-type mice fed with normal diet or HFD. Silencing of HOXA1 inhibited the AS-induced weight gain, inflammatory response, serum and liver lipid metabolism disorder and atherosclerotic plaque formation. Besides, lesions from AS mice with HOXA1 knockdown showed less trans-differentiation of VSMCs to macrophage-like cells, along with a suppression of krüppel-like factor 4 (KLF4) and nuclear factor (NF)-κB RelA (p65) expression. In vitro experiments consistently confirmed that HOXA1 knockdown suppressed lipid accumulation, VSMC-to-macrophage phenotypic switch and inflammation in POV-PC-treated VSMCs. Mechanism investigations further illustrated that HOXA1 transcriptionally activated RelA and KLF4 to participate in the pathological manifestations of VSMCs. CONCLUSIONS HOXA1 participates in AS progression by regulating VSMCs plasticity via regulation of NF-κB p65 and KLF4. HOXA1 has the potential to be a biomarker or therapeutic target for AS.
Collapse
Affiliation(s)
- Zhiyang Han
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Haidi Hu
- Department of General and Vascular Surgery, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - MingZhu Yin
- Department of Dermatology, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
- Human Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Yu Lin
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Yan Yan
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Peng Han
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Bing Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Bao Jing
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
2
|
Leclerc K, Remark LH, Ramsukh M, Josephson AM, Palma L, Parente PEL, Sambon M, Lee S, Lopez EM, Morgani SM, Leucht P. Hox genes are crucial regulators of periosteal stem cell identity. Development 2023; 150:dev201391. [PMID: 36912250 PMCID: PMC10112919 DOI: 10.1242/dev.201391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 03/14/2023]
Abstract
Periosteal stem and progenitor cells (PSPCs) are major contributors to bone maintenance and repair. Deciphering the molecular mechanisms that regulate their function is crucial for the successful generation and application of future therapeutics. Here, we pinpoint Hox transcription factors as necessary and sufficient for periosteal stem cell function. Hox genes are transcriptionally enriched in periosteal stem cells and their overexpression in more committed progenitors drives reprogramming to a naïve, self-renewing stem cell-like state. Crucially, individual Hox family members are expressed in a location-specific manner and their stem cell-promoting activity is only observed when the Hox gene is matched to the anatomical origin of the PSPC, demonstrating a role for the embryonic Hox code in adult stem cells. Finally, we demonstrate that Hoxa10 overexpression partially restores the age-related decline in fracture repair. Together, our data highlight the importance of Hox genes as key regulators of PSPC identity in skeletal homeostasis and repair.
Collapse
Affiliation(s)
- Kevin Leclerc
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Lindsey H. Remark
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Malissa Ramsukh
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Anne Marie Josephson
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Laura Palma
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo E. L. Parente
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Margaux Sambon
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Sooyeon Lee
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm 89081, Germany
| | - Emma Muiños Lopez
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Sophie M. Morgani
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Philipp Leucht
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
3
|
Howard AGA, Uribe RA. Hox proteins as regulators of extracellular matrix interactions during neural crest migration. Differentiation 2022; 128:26-32. [PMID: 36228422 PMCID: PMC10802151 DOI: 10.1016/j.diff.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 01/19/2023]
Abstract
Emerging during embryogenesis, the neural crest are a migratory, transient population of multipotent stem cell that differentiates into various cell types in vertebrates. Neural crest cells arise along the anterior-posterior extent of the neural tube, delaminate and migrate along routes to their final destinations. The factors that orchestrate how neural crest cells undergo delamination and their subsequent sustained migration is not fully understood. This review provides a primer about neural crest epithelial-to-mesenchymal transition (EMT), with a special emphasis on the role of the Extracellular matrix (ECM), cellular effector proteins of EMT, and subsequent migration. We also summarize published findings that link the expression of Hox transcription factors to EMT and ECM modification, thereby implicating Hox factors in regulation of EMT and ECM remodeling during neural crest cell ontogenesis.
Collapse
Affiliation(s)
- Aubrey G A Howard
- BioSciences Department, Rice University, Houston, TX, 77005, USA; Biochemistry and Cell Biology Program, Rice University, Houston, TX, 77005, USA
| | - Rosa A Uribe
- BioSciences Department, Rice University, Houston, TX, 77005, USA; Biochemistry and Cell Biology Program, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
4
|
Singh NP, Krumlauf R. Diversification and Functional Evolution of HOX Proteins. Front Cell Dev Biol 2022; 10:798812. [PMID: 35646905 PMCID: PMC9136108 DOI: 10.3389/fcell.2022.798812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
Abstract
Gene duplication and divergence is a major contributor to the generation of morphological diversity and the emergence of novel features in vertebrates during evolution. The availability of sequenced genomes has facilitated our understanding of the evolution of genes and regulatory elements. However, progress in understanding conservation and divergence in the function of proteins has been slow and mainly assessed by comparing protein sequences in combination with in vitro analyses. These approaches help to classify proteins into different families and sub-families, such as distinct types of transcription factors, but how protein function varies within a gene family is less well understood. Some studies have explored the functional evolution of closely related proteins and important insights have begun to emerge. In this review, we will provide a general overview of gene duplication and functional divergence and then focus on the functional evolution of HOX proteins to illustrate evolutionary changes underlying diversification and their role in animal evolution.
Collapse
Affiliation(s)
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, United States
- *Correspondence: Robb Krumlauf,
| |
Collapse
|
5
|
Hombría JCG, García-Ferrés M, Sánchez-Higueras C. Anterior Hox Genes and the Process of Cephalization. Front Cell Dev Biol 2021; 9:718175. [PMID: 34422836 PMCID: PMC8374599 DOI: 10.3389/fcell.2021.718175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
During evolution, bilateral animals have experienced a progressive process of cephalization with the anterior concentration of nervous tissue, sensory organs and the appearance of dedicated feeding structures surrounding the mouth. Cephalization has been achieved by the specialization of the unsegmented anterior end of the body (the acron) and the sequential recruitment to the head of adjacent anterior segments. Here we review the key developmental contribution of Hox1-5 genes to the formation of cephalic structures in vertebrates and arthropods and discuss how this evolved. The appearance of Hox cephalic genes preceded the evolution of a highly specialized head in both groups, indicating that Hox gene involvement in the control of cephalic structures was acquired independently during the evolution of vertebrates and invertebrates to regulate the genes required for head innovation.
Collapse
Affiliation(s)
- James C-G Hombría
- Centro Andaluz de Biología del Desarrollo (Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide), Seville, Spain
| | - Mar García-Ferrés
- Centro Andaluz de Biología del Desarrollo (Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide), Seville, Spain
| | - Carlos Sánchez-Higueras
- Centro Andaluz de Biología del Desarrollo (Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide), Seville, Spain
| |
Collapse
|
6
|
Lewin TD, Royall AH, Holland PWH. Dynamic Molecular Evolution of Mammalian Homeobox Genes: Duplication, Loss, Divergence and Gene Conversion Sculpt PRD Class Repertoires. J Mol Evol 2021; 89:396-414. [PMID: 34097121 PMCID: PMC8208926 DOI: 10.1007/s00239-021-10012-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022]
Abstract
The majority of homeobox genes are highly conserved across animals, but the eutherian-specific ETCHbox genes, embryonically expressed and highly divergent duplicates of CRX, are a notable exception. Here we compare the ETCHbox genes of 34 mammalian species, uncovering dynamic patterns of gene loss and tandem duplication, including the presence of a large tandem array of LEUTX loci in the genome of the European rabbit (Oryctolagus cuniculus). Despite extensive gene gain and loss, all sampled species possess at least two ETCHbox genes, suggesting their collective role is indispensable. We find evidence for positive selection and show that TPRX1 and TPRX2 have been the subject of repeated gene conversion across the Boreoeutheria, homogenising their sequences and preventing divergence, especially in the homeobox region. Together, these results are consistent with a model where mammalian ETCHbox genes are dynamic in evolution due to functional overlap, yet have collective indispensable roles.
Collapse
Affiliation(s)
- Thomas D Lewin
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Amy H Royall
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Peter W H Holland
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
7
|
Durston AJ. A Tribute to Lewis Wolpert and His Ideas on the 50th Anniversary of the Publication of His Paper 'Positional Information and the Spatial Pattern of Differentiation'. Evidence for a Timing Mechanism for Setting Up the Vertebrate Anterior-Posterior (A-P) Axis. Int J Mol Sci 2020; 21:E2552. [PMID: 32272563 PMCID: PMC7177403 DOI: 10.3390/ijms21072552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022] Open
Abstract
This article is a tribute to Lewis Wolpert and his ideas on the occasion of the recent 50th anniversary of the publication of his article 'Positional Information and the Spatial Pattern of Differentiation'. This tribute relates to another one of his ideas: his early 'Progress Zone' timing model for limb development. Recent evidence is reviewed showing a mechanism sharing features with this model patterning the main body axis in early vertebrate development. This tribute celebrates the golden era of Developmental Biology.
Collapse
Affiliation(s)
- Antony J Durston
- Institute of Biology, University of Leiden, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
8
|
Parker HJ, Krumlauf R. A Hox gene regulatory network for hindbrain segmentation. Curr Top Dev Biol 2020; 139:169-203. [DOI: 10.1016/bs.ctdb.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Durston AJ. Some Questions and Answers About the Role of Hox Temporal Collinearity in Vertebrate Axial Patterning. Front Cell Dev Biol 2019; 7:257. [PMID: 31850338 PMCID: PMC6895010 DOI: 10.3389/fcell.2019.00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023] Open
Abstract
The vertebrate anterior-posterior (A-P = craniocaudal) axis is evidently made by a timing mechanism. Evidence has accumulated that tentatively identifies the A-P timer as being or involving Hox temporal collinearity (TC). Here, I focus on the two current competing models based on this premise. Common features and points of dissent are examined and a common model is distilled from what remains. This is an attempt to make sense of the literature.
Collapse
|
10
|
Herrera-Úbeda C, Marín-Barba M, Navas-Pérez E, Gravemeyer J, Albuixech-Crespo B, Wheeler GN, Garcia-Fernàndez J. Microsyntenic Clusters Reveal Conservation of lncRNAs in Chordates Despite Absence of Sequence Conservation. BIOLOGY 2019; 8:E61. [PMID: 31450588 PMCID: PMC6784235 DOI: 10.3390/biology8030061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 01/10/2023]
Abstract
Homologous long non-coding RNAs (lncRNAs) are elusive to identify by sequence similarity due to their fast-evolutionary rate. Here we develop LincOFinder, a pipeline that finds conserved intergenic lncRNAs (lincRNAs) between distant related species by means of microsynteny analyses. Using this tool, we have identified 16 bona fide homologous lincRNAs between the amphioxus and human genomes. We characterized and compared in amphioxus and Xenopus the expression domain of one of them, Hotairm1, located in the anterior part of the Hox cluster. In addition, we analyzed the function of this lincRNA in Xenopus, showing that its disruption produces a severe headless phenotype, most probably by interfering with the regulation of the Hox cluster. Our results strongly suggest that this lincRNA has probably been regulating the Hox cluster since the early origin of chordates. Our work pioneers the use of syntenic searches to identify non-coding genes over long evolutionary distances and helps to further understand lncRNA evolution.
Collapse
Affiliation(s)
- Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Marta Marín-Barba
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
| | - Enrique Navas-Pérez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Jan Gravemeyer
- German Cancer Research Center, 69120 Heidelberg, Germany
| | - Beatriz Albuixech-Crespo
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
11
|
Durston AJ. What are the roles of retinoids, other morphogens, and Hox genes in setting up the vertebrate body axis? Genesis 2019; 57:e23296. [PMID: 31021058 PMCID: PMC6767176 DOI: 10.1002/dvg.23296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/24/2019] [Accepted: 03/29/2019] [Indexed: 01/09/2023]
Abstract
This article is concerned with the roles of retinoids and other known anterior-posterior morphogens in setting up the embryonic vertebrate anterior-posterior axis. The discussion is restricted to the very earliest events in setting up the anterior-posterior axis (from blastula to tailbud stages in Xenopus embryos). In these earliest developmental stages, morphogen concentration gradients are not relevant for setting up this axis. It emerges that at these stages, the core patterning mechanism is timing: BMP-anti BMP mediated time space translation that regulates Hox temporal and spatial collinearities and Hox-Hox auto- and cross- regulation. The known anterior-posterior morphogens and signaling pathways--retinoids, FGF's, Cdx, Wnts, Gdf11 and others--interact with this core mechanism at and after space-time defined "decision points," leading to the separation of distinct axial domains. There are also other roles for signaling pathways. Besides the Hox regulated hindbrain/trunk part of the axis, there is a rostral part (including the anterior part of the head and the extreme anterior domain [EAD]) that appears to be regulated by additional mechanisms. Key aspects of anterior-posterior axial patterning, including: the nature of different phases in early patterning and in the whole process; the specificities of Hox action and of intercellular signaling; and the mechanisms of Hox temporal and spatial collinearities, are discussed in relation to the facts and hypotheses proposed above.
Collapse
|
12
|
Polevoy H, Gutkovich YE, Michaelov A, Volovik Y, Elkouby YM, Frank D. New roles for Wnt and BMP signaling in neural anteroposterior patterning. EMBO Rep 2019; 20:embr.201845842. [PMID: 30936121 DOI: 10.15252/embr.201845842] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 01/19/2023] Open
Abstract
During amphibian development, neural patterning occurs via a two-step process. Spemann's organizer secretes BMP antagonists that induce anterior neural tissue. A subsequent caudalizing step re-specifies anterior fated cells to posterior fates such as hindbrain and spinal cord. The neural patterning paradigm suggests that a canonical Wnt-signaling gradient acts along the anteroposterior axis to pattern the nervous system. Wnt activity is highest in the posterior, inducing spinal cord, at intermediate levels in the trunk, inducing hindbrain, and is lowest in anterior fated forebrain, while BMP-antagonist levels are constant along the axis. Our results in Xenopus laevis challenge this paradigm. We find that inhibition of canonical Wnt signaling or its downstream transcription factors eliminates hindbrain, but not spinal cord fates, an observation not compatible with a simple high-to-low Wnt gradient specifying all fates along the neural anteroposterior axis. Additionally, we find that BMP activity promotes posterior spinal cord cell fate formation in an FGF-dependent manner, while inhibiting hindbrain fates. These results suggest a need to re-evaluate the paradigms of neural anteroposterior pattern formation during vertebrate development.
Collapse
Affiliation(s)
- Hanna Polevoy
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yoni E Gutkovich
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ariel Michaelov
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yael Volovik
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yaniv M Elkouby
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dale Frank
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
13
|
Frank D, Sela-Donenfeld D. Hindbrain induction and patterning during early vertebrate development. Cell Mol Life Sci 2019; 76:941-960. [PMID: 30519881 PMCID: PMC11105337 DOI: 10.1007/s00018-018-2974-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022]
Abstract
The hindbrain is a key relay hub of the central nervous system (CNS), linking the bilaterally symmetric half-sides of lower and upper CNS centers via an extensive network of neural pathways. Dedicated neural assemblies within the hindbrain control many physiological processes, including respiration, blood pressure, motor coordination and different sensations. During early development, the hindbrain forms metameric segmented units known as rhombomeres along the antero-posterior (AP) axis of the nervous system. These compartmentalized units are highly conserved during vertebrate evolution and act as the template for adult brainstem structure and function. TALE and HOX homeodomain family transcription factors play a key role in the initial induction of the hindbrain and its specification into rhombomeric cell fate identities along the AP axis. Signaling pathways, such as canonical-Wnt, FGF and retinoic acid, play multiple roles to initially induce the hindbrain and regulate Hox gene-family expression to control rhombomeric identity. Additional transcription factors including Krox20, Kreisler and others act both upstream and downstream to Hox genes, modulating their expression and protein activity. In this review, we will examine the earliest embryonic signaling pathways that induce the hindbrain and subsequent rhombomeric segmentation via Hox and other gene expression. We will examine how these signaling pathways and transcription factors interact to activate downstream targets that organize the segmented AP pattern of the embryonic vertebrate hindbrain.
Collapse
Affiliation(s)
- Dale Frank
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 31096, Haifa, Israel.
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
14
|
Abstract
Hox temporal collinearity (TC) is a mysterious feature of embryogenesis. This article is opportune because of a recent challenge to TC’s existence This challenge is examined and the evidence that TC does exist is presented. Its function is discussed. Temporal collinearity is thought to be important because it lays the basis for Hox spatial collinearity and the vertebrate A-P axial pattern. The time-space translation mechanism whereby this occurs is examined.
Collapse
Affiliation(s)
- A J Durston
- a Institute of Biology , University of Leiden, Sylvius Laboratory , Leiden , Netherlands
| |
Collapse
|
15
|
Durston AJ. Two Tier Hox Collinearity Mediates Vertebrate Axial Patterning. Front Cell Dev Biol 2018; 6:102. [PMID: 30234110 PMCID: PMC6131192 DOI: 10.3389/fcell.2018.00102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/10/2018] [Indexed: 12/04/2022] Open
Abstract
A two tier mechanism mediates Hox collinearity. Besides the familiar collinear chromatin modification within each Hox cluster (nanocollinearity), there is also a macrocollinearity tier. Individual Hox clusters and individual cells are coordinated and synchronized to generate multiscale (macro and nano) collinearity in the early vertebrate embryo. Macro-collinearity is mediated by three non-cell autonomous Hox–Hox interactions. These mediate temporal collinearity in early NOM (non-organizer mesoderm), time space translation where temporal collinearity is translated to spatial collinearity along the early embryo’s main body axis and neural transformation, where Hox expression is copied monospecifically from NOM mesoderm to overlying neurectoderm in the late gastrula. Unlike nanocollinearity, which is Hox cluster restricted, axial macrocollinearity extends into the head and EAD domains, thus covering the whole embryonic anterior-posterior (A-P) axis. EAD: extreme anterior domain, the only A-P axial domain anterior to the head. The whole time space translation mechanism interacts with A-P signaling pathways via “decision points,” separating different domains on the axis.
Collapse
Affiliation(s)
- Antony J Durston
- Faculty of Science, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
16
|
Coupling the roles of Hox genes to regulatory networks patterning cranial neural crest. Dev Biol 2018; 444 Suppl 1:S67-S78. [PMID: 29571614 DOI: 10.1016/j.ydbio.2018.03.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022]
Abstract
The neural crest is a transient population of cells that forms within the developing central nervous system and migrates away to generate a wide range of derivatives throughout the body during vertebrate embryogenesis. These cells are of evolutionary and clinical interest, constituting a key defining trait in the evolution of vertebrates and alterations in their development are implicated in a high proportion of birth defects and craniofacial abnormalities. In the hindbrain and the adjacent cranial neural crest cells (cNCCs), nested domains of Hox gene expression provide a combinatorial'Hox-code' for specifying regional properties in the developing head. Hox genes have been shown to play important roles at multiple stages in cNCC development, including specification, migration, and differentiation. However, relatively little is known about the underlying gene-regulatory mechanisms involved, both upstream and downstream of Hox genes. Furthermore, it is still an open question as to how the genes of the neural crest GRN are linked to Hox-dependent pathways. In this review, we describe Hox gene expression, function and regulation in cNCCs with a view to integrating these genes within the emerging gene regulatory network for cNCC development. We highlight early roles for Hox1 genes in cNCC specification, proposing that this may be achieved, in part, by regulation of the balance between pluripotency and differentiation in precursor cells within the neuro-epithelium. We then describe what is known about the regulation of Hox gene expression in cNCCs and discuss this from the perspective of early vertebrate evolution.
Collapse
|
17
|
Selland LG, Koch S, Laraque M, Waskiewicz AJ. Coordinate regulation of retinoic acid synthesis by pbx genes and fibroblast growth factor signaling by hoxb1b is required for hindbrain patterning and development. Mech Dev 2018; 150:28-41. [PMID: 29496480 DOI: 10.1016/j.mod.2018.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 10/17/2022]
Abstract
The vertebrate hindbrain is composed of a series of lineage-restricted segments termed rhombomeres. Segment-specific gene expression drives unique programs of neuronal differentiation. Two critical embryonic signaling pathways, Fibroblast Growth Factor (FGF) and Retinoic Acid (RA), regulate early embryonic rhombomere patterning. The earliest expressed hox genes, hoxb1b and hoxb1a in zebrafish, are logical candidates for establishing signaling networks that specify segmental identity. We sought to determine the mechanism by which hox genes regulate hindbrain patterning in zebrafish. We demonstrate that hoxb1a regulates r4-specific patterning, while hoxb1b regulates rhombomere segmentation and size. Hoxb1a and hoxb1b redundantly regulate vhnf1 expression. Loss of hoxb1b together with pbx4 reverts the hindbrain to a groundstate identity, demonstrating the importance of hox genes in patterning nearly the entire hindbrain, and a key requirement for Pbx in this process. Additionally, we provide evidence that while pbx genes regulate RA signaling, hoxb1b regulates hindbrain identity through complex regulation of FGF signaling.
Collapse
Affiliation(s)
- Lyndsay G Selland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sophie Koch
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Malcolm Laraque
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
18
|
Kondo M, Yamamoto T, Takahashi S, Taira M. Comprehensive analyses ofhoxgene expression inXenopus laevisembryos and adult tissues. Dev Growth Differ 2017; 59:526-539. [DOI: 10.1111/dgd.12382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/29/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Mariko Kondo
- Misaki Marine Biological Station; Graduate School of Science and Center for Marine Biology; The University of Tokyo; 1024 Koajiro Misaki Miura Kanagawa 238-0225 Japan
| | - Takayoshi Yamamoto
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shuji Takahashi
- Institute for Amphibian Biology; Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Masanori Taira
- Department of Biological Sciences; Graduate School of Science; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
19
|
Krox20 hindbrain regulation incorporates multiple modes of cooperation between cis-acting elements. PLoS Genet 2017; 13:e1006903. [PMID: 28749941 PMCID: PMC5549768 DOI: 10.1371/journal.pgen.1006903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/08/2017] [Accepted: 07/03/2017] [Indexed: 11/19/2022] Open
Abstract
Developmental genes can harbour multiple transcriptional enhancers that act simultaneously or in succession to achieve robust and precise spatiotemporal expression. However, the mechanisms underlying cooperation between cis-acting elements are poorly documented, notably in vertebrates. The mouse gene Krox20 encodes a transcription factor required for the specification of two segments (rhombomeres) of the developing hindbrain. In rhombomere 3, Krox20 is subject to direct positive feedback governed by an autoregulatory enhancer, element A. In contrast, a second enhancer, element C, distant by 70 kb, is active from the initiation of transcription independent of the presence of the KROX20 protein. Here, using both enhancer knock-outs and investigations of chromatin organisation, we show that element C possesses a dual activity: besides its classical enhancer function, it is also permanently required in cis to potentiate the autoregulatory activity of element A, by increasing its chromatin accessibility. This work uncovers a novel, asymmetrical, long-range mode of cooperation between cis-acting elements that might be essential to avoid promiscuous activation of positive autoregulatory elements. The formation of multicellular organisms from the egg to the adult stage is largely under genetic control. The activation of specific genes is governed by regulatory DNA sequences present nearby on the chromosome. Most of these sequences promote activation and are called enhancers. In this paper, we study two enhancers governing the expression of a gene involved in the formation of the posterior brain in vertebrates. One of these enhancers is involved in a positive feedback loop: it is itself activated by the protein product of the gene that it regulates. The other enhancer was thought to be only involved in the initial accumulation of the protein, necessary for the subsequent activation of the feedback loop. Here we show that the second enhancer directly cooperates with the autoregulatory enhancer to increase its accessibility and its activity. Our work uncovers a novel, long-range mode of cooperation between enhancers that restricts the domain of action of autoregulatory enhancers within embryos and might be essential to avoid their inappropriate activation.
Collapse
|
20
|
Zhu K, Spaink HP, Durston AJ. Collinear Hox-Hox interactions are involved in patterning the vertebrate anteroposterior (A-P) axis. PLoS One 2017; 12:e0175287. [PMID: 28399140 PMCID: PMC5388487 DOI: 10.1371/journal.pone.0175287] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023] Open
Abstract
Investigating regulation and function of the Hox genes, key regulators of positional identity in the embryo, opened a new vista in developmental biology. One of their most striking features is collinearity: the temporal and spatial orders of expression of these clustered genes each match their 3’ to 5’ order on the chromosome. Despite recent progress, the mechanisms underlying collinearity are not understood. Here we show that ectopic expression of 4 different single Hox genes predictably induces and represses expression of others, leading to development of different predictable specific sections of the body axis. We use ectopic expression in wild-type and noggin—dorsalised (Hox-free) Xenopus embryos, to show that two Hox-Hox interactions are important. Posterior induction (induction of posterior Hox genes by anterior ones: PI), drives Hox temporal collinearity (Hox timer), which itself drives anteroposterior (A-P) patterning. Posterior prevalence (repression of anterior Hox genes by posterior ones: PP) is important in translating temporal to spatial collinearity. We thus demonstrate for the first time that two collinear Hox interactions are important for vertebrate axial patterning. These findings considerably extend and clarify earlier work suggesting the existence and importance of PP and PI, and provide a major new insight into genesis of the body axis.
Collapse
Affiliation(s)
- Kongju Zhu
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Herman P. Spaink
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Antony J. Durston
- Institute of Biology, Leiden University, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
21
|
Ruff JS, Saffarini RB, Ramoz LL, Morrison LC, Baker S, Laverty SM, Tvrdik P, Capecchi MR, Potts WK. Mouse fitness measures reveal incomplete functional redundancy of Hox paralogous group 1 proteins. PLoS One 2017; 12:e0174975. [PMID: 28380068 PMCID: PMC5381901 DOI: 10.1371/journal.pone.0174975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/17/2017] [Indexed: 11/26/2022] Open
Abstract
Here we assess the fitness consequences of the replacement of the Hoxa1 coding region with its paralog Hoxb1 in mice (Mus musculus) residing in semi-natural enclosures. Previously, this Hoxa1B1 swap was reported as resulting in no discernible embryonic or physiological phenotype (i.e., functionally redundant), despite the 51% amino acid sequence differences between these two Hox proteins. Within heterozygous breeding cages no differences in litter size nor deviations from Mendelian genotypic expectations were observed in the outbred progeny; however, within semi-natural population enclosures mice homozygous for the Hoxa1B1 swap were out-reproduced by controls resulting in the mutant allele being only 87.5% as frequent as the control in offspring born within enclosures. Specifically, Hoxa1B1 founders produced only 77.9% as many offspring relative to controls, as measured by homozygous pups, and a 22.1% deficiency of heterozygous offspring was also observed. These data suggest that Hoxa1 and Hoxb1 have diverged in function through either sub- or neo-functionalization and that the HoxA1 and HoxB1 proteins are not mutually interchangeable when expressed from the Hoxa1 locus. The fitness assays conducted under naturalistic conditions in this study have provided an ultimate-level assessment of the postulated equivalence of competing alleles. Characterization of these differences has provided greater understanding of the forces shaping the maintenance and diversifications of Hox genes as well as other paralogous genes. This fitness assay approach can be applied to any genetic manipulation and often provides the most sensitive way to detect functional differences.
Collapse
Affiliation(s)
- James S. Ruff
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Raed B. Saffarini
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Leda L. Ramoz
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Linda C. Morrison
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Shambralyn Baker
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Sean M. Laverty
- Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, Oklahoma, United States of America
| | - Petr Tvrdik
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, United States of America
| | - Mario R. Capecchi
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| | - Wayne K. Potts
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
22
|
Selection on different genes with equivalent functions: the convergence story told by Hox genes along the evolution of aquatic mammalian lineages. BMC Evol Biol 2016; 16:113. [PMID: 27209096 PMCID: PMC4875654 DOI: 10.1186/s12862-016-0682-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/10/2016] [Indexed: 11/24/2022] Open
Abstract
Background Convergent evolution has been a challenging topic for decades, being cetaceans, pinnipeds and sirenians textbook examples of three independent origins of equivalent phenotypes. These mammalian lineages acquired similar anatomical features correlated to an aquatic life, and remarkably differ from their terrestrial counterparts. Whether their molecular evolutionary history also involved similar genetic mechanisms underlying such morphological convergence nevertheless remained unknown. To test for the existence of convergent molecular signatures, we studied the molecular evolution of Hox genes in these three aquatic mammalian lineages, comparing their patterns to terrestrial mammals. Hox genes are transcription factors that play a pivotal role in specifying embryonic regional identity of nearly any bilateral animal, and are recognized major agents for diversification of body plans. Results We detected few signatures of positive selection on Hox genes across the three aquatic mammalian lineages and verified that purifying selection prevails in these sequences, as expected for pleiotropic genes. Genes found as being positively selected differ across the aquatic mammalian lineages, but we identified a substantial overlap of their developmental functions. Such pattern likely resides on the duplication history of Hox genes, which probably provided different possible evolutionary routes for achieving the same phenotypic solution. Conclusions Our results indicate that convergence occurred at a functional level of Hox genes along three independent origins of aquatic mammals. This conclusion reinforces the idea that different changes in developmental genes may lead to similar phenotypes, probably due to the redundancy provided by the participation of Hox paralogous genes in several developmental functions. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0682-4) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Carron C, Shi DL. Specification of anteroposterior axis by combinatorial signaling during Xenopus development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:150-68. [PMID: 26544673 DOI: 10.1002/wdev.217] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/01/2015] [Accepted: 09/12/2015] [Indexed: 01/08/2023]
Abstract
The specification of anteroposterior (AP) axis is a fundamental and complex patterning process that sets up the embryonic polarity and shapes a multicellular organism. This process involves the integration of distinct signaling pathways to coordinate temporal-spatial gene expression and morphogenetic movements. In the frog Xenopus, extensive embryological and molecular studies have provided major advance in understanding the mechanism implicated in AP patterning. Following fertilization, cortical rotation leads to the transport of maternal determinants to the dorsal region and creates the primary dorsoventral (DV) asymmetry. The activation of maternal Wnt/ß-catenin signaling and a high Nodal signal induces the formation of the Nieuwkoop center in the dorsal-vegetal cells, which then triggers the formation of the Spemann organizer in the overlying dorsal marginal zone. It is now well established that the Spemann organizer plays a central role in building the vertebrate body axes because it provides patterning information for both DV and AP polarities. The antagonistic interactions between signals secreted in the Spemann organizer and the opposite ventral region pattern the mesoderm along the DV axis, and this DV information is translated into AP positional values during gastrulation. The formation of anterior neural tissue requires simultaneous inhibition of zygotic Wnt and bone morphogenetic protein (BMP) signals, while an endogenous gradient of Wnt, fibroblast growth factors (FGFs), retinoic acid (RA) signaling, and collinearly expressed Hox genes patterns the trunk and posterior regions. Collectively, DV asymmetry is mostly coupled to AP polarity, and cell-cell interactions mediated essentially by the same regulatory networks operate in DV and AP patterning. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Clémence Carron
- Laboratory of Developmental Biology, Sorbonne Universités, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | - De-Li Shi
- Laboratory of Developmental Biology, Sorbonne Universités, Institut de Biologie Paris-Seine (IBPS), Paris, France.,School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
24
|
Terriente J, Pujades C. Cell segregation in the vertebrate hindbrain: a matter of boundaries. Cell Mol Life Sci 2015; 72:3721-30. [PMID: 26089248 PMCID: PMC11113478 DOI: 10.1007/s00018-015-1953-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/06/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023]
Abstract
Segregating cells into compartments during embryonic development is essential for growth and pattern formation. In the developing hindbrain, boundaries separate molecularly, physically and neuroanatomically distinct segments called rhombomeres. After rhombomeric cells have acquired their identity, interhombomeric boundaries restrict cell intermingling between adjacent rhombomeres and act as signaling centers to pattern the surrounding tissue. Several works have stressed the relevance of Eph/ephrin signaling in rhombomeric cell sorting. Recent data have unveiled the role of this pathway in the assembly of actomyosin cables as an important mechanism for keeping cells from different rhombomeres segregated. In this Review, we will provide a short summary of recent evidences gathered in different systems suggesting that physical actomyosin barriers can be a general mechanism for tissue separation. We will discuss current evidences supporting a model where cell-cell signaling pathways, such as Eph/ephrin, govern compartmental cell sorting through modulation of the actomyosin cytoskeleton and cell adhesive properties to prevent cell intermingling.
Collapse
Affiliation(s)
- Javier Terriente
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Dr Aiguader 88, 08003, Barcelona, Spain.
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Dr Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
25
|
Abstract
How vertebrates generate their anterior-posterior axis is a >90-year-old unsolved probem. This mechanism clearly works very differently in vertebrates than in Drosophila. Here, we present evidence from the Amphibian Xenopus that a time space translation mechanism underlies initial axial patterning in the trunk part of the axis. We show that a timer in the gastrula's non organiser mesoderm (NOM) undergoes sequential timed interactions with the Spemann organiser (SO) during gastrulation to generate the spatial axial pattern. Evidence is also presented that this mechanism works via Hox collinearity and that it requires Hox functionality. The NOM timer is putatively Hox temporal collinearity. This generates a spatially collinear axial Hox pattern in the emerging dorsal central nervous system and dorsal paraxial mesoderm. The interactions with the organiser are mediated by a BMP-anti BMP dependent mechanism. Hox functionality is implicated because knocking out the Hox1 paralogue group not only disrupts expression of Hox1 genes but also of the whole spatially collinear axial Hox sequence in the early embryo's A-P axis. This mechanism and its nature are discussed. The evidence supporting this hypothesis is presented and critically assessed. Strengths and weaknesses, questions, uncertainties and holes in the evidence are identified. Future directions are indicated.
Collapse
|
26
|
Abstract
Anterior-posterior (A-P) patterning of the vertebrate main body axis regulated by timing. Anterior structures are specified early, posterior late. (1) Timing involves timed decision points as emphasised by the Wnt studies of Sokol and colleagues. It also involves complex timers, where large parts of the axis are patterned sequentially by a common upstream mechanism (articles by Durston et al., Mullins et al., Oates et al.,). (2) A gastrula BMP-anti BMP dependent time-space translation (TST) mechanism was demonstrated for the trunk section of the axis (Durston). (3) Thisses' studies emphasise the importance of BMP-anti BMP and the organiser inducing factor nodal for A-P patterning. (4) Meinhardt's interesting studies on the organiser and A-P patterning are reviewed in relation to TST. (5) Mullins' investigations show that anti-BMP dependent TST starts earlier (at the blastula stage) and extends further anteriorly (to the anterior head). Sive's studies imply it may extend further still to the "extreme anterior domain" (EAD). (6) The somitogenesis timer (clock) is presented. Stern's and Oates' findings are discussed. (7) Relations between somitogenesis and axial TST are discussed. (8) Relations of classical axial patterning pathways to TST decision points and somitogenesis are inventarised. In conclusion, all of these findings point to an integral BMP-anti BMP dependent A-P TST mechanism, running from cement gland in the EAD, Six3 and the anterior tip of the forebrain at blastula stages to Hox13 and the tip of the tail by the mid neurula stage. TST acts via sequential timed transitions between ventral (unstable, timed) and dorsal (stabilised) states. In the trunk-tail, the timer is thought to be Hox temporal collinearity and TST depends on Hox function. In the head, TST is under investigation. The somitogenesis clock is upstream of the TST timer, providing precision in the posterior part of the axis at least. Classical A-P signalling pathways: retinoids, FGFs and Wnts, change behaviour at functional decision points on the axis.
Collapse
|
27
|
Labalette C, Wassef MA, Desmarquet-Trin Dinh C, Bouchoucha YX, Le Men J, Charnay P, Gilardi-Hebenstreit P. Molecular dissection of segment formation in the developing hindbrain. Development 2015; 142:185-95. [PMID: 25516974 DOI: 10.1242/dev.109652] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although many components of the genetic pathways that provide positional information during embryogenesis have been identified, it remains unclear how these signals are integrated to specify discrete tissue territories. Here, we investigate the molecular mechanisms underlying the formation of one of the hindbrain segments, rhombomere (r) 3, specified by the expression of the gene krox20. Dissecting krox20 transcriptional regulation has identified several input pathways: Hox paralogous 1 (PG1) factors, which both directly activate krox20 and indirectly repress it via Nlz factors, and the molecular components of an Fgf-dependent effector pathway. These different inputs are channelled through a single initiator enhancer element to shape krox20 initial transcriptional response: Hox PG1 and Nlz factors define the anterior-posterior extent of the enhancer's domain of activity, whereas Fgf signalling modulates the magnitude of activity in a spatially uniform manner. Final positioning of r3 boundaries requires interpretation of this initial pattern by a krox20 positive-feedback loop, orchestrated by another enhancer. Overall, this study shows how positional information provided by different patterning mechanisms is integrated through a gene regulatory network involving two cis-acting elements operating on the same gene, thus offering a comprehensive view of the delimitation of a territory.
Collapse
Affiliation(s)
- Charlotte Labalette
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France
| | - Michel Adam Wassef
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, Paris 75252, Cedex 05, France
| | - Carole Desmarquet-Trin Dinh
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France
| | - Yassine Xavier Bouchoucha
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, Paris 75252, Cedex 05, France
| | - Johan Le Men
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, Paris 75252, Cedex 05, France
| | - Patrick Charnay
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France
| | - Pascale Gilardi-Hebenstreit
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris F-75005, France
| |
Collapse
|
28
|
Vertical signalling involves transmission of Hox information from gastrula mesoderm to neurectoderm. PLoS One 2014; 9:e115208. [PMID: 25514127 PMCID: PMC4267835 DOI: 10.1371/journal.pone.0115208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/19/2014] [Indexed: 11/23/2022] Open
Abstract
Development and patterning of neural tissue in the vertebrate embryo involves a set of molecules and processes whose relationships are not fully understood. Classical embryology revealed a remarkable phenomenon known as vertical signalling, a gastrulation stage mechanism that copies anterior-posterior positional information from mesoderm to prospective neural tissue. Vertical signalling mediates unambiguous copying of complex information from one tissue layer to another. In this study, we report an investigation of this process in recombinates of mesoderm and ectoderm from gastrulae of Xenopus laevis. Our results show that copying of positional information involves non cell autonomous autoregulation of particular Hox genes whose expression is copied from mesoderm to neurectoderm in the gastrula. Furthermore, this information sharing mechanism involves unconventional translocation of the homeoproteins themselves. This conserved primitive mechanism has been known for three decades but has only recently been put into any developmental context. It provides a simple, robust way to pattern the neurectoderm using the Hox pattern already present in the mesoderm during gastrulation. We suggest that this mechanism was selected during evolution to enable unambiguous copying of rather complex information from cell to cell and that it is a key part of the original ancestral mechanism mediating axial patterning by the highly conserved Hox genes.
Collapse
|
29
|
Schulte D, Frank D. TALE transcription factors during early development of the vertebrate brain and eye. Dev Dyn 2013; 243:99-116. [DOI: 10.1002/dvdy.24030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 12/25/2022] Open
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute); University Hospital Frankfurt, J.W. Goethe University; Frankfurt Germany
| | - Dale Frank
- Department of Biochemistry; The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology; Haifa Israel
| |
Collapse
|
30
|
Regional and segmental differences in the embryonic expression of a putative leech Hox gene, Lox2, by central neurons immunoreactive to FMRFamide-like neuropeptides. INVERTEBRATE NEUROSCIENCE 2013; 14:51-8. [PMID: 23958799 DOI: 10.1007/s10158-013-0161-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Abstract
We performed immunofluorescence experiments using a rat polyclonal antibody on formaldehyde-fixed whole-mount embryos to characterize the expression of a putative leech Hox gene, Lox2, during embryonic development. The main goal was to determine whether the differentiation of subsets of FMRFamide-like immunoreactive (FLI) neurons coincide with the expression domain of Lox2. The earliest expression of Lox2 was detected in relatively large, prominent nuclei in the posterior region at embryonic day 4, a very early stage. Lox2 expression was also detected in subsets of central neurons (neurons located in the CNS) located in midbody ganglia 6 (M6)-M21. In addition, Lox2 was expressed by a number of segment-specific and segmentally repeated central FLI neurons. Lox2-positive FLI neurons of interest included some of those previously identified: the rostral most ventral (RMV) neurons, the circular ventral (CV) neurons, and cell 261. The paired RMVs, which are located in all midbody ganglia, expressed Lox2 only in M7-M19. The CV neurons, specialized motor neurons that innervate the circular ventral muscles of the body wall, expressed Lox2 in M7-M19. The putative cell 261 expressed Lox2 in M7-M12, where Lox1 is also expressed. FMRFamide staining in putative segmental homologs of cell 261 was not detected in other segmental ganglia. Our results suggest a role for Lox2 in very early embryonic development (before the formation of the CNS), and in the differentiation of segmentally repeated and region-specific FLI neurons.
Collapse
|
31
|
Sugano Y, Neuhauss SCF. Reverse genetics tools in zebrafish: a forward dive into endocrinology. Gen Comp Endocrinol 2013; 188:303-8. [PMID: 23454670 DOI: 10.1016/j.ygcen.2013.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/05/2013] [Indexed: 01/01/2023]
Abstract
The zebrafish is a powerful genetic model organism. In recent years, zebrafish has been increasingly used to model human diseases. Due to a number of recent technological advancements, the genetic tool box is now also stocked with sophisticated transgenic and reverse genetic tools. Here, we focus on both commonly used and recently established reverse genetic and transgenic tools available in zebrafish. These new developments make the zebrafish an even more attractive animal model in comparative endocrinology.
Collapse
Affiliation(s)
- Yuya Sugano
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
32
|
Golbabapour S, Majid NA, Hassandarvish P, Hajrezaie M, Abdulla MA, Hadi AHA. Gene silencing and Polycomb group proteins: an overview of their structure, mechanisms and phylogenetics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:283-96. [PMID: 23692361 PMCID: PMC3662373 DOI: 10.1089/omi.2012.0105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNA methylation, histone modifications, and chromatin configuration are crucially important in the regulation of gene expression. Among these epigenetic mechanisms, silencing the expression of certain genes depending on developmental stage and tissue specificity is a key repressive system in genome programming. Polycomb (Pc) proteins play roles in gene silencing through different mechanisms. These proteins act in complexes and govern the histone methylation profiles of a large number of genes that regulate various cellular pathways. This review focuses on two main Pc complexes, Pc repressive complexes 1 and 2, and their phylogenetic relationship, structures, and function. The dynamic roles of these complexes in silencing will be discussed herein, with a focus on the recruitment of Pc complexes to target genes and the key factors involved in their recruitment.
Collapse
Affiliation(s)
- Shahram Golbabapour
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
33
|
Fendri K, Patten SA, Kaufman GN, Zaouter C, Parent S, Grimard G, Edery P, Moldovan F. Microarray expression profiling identifies genes with altered expression in Adolescent Idiopathic Scoliosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 22:1300-11. [PMID: 23467837 DOI: 10.1007/s00586-013-2728-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 01/09/2023]
Abstract
PURPOSE Adolescent Idiopathic Scoliosis (AIS) is considered a complex genetic disease, in which malfunctioning or dysregulation of one or more genes has been proposed to be responsible for the expressed phenotype. However, to date, no disease causing genes has been identified and the pathogenesis of AIS remains unknown. The aim of this study is, therefore, to identify specific molecules with differing expression patterns in AIS compared to healthy individuals. METHODS Microarray analysis and quantitative RT-PCR have examined differences in the gene transcription profile between primary osteoblasts derived from spinal vertebrae of AIS patients and those of healthy individuals. RESULTS There are 145 genes differentially expressed in AIS osteoblasts. A drastic and significant change has been noted particularly in the expression levels of Homeobox genes (HOXB8, HOXB7, HOXA13, HOXA10), ZIC2, FAM101A, COMP and PITX1 in AIS compared to controls. Clustering analysis revealed the interaction of these genes in biological pathways crucial for bone development, in particular in the differentiation of skeletal elements and structural integrity of the vertebrae. CONCLUSIONS This study reports on the expression of molecules that have not been described previously in AIS. We also provide for the first time gene interaction pathways in AIS pathogenesis. These genes are involved in various bone regulatory and developmental pathways and many of them can be grouped into clusters to participate in a particular biological pathway. Further studies can be built on our findings to further elucidate the association between different biological pathways and the pathogenesis of AIS.
Collapse
Affiliation(s)
- Khaled Fendri
- Sainte-Justine Hospital Research Center, 3175, Chemin de la Cote Ste-Catherine, Montreal, Quebec, H3T 1C5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lee YH, Williams A, Hong CS, You Y, Senoo M, Saint-Jeannet JP. Early development of the thymus in Xenopus laevis. Dev Dyn 2013; 242:164-78. [PMID: 23172757 PMCID: PMC3640628 DOI: 10.1002/dvdy.23905] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although Xenopus laevis has been a model of choice for comparative and developmental studies of the immune system, little is known about organogenesis of the thymus, a primary lymphoid organ in vertebrates. Here we examined the expression of three transcription factors that have been functionally associated with pharyngeal gland development, gcm2, hoxa3, and foxn1, and evaluated the neural crest contribution to thymus development. RESULTS In most species Hoxa3 is expressed in the third pharyngeal pouch endoderm where it directs thymus formation. In Xenopus, the thymus primordium is derived from the second pharyngeal pouch endoderm, which is hoxa3-negative, suggesting that a different mechanism regulates thymus formation in frogs. Unlike other species foxn1 is not detected in the epithelium of the pharyngeal pouch in Xenopus, rather, its expression is initiated as thymic epithelial cell starts to differentiate and express MHC class II molecules. Using transplantation experiments we show that while neural crest cells populate the thymus primordia, they are not required for the specification and initial development of this organ or for T-cell differentiation in frogs. CONCLUSIONS These studies provide novel information on early thymus development in Xenopus, and highlight a number of features that distinguish Xenopus from other organisms.
Collapse
Affiliation(s)
- Young-Hoon Lee
- Department of Oral Anatomy, School of Dentistry & Institute of Oral Biosciences, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Allison Williams
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Chang-Soo Hong
- Department of Biological Sciences, College of Natural Sciences, Daegu University, Gyeongsan, Republic of Korea
| | - Youngjae You
- Department of Oral Anatomy, School of Dentistry & Institute of Oral Biosciences, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Makoto Senoo
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
- Department of Basic Science & Craniofacial Biology, New York University, College of Dentistry, 345 East 24Street, New York, NY 10010, USA
| |
Collapse
|
35
|
Gharbaran R, Aisemberg GO. Identification of leech embryonic neurons that express a Hox gene required for the differentiation of a paired, segment‐specific motor neuron. Int J Dev Neurosci 2012; 31:105-15. [DOI: 10.1016/j.ijdevneu.2012.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 10/10/2012] [Accepted: 11/16/2012] [Indexed: 10/27/2022] Open
Affiliation(s)
- Rajendra Gharbaran
- Department of Biological SciencesLehman College of City University of New YorkBronxNY10468United States
| | - Gabriel O. Aisemberg
- Department of Biological SciencesLehman College of City University of New YorkBronxNY10468United States
| |
Collapse
|
36
|
Abstract
The vertebrate A-P axis is a time axis. The head is made first and more and more posterior levels are made at later and later stages. This is different to the situation in most other animals, for example, in Drosophila. Central to this timing is Hox temporal collinearity (see below). This occurs rarely in the animal kingdom but is characteristic of vertebrates and is used to generate the primary axial Hox pattern using time space translation and to integrate successive derived patterns (see below). This is thus a different situation than in Drosophila, where the primary pattern guiding Hox spatial collinearity is generated externally, by the gap and segmentation genes.
Collapse
Affiliation(s)
- Aj Durston
- Institute of Biology, University of Leiden, Sylvius Laboratory, Wassenaarseweg 72, 2333 BE, Leiden, Netherlands
| | | | | | | |
Collapse
|
37
|
Gharbaran R, Aisemberg GO, Alvarado S. Segmental and regional differences in neuronal expression of the leech Hox genes Lox1 and Lox2 during embryogenesis. Cell Mol Neurobiol 2012; 32:1243-53. [PMID: 22569741 DOI: 10.1007/s10571-012-9849-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
Using double immunofluorescence experiments, we described the expression of the leech Hox genes, Lox1 and Lox2 by central neurons that stained for either serotonin or the leech-specific neuronal marker, Laz1-1. The goal is to determine whether the segmental boundaries of Lox1 and Lox2 expression in identified neurons coincide with segmental and regional differences in the differentiation of these cells. A number of neurons described here have been previously identified. The anteromedial serotonergic neurons are restricted to rostral ganglion 1 (R1) to midbody ganglion 3 (M3), but only express Lox1 in M2 and M3. The posteromedial serotonergic neurons which are situated in all segments as bilateral pairs early in development, but later become unpaired starting at M3, expressed Lox1 only in M2 and M3, and Lox2 in M8 to M21, in all paired and unpaired stages. The Retzius neurons, which stain for serotonin, express Lox2 in M7 to M21 where they exhibit different morphologies from their segmental homologs of the sex ganglia in M5 and M6. The Laz1-1 immunoreactive (Laz1-1+) heart accessory-like neurons express Lox1 in M4 and Lox2 in M7 to M17, but not in their segmental homologs of the heart accessory (HA) neurons located exclusively in M5 and M6. Also, Laz1-1+ neurons, which we named Lz3 expressed Lox1 in M4 to M8 where they are unpaired, but express Lox2 in M9 to M16 where they are bilaterally paired. Other Laz1-1 cells show more restricted and isolated Lox1 and Lox2 expression patterns. These results suggest a role of Lox1 and/or Lox2 in defining the anteroposterior boundaries of segmentally iterated neurons.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Department of Biological Sciences, Lehman College of The City University of New York, 250 Bedford Park Blvd., Bronx, NY 10468, USA.
| | | | | |
Collapse
|
38
|
Durston AJ. Global posterior prevalence is unique to vertebrates: a dance to the music of time? Dev Dyn 2012; 241:1799-807. [PMID: 22930553 DOI: 10.1002/dvdy.23852] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2012] [Indexed: 11/10/2022] Open
Abstract
We reach the conclusion that posterior prevalence, a collinear property considered important for Hox complex function, is so far unique, in a global form, to vertebrates. Why is this? We suspect this is because posterior prevalence is explicitly connected to the vertebrate form of Hox temporal collinearity, which is central to axial patterning.
Collapse
Affiliation(s)
- A J Durston
- Institute of Biology, University of Leiden, Sylvius Laboratory, Leiden, The Netherlands.
| |
Collapse
|
39
|
Le Bouffant R, Wang JH, Futel M, Buisson I, Umbhauer M, Riou JF. Retinoic acid-dependent control of MAP kinase phosphatase-3 is necessary for early kidney development in Xenopus. Biol Cell 2012; 104:516-32. [DOI: 10.1111/boc.201200005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 04/20/2012] [Indexed: 11/28/2022]
|
40
|
Michaut L, Jansen HJ, Bardine N, Durston AJ, Gehring WJ. Analyzing the function of a hox gene: an evolutionary approach. Dev Growth Differ 2011; 53:982-93. [PMID: 22150153 DOI: 10.1111/j.1440-169x.2011.01307.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present an evolutionary approach to dissecting conserved developmental mechanisms. We reason that important mechanisms for making the bodyplan will act early, to generate the major features of the body and that they will be conserved in evolution across many metazoa, and thus, that they will be available in very different animals. This led to our specific approach of microarrays to screen for very early conserved developmental regulators in parallel in an insect, Drosophila and a vertebrate, Xenopus. We screened for the earliest conserved targets of the ectopically expressed hox gene Hoxc6/Antennapedia in both species and followed these targets up, using in situ hybridization, in the Xenopus system. The results indicate that relatively few of the early Hox target genes are conserved: these are mainly involved in the specification of the antero-posterior body axis and in gastrulation.
Collapse
Affiliation(s)
- Lydia Michaut
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
41
|
Sivachenko AY, Yuryev A, Daraselia N, Mazo I. MOLECULAR NETWORKS IN MICROARRAY ANALYSIS. J Bioinform Comput Biol 2011; 5:429-56. [PMID: 17636854 DOI: 10.1142/s0219720007002795] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 01/11/2007] [Accepted: 01/29/2007] [Indexed: 11/18/2022]
Abstract
Microarray-based characterization of tissues, cellular and disease states, and environmental condition and treatment responses provides genome-wide snapshots containing large amounts of invaluable information. However, the lack of inherent structure within the data and strong noise make extracting and interpreting this information and formulating and prioritizing domain relevant hypotheses difficult tasks. Integration with different types of biological data is required to place the expression measurements into a biologically meaningful context. A few approaches in microarray data interpretation are discussed with the emphasis on the use of molecular network information. Statistical procedures are demonstrated that superimpose expression data onto the transcription regulation network mined from scientific literature and aim at selecting transcription regulators with significant patterns of expression changes downstream. Tests are suggested that take into account network topology and signs of transcription regulation effects. The approaches are illustrated using two different expression datasets, the performance is compared, and biological relevance of the predictions is discussed.
Collapse
Affiliation(s)
- Andrey Y Sivachenko
- Ariadne Genomics, Inc., 9430 Key West avenue, Suite 113, Rockville, MD 20850, USA.
| | | | | | | |
Collapse
|
42
|
Erickson T, Pillay LM, Waskiewicz AJ. Zebrafish Tshz3b negatively regulates Hox function in the developing hindbrain. Genesis 2011; 49:725-42. [PMID: 21714061 DOI: 10.1002/dvg.20781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 06/13/2011] [Accepted: 06/19/2011] [Indexed: 01/18/2023]
Abstract
In flies, the zinc-finger protein Teashirt promotes trunk segmental identities, in part, by repressing the expression and function of anterior hox paralog group (PG) 1-4 genes that specify head fates. Anterior-posterior patterning of the vertebrate hindbrain also requires Hox PG 1-4 function, but the role of vertebrate teashirt-related genes in this process has not been investigated. In this work, we use overexpression and structure-function analyses to show that zebrafish tshz3b antagonizes Hox-dependent hindbrain segmentation. Ectopic Tshz3b perturbs the specification of rhombomere identities and leads to the caudal expansion of r1, the only rhombomere whose identity is specified independently of Hox function. This overexpression phenotype does not require the homeodomain and C-terminal zinc fingers that are unique to vertebrate Teashirt-related proteins, but does require that Tshz3b function as a repressor. Together, these results argue that the negative regulation of Hox PG 1-4 function is a conserved characteristic of Teashirt-related proteins.
Collapse
Affiliation(s)
- Timothy Erickson
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
43
|
Vitobello A, Ferretti E, Lampe X, Vilain N, Ducret S, Ori M, Spetz JF, Selleri L, Rijli FM. Hox and Pbx factors control retinoic acid synthesis during hindbrain segmentation. Dev Cell 2011; 20:469-82. [PMID: 21497760 DOI: 10.1016/j.devcel.2011.03.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/07/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
In vertebrate embryos, retinoic acid (RA) synthesized in the mesoderm by Raldh2 emanates to the hindbrain neuroepithelium, where it induces anteroposterior (AP)-restricted Hox expression patterns and rhombomere segmentation. However, how appropriate spatiotemporal RA activity is generated in the hindbrain is poorly understood. By analyzing Pbx1/Pbx2 and Hoxa1/Pbx1 null mice, we found that Raldh2 is itself under the transcriptional control of these factors and that the resulting RA-deficient phenotypes can be partially rescued by exogenous RA. Hoxa1-Pbx1/2-Meis2 directly binds a specific regulatory element that is required to maintain normal Raldh2 expression levels in vivo. Mesoderm-specific Xhoxa1 and Xpbx1b knockdowns in Xenopus embryos also result in Xraldh2 downregulation and hindbrain defects similar to mouse mutants, demonstrating conservation of this Hox-Pbx-dependent regulatory pathway. These findings reveal a feed-forward mechanism linking Hox-Pbx-dependent RA synthesis during early axial patterning with the establishment of spatially restricted Hox-Pbx activity in the developing hindbrain.
Collapse
Affiliation(s)
- Antonio Vitobello
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Oulion S, Borday-Birraux V, Debiais-Thibaud M, Mazan S, Laurenti P, Casane D. Evolution of repeated structures along the body axis of jawed vertebrates, insights from the Scyliorhinus canicula Hox code. Evol Dev 2011; 13:247-59. [DOI: 10.1111/j.1525-142x.2011.00477.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Gouti M, Briscoe J, Gavalas A. Anterior Hox genes interact with components of the neural crest specification network to induce neural crest fates. Stem Cells 2011; 29:858-70. [PMID: 21433221 PMCID: PMC3184476 DOI: 10.1002/stem.630] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/02/2011] [Indexed: 12/29/2022]
Abstract
Hox genes play a central role in neural crest (NC) patterning particularly in the cranial region of the body. Despite evidence that simultaneous loss of Hoxa1 and Hoxb1 function resulted in NC specification defects, the role of Hox genes in NC specification has remained unclear due to extended genetic redundancy among Hox genes. To circumvent this problem, we expressed anterior Hox genes in the trunk neural tube of the developing chick embryo. This demonstrated that anterior Hox genes play a central role in NC cell specification by rapidly inducing the key transcription factors Snail2 and Msx1/2 and a neural progenitor to NC cell fate switch characterized by cell adhesion changes and an epithelial-to-mesenchymal transition (EMT). Cells delaminated from dorsal and medial neural tube levels and generated ectopic neurons, glia progenitors, and melanocytes. The mobilization of the NC genetic cascade was dependent upon bone morphogenetic protein signaling and optimal levels of Notch signaling. Therefore, anterior Hox patterning genes participate in NC specification and EMT by interacting with NC-inducing signaling pathways and regulating the expression of key genes involved in these processes.
Collapse
Affiliation(s)
- Mina Gouti
- Developmental Biology Laboratory, Biomedical Research Foundation of the Academy of Athens (BRFAA)Athens, Greece
| | - James Briscoe
- Division of Developmental Neurobiology, MRC National Institute for Medical Research (NIMR)The Ridgeway, Mill Hill, London, United Kingdom
| | - Anthony Gavalas
- Developmental Biology Laboratory, Biomedical Research Foundation of the Academy of Athens (BRFAA)Athens, Greece
| |
Collapse
|
46
|
In der Rieden PMJ, Jansen HJ, Durston AJ. XMeis3 is necessary for mesodermal Hox gene expression and function. PLoS One 2011; 6:e18010. [PMID: 21464931 PMCID: PMC3065463 DOI: 10.1371/journal.pone.0018010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/21/2011] [Indexed: 12/13/2022] Open
Abstract
Hox transcription factors provide positional information during patterning of the anteroposterior axis. Hox transcription factors can co-operatively bind with PBC-class co-factors, enhancing specificity and affinity for their appropriate binding sites. The nuclear localisation of these co-factors is regulated by the Meis-class of homeodomain proteins. During development of the zebrafish hindbrain, Meis3 has previously been shown to synergise with Hoxb1 in the autoregulation of Hoxb1. In Xenopus XMeis3 posteriorises the embryo upon ectopic expression. Recently, an early temporally collinear expression sequence of Hox genes was detected in Xenopus gastrula mesoderm (see intro. P3). There is evidence that this sequence sets up the embryo's later axial Hox expression pattern by time-space translation. We investigated whether XMeis3 is involved in regulation of this early mesodermal Hox gene expression. Here, we present evidence that XMeis3 is necessary for expression of Hoxd1, Hoxb4 and Hoxc6 in mesoderm during gastrulation. In addition, we show that XMeis3 function is necessary for the progression of gastrulation. Finally, we present evidence for synergy between XMeis3 and Hoxd1 in Hoxd1 autoregulation in mesoderm during gastrulation.
Collapse
|
47
|
Renninger SL, Schonthaler HB, Neuhauss SCF, Dahm R. Investigating the genetics of visual processing, function and behaviour in zebrafish. Neurogenetics 2011; 12:97-116. [PMID: 21267617 DOI: 10.1007/s10048-011-0273-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 01/04/2011] [Indexed: 12/11/2022]
Abstract
Over the past three decades, the zebrafish has been proven to be an excellent model to investigate the genetic control of vertebrate embryonic development, and it is now also increasingly used to study behaviour and adult physiology. Moreover, mutagenesis approaches have resulted in large collections of mutants with phenotypes that resemble human pathologies, suggesting that these lines can be used to model diseases and screen drug candidates. With the recent development of new methods for gene targeting and manipulating or monitoring gene expression, the range of genetic modifications now possible in zebrafish is increasing rapidly. Combined with the classical strengths of the zebrafish as a model organism, these advances are set to substantially expand the type of biological questions that can be addressed in this species. In this review, we outline how the potential of the zebrafish can be harvested in the context of eye development and visual function. We review recent technological advances used to study the formation of the eyes and visual areas of the brain, visual processing on the cellular, subcellular and molecular level, and the genetics of visual behaviour in vertebrates.
Collapse
Affiliation(s)
- Sabine L Renninger
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
48
|
Barber BA, Rastegar M. Epigenetic control of Hox genes during neurogenesis, development, and disease. Ann Anat 2010; 192:261-74. [PMID: 20739155 DOI: 10.1016/j.aanat.2010.07.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 01/10/2023]
Abstract
The process of mammalian development is established through multiple complex molecular pathways acting in harmony at the genomic, proteomic, and epigenomic levels. The outcome is profoundly influenced by the role of epigenetics through transcriptional regulation of key developmental genes. Epigenetics refer to changes in gene expression that are inherited through mechanisms other than the underlying DNA sequence, which control cellular morphology and identity. It is currently well accepted that epigenetics play central roles in regulating mammalian development and cellular differentiation by dictating cell fate decisions via regulation of specific genes. Among these genes are the Hox family members, which are master regulators of embryonic development and stem cell differentiation and their mis-regulation leads to human disease and cancer. The Hox gene discovery led to the establishment of a fundamental role for basic genetics in development. Hox genes encode for highly conserved transcription factors from flies to humans that organize the anterior-posterior body axis during embryogenesis. Hox gene expression during development is tightly regulated in a spatiotemporal manner, partly by chromatin structure and epigenetic modifications. Here, we review the impact of different epigenetic mechanisms in development and stem cell differentiation with a clear focus on the regulation of Hox genes.
Collapse
Affiliation(s)
- Benjamin A Barber
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Winnipeg MB R3E 0J9, Canada
| | | |
Collapse
|
49
|
Review: Time–space translation regulates trunk axial patterning in the early vertebrate embryo. Genomics 2010; 95:250-5. [DOI: 10.1016/j.ygeno.2009.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 11/22/2022]
|
50
|
In der Rieden PMJ, Vilaspasa FL, Durston AJ. Xwnt8 directly initiates expression of labial Hox genes. Dev Dyn 2010; 239:126-39. [PMID: 19623617 DOI: 10.1002/dvdy.22020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hox transcription factors play an essential role in patterning the anteroposterior axis during embryogenesis and exhibit a complex array of spatial and temporal patterns of expression. Their earliest onset of expression in vertebrates is during gastrulation in a temporally collinear sequence in the presomitic/ventrolateral mesoderm, and it is not clear which upstream signal transduction events initiate this expression. Using Xenopus, we present evidence that Xwnt8 is necessary for initiation of this collinear sequence by activating Hox-1 expression in three Hox clusters: hoxd, hoxa, and hoxb. All three labial genes appear to be direct targets of canonical Wnt signaling through Tcf/Lef. In addition, Xwnt8 loss- and gain-of-function leads to indirect regulation of other Hox genes: Hoxb4, Hoxd4, Hoxa7, Hoxc6, and Hoxc8. These findings shed new light on the early role of Wnt8 as well as of a proposed WNT gradient in patterning the Xenopus central nervous system (Kiecker and Niehrs [2001] Development 128:4189-4201).
Collapse
Affiliation(s)
- Paul M J In der Rieden
- Hubrecht Laboratorium, Nederlands Instituut voor Ontwikkelingsbiologie, Utrecht, The Netherlands
| | | | | |
Collapse
|