1
|
Divyanshi, Yang J. Germ plasm dynamics during oogenesis and early embryonic development in Xenopus and zebrafish. Mol Reprod Dev 2024; 91:e23718. [PMID: 38126950 PMCID: PMC11190040 DOI: 10.1002/mrd.23718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 12/23/2023]
Abstract
Specification of the germline and its segregation from the soma mark one of the most crucial events in the lifetime of an organism. In different organisms, this specification can occur through either inheritance or inductive mechanisms. In species such as Xenopus and zebrafish, the specification of primordial germ cells relies on the inheritance of maternal germline determinants that are synthesized and sequestered in the germ plasm during oogenesis. In this review, we discuss the formation of the germ plasm, how germline determinants are recruited into the germ plasm during oogenesis, and the dynamics of the germ plasm during oogenesis and early embryonic development.
Collapse
Affiliation(s)
- Divyanshi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Jing Yang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL, USA
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|
2
|
Shi Y, Shen F, Chen X, Sun M, Zhang P. Current understanding of circular RNAs in preeclampsia. Hypertens Res 2024; 47:1607-1619. [PMID: 38605141 DOI: 10.1038/s41440-024-01675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Preeclampsia (PE) is a multiple organ and system disease that seriously threatens the safety of the mother and infant during pregnancy, and has a profound impact on the morbidity and mortality of the mother and new babies. Presently, there are no remedies for cure of PE as to the mechanisms of PE are still unclear, and the only way to eliminate the symptoms is to deliver the placenta. Thus, new therapeutic targets for PE are urgently needed. Approximately 95% of human transcripts are thought to be non-coding RNAs, and the roles of them are to be increasingly recognized of great importance in various biological processes. Circular RNAs (circRNAs) are a class of non-coding RNAs, with no 5' caps and 3' polyadenylated tails, commonly produced by back-splicing of exons. The structure of circRNAs makes them more stable than their counterparts. Increasing evidence shows that circRNAs are involved in the pathogenesis of PE, but the biogenesis, functions, and mechanisms of circRNAs in PE are poorly understood. In the present review, we mainly summarize the biogenesis, functions, and possible mechanisms of circRNAs in the development and progression of PE, as well as opportunities and challenges in the treatment and prevention of PE.
Collapse
Affiliation(s)
- Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fangrong Shen
- Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xionghui Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Trauma Medicine, Soochow University, Suzhou, China.
- Jiangsu Provincial Medical Innovation Center of Trauma Medicine, Suzhou, China.
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Pengjie Zhang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Janas T, Sapoń K, Janas T. Selection of bifunctional RNAs with specificity for arginine and lipid membranes. FEBS Lett 2024; 598:1061-1079. [PMID: 38649155 DOI: 10.1002/1873-3468.14880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
The molecular mechanisms of selective RNA loading into exosomes and other extracellular vesicles are not yet completely understood. In order to show that a pool of RNA sequences binds both the amino acid arginine and lipid membranes, we constructed a bifunctional RNA 10Arg aptamer specific for arginine and lipid vesicles. The preference of RNA 10Arg for lipid rafts was visualized and confirmed using FRET microscopy in neuroblastoma cells. The selection-amplification (SELEX) method using a doped (with the other three nucleotides) pool of RNA 10Arg sequences yielded several RNA 10Arg(D) sequences, and the affinities of these RNAs both to arginine and liposomes are improved in comparison to pre-doped RNA. Generation of these bispecific aptamers supports the hypothesis that an RNA molecule can bind both to RNA-binding proteins (RBPs) through arginine within the RBP-binding site and to membrane lipid rafts, thus facilitating RNA loading into exosomes and other extracellular vesicles.
Collapse
Affiliation(s)
- Teresa Janas
- Institute of Biology, University of Opole, Poland
| | | | | |
Collapse
|
4
|
Otis JP, Mowry KL. Hitting the mark: Localization of mRNA and biomolecular condensates in health and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1807. [PMID: 37393916 PMCID: PMC10758526 DOI: 10.1002/wrna.1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
Subcellular mRNA localization is critical to a multitude of biological processes such as development of cellular polarity, embryogenesis, tissue differentiation, protein complex formation, cell migration, and rapid responses to environmental stimuli and synaptic depolarization. Our understanding of the mechanisms of mRNA localization must now be revised to include formation and trafficking of biomolecular condensates, as several biomolecular condensates that transport and localize mRNA have recently been discovered. Disruptions in mRNA localization can have catastrophic effects on developmental processes and biomolecular condensate biology and have been shown to contribute to diverse diseases. A fundamental understanding of mRNA localization is essential to understanding how aberrations in this biology contribute the etiology of numerous cancers though support of cancer cell migration and biomolecular condensate dysregulation, as well as many neurodegenerative diseases, through misregulation of mRNA localization and biomolecular condensate biology. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jessica P. Otis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| | - Kimberly L. Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| |
Collapse
|
5
|
Neil CR, Jeschonek SP, Cabral SE, O'Connell LC, Powrie EA, Otis JP, Wood TR, Mowry KL. L-bodies are RNA-protein condensates driving RNA localization in Xenopus oocytes. Mol Biol Cell 2021; 32:ar37. [PMID: 34613784 PMCID: PMC8694076 DOI: 10.1091/mbc.e21-03-0146-t] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ribonucleoprotein (RNP) granules are membraneless compartments within cells, formed by phase separation, that function as regulatory hubs for diverse biological processes. However, the mechanisms by which RNAs and proteins interact to promote RNP granule structure and function in vivo remain unclear. In Xenopus laevis oocytes, maternal mRNAs are localized as large RNPs to the vegetal hemisphere of the developing oocyte, where local translation is critical for proper embryonic patterning. Here we demonstrate that RNPs containing vegetally localized RNAs represent a new class of cytoplasmic RNP granule, termed localization-bodies (L-bodies). We show that L-bodies contain a dynamic protein-containing phase surrounding a nondynamic RNA-containing phase. Our results support a role for RNA as a critical component within these RNP granules and suggest that cis-elements within localized mRNAs may drive subcellular RNA localization through control over phase behavior.
Collapse
Affiliation(s)
- Christopher R Neil
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Samantha P Jeschonek
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Sarah E Cabral
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Liam C O'Connell
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Erin A Powrie
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Jessica P Otis
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Timothy R Wood
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| |
Collapse
|
6
|
Thepsuwan T, Rungrassamee W, Sangket U, Whankaew S, Sathapondecha P. Long non-coding RNA profile in banana shrimp, Fenneropenaeus merguiensis and the potential role of lncPV13 in vitellogenesis. Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111045. [PMID: 34358684 DOI: 10.1016/j.cbpa.2021.111045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 01/04/2023]
Abstract
The long non-coding RNAs (lncRNAs) have been known to play important roles in several biological processes as well as in reproduction. This study aimed to identify lncRNA in ovary female banana shrimp, Fenneropenaeus merguiensis, and investigate the potential role of lncPV13 in the vitellogenesis. After the in silico identification of the ovarian transcriptome, a total of 24,733 putative lncRNAs were obtained, and only 147 putative lncRNAs were significantly differentially expressed among the ovarian development stages. To validate the in silico identification of lncRNAs, the 16 lncRNAs with the highest differential expression in the transcriptome analysis were evaluated by RT-qPCR. The 6 lncRNAs showed higher expression levels in the mature stage than in the previtellogenic stage and were found in several tissues such as in eyestalks, brains, thoracic ganglia, gills, and muscle. Furthermore, most candidate lncRNAs were amplifiable in Litopenaeus vannamei's and Penaeus monodon's DNA but not in Macrobrachium rosenbergii's DNA, suggesting some lncRNAs are expressed in a species-specific manner among penaeid shrimp. In this study, the lncPV13 was investigated for its vitellogenin regulating function by RNA interference. The result indicates that the lncPV13 expression was suppressed in the ovary on day 7 after the injection of double-stranded RNA specific to lncPV13 (dslncPV13), while vitellogenin (Vg) expression was significantly decreased. In contrast, the gonad inhibiting hormone (GIH) expression was significantly increased in the lncPV13 knockdown shrimp. However, the oocyte proliferation was not significantly different between control and lncPV13 knockdown shrimp. This suggests that lncPV13 regulate Vg synthesis through GIH inhibition. Finally, our findings provide lncRNA information and potential lncRNAs involved in the vitellogenesis of female banana shrimp.
Collapse
Affiliation(s)
- Timpika Thepsuwan
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Wanilada Rungrassamee
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Rd., Khlong Luang, Pathum Thani 12120, Thailand
| | - Unitsa Sangket
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Sukhuman Whankaew
- Department of Plant Science, Faculty of Technology and Community Development, Thaksin University, Phatthalung Campus, Phatthalung 93210, Thailand
| | - Ponsit Sathapondecha
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
7
|
Li Z, Zhang P, Zhang R, Wang X, Tse YC, Zhang H. A collection of toolkit strains reveals distinct localization and dynamics of membrane-associated transcripts in epithelia. Cell Rep 2021; 35:109072. [PMID: 33951426 DOI: 10.1016/j.celrep.2021.109072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/10/2021] [Accepted: 04/11/2021] [Indexed: 01/10/2023] Open
Abstract
Visualizing mRNA in real time in vivo at high resolution is critical for a full understanding of the spatiotemporal dynamics of gene regulation and function. Here, using a PP7/PCP-based mRNA-tagging approach, we construct a collection of tissue-specific and differentially expressed toolkit strains for visualizing mRNAs encoding apical, basolateral, and junctional proteins in Caenorhabditis elegans epithelia. We precisely delineate the spatiotemporal organization and dynamics of these transcripts across multiple subcellular compartments and tissues. Remarkably, all the transcripts exhibit an asymmetric, membrane-associated localization during epithelial polarization and maturation, which suggests that mRNA localization is a prerequisite for epithelial polarization and function. Single-particle tracking reveals striking features of the transport dynamics of the mRNAs in a gene-specific, compartment-linked, and time-resolved manner. The toolkit can be used to identify the cis-regulatory elements and trans-acting factors for mRNA localization. This study provides a valuable resource to investigate complex RNA dynamics in epithelial polarity and morphogenesis.
Collapse
Affiliation(s)
- Zhimin Li
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Pei Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Ruotong Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Xinyan Wang
- Core Research Facilities, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Chung Tse
- Core Research Facilities, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongjie Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China.
| |
Collapse
|
8
|
Janas T, Sapoń K, Janas T, Yarus M. Specific binding of VegT mRNA localization signal to membranes in Xenopus oocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118952. [PMID: 33422615 DOI: 10.1016/j.bbamcr.2021.118952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
We have studied the interaction of a VegT mRNA localization signal sequence with the membranes of the mitochondrial cloud in Xenopus oocytes, and the binding of the VegT mRNA signal sequence to the lipid raft regions of the vesicles bounded by ordered and disordered phospholipid bilayers. RNA preference for the membranes of the mitochondrial cloud was confirmed using microscopy of a fluorescence resonance energy transfer from RNA molecules to membranes. Our studies show that VegT mRNA has a higher affinity for ordered regions of lipid bilayers. This conclusion is supported by the dissociation constant measurements for RNA-liposome complex and the visualization of the FRET signal between giant vesicles and RNA. Our data indicate that these affinities are sensitive and distinct to the location of the localization elements within the VegT mRNA localization signal structure. Therefore, specific binding of VegT mRNA localization signal sequence to membranes can be responsible for polarized distribution of VegT mRNA in Xenopus oocytes. We suggest that the mechanism of this binding can involve the interaction of the localization elements within the VegT mRNA signal sequence with lipid raft regions of the mitochondrial cloud membranes, thereby utilizing localization elements as novel lipid raft-binding RNA motifs.
Collapse
Affiliation(s)
- Tadeusz Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland; Department of MCD Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Karolina Sapoń
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Teresa Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Michael Yarus
- Department of MCD Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
9
|
Zhao Z, Liu D, Cui Y, Li S, Liang D, Sun D, Wang J, Liu Z. Genome-wide identification and characterization of long non-coding RNAs related to grain yield in foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genomics 2020; 21:853. [PMID: 33261549 PMCID: PMC7709324 DOI: 10.1186/s12864-020-07272-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/23/2020] [Indexed: 12/05/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have been reported to play critical roles in diverse growth and development processes in plants. However, the systematic identification and characterization of lncRNAs in foxtail millet is nearly blank. Results In this study, we performed high-throughput sequencing of young spikelets from four foxtail millet varieties in different yield levels at booting stage. As a result, a total of 12,378 novel lncRNAs were identified, and 70 were commonly significantly differentially expressed in comparisons between high-yield varieties and conventional varieties, suggesting that they involved in yield formation and regulation in foxtail millet. Functional analysis revealed that among the 70 significantly differentially expressed lncRNAs, 67 could transcriptionally modulate target genes in cis and in trans. Moreover, 18 lncRNAs related to grain yield in foxtail millet were predicted to function as miRNA target mimics and regulate gene expression by competing for the interaction between miRNAs and their target mRNAs. Conclusion Our results will provide materials for elucidation of the molecular mechanisms of lncRNAs participate in yield regulation, and will contribute to high yield foxtail millet breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07272-9.
Collapse
Affiliation(s)
- Zilong Zhao
- College of Agronomy, Shanxi Agricultural University, Taigu, China.,Department of Life Sciences, Tangshan Normal University, Tangshan, China
| | - Dan Liu
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yanjiao Cui
- Department of Life Sciences, Tangshan Normal University, Tangshan, China
| | - Suying Li
- Department of Life Sciences, Tangshan Normal University, Tangshan, China
| | - Dan Liang
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Daizhen Sun
- College of Agronomy, Shanxi Agricultural University, Taigu, China.
| | - Jianhe Wang
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China.
| | - Zhengli Liu
- Department of Life Sciences, Tangshan Normal University, Tangshan, China.
| |
Collapse
|
10
|
Ji X, Li P, Fuscoe JC, Chen G, Xiao W, Shi L, Ning B, Liu Z, Hong H, Wu J, Liu J, Guo L, Kreil DP, Łabaj PP, Zhong L, Bao W, Huang Y, He J, Zhao Y, Tong W, Shi T. A comprehensive rat transcriptome built from large scale RNA-seq-based annotation. Nucleic Acids Res 2020; 48:8320-8331. [PMID: 32749457 PMCID: PMC7470976 DOI: 10.1093/nar/gkaa638] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 01/01/2023] Open
Abstract
The rat is an important model organism in biomedical research for studying human disease mechanisms and treatments, but its annotated transcriptome is far from complete. We constructed a Rat Transcriptome Re-annotation named RTR using RNA-seq data from 320 samples in 11 different organs generated by the SEQC consortium. Totally, there are 52 807 genes and 114 152 transcripts in RTR. Transcribed regions and exons in RTR account for ∼42% and ∼6.5% of the genome, respectively. Of all 73 074 newly annotated transcripts in RTR, 34 213 were annotated as high confident coding transcripts and 24 728 as high confident long noncoding transcripts. Different tissues rather than different stages have a significant influence on the expression patterns of transcripts. We also found that 11 715 genes and 15 852 transcripts were expressed in all 11 tissues and that 849 house-keeping genes expressed different isoforms among tissues. This comprehensive transcriptome is freely available at http://www.unimd.org/rtr/. Our new rat transcriptome provides essential reference for genetics and gene expression studies in rat disease and toxicity models.
Collapse
Affiliation(s)
- Xiangjun Ji
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Li
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.,Massachusetts General Hospital, Harvard Medical School, 51 Blossom St, Boston, MA 02114, USA
| | - James C Fuscoe
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Geng Chen
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenzhong Xiao
- Massachusetts General Hospital, Harvard Medical School, 51 Blossom St, Boston, MA 02114, USA
| | - Leming Shi
- Center for Pharmacogenomics, School of Pharmacy, Fudan University, Shanghai, 200438, China
| | - Baitang Ning
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Zhichao Liu
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jinghua Liu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lei Guo
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - David P Kreil
- Department of Biotechnology, Boku University Vienna, 1190 Muthgasse 18, Austria
| | - Paweł P Łabaj
- Department of Biotechnology, Boku University Vienna, 1190 Muthgasse 18, Austria.,Małopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Kraków, Poland
| | - Liping Zhong
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning 530021, China
| | - Wenjun Bao
- SAS Institute Inc., Cary, NC, 27513, USA
| | - Yong Huang
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning 530021, China
| | - Jian He
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning 530021, China
| | - Yongxiang Zhao
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning 530021, China
| | - Weida Tong
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, 100083, China
| |
Collapse
|
11
|
Zeng C, Hamada M. RNA-Seq Analysis Reveals Localization-Associated Alternative Splicing across 13 Cell Lines. Genes (Basel) 2020; 11:E820. [PMID: 32708427 PMCID: PMC7397181 DOI: 10.3390/genes11070820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing, a ubiquitous phenomenon in eukaryotes, is a regulatory mechanism for the biological diversity of individual genes. Most studies have focused on the effects of alternative splicing for protein synthesis. However, the transcriptome-wide influence of alternative splicing on RNA subcellular localization has rarely been studied. By analyzing RNA-seq data obtained from subcellular fractions across 13 human cell lines, we identified 8720 switching genes between the cytoplasm and the nucleus. Consistent with previous reports, intron retention was observed to be enriched in the nuclear transcript variants. Interestingly, we found that short and structurally stable introns were positively correlated with nuclear localization. Motif analysis reveals that fourteen RNA-binding protein (RBPs) are prone to be preferentially bound with such introns. To our knowledge, this is the first transcriptome-wide study to analyze and evaluate the effect of alternative splicing on RNA subcellular localization. Our findings reveal that alternative splicing plays a promising role in regulating RNA subcellular localization.
Collapse
Affiliation(s)
- Chao Zeng
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo 169-8555, Japan
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo 169-8555, Japan
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Institute for Medical-oriented Structural Biology, Waseda University, Tokyo 162-8480, Japan
- Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
12
|
Stanicek L, Lozano-Vidal N, Bink DI, Hooglugt A, Yao W, Wittig I, van Rijssel J, van Buul JD, van Bergen A, Klems A, Ramms AS, Le Noble F, Hofmann P, Szulcek R, Wang S, Offermanns S, Ercanoglu MS, Kwon HB, Stainier D, Huveneers S, Kurian L, Dimmeler S, Boon RA. Long non-coding RNA LASSIE regulates shear stress sensing and endothelial barrier function. Commun Biol 2020; 3:265. [PMID: 32457386 PMCID: PMC7251106 DOI: 10.1038/s42003-020-0987-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Blood vessels are constantly exposed to shear stress, a biomechanical force generated by blood flow. Normal shear stress sensing and barrier function are crucial for vascular homeostasis and are controlled by adherens junctions (AJs). Here we show that AJs are stabilized by the shear stress-induced long non-coding RNA LASSIE (linc00520). Silencing of LASSIE in endothelial cells impairs cell survival, cell-cell contacts and cell alignment in the direction of flow. LASSIE associates with junction proteins (e.g. PECAM-1) and the intermediate filament protein nestin, as identified by RNA affinity purification. The AJs component VE-cadherin showed decreased stabilization, due to reduced interaction with nestin and the microtubule cytoskeleton in the absence of LASSIE. This study identifies LASSIE as link between nestin and VE-cadherin, and describes nestin as crucial component in the endothelial response to shear stress. Furthermore, this study indicates that LASSIE regulates barrier function by connecting AJs to the cytoskeleton. Stanicek et al identify a shear stress-induced long non-coding RNA they name LASSIE, which stabilises junctions between endothelial cells through interactions with junctional and cytoskeletal proteins. This study provides insights into how a transcript that does not encode a protein controls endothelial response to forces associated with blood flow and endothelial barrier function.
Collapse
Affiliation(s)
- Laura Stanicek
- Dept. of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe-University, Frankfurt, Germany
| | - Noelia Lozano-Vidal
- Dept. of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Diewertje Ilse Bink
- Dept. of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Aukie Hooglugt
- Dept. of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Department of Medical Biochemistry, Vascular Microenvironment and Integrity, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Wenjie Yao
- Institute for Neurophysiology, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Ilka Wittig
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Jos van Rijssel
- Molecular Cell Biology Laboratory, Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam, 1066 CX, Amsterdam, The Netherlands
| | - Jaap Diederik van Buul
- Molecular Cell Biology Laboratory, Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam, 1066 CX, Amsterdam, The Netherlands
| | - Anke van Bergen
- Dept. of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Alina Klems
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anne Sophie Ramms
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ferdinand Le Noble
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Patrick Hofmann
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe-University, Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany
| | - Robert Szulcek
- Dept. of Pulmonary Diseases, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - ShengPeng Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Meryem Seda Ercanoglu
- Institute of Virology, University Hospital Cologne, 50935, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Hyouk-Bum Kwon
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stephan Huveneers
- Department of Medical Biochemistry, Vascular Microenvironment and Integrity, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Leo Kurian
- Institute for Neurophysiology, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe-University, Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany
| | - Reinier Abraham Boon
- Dept. of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands. .,Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe-University, Frankfurt, Germany. .,German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany.
| |
Collapse
|
13
|
Lu Y, Sha H, Sun X, Zhang Y, Wu Y, Zhang J, Zhang H, Wu J, Feng J. CRNDE: an oncogenic long non-coding RNA in cancers. Cancer Cell Int 2020; 20:162. [PMID: 32435153 PMCID: PMC7218640 DOI: 10.1186/s12935-020-01246-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal neoplasia differentially expressed (CRNDE) is a long non-coding RNA which has been proved upregulated in various cancers. Meanwhile, CRNDE has been demonstrated to be involved in multiple biological processes of different cancers according to previous study. Moreover, recent studies suggested CRNDE might be a potential diagnostic biomarker and prognostic predictor due to its high sensitivity and specificity in cancer tissues and plasma. In this review, we summarize the biological function of CRNDE and the relevant mechanisms in cancers to establish a molecular basis for the clinical use of CRNDE in the future.
Collapse
Affiliation(s)
- Ya Lu
- 1Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting42, 210009 Nanjing, China.,2The Forth Clinical School of Nanjing Medical University, Nanjing, China
| | - Huanhuan Sha
- 1Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting42, 210009 Nanjing, China.,2The Forth Clinical School of Nanjing Medical University, Nanjing, China
| | - Xun Sun
- 1Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting42, 210009 Nanjing, China.,2The Forth Clinical School of Nanjing Medical University, Nanjing, China
| | - Yuan Zhang
- 1Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting42, 210009 Nanjing, China
| | - Yang Wu
- 1Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting42, 210009 Nanjing, China
| | - Junying Zhang
- 1Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting42, 210009 Nanjing, China
| | - Hui Zhang
- 1Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting42, 210009 Nanjing, China.,2The Forth Clinical School of Nanjing Medical University, Nanjing, China
| | - Jianzhong Wu
- 1Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting42, 210009 Nanjing, China
| | - Jifeng Feng
- 1Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting42, 210009 Nanjing, China
| |
Collapse
|
14
|
Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115811] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Abstract
RNA localization is a key biological strategy for organizing the cytoplasm and generating both cellular and developmental polarity. During RNA localization, RNAs are targeted asymmetrically to specific subcellular destinations, resulting in spatially and temporally restricted gene expression through local protein synthesis. First discovered in oocytes and embryos, RNA localization is now recognized as a significant regulatory strategy for diverse RNAs, both coding and non-coding, in a wide range of cell types. Yet, the highly polarized cytoplasm of the oocyte remains a leading model to understand not only the principles and mechanisms underlying RNA localization, but also links to the formation of biomolecular condensates through phase separation. Here, we discuss both RNA localization and biomolecular condensates in oocytes with a particular focus on the oocyte of the frog, Xenopus laevis.
Collapse
Affiliation(s)
- Sarah E Cabral
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
16
|
Chaudhuri A, Das S, Das B. Localization elements and zip codes in the intracellular transport and localization of messenger RNAs in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1591. [PMID: 32101377 DOI: 10.1002/wrna.1591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
Intracellular trafficking and localization of mRNAs provide a mechanism of regulation of expression of genes with excellent spatial control. mRNA localization followed by localized translation appears to be a mechanism of targeted protein sorting to a specific cell-compartment, which is linked to the establishment of cell polarity, cell asymmetry, embryonic axis determination, and neuronal plasticity in metazoans. However, the complexity of the mechanism and the components of mRNA localization in higher organisms prompted the use of the unicellular organism Saccharomyces cerevisiae as a simplified model organism to study this vital process. Current knowledge indicates that a variety of mRNAs are asymmetrically and selectively localized to the tip of the bud of the daughter cells, to the vicinity of endoplasmic reticulum, mitochondria, and nucleus in this organism, which are connected to diverse cellular processes. Interestingly, specific cis-acting RNA localization elements (LEs) or RNA zip codes play a crucial role in the localization and trafficking of these localized mRNAs by providing critical binding sites for the specific RNA-binding proteins (RBPs). In this review, we present a comprehensive account of mRNA localization in S. cerevisiae, various types of localization elements influencing the mRNA localization, and the RBPs, which bind to these LEs to implement a number of vital physiological processes. Finally, we emphasize the significance of this process by highlighting their connection to several neuropathological disorders and cancers. This article is categorized under: RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Anusha Chaudhuri
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
17
|
Chen M, Mao S, Wu X, Ma Z, Yang Y, Krueger CJ, Chen AK. Single-Molecule Analysis of RNA Dynamics in Living Cells Using Molecular Beacons. Methods Mol Biol 2019; 1870:23-39. [PMID: 30539544 DOI: 10.1007/978-1-4939-8808-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Over the past decade, emerging evidence has indicated that long intergenic noncoding RNAs (lincRNAs), a class of RNA transcripts greater than 200 nt in length, function as key regulators of gene expression in cellular physiology and pathogenesis. Greater understanding of lincRNA activities, particularly in the context of subcellular localization and dynamic regulation at the single-molecule level, is expected to provide in-depth understanding of molecular mechanisms that regulate cell behavior and disease evolution. We have recently developed a fluorescence-imaging approach to investigate RNA dynamics in living cells at the single-molecule level. This approach entails the use of molecular beacons (MBs), which are a class of stem-loop forming oligonculeotide-based probes that emit detectable fluorescence upon binding to target sequence, and tandem repeats of MB target sequences integrated to the target RNA sequence. Binding of the MBs to the tandem repeats could illuminate the target RNA as a bright spot when imaged by conventional fluorescence microscopy, making the MB-based imaging approach a versatile tool for RNA analysis across laboratories. In this chapter, we describe the development of the MB-based approach and its application for imaging single NEAT1 lincRNA transcripts in living cells.
Collapse
Affiliation(s)
- Mingming Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Zhao Ma
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Yantao Yang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China.
| |
Collapse
|
18
|
Jamieson-Lucy A, Mullins MC. The vertebrate Balbiani body, germ plasm, and oocyte polarity. Curr Top Dev Biol 2019; 135:1-34. [DOI: 10.1016/bs.ctdb.2019.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Ciocanel MV, Sandstede B, Jeschonek SP, Mowry KL. Modeling microtubule-based transport and anchoring of mRNA. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS 2018; 17:2855-2881. [PMID: 34135697 PMCID: PMC8205424 DOI: 10.1137/18m1186083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Localization of messenger RNA (mRNA) at the vegetal cortex plays an important role in the early development of Xenopus laevis oocytes. While it is known that molecular motors are responsible for the transport of mRNA cargo along microtubules to the cortex, the mechanisms of localization remain unclear. We model cargo transport along microtubules using partial differential equations with spatially-dependent rates. A theoretical analysis of reduced versions of our model predicts effective velocity and diffusion rates for the cargo and shows that randomness of microtubule networks enhances effective transport. A more complex model using parameters estimated from fluorescence microscopy data reproduces the spatial and timescales of mRNA localization observed in Xenopus oocytes, corroborates experimental hypotheses that anchoring may be necessary to achieve complete localization, and shows that anchoring of mRNA complexes actively transported to the cortex is most effective in achieving robust accumulation at the cortex.
Collapse
Affiliation(s)
| | - Björn Sandstede
- Division of Applied Mathematics, Brown University, Providence, RI
| | - Samantha P Jeschonek
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI
| |
Collapse
|
20
|
Bovaird S, Patel D, Padilla JCA, Lécuyer E. Biological functions, regulatory mechanisms, and disease relevance of RNA localization pathways. FEBS Lett 2018; 592:2948-2972. [PMID: 30132838 DOI: 10.1002/1873-3468.13228] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
The asymmetric subcellular distribution of RNA molecules from their sites of transcription to specific compartments of the cell is an important aspect of post-transcriptional gene regulation. This involves the interplay of intrinsic cis-regulatory elements within the RNA molecules with trans-acting RNA-binding proteins and associated factors. Together, these interactions dictate the intracellular localization route of RNAs, whose downstream impacts have wide-ranging implications in cellular physiology. In this review, we examine the mechanisms underlying RNA localization and discuss their biological significance. We also review the growing body of evidence pointing to aberrant RNA localization pathways in the development and progression of diseases.
Collapse
Affiliation(s)
- Samantha Bovaird
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Dhara Patel
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, QC, Canada
| | - Juan-Carlos Alberto Padilla
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Eric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Molecular Biology Program, Faculty of Medicine, Université de Montréal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, QC, Canada
| |
Collapse
|
21
|
Suter B. RNA localization and transport. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:938-951. [PMID: 30496039 DOI: 10.1016/j.bbagrm.2018.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Abstract
RNA localization serves numerous purposes from controlling development and differentiation to supporting the physiological activities of cells and organisms. After a brief introduction into the history of the study of mRNA localization I will focus on animal systems, describing in which cellular compartments and in which cell types mRNA localization was observed and studied. In recent years numerous novel localization patterns have been described, and countless mRNAs have been documented to accumulate in specific subcellular compartments. These fascinating revelations prompted speculations about the purpose of localizing all these mRNAs. In recent years experimental evidence for an unexpected variety of different functions has started to emerge. Aside from focusing on the functional aspects, I will discuss various ways of localizing mRNAs with a focus on the mechanism of active and directed transport on cytoskeletal tracks. Structural studies combined with imaging of transport and biochemical studies have contributed to the enormous recent progress, particularly in understanding how dynein/dynactin/BicD (DDB) dependent transport on microtubules works. This transport process actively localizes diverse cargo in similar ways to the minus end of microtubules and, at least in flies, also individual mRNA molecules. A sophisticated mechanism ensures that cargo loading licenses processive transport.
Collapse
Affiliation(s)
- Beat Suter
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
22
|
Abstract
Conventional molecular beacons (MBs) have been used extensively for imaging specific endogenous RNAs in living cells, but their tendency to generate false-positive signals as a result of nuclease degradation and/or nonspecific binding limits sensitive and accurate imaging of intracellular RNAs. In an attempt to overcome this limitation, MBs have been synthesized with various chemically modified oligonucleotide backbones to confer greater biostability. We have recently developed a new MB architecture composed of 2'-O-methyl RNA (2Me), a fully phosphorothioate (PS) modified loop domain and a phosphodiester stem (2Me/PSLOOP MB). We showed that this new MB exhibits a marginal level of false-positive signals and enables accurate single-molecule imaging of target RNA in living cells. In this chapter, we describe detailed methods that led us to conclude that, among various PS-modified configurations, the 2Me/PSLOOP MB is an optimal design for intracellular RNA analysis.
Collapse
|
23
|
|
24
|
Neil CR, Mowry K. Fluorescence In Situ Hybridization of Cryosectioned Xenopus Oocytes. Cold Spring Harb Protoc 2018; 2018:pdb.prot097030. [PMID: 29437997 DOI: 10.1101/pdb.prot097030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Xenopus laevis oocytes are widely used to study mechanisms of RNA function and biogenesis. While the large size of Xenopus oocytes is amenable to both biochemical and imaging approaches, the relative opacity of the yolk-rich cytoplasm has limited high-resolution imaging of endogenous RNAs. Here, we present a protocol that combines multi-probe fluorescence in situ hybridization with cryosectioning to provide a highly sensitive means of imaging endogenous oocyte RNAs.
Collapse
Affiliation(s)
- Christopher R Neil
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Kimberly Mowry
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
25
|
Balboula AZ, Blengini CS, Gentilello AS, Takahashi M, Schindler K. Maternal RNA regulates Aurora C kinase during mouse oocyte maturation in a translation-independent fashion. Biol Reprod 2018; 96:1197-1209. [PMID: 28575288 DOI: 10.1093/biolre/iox047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/26/2017] [Indexed: 12/21/2022] Open
Abstract
During oocyte meiotic maturation, Aurora kinase C (AURKC) is required to accomplish many critical functions including destabilizing erroneous kinetochore-microtubule (K-MT)attachments and regulating bipolar spindle assembly. How localized activity of AURKC is regulated in mammalian oocytes, however, is not fully understood. Female gametes from many species, including mouse, contain stores of maternal transcripts that are required for downstream developmental events. We show here that depletion of maternal RNA in mouse oocytes resulted in impaired meiotic progression, increased incidence of chromosome misalignment and abnormal spindle formation at metaphase I (Met I), and cytokinesis defects. Importantly, depletion of maternal RNA perturbed the localization and activity of AURKC within the chromosomal passenger complex (CPC). These perturbations were not observed when translation was inhibited by cycloheximide (CHX) treatment. These results demonstrate a translation-independent function of maternal RNA to regulate AURKC-CPC function in mouse oocytes.
Collapse
Affiliation(s)
- Ahmed Z Balboula
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.,Department of Animal Science, Graduate school of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.,Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Cecilia S Blengini
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Amanda S Gentilello
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Masashi Takahashi
- Department of Animal Science, Graduate school of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
26
|
Auboeuf D. Alternative mRNA processing sites decrease genetic variability while increasing functional diversity. Transcription 2017; 9:75-87. [PMID: 29099315 PMCID: PMC5834221 DOI: 10.1080/21541264.2017.1373891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Recent large-scale RNA sequencing efforts have revealed the extensive diversity of mRNA molecules produced from most eukaryotic coding genes, which arises from the usage of alternative, cryptic or non-canonical splicing and intronic polyadenylation sites. The prevailing view regarding the tremendous diversity of coding gene transcripts is that mRNA processing is a flexible and more-or-less noisy process leading to a diversity of proteins on which natural selection can act depending on protein-mediated cellular functions. However, this concept raises two main questions. First, do alternative mRNA processing pathways have a role other than generating mRNA and protein diversity? Second, is the cellular function of mRNA variants restricted to the biogenesis of functional protein isoforms? Here, I propose that the co-transcriptional use of alternative mRNA processing sites allows first, the resolution of co-transcriptional biophysical constraints that may otherwise result in DNA instability, and second, increases the diversity of cellular functions of mRNAs in a manner that is not restricted to protein synthesis.
Collapse
Affiliation(s)
- Didier Auboeuf
- a Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell , 46 Allée d'Italie Site Jacques Monod, Lyon , France
| |
Collapse
|
27
|
Ma Z, Wu X, Krueger CJ, Chen AK. Engineering Novel Molecular Beacon Constructs to Study Intracellular RNA Dynamics and Localization. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:279-286. [PMID: 28942262 PMCID: PMC5673673 DOI: 10.1016/j.gpb.2017.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/08/2017] [Accepted: 04/17/2017] [Indexed: 11/25/2022]
Abstract
With numerous advancements in novel biochemical techniques, our knowledge of the role of RNAs in the regulation of cellular physiology and pathology has grown significantly over the past several decades. Nevertheless, detailed information regarding RNA processing, trafficking, and localization in living cells has been lacking due to technical limitations in imaging single RNA transcripts in living cells with high spatial and temporal resolution. In this review, we discuss techniques that have shown great promise for single RNA imaging, followed by highlights in our recent work in the development of molecular beacons (MBs), a class of nanoscale oligonucleotide-probes, for detecting individual RNA transcripts in living cells. With further refinement of MB design and development of more sophisticated fluorescence microscopy techniques, we envision that MB-based approaches could promote new discoveries of RNA functions and activities.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China; Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
28
|
Ramat A, Hannaford M, Januschke J. Maintenance of Miranda Localization in Drosophila Neuroblasts Involves Interaction with the Cognate mRNA. Curr Biol 2017; 27:2101-2111.e5. [PMID: 28690114 PMCID: PMC5526833 DOI: 10.1016/j.cub.2017.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/01/2017] [Accepted: 06/07/2017] [Indexed: 11/28/2022]
Abstract
How cells position their proteins is a key problem in cell biology. Targeting mRNAs to distinct regions of the cytoplasm contributes to protein localization by providing local control over translation. Here, we reveal that an interdependence of a protein and cognate mRNA maintains asymmetric protein distribution in mitotic Drosophila neural stem cells. We tagged endogenous mRNA or protein products of the gene miranda that is required for fate determination with GFP. We find that the mRNA localizes like the protein it encodes in a basal crescent in mitosis. We then used GFP-specific nanobodies fused to localization domains to alter the subcellular distribution of the GFP-tagged mRNA or protein. Altering the localization of the mRNA resulted in mislocalization of the protein and vice versa. Protein localization defects caused by mislocalization of the cognate mRNA were rescued by introducing untagged mRNA coding for mutant non-localizable protein. Therefore, by combining the MS2 system and subcellular nanobody expression, we uncovered that maintenance of Mira asymmetric localization requires interaction with the cognate mRNA.
Collapse
Affiliation(s)
- Anne Ramat
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, DD5 1EH Dundee, UK
| | - Matthew Hannaford
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, DD5 1EH Dundee, UK
| | - Jens Januschke
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, DD5 1EH Dundee, UK.
| |
Collapse
|
29
|
Abstract
Cells are highly organized entities that rely on intricate addressing mechanisms to sort their constituent molecules to precise subcellular locations. These processes are crucial for cells to maintain their proper organization and carry out specialized functions in the body, consequently genetic perturbations that clog up these addressing systems can contribute to disease aetiology. The trafficking of RNA molecules represents an important layer in the control of cellular organization, a process that is both highly prevalent and for which features of the regulatory machineries have been deeply conserved evolutionarily. RNA localization is commonly driven by trans-regulatory factors, including RNA binding proteins at the core, which recognize specific cis-acting zipcode elements within the RNA transcripts. Here, we first review the functions and biological benefits of intracellular RNA trafficking, from the perspective of both coding and non-coding RNAs. Next, we discuss the molecular mechanisms that modulate this localization, emphasizing the diverse features of the cis- and trans-regulators involved, while also highlighting emerging technologies and resources that will prove instrumental in deciphering RNA targeting pathways. We then discuss recent findings that reveal how co-transcriptional regulatory mechanisms operating in the nucleus can dictate the downstream cytoplasmic localization of RNAs. Finally, we survey the growing number of human diseases in which RNA trafficking pathways are impacted, including spinal muscular atrophy, Alzheimer's disease, fragile X syndrome and myotonic dystrophy. Such examples highlight the need to further dissect RNA localization mechanisms, which could ultimately pave the way for the development of RNA-oriented diagnostic and therapeutic strategies. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Ashley Chin
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada
| | - Eric Lécuyer
- Institut de recherches cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, Quebec, Canada.
| |
Collapse
|
30
|
Huang X, Xiao R, Pan S, Yang X, Yuan W, Tu Z, Xu M, Zhu Y, Yin Q, Wu Y, Hu W, Shao L, Xiong J, Zhang Q. Uncovering the roles of long non-coding RNAs in cancer stem cells. J Hematol Oncol 2017; 10:62. [PMID: 28245841 PMCID: PMC5331729 DOI: 10.1186/s13045-017-0428-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/23/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer has been a major public health problem that has threatened human life worldwide throughout history. The main causes that contribute to the poor prognosis of cancer are metastasis and recurrence. Cancer stem cells are a group of tumor cells that possess self-renewal and differentiation ability, which is a vital cause of cancer metastasis and recurrence. Long non-coding RNAs refer to a class of RNAs that are longer than 200 nt and have no potential to code proteins, some of which can be specifically expressed in different tissues and different tumors. Long non-coding RNAs have great biological significance in the occurrence and progression of cancers. However, how long non-coding RNAs interact with cancer stem cells and then affect cancer metastasis and recurrence is not yet clear. Therefore, this review aims to summarize recent studies that focus on how long non-coding RNAs impact tumor occurrence and progression by affecting cancer stem cell self-renewal and differentiation in liver cancer, prostate cancer, breast cancer, and glioma.
Collapse
Affiliation(s)
- Xiaoxing Huang
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Ruijing Xiao
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Shan Pan
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Xiangyong Yang
- Hubei University of Technology Engineering and Technology College, Wuhan, 430000, China
| | - Wen Yuan
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Zhenbo Tu
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Ming Xu
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Yufan Zhu
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Qian Yin
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Yingjie Wu
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Weidong Hu
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
31
|
King ML. Maternal messages to live by: a personal historical perspective. Genesis 2017; 55:10.1002/dvg.23007. [PMID: 28095642 PMCID: PMC5276792 DOI: 10.1002/dvg.23007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022]
Abstract
In the 1980s, the study of localized maternal mRNAs was just emerging as a new research area. Classic embryological studies had linked the inheritance of cytoplasmic domains with specific cell lineages, but the underlying molecular nature of these putative determinants remained a mystery. The model system Xenopus would play a pivotal role in the progress of this new field. In fact, the first localized maternal mRNA to be identified and cloned from any organism was Xenopus vg1, a TGF-beta family member. This seminal finding opened the door to many subsequent studies focused on how RNAs are localized and what functions they had in development. As the field moves into the future, Xenopus remains the system of choice for studies identifying RNA/protein transport particles and maternal RNAs through RNA-sequencing.
Collapse
Affiliation(s)
- Mary Lou King
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| |
Collapse
|
32
|
Identifying and annotating human bifunctional RNAs reveals their versatile functions. SCIENCE CHINA-LIFE SCIENCES 2016; 59:981-992. [PMID: 27650948 DOI: 10.1007/s11427-016-0054-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
Abstract
Bifunctional RNAs that possess both protein-coding and noncoding functional properties were less explored and poorly understood. Here we systematically explored the characteristics and functions of such human bifunctional RNAs by integrating tandem mass spectrometry and RNA-seq data. We first constructed a pipeline to identify and annotate bifunctional RNAs, leading to the characterization of 132 high-confidence bifunctional RNAs. Our analyses indicate that bifunctional RNAs may be involved in human embryonic development and can be functional in diverse tissues. Moreover, bifunctional RNAs could interact with multiple miRNAs and RNA-binding proteins to exert their corresponding roles. Bifunctional RNAs may also function as competing endogenous RNAs to regulate the expression of many genes by competing for common targeting miRNAs. Finally, somatic mutations of diverse carcinomas may generate harmful effect on corresponding bifunctional RNAs. Collectively, our study not only provides the pipeline for identifying and annotating bifunctional RNAs but also reveals their important gene-regulatory functions.
Collapse
|
33
|
Sampath K, Ephrussi A. CncRNAs: RNAs with both coding and non-coding roles in development. Development 2016; 143:1234-41. [PMID: 27095489 DOI: 10.1242/dev.133298] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RNAs are known to regulate diverse biological processes, either as protein-encoding molecules or as non-coding RNAs. However, a third class that comprises RNAs endowed with both protein coding and non-coding functions has recently emerged. Such bi-functional 'coding and non-coding RNAs' (cncRNAs) have been shown to play important roles in distinct developmental processes in plants and animals. Here, we discuss key examples of cncRNAs and review their roles, regulation and mechanisms of action during development.
Collapse
Affiliation(s)
- Karuna Sampath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AJ, UK
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg 69117, Germany
| |
Collapse
|
34
|
Cytoskeleton and Cytoskeleton-Bound RNA Visualization in Frog and Insect Oocytes. Methods Mol Biol 2016. [PMID: 27557581 DOI: 10.1007/978-1-4939-3795-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The majority of oocyte functions involves and depends on the cytoskeletal elements, which include microtubules and actin and cytokeratin filaments. Various structures and molecules are temporarily or permanently bound to the cytoskeletal elements and their functions rely on cytoskeleton integrity and its timely assembly. Thus the accurate visualization of cytoskeleton is often crucial for studies and analyses of oocyte structure and functions. Here we describe several reliable methods for microtubule and/or microfilaments preservation and visualization in Xenopus oocyte extracts, and in situ in live and fixed insect and frog (Xenopus) oocytes. In addition, we describe visualization of cytoskeleton-bound RNAs using molecular beacons in live Xenopus oocytes.
Collapse
|
35
|
Nam JW, Choi SW, You BH. Incredible RNA: Dual Functions of Coding and Noncoding. Mol Cells 2016; 39:367-74. [PMID: 27137091 PMCID: PMC4870183 DOI: 10.14348/molcells.2016.0039] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/20/2016] [Accepted: 03/29/2016] [Indexed: 11/27/2022] Open
Abstract
Since the RNA world hypothesis was proposed, a large number of regulatory noncoding RNAs (ncRNAs) have been identified in many species, ranging from microorganisms to mammals. During the characterization of these newly discovered RNAs, RNAs having both coding and noncoding functions were discovered, and these were considered bifunctional RNAs. The recent use of computational and high-throughput experimental approaches has revealed increasing evidence of various sources of bifunctional RNAs, such as protein-coding mRNAs with a noncoding isoform and long ncRNAs bearing a small open reading frame. Therefore, the genomic diversity of Janus-faced RNA molecules that have dual characteristics of coding and noncoding indicates that the functional roles of RNAs have to be revisited in cells on a genome-wide scale. Such studies would allow us to further understand the complex gene-regulatory network in cells. In this review, we discuss three major genomic sources of bifunctional RNAs and present a handful of examples of bifunctional RNA along with their functional roles.
Collapse
Affiliation(s)
- Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763,
Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763,
Korea
| | - Seo-Won Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763,
Korea
| | - Bo-Hyun You
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763,
Korea
| |
Collapse
|
36
|
Zhao D, Yang Y, Qu N, Chen M, Ma Z, Krueger CJ, Behlke MA, Chen AK. Single-molecule detection and tracking of RNA transcripts in living cells using phosphorothioate-optimized 2'-O-methyl RNA molecular beacons. Biomaterials 2016; 100:172-83. [PMID: 27261815 DOI: 10.1016/j.biomaterials.2016.05.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/10/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
Molecular Beacons (MBs) composed of 2'-O-methyl RNA (2Me) and phosphorothioate (PS) linkages throughout the backbone (2Me/PSFULL MBs) have enabled long-term imaging of RNA in living cells, but excess PS modification can induce nonspecific binding, causing false-positive signals. In this study, we evaluate the intracellular stability of MBs composed of 2Me with various PS modifications, and found that false-positive signals could be reduced to marginal levels when the MBs possess a fully PS-modified loop domain and a phosphodiester stem (2Me/PSLOOP MB). Additionally, 2Me/PSLOOP MBs exhibited uncompromised hybridization kinetics, prolonged functionality and >88% detection accuracy for single RNA transcripts, and could do so without interfering with gene expression or cell growth. Finally, 2Me/PSLOOP MBs could image the dynamics of single mRNA transcripts in the nucleus and the cytoplasm simultaneously, regardless of whether the MBs targeted the 5'- or the 3'-UTR. Together, these findings demonstrate the effectiveness of loop-domain PS modification in reducing nonspecific signals and the potential for sensitive and accurate imaging of individual RNAs at the single-molecule level. With the growing interest in the role of RNA localization and dynamics in health and disease, 2Me/PSLOOP MBs could enable new discoveries in RNA research.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Yantao Yang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Na Qu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Mingming Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Zhao Ma
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Mark A Behlke
- Integrated DNA Technologies Inc., Coralville, IA, 52241, USA
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
37
|
Abstract
For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as 'cncRNAs', have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions.
Collapse
Affiliation(s)
- Pooja Kumari
- Division of Biomedical Cell Biology, Warwick Medical School, The University of Warwick, Gibbet Hill Road, Coventry CV47AJ, United Kingdom
| | - Karuna Sampath
- Division of Biomedical Cell Biology, Warwick Medical School, The University of Warwick, Gibbet Hill Road, Coventry CV47AJ, United Kingdom.
| |
Collapse
|
38
|
Taylor DH, Chu ETJ, Spektor R, Soloway PD. Long non-coding RNA regulation of reproduction and development. Mol Reprod Dev 2015; 82:932-56. [PMID: 26517592 PMCID: PMC4762656 DOI: 10.1002/mrd.22581] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Abstract
Noncoding RNAs (ncRNAs) have long been known to play vital roles in eukaryotic gene regulation. Studies conducted over a decade ago revealed that maturation of spliced, polyadenylated coding mRNA occurs by reactions involving small nuclear RNAs and small nucleolar RNAs; mRNA translation depends on activities mediated by transfer RNAs and ribosomal RNAs, subject to negative regulation by micro RNAs; transcriptional competence of sex chromosomes and some imprinted genes is regulated in cis by ncRNAs that vary by species; and both small-interfering RNAs and piwi-interacting RNAs bound to Argonaute-family proteins regulate post-translational modifications on chromatin and local gene expression states. More recently, gene-regulating noncoding RNAs have been identified, such as long intergenic and long noncoding RNAs (collectively referred to as lncRNAs)--a class totaling more than 100,000 transcripts in humans, which include some of the previously mentioned RNAs that regulate dosage compensation and imprinted gene expression. Here, we provide an overview of lncRNA activities, and then review the role of lncRNAs in processes vital to reproduction, such as germ cell specification, sex determination and gonadogenesis, sex hormone responses, meiosis, gametogenesis, placentation, non-genetic inheritance, and pathologies affecting reproductive tissues. Results from many species are presented to illustrate the evolutionarily conserved processes lncRNAs are involved in.
Collapse
Affiliation(s)
- David H. Taylor
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
| | - Erin Tsi-Jia Chu
- Field of Comparative Biomedical Sciences, Cornell University, Ithaca, New York
| | - Roman Spektor
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
| | - Paul D. Soloway
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
- Field of Comparative Biomedical Sciences, Cornell University, Ithaca, New York
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| |
Collapse
|
39
|
Ryu YH, Macdonald PM. RNA sequences required for the noncoding function of oskar RNA also mediate regulation of Oskar protein expression by Bicoid Stability Factor. Dev Biol 2015; 407:211-23. [PMID: 26433064 DOI: 10.1016/j.ydbio.2015.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/13/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
Abstract
The Drosophila oskar (osk) mRNA is unusual in having both coding and noncoding functions. As an mRNA, osk encodes a protein which is deployed specifically at the posterior of the oocyte. This spatially-restricted deployment relies on a program of mRNA localization and both repression and activation of translation, all dependent on regulatory elements located primarily in the 3' untranslated region (UTR) of the mRNA. The 3' UTR also mediates the noncoding function of osk, which is essential for progression through oogenesis. Mutations which most strongly disrupt the noncoding function are positioned in a short region (the C region) near the 3' end of the mRNA, in close proximity to elements required for activation of translation. We show that Bicoid Stability Factor (BSF) binds specifically to the C region of the mRNA. Both knockdown of bsf and mutation of BSF binding sites in osk mRNA have the same consequences: Osk expression is largely eliminated late in oogenesis, with both mRNA localization and translation disrupted. Although the C region of the osk 3' UTR is required for the noncoding function, BSF binding does not appear to be essential for that function.
Collapse
Affiliation(s)
- Young Hee Ryu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Paul M Macdonald
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
40
|
Yang J, Aguero T, King ML. The Xenopus Maternal-to-Zygotic Transition from the Perspective of the Germline. Curr Top Dev Biol 2015; 113:271-303. [PMID: 26358876 DOI: 10.1016/bs.ctdb.2015.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In Xenopus, the germline is specified by the inheritance of germ-plasm components synthesized at the beginning of oogenesis. Only the cells in the early embryo that receive germ plasm, the primordial germ cells (PGCs), are competent to give rise to the gametes. Thus, germ-plasm components continue the totipotent potential exhibited by the oocyte into the developing embryo at a time when most cells are preprogrammed for somatic differentiation as dictated by localized maternal determinants. When zygotic transcription begins at the mid-blastula transition, the maternally set program for somatic differentiation is realized. At this time, genetic control is ceded to the zygotic genome, and developmental potential gradually becomes more restricted within the primary germ layers. PGCs are a notable exception to this paradigm and remain transcriptionally silent until the late gastrula. How the germ-cell lineage retains full potential while somatic cells become fate restricted is a tale of translational repression, selective degradation of somatic maternal determinants, and delayed activation of zygotic transcription.
Collapse
Affiliation(s)
- Jing Yang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Tristan Aguero
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
41
|
Abstract
Viral genomes harbor a variety of unusual translational phenomena that allow them to pack coding information more densely and evade host restriction mechanisms imposed by the cellular translational apparatus. Annotating translated sequences within these genomes thus poses particular challenges, but identifying the full complement of proteins encoded by a virus is critical for understanding its life cycle and defining the epitopes it presents for immune surveillance. Ribosome profiling is an emerging technique for global analysis of translation that offers direct and experimental annotation of viral genomes. Ribosome profiling has been applied to two herpesvirus genomes, those of human cytomegalovirus and Kaposi's sarcoma-associated herpesvirus, revealing translated sequences within presumptive long noncoding RNAs and identifying other micropeptides. Synthesis of these proteins has been confirmed by mass spectrometry and by identifying T cell responses following infection. Ribosome profiling in other viruses will likely expand further our understanding of viral gene regulation and the proteome.
Collapse
Affiliation(s)
- Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720;
| |
Collapse
|
42
|
Intracellular microRNA profiles form in the Xenopus laevis oocyte that may contribute to asymmetric cell division. Sci Rep 2015; 5:11157. [PMID: 26059897 PMCID: PMC4461913 DOI: 10.1038/srep11157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 05/18/2015] [Indexed: 12/17/2022] Open
Abstract
Asymmetric distribution of fate determinants within cells is an essential biological strategy to prepare them for asymmetric division. In this work we measure the intracellular distribution of 12 maternal microRNAs (miRNA) along the animal-vegetal axis of the Xenopus laevis oocyte using qPCR tomography. We find the miRNAs have distinct intracellular profiles that resemble two out of the three profiles we previously observed for mRNAs. Our results suggest that miRNAs in addition to proteins and mRNAs may have asymmetric distribution within the oocyte and may contribute to asymmetric cell division as cell fate determinants.
Collapse
|
43
|
Kanke M, Jambor H, Reich J, Marches B, Gstir R, Ryu YH, Ephrussi A, Macdonald PM. oskar RNA plays multiple noncoding roles to support oogenesis and maintain integrity of the germline/soma distinction. RNA (NEW YORK, N.Y.) 2015; 21:1096-109. [PMID: 25862242 PMCID: PMC4436663 DOI: 10.1261/rna.048298.114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/12/2015] [Indexed: 05/05/2023]
Abstract
The Drosophila oskar (osk) mRNA is unusual in that it has both coding and noncoding functions. As an mRNA, osk encodes a protein required for embryonic patterning and germ cell formation. Independent of that function, the absence of osk mRNA disrupts formation of the karyosome and blocks progression through oogenesis. Here we show that loss of osk mRNA also affects the distribution of regulatory proteins, relaxing their association with large RNPs within the germline, and allowing them to accumulate in the somatic follicle cells. This and other noncoding functions of the osk mRNA are mediated by multiple sequence elements with distinct roles. One role, provided by numerous binding sites in two distinct regions of the osk 3' UTR, is to sequester the translational regulator Bruno (Bru), which itself controls translation of osk mRNA. This defines a novel regulatory circuit, with Bru restricting the activity of osk, and osk in turn restricting the activity of Bru. Other functional elements, which do not bind Bru and are positioned close to the 3' end of the RNA, act in the oocyte and are essential. Despite the different roles played by the different types of elements contributing to RNA function, mutation of any leads to accumulation of the germline regulatory factors in the follicle cells.
Collapse
Affiliation(s)
- Matt Kanke
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Helena Jambor
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - John Reich
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Brittany Marches
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Ronald Gstir
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Young Hee Ryu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Paul M Macdonald
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
44
|
Jensen LM, Kliebenstein DJ, Burow M. Investigation of the multifunctional gene AOP3 expands the regulatory network fine-tuning glucosinolate production in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:762. [PMID: 26442075 PMCID: PMC4585220 DOI: 10.3389/fpls.2015.00762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/27/2015] [Indexed: 05/21/2023]
Abstract
Quantitative trait loci (QTL) mapping studies enable identification of loci that are part of regulatory networks controlling various phenotypes. Detailed investigations of genes within these loci are required to ultimately understand the function of individual genes and how they interact with other players in the network. In this study, we use transgenic plants in combination with natural variation to investigate the regulatory role of the AOP3 gene found in GS-AOP locus previously suggested to contribute to the regulation of glucosinolate defense compounds. Phenotypic analysis and QTL mapping in F2 populations with different AOP3 transgenes support that the enzymatic function and the AOP3 RNA both play a significant role in controlling glucosinolate accumulation. Furthermore, we find different loci interacting with either the enzymatic activity or the RNA of AOP3 and thereby extend the regulatory network controlling glucosinolate accumulation.
Collapse
Affiliation(s)
- Lea M. Jensen
- DNRF Center DynaMo, Department of Plant and Environmental Sciences, Faculty of Science, University of CopenhagenFrederiksberg, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of CopenhagenFrederiksberg, Denmark
| | - Daniel J. Kliebenstein
- DNRF Center DynaMo, Department of Plant and Environmental Sciences, Faculty of Science, University of CopenhagenFrederiksberg, Denmark
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Meike Burow
- DNRF Center DynaMo, Department of Plant and Environmental Sciences, Faculty of Science, University of CopenhagenFrederiksberg, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of CopenhagenFrederiksberg, Denmark
- *Correspondence: Meike Burow, DynaMo Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
45
|
Mohanty V, Gökmen-Polar Y, Badve S, Janga SC. Role of lncRNAs in health and disease-size and shape matter. Brief Funct Genomics 2014; 14:115-29. [PMID: 25212482 DOI: 10.1093/bfgp/elu034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Most of the mammalian genome including a large fraction of the non-protein coding transcripts has been shown to be transcribed. Studies related to these non-coding RNA molecules have predominantly focused on smaller molecules like microRNAs. In contrast, long non-coding RNAs (lncRNAs) have long been considered to be transcriptional noise. Accumulating evidence suggests that lncRNAs are involved in key cellular and developmental processes. Several critical questions regarding functions and properties of lncRNAs and their circular forms remain to be answered. Increasing evidence from high-throughput sequencing screens also suggests the involvement of lncRNAs in diseases such as cancer, although the underlying mechanisms still need to be elucidated. Here, we discuss the current state of research in the field of lncRNAs, questions that need to be addressed in light of recent genome-wide studies documenting the landscape of lncRNAs, their functional roles and involvement in diseases. We posit that with the availability of high-throughput data sets it is not only possible to improve methods for predicting lncRNAs but will also facilitate our ability to elucidate their functions and phenotypes by using integrative approaches.
Collapse
|
46
|
Kloc M, Jedrzejowska I, Tworzydlo W, Bilinski SM. Balbiani body, nuage and sponge bodies--term plasm pathway players. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:341-8. [PMID: 24398038 DOI: 10.1016/j.asd.2013.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/28/2013] [Accepted: 12/18/2013] [Indexed: 05/14/2023]
Abstract
In many animal species, germ cells are specified by maternally provided, often asymmetrically localized germ cell determinant, termed the germ plasm. It has been shown that in model organisms such as Xenopus laevis, Danio rerio and Drosophila melanogaster germ plasm components (various proteins, mRNAs and mitochondria) are delivered to the proper position within the egg cell by germline specific organelles, i.e. Balbiani bodies, nuage accumulations and/or sponge bodies. In the present article, we review the current knowledge on morphology, molecular composition and functioning of these organelles in main lineages of arthropods and different ovary types on the backdrop of data derived from the studies of the model vertebrate species.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Hospital, The Houston Methodist Hospital Research Institute, Houston, TX, USA
| | - Izabela Jedrzejowska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
47
|
Huang B, Zhang R. Regulatory non-coding RNAs: revolutionizing the RNA world. Mol Biol Rep 2014; 41:3915-23. [PMID: 24549720 DOI: 10.1007/s11033-014-3259-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 02/09/2014] [Indexed: 12/20/2022]
Abstract
The majority of the genomic DNA sequence in mammalian and other higher organisms can be transcribed into abundant functional RNA transcripts, especially regulatory non-coding RNAs (ncRNAs) that are expressed in a developmentally and species-specific regulated manner. Here, we review various regulatory non-coding RNAs, including regulatory small non-coding RNAs (sncRNAs) and long non-coding RNAs (lncRNAs), and summarize two and eight kinds of distinct modes of action for sncRNAs and lncRNAs respectively, by which functional ncRNAs mediate the regulation of intracellular events.
Collapse
Affiliation(s)
- Biao Huang
- Research Center of Basic Medical Science; Department of Immunology, Basic Medical College; Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironments and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | | |
Collapse
|
48
|
Abstract
Long intervening noncoding RNAs (lincRNAs) are transcribed from thousands of loci in mammalian genomes and might play widespread roles in gene regulation and other cellular processes. This Review outlines the emerging understanding of lincRNAs in vertebrate animals, with emphases on how they are being identified and current conclusions and questions regarding their genomics, evolution and mechanisms of action.
Collapse
Affiliation(s)
- Igor Ulitsky
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | |
Collapse
|
49
|
Garitano-Trojaola A, Agirre X, Prósper F, Fortes P. Long non-coding RNAs in haematological malignancies. Int J Mol Sci 2013; 14:15386-422. [PMID: 23887658 PMCID: PMC3759866 DOI: 10.3390/ijms140815386] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/28/2013] [Accepted: 07/09/2013] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are functional RNAs longer than 200 nucleotides in length. LncRNAs are as diverse as mRNAs and they normally share the same biosynthetic machinery based on RNA polymerase II, splicing and polyadenylation. However, lncRNAs have low coding potential. Compared to mRNAs, lncRNAs are preferentially nuclear, more tissue specific and expressed at lower levels. Most of the lncRNAs described to date modulate the expression of specific genes by guiding chromatin remodelling factors; inducing chromosomal loopings; affecting transcription, splicing, translation or mRNA stability; or serving as scaffolds for the organization of cellular structures. They can function in cis, cotranscriptionally, or in trans, acting as decoys, scaffolds or guides. These functions seem essential to allow cell differentiation and growth. In fact, many lncRNAs have been shown to exert oncogenic or tumor suppressor properties in several cancers including haematological malignancies. In this review, we summarize what is known about lncRNAs, the mechanisms for their regulation in cancer and their role in leukemogenesis, lymphomagenesis and hematopoiesis. Furthermore, we discuss the potential of lncRNAs in diagnosis, prognosis and therapy in cancer, with special attention to haematological malignancies.
Collapse
Affiliation(s)
- Andoni Garitano-Trojaola
- Laboratory of Myeloproliferative Syndromes, Oncology Area, Foundation for Applied Medical Research, University of Navarra, Pamplona 31008, Spain; E-Mails: (A.G.-T.); (X.A.); (F.P.)
| | - Xabier Agirre
- Laboratory of Myeloproliferative Syndromes, Oncology Area, Foundation for Applied Medical Research, University of Navarra, Pamplona 31008, Spain; E-Mails: (A.G.-T.); (X.A.); (F.P.)
| | - Felipe Prósper
- Laboratory of Myeloproliferative Syndromes, Oncology Area, Foundation for Applied Medical Research, University of Navarra, Pamplona 31008, Spain; E-Mails: (A.G.-T.); (X.A.); (F.P.)
- Hematology Service and Area of Cell Therapy, University of Navarra Clinic, University of Navarra, Pamplona 31008, Spain
| | - Puri Fortes
- Department of Hepatology and Gene Therapy, Foundation for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| |
Collapse
|
50
|
Abstract
Long non-coding RNAs (lncRNAs) have been found to perform various functions in a wide variety of important biological processes. To make easier interpretation of lncRNA functionality and conduct deep mining on these transcribed sequences, it is convenient to classify lncRNAs into different groups. Here, we summarize classification methods of lncRNAs according to their four major features, namely, genomic location and context, effect exerted on DNA sequences, mechanism of functioning and their targeting mechanism. In combination with the presently available function annotations, we explore potential relationships between different classification categories, and generalize and compare biological features of different lncRNAs within each category. Finally, we present our view on potential further studies. We believe that the classifications of lncRNAs as indicated above are of fundamental importance for lncRNA studies, helpful for further investigation of specific lncRNAs, for formulation of new hypothesis based on different features of lncRNA and for exploration of the underlying lncRNA functional mechanisms.
Collapse
Affiliation(s)
- Lina Ma
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, China
| | - Vladimir B. Bajic
- King Abdullah University of Science and Technology (KAUST); Computational Bioscience Research Center; Computer, Electrical and Mathematical Sciences and Engineering Division; Thuwal, Kingdom of Saudi Arabia
| | - Zhang Zhang
- CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, China
- Correspondence to: Zhang Zhang,
| |
Collapse
|