1
|
Jo M, Brännström M, Akins JW, Curry TE. New insights into the ovulatory process in the human ovary. Hum Reprod Update 2025; 31:21-47. [PMID: 39331957 DOI: 10.1093/humupd/dmae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Successful ovulation is essential for natural conception and fertility. Defects in the ovulatory process are associated with various conditions of infertility or subfertility in women. However, our understanding of the intra-ovarian biochemical mechanisms underlying this process in women has lagged compared to our understanding of animal models. This has been largely due to the limited availability of human ovarian samples that can be used to examine changes across the ovulatory period and delineate the underlying cellular/molecular mechanisms in women. Despite this challenge, steady progress has been made to improve our knowledge of the ovulatory process in women by: (i) collecting granulosa cells across the IVF interval, (ii) creating a novel approach to collecting follicular cells and tissues across the periovulatory period from normally cycling women, and (iii) developing unique in vitro models to examine the LH surge or hCG administration-induced ovulatory changes in gene expression, the regulatory mechanisms underlying the ovulatory changes, and the specific functions of the ovulatory factors. OBJECTIVE AND RATIONALE The objective of this review is to summarize findings generated using in vivo and in vitro models of human ovulation, with the goal of providing new insights into the mechanisms underlying the ovulatory process in women. SEARCH METHODS This review is based on the authors' own studies and a search of the relevant literature on human ovulation to date using PubMed search terms such as 'human ovulation EGF-signaling', 'human ovulation steroidogenesis', 'human ovulation transcription factor', 'human ovulation prostaglandin', 'human ovulation proteinase', 'human ovulation angiogenesis' 'human ovulation chemokine', 'human ovulatory disorder', 'human granulosa cell culture'. Our approach includes comparing the data from the authors' studies with the existing microarray or RNA-seq datasets generated using ovarian cells obtained throughout the ovulatory period from humans, monkeys, and mice. OUTCOMES Current findings from studies using in vivo and in vitro models demonstrate that the LH surge or hCG administration increases the expression of ovulatory mediators, including EGF-like factors, steroids, transcription factors, prostaglandins, proteolytic systems, and other autocrine and paracrine factors, similar to those observed in other animal models such as rodents, ruminants, and monkeys. However, the specific ovulatory factors induced, their expression pattern, and their regulatory mechanisms vary among different species. These species-specific differences stress the necessity of utilizing human samples to delineate the mechanisms underlying the ovulatory process in women. WIDER IMPLICATIONS The data from human ovulation in vivo and in vitro models have begun to fill the gaps in our understanding of the ovulatory process in women. Further efforts are needed to discover novel ovulatory factors. One approach to address these gaps is to improve existing in vitro models to more closely mimic in vivo ovulatory conditions in humans. This is critically important as the knowledge obtained from these human studies can be translated directly to aid in the diagnosis of ovulation-associated pathological conditions, for the development of more effective treatment to help women with anovulatory infertility or, conversely, to better manage ovulation for contraceptive purposes. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
2
|
Hayes ET, Hassan M, Lakomy O, Filzen R, Armouti M, Foretz M, Tsumaki N, Takemori H, Stocco C. SIK2 and SIK3 Differentially Regulate Mouse Granulosa Cell Response to Exogenous Gonadotropins In Vivo. Endocrinology 2024; 165:bqae107. [PMID: 39158086 PMCID: PMC11362621 DOI: 10.1210/endocr/bqae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Salt-inducible kinases (SIKs), a family of serine/threonine kinases, were found to be critical determinants of female fertility. SIK2 silencing results in increased ovulatory response to gonadotropins. In contrast, SIK3 knockout results in infertility, gonadotropin insensitivity, and ovaries devoid of antral and preovulatory follicles. This study hypothesizes that SIK2 and SIK3 differentially regulate follicle growth and fertility via contrasting actions in the granulosa cells (GCs), the somatic cells of the follicle. Therefore, SIK2 or SIK3 GC-specific knockdown (SIK2GCKD and SIK3GCKD, respectively) mice were generated by crossing SIK floxed mice with Cyp19a1pII-Cre mice. Fertility studies revealed that pup accumulation over 6 months and the average litter size of SIK2GCKD mice were similar to controls, although in SIK3GCKD mice were significantly lower compared to controls. Compared to controls, gonadotropin stimulation of prepubertal SIK2GCKD mice resulted in significantly higher serum estradiol levels, whereas SIK3GCKD mice produced significantly less estradiol. Cyp11a1, Cyp19a1, and StAR were significantly increased in the GCs of gonadotropin-stimulated SIK2GCKD mice. However, Cyp11a1 and StAR remained significantly lower than controls in SIK3GCKD mice. Interestingly, Cyp19a1 stimulation in SIK3GCKD was not statistically different compared to controls. Superovulation resulted in SIK2GCKD mice ovulating significantly more oocytes, whereas SIK3GCKD mice ovulated significantly fewer oocytes than controls. Remarkably, SIK3GCKD superovulated ovaries contained significantly more preantral follicles than controls. SIK3GCKD ovaries contained significantly more apoptotic cells and fewer proliferating cells than controls. These data point to the differential regulation of GC function and follicle development by SIK2 and SIK3 and supports the therapeutic potential of targeting these kinases for treating infertility or developing new contraceptives.
Collapse
Affiliation(s)
- Emily T Hayes
- Department of Physiology and Biophysics, School of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mariam Hassan
- Department of Physiology and Biophysics, School of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Oliwia Lakomy
- Department of Physiology and Biophysics, School of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rachael Filzen
- Department of Physiology and Biophysics, School of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Marah Armouti
- Department of Physiology and Biophysics, School of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Marc Foretz
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Noriyuki Tsumaki
- Department of Tissue Biochemistry, Graduate School of Medicine and Frontier Biosciences, The University of Osaka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Carlos Stocco
- Department of Physiology and Biophysics, School of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Dou Y, Zhao R, Wu H, Yu Z, Yin C, Yang J, Yang C, Luan X, Cheng Y, Huang T, Bian Y, Han S, Zhang Y, Xu X, Chen ZJ, Zhao H, Zhao S. DENND1A desensitizes granulosa cells to FSH by arresting intracellular FSHR transportation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1620-1634. [PMID: 38709439 DOI: 10.1007/s11427-023-2438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/27/2023] [Indexed: 05/07/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder. Genome-wide association studies (GWAS) have identified several genes associated with this condition, including DENND1A. DENND1A encodes a clathrin-binding protein that functions as a guanine nucleotide exchange factor involved in vesicular transport. However, the specific role of DENND1A in reproductive hormone abnormalities and follicle development disorders in PCOS remain poorly understood. In this study, we investigated DENND1A expression in ovarian granulosa cells (GCs) from PCOS patients and its correlation with hormones. Our results revealed an upregulation of DENND1A expression in GCs from PCOS cases, which was positively correlated with testosterone levels. To further explore the functional implications of DENND1A, we generated a transgenic mouse model overexpressing Dennd1a (TG mice). These TG mice exhibited subfertility, irregular estrous cycles, and increased testosterone production following PMSG stimulation. Additionally, the TG mice displayed diminished responsiveness to FSH, characterized by smaller ovary size, less well-developed follicles, and abnormal expressions of FSH-priming genes. Mechanistically, we found that Dennd1a overexpression disrupted the intracellular trafficking of follicle stimulating hormone receptor (FSHR), promoting its internalization and inhibiting recycling. These findings shed light on the reproductive role of DENND1A and uncover the underlying mechanisms, thereby contributing valuable insights into the pathogenesis of PCOS and providing potential avenues for drug design in PCOS treatment.
Collapse
Affiliation(s)
- Yunde Dou
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Rusong Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, 215008, China
- Gusu School, Nanjing Medical University, Suzhou, 215000, China
| | - Han Wu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Zhiheng Yu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Changjian Yin
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Jie Yang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Chaoyan Yang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Xiaohua Luan
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Yixiao Cheng
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Tao Huang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Yuehong Bian
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Shan Han
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, China
| | - Yuqing Zhang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Xin Xu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Zi-Jiang Chen
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Han Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China.
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
| | - Shigang Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China.
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
| |
Collapse
|
4
|
Fiorentino G, Merico V, Zanoni M, Comincini S, Sproviero D, Garofalo M, Gagliardi S, Cereda C, Lin CJ, Innocenti F, Taggi M, Vaiarelli A, Ubaldi FM, Rienzi L, Cimadomo D, Garagna S, Zuccotti M. Extracellular vesicles secreted by cumulus cells contain microRNAs that are potential regulatory factors of mouse oocyte developmental competence. Mol Hum Reprod 2024; 30:gaae019. [PMID: 38745364 DOI: 10.1093/molehr/gaae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
The role of cumulus cells (CCs) in the acquisition of oocyte developmental competence is not yet fully understood. In a previous study, we matured cumulus-denuded fully-grown mouse oocytes to metaphase II (MII) on a feeder layer of CCs (FL-CCs) isolated from developmentally competent (FL-SN-CCs) or incompetent (FL-NSN-CCs) SN (surrounded nucleolus) or NSN (not surrounding nucleolus) oocytes, respectively. We observed that oocytes cultured on the former could develop into blastocysts, while those matured on the latter arrested at the 2-cell stage. To investigate the CC factors contributing to oocyte developmental competence, here we focused on the CCs' release into the medium of extracellular vesicles (EVs) and on their miRNA content. We found that, during the 15-h transition to MII, both FL-SN-CCs and FL-NSN-CCs release EVs that can be detected, by confocal microscopy, inside the zona pellucida (ZP) or the ooplasm. The majority of EVs are <200 nm in size, which is compatible with their ability to cross the ZP. Next-generation sequencing of the miRNome of FL-SN-CC versus FL-NSN-CC EVs highlighted 74 differentially expressed miRNAs, with 43 up- and 31 down-regulated. Although most of these miRNAs do not have known roles in the ovary, in silico functional analysis showed that seven of these miRNAs regulate 71 target genes with specific roles in meiosis resumption (N = 24), follicle growth (N = 23), fertilization (N = 1), and the acquisition of oocyte developmental competence (N = 23). Overall, our results indicate CC EVs as emerging candidates of the CC-to-oocyte communication axis and uncover a group of miRNAs as potential regulatory factors.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Valeria Merico
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Mario Zanoni
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Sergio Comincini
- Functional Genomics Laboratory, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Daisy Sproviero
- IFOM, IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Maria Garofalo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Department of Pediatrics, Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, Milan, Italy
| | - Chih-Jen Lin
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Marilena Taggi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | | | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Silvia Garagna
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Maurizio Zuccotti
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Fordjour FK, Abuelreich S, Hong X, Chatterjee E, Lallai V, Ng M, Saftics A, Deng F, Carnel-Amar N, Wakimoto H, Shimizu K, Bautista M, Phu TA, Vu NK, Geiger PC, Raffai RL, Fowler CD, Das S, Christenson LK, Jovanovic-Talisman T, Gould SJ. Exomap1 mouse: A transgenic model for in vivo studies of exosome biology. EXTRACELLULAR VESICLE 2023; 2:100030. [PMID: 39372847 PMCID: PMC11450736 DOI: 10.1016/j.vesic.2023.100030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Exosomes are small extracellular vesicles (sEVs) of ~30-150 nm in diameter that are enriched in exosome marker proteins and play important roles in health and disease. To address large unanswered questions regarding exosome biology in vivo, we created the Exomap1 transgenic mouse, which in response to Cre recombinase expresses the most highly enriched exosomal marker protein known, human CD81, fused to mNeonGreen (HsCD81mNG), and prior to Cre expresses a mitochondrial red fluorescent protein. Validation of the exomap1 mouse with eight distinct Cre drivers demonstrated that HsCD81mNG was expressed only in response to Cre, that murine cells correctly localized HsCD81mNG to the plasma membrane, and that this led to the secretion of HsCD81mNG in EVs that had the size (~70-80 nm), topology, and composition of exosomes. Furthermore, cell type-specific activation of the exomap1 transgene allowed us to use quantitative single molecule localization microscopy to calculate the cell type-specific contribution to biofluid exosome populations. Specifically, we show that neurons contribute ~1% to plasma and cerebrospinal fluid exosome populations whereas hepatocytes contribute ~15% to plasma exosome populations, numbers that reflect the known vascular permeabilities of brain and liver. These observations validate the use of Exomap1 mouse models for in vivo studies of exosome biology.
Collapse
Affiliation(s)
- Francis K. Fordjour
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Sarah Abuelreich
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Xiaoman Hong
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Emeli Chatterjee
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Valeria Lallai
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Martin Ng
- Northern California Institute for Research and Education, San Francisco, CA, 94121, USA
| | - Andras Saftics
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Fengyan Deng
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Natacha Carnel-Amar
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Kazuhide Shimizu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Malia Bautista
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Tuan Anh Phu
- Northern California Institute for Research and Education, San Francisco, CA, 94121, USA
| | - Ngan K. Vu
- Northern California Institute for Research and Education, San Francisco, CA, 94121, USA
| | - Paige C. Geiger
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Robert L. Raffai
- Northern California Institute for Research and Education, San Francisco, CA, 94121, USA
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA, 94121, USA
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of California, San Francisco, CA, 94143, USA
| | - Christie D. Fowler
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lane K. Christenson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Tijana Jovanovic-Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Stephen J. Gould
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
6
|
Wang Y, Chen SY, Ta M, Senz J, Tao LV, Thornton S, Tamvada N, Yang W, Moscovitz Y, Li E, Guo J, Shen C, Douglas JM, Ei-Naggar AM, Kommoss FKF, Underhill TM, Singh N, Gilks CB, Morin GB, Huntsman DG. Biallelic Dicer1 Mutations in the Gynecologic Tract of Mice Drive Lineage-Specific Development of DICER1 Syndrome-Associated Cancer. Cancer Res 2023; 83:3517-3528. [PMID: 37494476 DOI: 10.1158/0008-5472.can-22-3620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/16/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
DICER1 is an RNase III enzyme essential for miRNA biogenesis through cleaving precursor-miRNA hairpins. Germline loss-of-function DICER1 mutations underline the development of DICER1 syndrome, a rare genetic disorder that predisposes children to cancer development in organs such as lung, gynecologic tract, kidney, and brain. Unlike classical tumor suppressors, the somatic "second hit" in DICER1 syndrome-associated cancers does not fully inactivate DICER1 but impairs its RNase IIIb activity only, suggesting a noncanonical two-hit hypothesis. Here, we developed a genetically engineered conditional compound heterozygous Dicer1 mutant mouse strain that fully recapitulates the biallelic DICER1 mutations in DICER1 syndrome-associated human cancers. Crossing this tool strain with tissue-specific Cre strains that activate Dicer1 mutations in gynecologic tract cells at two distinct developmental stages revealed that embryonic biallelic Dicer1 mutations caused infertility in females by disrupting oviduct and endometrium development and ultimately drove cancer development. These multicystic tubal and intrauterine tumors histologically resembled a subset of DICER1 syndrome-associated human cancers. Molecular analysis uncovered accumulation of additional oncogenic events (e.g., aberrant p53 expression, Kras mutation, and Myc activation) in murine Dicer1 mutant tumors and validated miRNA biogenesis defects in 5P miRNA strand production, of which, loss of let-7 family miRNAs was identified as a putative key player in transcriptomic rewiring and tumor development. Thus, this DICER1 syndrome-associated cancer model recapitulates the biology of human cancer and provides a unique tool for future investigation and therapeutic development. SIGNIFICANCE Generation of a Dicer1 mutant mouse model establishes the oncogenicity of missense mutations in the DICER1 RNase IIIb domain and provides a faithful model of DICER1 syndrome-associated cancer for further investigation.
Collapse
Affiliation(s)
- Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Shary Yuting Chen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Monica Ta
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Janine Senz
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Lan Valerie Tao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shelby Thornton
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nirupama Tamvada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Winnie Yang
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Yana Moscovitz
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eunice Li
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jingjie Guo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cindy Shen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - J Maxwell Douglas
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Amal M Ei-Naggar
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Felix K F Kommoss
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences and Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Naveena Singh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregg B Morin
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Science Centre, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Tscherner AK, McClatchie T, Kaboba G, Boison D, Baltz JM. Oocyte-Specific Deletion of Slc6a9 Encoding the GLYT1 Glycine Transporter Eliminates Glycine Transport in Mouse Preimplantation Embryos and Their Ability to Counter Hypertonic Stress. Cells 2023; 12:2500. [PMID: 37887344 PMCID: PMC10604916 DOI: 10.3390/cells12202500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Early preimplantation mouse embryos are sensitive to increased osmolarity, which can block their development. To overcome this, they accumulate organic osmolytes to maintain cell volume. The main organic osmolyte used by early mouse embryos is glycine. Glycine is transported during the mature egg and 1-cell to 4-cell embryo stages by a transporter identified as GLYT1, encoded by the Slc6a9 gene. Here, we have produced an oocyte-specific knockout of Slc6a9 by crossing mice that have a segment of the gene flanked by LoxP elements with transgenic mice expressing iCre driven by the oocyte-specific Gdf9 promoter. Slc6a9 null oocytes failed to develop glycine transport activity during meiotic maturation. However, females with these oocytes were fertile. When enclosed in their cumulus-oocyte complex, Slc6a9 null oocytes could accumulate glycine via GLYT1 transport in their coupled cumulus cells, which may support female fertility in vivo. In vitro, embryos derived from Slc6a9 null oocytes displayed a clear phenotype. While glycine rescued complete preimplantation development of wild type embryos from increased osmolarity, embryos derived from null oocytes failed to develop past the 2-cell stage even with glycine. Thus, Slc6a9 is required for glycine transport and protection against increased osmolarity in mouse eggs and early embryos.
Collapse
Affiliation(s)
- Allison K. Tscherner
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada (T.M.); (G.K.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1Y 8L6, Canada
| | - Taylor McClatchie
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada (T.M.); (G.K.)
| | - Gracia Kaboba
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada (T.M.); (G.K.)
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA;
| | - Jay M. Baltz
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada (T.M.); (G.K.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1Y 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1Y 8L6, Canada
| |
Collapse
|
8
|
Fordjour FK, Abuelreich S, Hong X, Chatterjee E, Lallai V, Ng M, Saftics A, Deng F, Carnel-Amar N, Wakimoto H, Shimizu K, Bautista M, Phu TA, Vu NK, Geiger PC, Raffai RL, Fowler CD, Das S, Christenson LK, Jovanovic-Talisman T, Gould SJ. Exomap1 mouse: a transgenic model for in vivo studies of exosome biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542707. [PMID: 37398219 PMCID: PMC10312766 DOI: 10.1101/2023.05.29.542707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Exosomes are small extracellular vesicles (sEVs) of ~30-150 nm in diameter that have the same topology as the cell, are enriched in selected exosome cargo proteins, and play important roles in health and disease. To address large unanswered questions regarding exosome biology in vivo, we created the exomap1 transgenic mouse model. In response to Cre recombinase, exomap1 mice express HsCD81mNG, a fusion protein between human CD81, the most highly enriched exosome protein yet described, and the bright green fluorescent protein mNeonGreen. As expected, cell type-specific expression of Cre induced the cell type-specific expression of HsCD81mNG in diverse cell types, correctly localized HsCD81mNG to the plasma membrane, and selectively loaded HsCD81mNG into secreted vesicles that have the size (~80 nm), topology (outside out), and content (presence of mouse exosome markers) of exosomes. Furthermore, mouse cells expressing HsCD81mNG released HsCD81mNG-marked exosomes into blood and other biofluids. Using high-resolution, single-exosome analysis by quantitative single molecule localization microscopy, we show here that that hepatocytes contribute ~15% of the blood exosome population whereas neurons contribute <1% of blood exosomes. These estimates of cell type-specific contributions to blood EV population are consistent with the porosity of liver sinusoidal endothelial cells to particles of ~50-300 nm in diameter, as well as with the impermeability of blood-brain and blood-neuron barriers to particles >5 nm in size. Taken together, these results establish the exomap1 mouse as a useful tool for in vivo studies of exosome biology, and for mapping cell type-specific contributions to biofluid exosome populations. In addition, our data confirm that CD81 is a highly-specific marker for exosomes and is not enriched in the larger microvesicle class of EVs.
Collapse
Affiliation(s)
- Francis K. Fordjour
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, 21205 USA
| | - Sarah Abuelreich
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Xiaoman Hong
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Emeli Chatterjee
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Valeria Lallai
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697 USA
| | - Martin Ng
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Andras Saftics
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Fengyan Deng
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Natacha Carnel-Amar
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kazuhide Shimizu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Malia Bautista
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697 USA
| | - Tuan Anh Phu
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Ngan K. Vu
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Paige C. Geiger
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Robert L. Raffai
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of California, San Francisco, CA 94143, USA
| | - Christie D. Fowler
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697 USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Lane K. Christenson
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Tijana Jovanovic-Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Stephen J. Gould
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, 21205 USA
| |
Collapse
|
9
|
Yan MQ, Wang Y, Wang Z, Liu XH, Yang YM, Duan XY, Sun H, Liu XM. Mitoguardin2 Is Associated With Hyperandrogenism and Regulates Steroidogenesis in Human Ovarian Granulosa Cells. J Endocr Soc 2023; 7:bvad034. [PMID: 36936714 PMCID: PMC10016062 DOI: 10.1210/jendso/bvad034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 03/04/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrinopathy characterized by hyperandrogenism, anovulation, and polycystic ovaries, in which hyperandrogenism manifests by excess androgen and other steroid hormone abnormalities. Mitochondrial fusion is essential in steroidogenesis, while the role of mitochondrial fusion in granulosa cells of hyperandrogenic PCOS patients remains unclear. In this study, mRNA expression of mitochondrial fusion genes mitoguardin1, -2 (MIGA 1, -2) was significantly increased in granulosa cells of hyperandrogenic PCOS but not PCOS with normal androgen levels, their mRNA expression positively correlated with testosterone levels. Dihydrotestosterone (DHT) treatment in mice led to high expression of MIGA2 in granulosa cells of ovulating follicles. Testosterone or forskolin/ phorbol 12-myristate 13-acetate treatments increased expression of MIGA2 and the steroidogenic acute regulatory protein (StAR) in KGN cells. MIGA2 interacted with StAR and induced StAR localization on mitochondria. Furthermore, MIGA2 overexpression significantly increased cAMP-activated protein kinase A (PKA) and phosphorylation of AMP-activated protein kinase (pAMPK) at T172 but inhibited StAR protein expression. However, MIGA2 overexpression increased CYP11A1, HSD3B2, and CYP19A1 mRNA expression. As a result, MIGA2 overexpression decreased progesterone but increased estradiol synthesis. Besides the androgen receptor, testosterone or DHT might also regulate MIGA2 and pAMPK (T172) through LH/choriogonadotropin receptor-mediated PKA signaling. Taken together, these findings indicate that testosterone regulates MIGA2 via PKA/AMP-activated protein kinase signaling in ovarian granulosa cells. It is suggested mitochondrial fusion in ovarian granulosa cells is associated with hyperandrogenism and potentially leads to abnormal steroidogenesis in PCOS.
Collapse
Affiliation(s)
- Ming-Qi Yan
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., China
| | - Yong Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Zhao Wang
- Center for Reproductive Medicine, Shandong University, Key Laboratory for Reproductive Endocrinology of Ministry of Education, Jinan 250012, China
| | - Xiao-Hong Liu
- Department of Infection Control, Jen Ching Memorial Hospital, Kunshan 215300, China
| | - Yu-Meng Yang
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Xiu-Yun Duan
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Hui Sun
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Xiao-Man Liu
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan 250021, China
| |
Collapse
|
10
|
Abedini A, Landry DA, Macaulay AD, Vaishnav H, Parbhakar A, Ibrahim D, Salehi R, Maranda V, Macdonald E, Vanderhyden BC. SWI/SNF chromatin remodeling subunit Smarca4/BRG1 is essential for female fertility†. Biol Reprod 2023; 108:279-291. [PMID: 36440965 PMCID: PMC9930400 DOI: 10.1093/biolre/ioac209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Mammalian folliculogenesis is a complex process that involves the regulation of chromatin structure for gene expression and oocyte meiotic resumption. The SWI/SNF complex is a chromatin remodeler using either Brahma-regulated gene 1 (BRG1) or BRM (encoded by Smarca4 and Smarca2, respectively) as its catalytic subunit. SMARCA4 loss of expression is associated with a rare type of ovarian cancer; however, its function during folliculogenesis remains poorly understood. In this study, we describe the phenotype of BRG1 mutant mice to better understand its role in female fertility. Although no tumor emerged from BRG1 mutant mice, conditional depletion of Brg1 in the granulosa cells (GCs) of Brg1fl/fl;Amhr2-Cre mice caused sterility, whereas conditional depletion of Brg1 in the oocytes of Brg1fl/fl;Gdf9-Cre mice resulted in subfertility. Recovery of cumulus-oocyte complexes after natural mating or superovulation showed no significant difference in the Brg1fl/fl;Amhr2-Cre mutant mice and significantly fewer oocytes in the Brg1fl/fl;Gdf9-Cre mutant mice compared with controls, which may account for the subfertility. Interestingly, the evaluation of oocyte developmental competence by in vitro culture of retrieved two-cell embryos indicated that oocytes originating from the Brg1fl/fl;Amhr2-Cre mice did not reach the blastocyst stage and had higher rates of mitotic defects, including micronuclei. Together, these results indicate that BRG1 plays an important role in female fertility by regulating granulosa and oocyte functions during follicle growth and is needed for the acquisition of oocyte developmental competence.
Collapse
Affiliation(s)
- Atefeh Abedini
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David A Landry
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Angus D Macaulay
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Het Vaishnav
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ashna Parbhakar
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dalia Ibrahim
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Reza Salehi
- Chronic Diseases Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Vincent Maranda
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Elizabeth Macdonald
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
11
|
Lin X, Tong X, Zhang Y, Gu W, Huang Q, Zhang Y, Zhuo F, Zhao F, Jin X, Li C, Huang D, Zhang S, Dai Y. Decreased Expression of EZH2 in Granulosa Cells Contributes to Endometriosis-Associated Infertility by Targeting IL-1R2. Endocrinology 2022; 164:6916877. [PMID: 36524678 PMCID: PMC9825353 DOI: 10.1210/endocr/bqac210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
The mechanism by which endometriosis, a common gynecological disease characterized by chronic pelvic pain and infertility, causes infertility remains elusive. Luteinized unruptured follicle syndrome, the most common type of ovulatory dysfunction, is a cause of endometriosis-associated infertility involving reduced numbers of retrieved and mature oocytes. Ovulation is controlled by luteinizing hormone and paracrine signals produced within the follicle microenvironment. Generally, interleukin (IL)-1β is elevated in endometriosis follicular fluid, whereby it amplifies ovulation signals by activating extracellular-regulated kinase 1/2 and CCAAT/enhancer binding protein β pathways. However, this amplification of ovulation by IL-1β does not occur in patients with endometriosis. To illuminate the mechanism of ovulatory dysfunction in endometriosis, we analyzed the effect of oxidative stress and IL-1β expression on endometriosis follicles. We found that oxidative stress decreased EZH2 expression and reduced H3K27Me3 levels in endometriosis ovarian granulosa cells (GCs). Selective Ezh2 depletion in mice ovarian GCs reduced fertility by disturbing cumulus-oocyte complex expansion and reducing epidermal growth factor-like factor expression. Gene expression and H3K27Me3 ChIP-sequencing (ChIP-Seq) of GCs revealed IL-1 receptor 2 (IL-1R2), a high-affinity IL-1β-receptor that suppresses IL-1β-mediated inflammatory cascades during ovulation, as a crucial target gene of the EZH2-H3K27Me3 axis. Moreover, IL-1β addition did not restore ovulation upon Ezh2 knockdown, indicating a vital function of IL-1R2 in endometriosis. Thus, our findings show that reducing EZH2 and H3K27Me3 in GCs suppressed ovulatory signals by increasing IL-1R2 expression, which may ultimately contribute to endometriosis-associated infertility.
Collapse
Affiliation(s)
| | | | - Yinli Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Shangcheng District, Hangzhou 310016, China
| | - Weijia Gu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
| | - Qianmeng Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 Xueyuan WestRoad, Lucheng District, Wenzhou 325000, China
| | - Yi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
| | - Feng Zhuo
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Shangcheng District, Hangzhou 310016, China
| | - Fanxuan Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
| | - Xiaoying Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Shangcheng District, Hangzhou 310016, China
| | - Chao Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Shangcheng District, Hangzhou 310016, China
| | - Dong Huang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Shangcheng District, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Shangcheng District, Hangzhou 310016, China
| | - Songying Zhang
- Correspondence: Yongdong Dai, PhD, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd, Shangcheng District, Hangzhou 310016, China. ; or Songying Zhang, MD, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd, Shangcheng District, Hangzhou 310016, China.
| | - Yongdong Dai
- Correspondence: Yongdong Dai, PhD, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd, Shangcheng District, Hangzhou 310016, China. ; or Songying Zhang, MD, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd, Shangcheng District, Hangzhou 310016, China.
| |
Collapse
|
12
|
Bridges K, Yao HHC, Nicol B. Loss of Runx1 Induces Granulosa Cell Defects and Development of Ovarian Tumors in the Mouse. Int J Mol Sci 2022; 23:ijms232214442. [PMID: 36430923 PMCID: PMC9697285 DOI: 10.3390/ijms232214442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Genetic alterations of the RUNX1 gene are associated with a variety of malignancies, including female-related cancers. The role of RUNX1 as either a tumor suppressor gene or an oncogene is tissue-dependent and varies based on the cancer type. Both the amplification and deletion of the RUNX1 gene have been associated with ovarian cancer in humans. In this study, we investigated the effects of Runx1 loss on ovarian pathogenesis in mice. A conditional loss of Runx1 in the somatic cells of the ovary led to an increased prevalence of ovarian tumors in aged mice. By the age of 15 months, 27% of Runx1 knockout (KO) females developed ovarian tumors that presented characteristics of granulosa cell tumors. While ovaries from young adult mice did not display tumors, they all contained abnormal follicle-like lesions. The granulosa cells composing these follicle-like lesions were quiescent, displayed defects in differentiation and were organized in a rosette-like pattern. The RNA-sequencing analysis further revealed differentially expressed genes in Runx1 KO ovaries, including genes involved in metaplasia, ovarian cancer, epithelial cell development, tight junctions, cell-cell adhesion, and the Wnt/beta-catenin pathway. Together, this study showed that Runx1 is required for normal granulosa cell differentiation and prevention of ovarian tumor development in mice.
Collapse
|
13
|
Granulosa Cell Specific Loss of Adar in Mice Delays Ovulation, Oocyte Maturation and Leads to Infertility. Int J Mol Sci 2022; 23:ijms232214001. [PMID: 36430478 PMCID: PMC9695778 DOI: 10.3390/ijms232214001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Adenosine deaminases acting on RNA-(ADAR) comprise one family of RNA editing enzymes that specifically catalyze adenosine to inosine (A-to-I) editing. A granulosa cell (GC) specific Adar depleted mouse model [Adar flox/flox:Cyp19a1-Cre/+ (gcAdarKO)] was used to evaluate the role of ADAR1 during the periovulatory period. Loss of Adar in GCs led to failure to ovulate at 16 h post-hCG, delayed oocyte germinal vesicle breakdown and severe infertility. RNAseq analysis of GC collected from gcAdarKO and littermate control mice at 0 and 4 h post-hCG following a super-ovulatory dose of eCG (48 h), revealed minimal differences after eCG treatment alone (0 h), consistent with normal folliculogenesis observed histologically and uterine estrogenic responses. In contrast, 300 differential expressed genes (DEGs; >1.5-fold change and FDRP < 0.1) were altered at 4 h post-hCG. Ingenuity pathway analysis identified many downstream targets of estrogen and progesterone pathways, while multiple genes involved in inflammatory responses were upregulated in the gcAdarKO GCs. Temporal expression analysis of GCs at 0, 4, 8, and 12 h post-hCG of Ifi44, Ifit1, Ifit3b, and Oas1g and Ovgp1 confirmed upregulation of these inflammatory and interferon genes and downregulation of Ovgp1 a glycoprotein involved in oocyte zona pellucida stability. Thus, loss of ADAR1 in GCs leads to increased expression of inflammatory and interferon response genes which are temporally linked to ovulation failure, alterations in oocyte developmental progression and infertility.
Collapse
|
14
|
Sun P, Wang H, Liu L, Guo K, Li X, Cao Y, Ko C, Lan ZJ, Lei Z. Aberrant activation of KRAS in mouse theca-interstitial cells results in female infertility. Front Physiol 2022; 13:991719. [PMID: 36060690 PMCID: PMC9437434 DOI: 10.3389/fphys.2022.991719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
KRAS plays critical roles in regulating a range of normal cellular events as well as pathological processes in many tissues mediated through a variety of signaling pathways, including ERK1/2 and AKT signaling, in a cell-, context- and development-dependent manner. The in vivo function of KRAS and its downstream targets in gonadal steroidogenic cells for the development and homeostasis of reproductive functions remain to be determined. To understand the functions of KRAS signaling in gonadal theca and interstitial cells, we generated a Kras mutant (tKrasMT) mouse line that selectively expressed a constitutively active KrasG12D in these cells. KrasG12D expression in ovarian theca cells did not block follicle development to the preovulatory stage. However, tKrasMT females failed to ovulate and thus were infertile. The phosphorylated ERK1/2 and forkhead box O1 (FOXO1) and total FOXO1 protein levels were markedly reduced in tKrasMT theca cells. KrasG12D expression in theca cells also curtailed the phosphorylation of ERK1/2 and altered the expression of several ovulation-related genes in gonadotropin-primed granulosa cells. To uncover downstream targets of KRAS/FOXO1 signaling in theca cells, we found that the expression of bone morphogenic protein 7 (Bmp7), a theca-specific factor involved in ovulation, was significantly elevated in tKrasMT theca cells. Chromosome immunoprecipitation assays demonstrated that FOXO1 interacted with the Bmp7 promoter containing forkhead response elements and that the binding activity was attenuated in tKrasMT theca cells. Moreover, Foxo1 knockdown caused an elevation, whereas Foxo1 overexpression resulted in an inhibition of Bmp7 expression, suggesting that KRAS signaling regulates FOXO1 protein levels to control Bmp7 expression in theca cells. Thus, the anovulation phenotype observed in tKrasMT mice may be attributed to aberrant KRAS/FOXO1/BMP7 signaling in theca cells. Our work provides the first in vivo evidence that maintaining normal KRAS activity in ovarian theca cells is crucial for ovulation and female fertility.
Collapse
Affiliation(s)
- Penghao Sun
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Hongliang Wang
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Zhenmin Lei, ; Hongliang Wang,
| | - Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Xian Li
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY, United States
| | - Yin Cao
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Chemyong Ko
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zi-Jian Lan
- Birth Defects Center, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Zhenmin Lei
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY, United States
- *Correspondence: Zhenmin Lei, ; Hongliang Wang,
| |
Collapse
|
15
|
Wang H, Qu M, Tang W, Liu S, Ding S. Transcriptome Profiling and Expression Localization of Key Sex-Related Genes in a Socially-Controlled Hermaphroditic Clownfish, Amphiprion clarkii. Int J Mol Sci 2022; 23:ijms23169085. [PMID: 36012348 PMCID: PMC9409170 DOI: 10.3390/ijms23169085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Clownfish can be an excellent research model for investigating the socially-controlled sexual development of sequential hermaphrodite teleosts. However, the molecular cascades underlying the social cues that orchestrate the sexual development process remain poorly understood. Here, we performed a comparative transcriptomic analysis of gonads from females, males, and nonbreeders of Amphiprion clarkii, which constitute a complete social group, allowing us to investigate the molecular regulatory network under social control. Our analysis highlighted that the gonads of nonbreeders and males exhibited high similarities but were far from females, both in global transcriptomic profiles and histological characteristics, and identified numerous candidate genes involved in sexual development, some well-known and some novel. Significant upregulation of cyp19a1a, foxl2, nr5a1a, wnt4a, hsd3b7, and pgr in females provides strong evidence for the importance of steroidogenesis in ovarian development and maintenance, with cyp19a1a playing a central role. Amh and sox8 are two potential key factors that may regulate testicular tissue development in early and late stages, respectively, as they are expressed at higher levels in males than in females, but with slightly different expression timings. Unlike previous descriptions in other fishes, the unique expression pattern of dmrt1 in A. clarkii implied its potential function in both male and female gonads, and we speculated that it might play promoting roles in the early development of both testicular and ovarian tissues.
Collapse
Affiliation(s)
- Huan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Meng Qu
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou 511458, China
| | - Wei Tang
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Shufang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Correspondence: (S.L.); (S.D.)
| | - Shaoxiong Ding
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- Correspondence: (S.L.); (S.D.)
| |
Collapse
|
16
|
Molecular characterization of TRIB1 gene and its role in regulation of steroidogenesis in bos grunniens granulosa cells. Theriogenology 2022; 191:1-9. [DOI: 10.1016/j.theriogenology.2022.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/09/2023]
|
17
|
Chemerinski A, Liu C, Morelli SS, Babwah AV, Douglas NC. Mouse Cre drivers: tools for studying disorders of the human female neuroendocrine-reproductive axis†. Biol Reprod 2022; 106:835-853. [PMID: 35084017 PMCID: PMC9113446 DOI: 10.1093/biolre/ioac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 01/29/2023] Open
Abstract
Benign disorders of the human female reproductive system, such primary ovarian insufficiency and polycystic ovary syndrome are associated with infertility and recurrent miscarriage, as well as increased risk of adverse health outcomes, including cardiovascular disease and type 2 diabetes. For many of these conditions, the contributing molecular and cellular processes are poorly understood. The overarching similarities between mice and humans have rendered mouse models irreplaceable in understanding normal physiology and elucidating pathological processes that underlie disorders of the female reproductive system. The utilization of Cre-LoxP recombination technology, which allows for spatial and temporal control of gene expression, has identified the role of numerous genes in development of the female reproductive system and in processes, such as ovulation and endometrial decidualization, that are required for the establishment and maintenance of pregnancy in mammals. In this comprehensive review, we provide a detailed overview of Cre drivers with activity in the neuroendocrine-reproductive axis that have been used to study disruptions in key intracellular signaling pathways. We first summarize normal development of the hypothalamus, pituitary, ovary, and uterus, highlighting similarities and differences between mice and humans. We then describe human conditions resulting from abnormal development and/or function of the organ. Finally, we describe loss-of-function models for each Cre driver that elegantly recapitulate some key features of the human condition and are associated with impaired fertility. The examples we provide illustrate use of each Cre driver as a tool for elucidating genetic and molecular underpinnings of reproductive dysfunction.
Collapse
Affiliation(s)
- Anat Chemerinski
- Correspondence: Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB E561, Newark, NJ 07103, USA. Tel: 301-910-6800; Fax: 973-972-4574. E-mail:
| | | | - Sara S Morelli
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | | | | |
Collapse
|
18
|
Bernabò N, Di Berardino C, Capacchietti G, Peserico A, Buoncuore G, Tosi U, Crociati M, Monaci M, Barboni B. In Vitro Folliculogenesis in Mammalian Models: A Computational Biology Study. Front Mol Biosci 2021; 8:737912. [PMID: 34859047 PMCID: PMC8630647 DOI: 10.3389/fmolb.2021.737912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022] Open
Abstract
In vitro folliculogenesis (ivF) has been proposed as an emerging technology to support follicle growth and oocyte development. It holds a great deal of attraction from preserving human fertility to improving animal reproductive biotechnology. Despite the mice model, where live offspring have been achieved,in medium-sized mammals, ivF has not been validated yet. Thus, the employment of a network theory approach has been proposed for interpreting the large amount of ivF information collected to date in different mammalian models in order to identify the controllers of the in vitro system. The WoS-derived data generated a scale-free network, easily navigable including 641 nodes and 2089 links. A limited number of controllers (7.2%) are responsible for network robustness by preserving it against random damage. The network nodes were stratified in a coherent biological manner on three layers: the input was composed of systemic hormones and somatic-oocyte paracrine factors; the intermediate one recognized mainly key signaling molecules such as PI3K, KL, JAK-STAT, SMAD4, and cAMP; and the output layer molecules were related to functional ivF endpoints such as the FSH receptor and steroidogenesis. Notably, the phenotypes of knock-out mice previously developed for hub.BN indirectly corroborate their biological relevance in early folliculogenesis. Finally, taking advantage of the STRING analysis approach, further controllers belonging to the metabolic axis backbone were identified, such as mTOR/FOXO, FOXO3/SIRT1, and VEGF, which have been poorly considered in ivF to date. Overall, this in silico study identifies new metabolic sensor molecules controlling ivF serving as a basis for designing innovative diagnostic and treatment methods to preserve female fertility.
Collapse
Affiliation(s)
- Nicola Bernabò
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
- National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | | | | | - Alessia Peserico
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Giorgia Buoncuore
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Umberto Tosi
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Maurizio Monaci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| |
Collapse
|
19
|
Wang X, Praça MSL, Wendel JRH, Emerson RE, DeMayo FJ, Lydon JP, Hawkins SM. Vaginal Squamous Cell Carcinoma Develops in Mice with Conditional Arid1a Loss and Gain of Oncogenic Kras Driven by Progesterone Receptor Cre. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1281-1291. [PMID: 33882289 DOI: 10.1016/j.ajpath.2021.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022]
Abstract
Oncogenic KRAS mutations are a common finding in endometrial cancers. Recent sequencing studies indicate that loss-of-function mutations in the ARID1A gene are enriched in gynecologic malignant tumors. However, neither of these genetic insults alone are sufficient to develop gynecologic cancer. To determine the role of the combined effects of deletion of Arid1a and oncogenic Kras, Arid1aflox/flox mice were crossed with KrasLox-Stop-Lox-G12D/+ mice using progesterone receptor Cre (PgrCre/+). Histologic analysis and immunohistochemistry of survival studies were used to characterize the mutant mouse phenotype. Hormone dependence was evaluated by ovarian hormone depletion and estradiol replacement. Arid1aflox/flox; KrasLox-Stop-Lox-G12D/+; PgrCre/+ mice were euthanized early because of invasive vaginal squamous cell carcinoma. Younger mice had precancerous intraepithelial lesions. Immunohistochemistry supported the pathological diagnosis with abnormal expression and localization of cytokeratin 5, tumor protein P63, cyclin-dependent kinase inhibitor 2A, and Ki-67, the marker of proliferation. Ovarian hormone deletion in Arid1aflox/flox; KrasLox-Stop-Lox-G12D/+; PgrCre/+ mice resulted in atrophic vaginal epithelium without evidence of vaginal tumors. Estradiol replacement in ovarian hormone-depleted Arid1aflox/flox; KrasLox-Stop-Lox-G12D/+; PgrCre/+ mice resulted in lesions that resembled the squamous cell carcinoma in intact mice. Therefore, this mouse can be used to study the transition from benign precursor lesions into invasive vaginal human papillomavirus-independent squamous cell carcinoma, offering insights into progression and pathogenesis of this rare disease.
Collapse
Affiliation(s)
- Xiyin Wang
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mariana S L Praça
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jillian R H Wendel
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Robert E Emerson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Francesco J DeMayo
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Shannon M Hawkins
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
20
|
Wang J, Zhuo Z, Ma X, Liu Y, Xu J, He C, Fu Y, Wang F, Ji P, Zhang L, Liu G. Melatonin Alleviates the Suppressive Effect of Hypoxanthine on Oocyte Nuclear Maturation and Restores Meiosis via the Melatonin Receptor 1 (MT1)-Mediated Pathway. Front Cell Dev Biol 2021; 9:648148. [PMID: 33937242 PMCID: PMC8083900 DOI: 10.3389/fcell.2021.648148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/17/2021] [Indexed: 01/12/2023] Open
Abstract
It is well known that hypoxanthine (HX) inhibits nuclear maturation of oocytes by elevating the intracellular cAMP level, while melatonin (MT) is a molecule that reduces cAMP production, which may physiologically antagonize this inhibition and restore the meiosis process. We conducted in vitro and in vivo studies to examine this hypothesis. The results showed that 10-3 M MT potentiated the inhibitory effect of HX on mouse oocyte meiosis by lowering the rate of germinal vesicle breakdown (GVBD) and the first polar body (PB1). However, 10-5 M and 10-7 M MT significantly alleviated the nuclear suppression induced by HX and restored meiosis in 3- and 6-week-old mouse oocytes, respectively. We identified that the rate-limiting melatonin synthetic enzyme AANAT and melatonin membrane receptor MT1 were both expressed in oocytes and cumulus cells at the GV and MII stages. Luzindole, a non-selective melatonin membrane receptor antagonist, blocked the activity of MT on oocyte meiotic recovery (P < 0.05). This observation indicated that the activity of melatonin was mediated by the MT1 receptor. To understand the molecular mechanism further, MT1 knockout (KO) mice were constructed. In this MT1 KO animal model, the PB1 rate was significantly reduced with the excessive expression of cAPM synthases (Adcy2, Adcy6, Adcy7, and Adcy9) in the ovaries of these animals. The mRNA levels of Nppc and Npr2 were upregulated while the genes related to progesterone synthesis (Cyp11a11), cholesterol biosynthesis (Insig1), and feedback (Lhcgr, Prlr, and Atg7) were downregulated in the granulosa cells of MT1 KO mice (P < 0.05). The altered gene expression may be attributed to the suppression of oocyte maturation. In summary, melatonin protects against nuclear inhibition caused by HX and restores oocyte meiosis via MT1 by reducing the intracellular concentration of cAMP.
Collapse
Affiliation(s)
- Jing Wang
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiyong Zhuo
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Beijing Keao Xieli Feed Co., Ltd., Beijing, China
| | - Xiao Ma
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunjie Liu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Xu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changjiu He
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Fu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Feng Wang
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengyun Ji
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoshi Liu
- Beijing Key Laboratory of Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Liu L, Wang H, Xu GL, Liu L. Tet1 Deficiency Leads to Premature Ovarian Failure. Front Cell Dev Biol 2021; 9:644135. [PMID: 33834024 PMCID: PMC8021788 DOI: 10.3389/fcell.2021.644135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Tet enzymes participate in DNA demethylation and play critical roles in stem cell pluripotency and differentiation. DNA methylation alters with age. We find that Tet1 deficiency reduces fertility and leads to accelerated reproductive failure with age. Noticeably, Tet1-deficient mice at young age exhibit dramatically reduced follicle reserve and the follicle reserve further decreases with age, phenomenon consistent with premature ovarian failure (POF) syndrome. Consequently, Tet1-deficient mice become infertile by reproductive middle age, while age matched wild-type mice still robustly reproduce. Moreover, by single cell transcriptome analysis of oocytes, Tet1 deficiency elevates organelle fission, associated with defects in ubiquitination and declined autophagy, and also upregulates signaling pathways for Alzheimer's diseases, but down-regulates X-chromosome linked genes, such as Fmr1, which is known to be implicated in POF. Additionally, Line1 is aberrantly upregulated and endogenous retroviruses also are altered in Tet1-deficient oocytes. These molecular changes are consistent with oocyte senescence and follicle atresia and depletion found in premature ovarian failure or insufficiency. Our data suggest that Tet1 enzyme plays roles in maintaining oocyte quality as well as oocyte number and follicle reserve and its deficiency can lead to POF.
Collapse
Affiliation(s)
- Linlin Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Huasong Wang
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Guo Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Medical College of Fudan University, Shanghai, China
| | - Lin Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
22
|
Huang M, Li X, Jia S, Liu S, Fu L, Jiang X, Yang M. Bisphenol AF induces apoptosis via estrogen receptor beta (ERβ) and ROS-ASK1-JNK MAPK pathway in human granulosa cell line KGN. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116051. [PMID: 33189448 DOI: 10.1016/j.envpol.2020.116051] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol AF (BPAF) is an emerging environmental pollutant. Although BPAF is widely spread in the environment and human surroundings, its interference with ovarian function has not been fully elucidated. The aim of this study was to identify the mechanism underlying the effect of BPAF on the apoptosis of KGN cells, which maintain the physiological characteristics of ovarian granulosa cells. Our results indicated that BPAF induces KGN cell apoptosis in a concentration- and time-dependent manner. Meanwhile, BPAF exposure significantly promoted the expression of pro-apoptotic proteins, including Bax, Bid and Bak, while the expression of anti-apoptotic proteins, such as Bcl-2, Bcl-xL and Mcl-1, decreased significantly. We further detected a significant increase in intracellular ROS levels in response to high concentrations of BPAF exposure. After blocking the corresponding pathway, it was found that ROS mediates ASK1 and JNK activation. Furthermore, the role of Ca2+ overload and estrogen receptor β (ERβ) in BPAF-induced KGN cell apoptosis was also confirmed by using inhibitors. These results suggest that BPAF has potential reproductive toxicity for females, and ROS-ASK1-JNK axis may play a key role in BPAF-induced ovarian dysfunction. In addition, Ca2+ overload and ERβ pathway activation may also be an important mechanism of reproductive toxicity of BPAF.
Collapse
Affiliation(s)
- Mingquan Huang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Sichuan Treatment Center for Gynaecologic and Breast Diseases (Breast Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xingjie Li
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Shengjun Jia
- Animal Disease Prevention and Control Center of Zhongshan District, Liupanshui, 553000, China
| | - Shuang Liu
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Li Fu
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xue Jiang
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Meng Yang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
23
|
Rauen KA, Maeda Y, Egense A, Tidyman WE. Familial cardio-facio-cutaneous syndrome: Vertical transmission of the BRAF p.G464R pathogenic variant and review of the literature. Am J Med Genet A 2020; 185:469-475. [PMID: 33274568 DOI: 10.1002/ajmg.a.61995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/26/2020] [Accepted: 11/07/2020] [Indexed: 12/25/2022]
Abstract
Cardio-facio-cutaneous syndrome (CFC) is one of the RASopathies and is caused by germline mutations that activate the Ras/mitogen-activated protein kinase (MAPK) pathway. CFC is due to heterozygous germline mutations in protein kinases BRAF, MEK1, or MEK2 and rarely in KRAS, a small GTPase. CFC is a multiple congenital anomaly disorder in which individuals may have craniofacial dysmorphia, heart issues, skin and hair anomalies, and delayed development. Pathogenic variants for CFC syndrome are usually considered de novo because vertical transmission has only been reported with MEK2 and KRAS. The index case was a 3-year-old male with features consistent with the clinical diagnosis of CFC. Sequencing revealed a previously reported heterozygous likely pathogenic variant BRAF p.G464R. Upon detailed family history, the index case's pregnant mother was noted to have similar features to her son. Targeted familial testing of the BRAF pathogenic variant was performed on the mother, confirming her diagnosis. Prenatal genetic testing for the fetus was declined, but postnatal molecular testing of the index case's sister was positive for the familial BRAF p.G464R variant. Functional analysis of the variant demonstrated increased kinase activity. We report the first identified vertically transmitted functional BRAF pathogenic variant. Our findings emphasize the importance of obtaining a comprehensive evaluation of family members and that activating pathogenic variants within the canonical MAPK cascade mediated by BRAF are compatible with human reproduction.
Collapse
Affiliation(s)
- Katherine A Rauen
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis, Sacramento, California, USA.,MIND Institute, University of California Davis, Sacramento, California, USA
| | - Yoshiko Maeda
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis, Sacramento, California, USA.,MIND Institute, University of California Davis, Sacramento, California, USA
| | - Alena Egense
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis, Sacramento, California, USA.,MIND Institute, University of California Davis, Sacramento, California, USA
| | - William E Tidyman
- MIND Institute, University of California Davis, Sacramento, California, USA.,Department of Pediatrics, Division of Behavioral and Developmental Pediatrics, University of California Davis, Sacramento, California, USA
| |
Collapse
|
24
|
Kun EHS, Tsang YTM, Lin S, Pan S, Medapalli T, Malpica A, Richards JS, Gershenson DM, Wong KK. Differences in gynecologic tumor development in Amhr2-Cre mice with KRAS G12D or KRAS G12V mutations. Sci Rep 2020; 10:20678. [PMID: 33244099 PMCID: PMC7693266 DOI: 10.1038/s41598-020-77666-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 11/10/2020] [Indexed: 01/05/2023] Open
Abstract
How different KRAS variants impact tumor initiation and progression in vivo has not been thoroughly examined. We hypothesize that the ability of either KRASG12D or KRASG12V mutations to initiate tumor formation is context dependent. Amhr2-Cre mice express Cre recombinase in tissues that develop into the fallopian tubes, uterus, and ovaries. We used these mice to conditionally express either the KRASG12V/+or KRASG12D/+ mutation. Mice with the genotype Amhr2-Cre Pten(fl/fl) KrasG12D/+(G12D mice) had abnormal follicle structures and developed low-grade serous ovarian carcinomas with 100% penetrance within 18 weeks. In contrast, mice with the genotype Amhr2-Cre Pten(fl/fl) KrasG12V/+ (G12V mice) had normal follicle structures, and about 90% of them developed uterine tumors with diverse histological features resembling those of leiomyoma and leiomyosarcoma. Granulosa cell tumors also developed in G12V mice. Differences in cell-signaling pathways in the uterine tissues of G12D and G12V mice were identified using RNA sequencing and reverse-phase protein array analyses. We found that CTNNB1, IL1A, IL1B, TNF, TGFB1, APP, and IL6 had the higher activity in G12V mice than in G12D mice. These mouse models will be useful for studying the differences in signaling pathways driven by KrasG12V/+ or KrasG12D/+ mutations to aid development of targeted therapies for specific KRAS mutant variants. Our leiomyoma model driven by the KrasG12V/+ mutation will also be useful in deciphering the malignant progression from leiomyoma to leiomyosarcoma.
Collapse
Affiliation(s)
- Eucharist H S Kun
- Department of Gynecologic Oncology and Reproductive Medicine, Unit 1362, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Yvonne T M Tsang
- Department of Gynecologic Oncology and Reproductive Medicine, Unit 1362, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Sophia Lin
- Department of Gynecologic Oncology and Reproductive Medicine, Unit 1362, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Sophia Pan
- Department of Gynecologic Oncology and Reproductive Medicine, Unit 1362, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Tejas Medapalli
- Department of Gynecologic Oncology and Reproductive Medicine, Unit 1362, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Anais Malpica
- Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - David M Gershenson
- Department of Gynecologic Oncology and Reproductive Medicine, Unit 1362, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, Unit 1362, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
da Silva LFI, Da Broi MG, da Luz CM, da Silva LECM, Ferriani RA, Meola J, Navarro PA. miR-532-3p: a possible altered miRNA in cumulus cells of infertile women with advanced endometriosis. Reprod Biomed Online 2020; 42:579-588. [PMID: 33358886 DOI: 10.1016/j.rbmo.2020.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022]
Abstract
RESEARCH QUESTION Is the profile of microRNA (miRNA) altered in cumulus cells of infertile women with early (EI/II) and advanced (EIII/IV) endometriosis? DESIGN In this prospective case-control study, a miRNA profile including 754 targets was evaluated in samples of cumulus cells from infertile women with endometriosis (5 EI/II, 5 EIII/IV) and infertile controls (5, male and/or tubal factor) undergoing ovarian stimulation for intracytoplasmic sperm injection, using TaqMan® Array Human MicroRNA Cards A and B. The groups were compared with Kruskal-Wallis test, followed by Benjamini-Hochberg correction and Dunn's post hoc test. An in silico enrichment analysis was performed to list the possibly altered pathways in which the altered miRNA target genes are involved. RESULTS Only the miRNA miR-532-3p showed significant differences among the analysed groups, being down-regulated in the EIII/IV group compared with the infertile control group, as well as compared with the EI/II group. The enrichment analysis showed that some genes regulated by this miRNA are involved in important pathways for the acquisition of oocyte competence, such as the oxytocin, calcium, Wnt, FoxO, ErbB and Ras signalling pathways, as well as the oocyte meiosis pathway. CONCLUSION The present findings bring new perspectives to understanding the follicular microenvironment of infertile women with different stages of endometriosis. It is suggested that the dysregulation of miR-532-3p may be a potential mechanism involved in the aetiopathogenesis of endometriosis-related infertility. Further studies are needed to evaluate these pathways in cumulus cells of infertile women with the disease, as well as their impact on the acquisition of oocyte competence.
Collapse
Affiliation(s)
- Liliane Fabio Isidoro da Silva
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - USP, São Paulo, Brazil
| | - Michele Gomes Da Broi
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - USP, São Paulo, Brazil; National Institute of Hormones and Women's Health - CNPq, Porto Alegre, Brazil
| | - Caroline Mantovani da Luz
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - USP, São Paulo, Brazil
| | - Lilian Eslaine Costa Mendes da Silva
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - USP, São Paulo, Brazil
| | - Rui Alberto Ferriani
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - USP, São Paulo, Brazil; National Institute of Hormones and Women's Health - CNPq, Porto Alegre, Brazil
| | - Juliana Meola
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - USP, São Paulo, Brazil; National Institute of Hormones and Women's Health - CNPq, Porto Alegre, Brazil
| | - Paula Andrea Navarro
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto - USP, São Paulo, Brazil; National Institute of Hormones and Women's Health - CNPq, Porto Alegre, Brazil.
| |
Collapse
|
26
|
Fang X, Li Q. New insights into testicular granulosa cell tumors. Oncol Lett 2020; 20:293. [PMID: 33101487 PMCID: PMC7576989 DOI: 10.3892/ol.2020.12156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022] Open
Abstract
Testicular granulosa cell tumors (TGCTs) are rare tumors of sex cord-stromal origin. TGCTs are mostly benign and can be classified into the adult type and the juvenile type. Due to the rarity of clinical cases and limited research efforts, the mechanism underpinning the development of TGCTs remains poorly understood. A landmark study has identified a forkhead box L2 mutation (C134W) in nearly all adult ovarian GCTs, but its implications in TGCTs are unclear. The present study focuses on reviewing the major signaling pathways (e.g., the transforming growth factor β signaling pathway) critical for the development of TGCTs, as revealed by genetically modified mouse models, with a goal of providing new insights into the pathogenesis of TGCTs and offering directions for future studies in this area. We posit that a comparative approach between testicular and ovarian GCTs is valuable, as granulosa cells and Sertoli cells arise from the same progenitor cells during gonadal development. Developing pre-clinical mouse models that recapitulate TGCTs will help answer the remaining questions around this type of rare tumor.
Collapse
Affiliation(s)
- Xin Fang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
27
|
Umehara T, Urabe N, Obata T, Yamaguchi T, Tanaka A, Shimada M. Cutting the ovarian surface improves the responsiveness to exogenous hormonal treatment in aged mice. Reprod Med Biol 2020; 19:415-424. [PMID: 33071644 PMCID: PMC7542011 DOI: 10.1002/rmb2.12345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Ovarian vascular abnormality and ovarian fibrosis are observed in the low responder patients and aging mice. Vascularization and fibrosis are regulated by injury‐repair system, such as wound. Thus, in this study, the authors tried to investigate the effect of the surgical treatment to ovarian surface with cutting on the functions of ovary in aging mouse model, gcNrg1KO. Method The ovarian surface of gcNrg1KO was surgically cut, and then the ovary was returned inside of bursa ovarica. To assess the effect of cutting on fertility, mating test, smear analysis, and exogenous hormonal treatment were done. Additionally, the histological analysis was used for observing the remodeling of ovarian stroma after the surgical approach. Result Ovarian fibrosis disappeared at 7 days after surgery. With the abrogation of fibrosis, the blood vessels were fluently observed around the follicles, and the follicular development was re‐started. The responses against exogenous hormone were recovered at 21 days after the surgery, and estrous cycle and delivery were also recovered by the surgery and the fertility was maintained for 3 months. Conclusion This cutting method of ovarian surface becomes a good option against low responder patients.
Collapse
Affiliation(s)
- Takashi Umehara
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi-Hiroshima Japan
| | - Nao Urabe
- Saint Mother Obstetrics and Gynecology Clinic Institute for ART Fukuoka Japan
| | - Toshiki Obata
- Saint Mother Obstetrics and Gynecology Clinic Institute for ART Fukuoka Japan
| | - Takashi Yamaguchi
- Saint Mother Obstetrics and Gynecology Clinic Institute for ART Fukuoka Japan
| | - Atsushi Tanaka
- Saint Mother Obstetrics and Gynecology Clinic Institute for ART Fukuoka Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi-Hiroshima Japan
| |
Collapse
|
28
|
Richards JS. WOMEN IN REPRODUCTIVE SCIENCE: Discovering science and the ovary: a career of joy. Reproduction 2020; 158:F69-F80. [PMID: 30780130 DOI: 10.1530/rep-18-0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/18/2019] [Indexed: 11/08/2022]
Abstract
My career has been about discovering science and learning the joys of the discovery process itself. It has been a challenging but rewarding process filled with many exciting moments and wonderful colleagues and students. Although I went to college to become a French major, I ultimately stumbled into research while pursuing a Masters Degree in teaching. Thus, my research career began in graduate school where I was studying NAD kinase in the ovary as a possible regulator of steroidogenesis, a big issue in the late 1960s. After a short excursion of teaching in North Dakota, I became a postdoctoral fellow at the University of Michigan, where radio-immuno assays and radio receptor assays had just come on the scene and were transforming endocrinology from laborious bioassays to quantitative science and of course these assays related to the ovary. From there I went to Baylor College of Medicine, a mecca of molecular biology, cloning genes and generating mouse models. It has been a fascinating and joyous journey.
Collapse
Affiliation(s)
- JoAnne S Richards
- Department of Molecular and Cellular Biology, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
29
|
Lee-Thacker S, Jeon H, Choi Y, Taniuchi I, Takarada T, Yoneda Y, Ko C, Jo M. Core Binding Factors are essential for ovulation, luteinization, and female fertility in mice. Sci Rep 2020; 10:9921. [PMID: 32555437 PMCID: PMC7303197 DOI: 10.1038/s41598-020-64257-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
Core Binding Factors (CBFs) are a small group of heterodimeric transcription factor complexes composed of DNA binding proteins, RUNXs, and a non-DNA binding protein, CBFB. The LH surge increases the expression of Runx1 and Runx2 in ovulatory follicles, while Cbfb is constitutively expressed. To investigate the physiological significance of CBFs, we generated a conditional mutant mouse model in which granulosa cell expression of Runx2 and Cbfb was deleted by the Esr2Cre. Female Cbfbflox/flox;Esr2cre/+;Runx2flox/flox mice were infertile; follicles developed to the preovulatory follicle stage but failed to ovulate. RNA-seq analysis of mutant mouse ovaries collected at 11 h post-hCG unveiled numerous CBFs-downstream genes that are associated with inflammation, matrix remodeling, wnt signaling, and steroid metabolism. Mutant mice also failed to develop corpora lutea, as evident by the lack of luteal marker gene expression, marked reduction of vascularization, and excessive apoptotic staining in unruptured poorly luteinized follicles, consistent with dramatic reduction of progesterone by 24 h after hCG administration. The present study provides in vivo evidence that CBFs act as essential transcriptional regulators of both ovulation and luteinization by regulating the expression of key genes that are involved in inflammation, matrix remodeling, cell differentiation, vascularization, and steroid metabolisms in mice.
Collapse
Affiliation(s)
- Somang Lee-Thacker
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY, 40536-0298, USA
| | - Hayce Jeon
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY, 40536-0298, USA
| | - Yohan Choi
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY, 40536-0298, USA
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yukio Yoneda
- Section of Prophylactic Pharmacology, Kanazawa University, Venture Business Laboratory 402, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, 2001 South Lincoln Avenue, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61802, USA
| | - Misung Jo
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY, 40536-0298, USA.
| |
Collapse
|
30
|
Pargianas M, Salta S, Apostolopoulou K, Lazaros L, Kyrgiou M, Tinelli A, Malvasi A, Kalogiannidis I, Georgiou I, Kosmas IP. Pathways Involved in Premature Ovarian Failure: A Systematic Review of Experimental Studies. Curr Pharm Des 2020; 26:2087-2095. [PMID: 32175834 DOI: 10.2174/1381612826666200316160145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/10/2020] [Indexed: 11/22/2022]
Abstract
Premature ovarian failure (POF), which may be undetectable for a long time, is associated with impaired fertility. The mechanisms involved in the pathogenesis of POF as well as the concomitant treatments are still unclear. Although many data exist, mainly produced by the study of transgenic animals under various experimental conditions, they remain fragmented. A systematic review of the pathways involved in premature ovarian failure was conducted. Data extraction was performed from experimental studies until 2019. The molecular processes and their correlation with the follicular developmental stage have been described. Furthermore, the effects in other cells, such as oocytes, granulosa and theca cells have been reported. An overall estimation was conducted.
Collapse
Affiliation(s)
- Michail Pargianas
- Department of Obstetrics and Gynecology, Ioannina State General Hospital G. Chatzikosta, Ioannina, Greece
| | - Styliani Salta
- University Hospitals of Leicester, Haemophilia Centre, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Katerina Apostolopoulou
- Department of Biological Applications and Technologies, Ioannina University, Ioannina, Greece
| | - Leandros Lazaros
- Genetics and IVF Unit, Department of Obstetrics and Gynecology, Medical School, Ioannina University, Ioannina, Greece
| | - Maria Kyrgiou
- West London Gynecological Cancer Center, Queen Charlotte's and Chelsea-Hammersmith Hospital, Imperial Healthcare NHS Trust, London, United Kingdom
| | - Andrea Tinelli
- Moscow Institute of Physics and Technology (State University), Moscow Region, Russian Federation.,Department of Obstetrics and Gynecology, Division of Experimental Endoscopic Surgery, Imaging, Technology and Minimally Invasive Therapy, Vito Fazzi Hospital, Lecce, Italy
| | - Antonio Malvasi
- Moscow Institute of Physics and Technology (State University), Moscow Region, Russian Federation.,Department of Gynecology and Obstetrics, Santa Maria Hospital, Bari, Italy
| | - Ioannis Kalogiannidis
- Third Department of Obstetrics and Gynaecology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Georgiou
- Genetics and IVF Unit, Department of Obstetrics and Gynecology, Medical School, Ioannina University, Ioannina, Greece
| | - Ioannis P Kosmas
- Department of Obstetrics and Gynecology, Ioannina State General Hospital G. Chatzikosta, Ioannina, Greece.,Moscow Institute of Physics and Technology (State University), Moscow Region, Russian Federation
| |
Collapse
|
31
|
Karaer A, Tuncay G, Dogan B, Tecellioglu N, Cigremis Y. Microarray analysis of cumulus cells in women with ovarian endometriosis undergoing intracytoplasmic sperm injection. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2020. [DOI: 10.1177/2284026520906070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: The aim of this study was to find the significantly altered genes in cumulus cells of women with ovarian endometriosis by using microarray and quantitative polymerase chain reaction analysis. Methods: Thirty women with ovarian endometriosis and 30 age–body mass index matched controls (women with infertility as a result of pure male factor) were enrolled in this study. Cumulus cells from study participants who underwent controlled ovarian hyperstimulation were isolated mechanically. Microarray comparative genomic hybridization was used to compare the transcriptome of cumulus cells from women with ovarian endometriosis and controls. According to the different expression levels in the microarrays and their putative functions, KRAS, ZNF322, and SDHA were selected and analyzed by real-time quantitative polymerase chain reaction. Results: There was no significant difference in the basal conditions between patients with endometriosis and controls, such as age, body mass index, basal follicle stimulating hormone and estradiol levels, and total gonadotrophin dosage. The gene expression profile of cumulus cells from patients with endometriosis was significantly different from that of controls. A total of 295 genes were significantly up- or down-regulated (p-value < 0.05 and absolute fold change > 1.5). For all of the genes adjusted p-value was found to be 0.999. Polymerase chain reaction analysis showed that KRAS and ZNF322 mRNA levels in the cumulus cells of patients with ovarian endometriosis were significantly up-regulated compared to controls (fold changes: 3.05 and 3.22, respectively). Conclusion: KRAS and ZNF322 mRNA levels in the cumulus cells of patients with ovarian endometriosis were significantly up-regulated.
Collapse
Affiliation(s)
- Abdullah Karaer
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, School of Medicine, Inonu University, Malatya, Turkey
| | - Gorkem Tuncay
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, School of Medicine, Inonu University, Malatya, Turkey
| | - Berat Dogan
- Department of Biomedical Engineering, School of Engineering, Inonu University, Malatya, Turkey
| | - Nihan Tecellioglu
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, School of Medicine, Inonu University, Malatya, Turkey
| | - Yilmaz Cigremis
- Department of Medical Biology and Genetics, School of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
32
|
Kedem A, Ulanenko-Shenkar K, Yung Y, Yerushalmi GM, Maman E, Hourvitz A. Elucidating Decorin's role in the preovulatory follicle. J Ovarian Res 2020; 13:15. [PMID: 32041647 PMCID: PMC7011259 DOI: 10.1186/s13048-020-0612-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/20/2020] [Indexed: 11/11/2022] Open
Abstract
Background DCN (decorin) is a proteoglycan known to be involved in regulating cell proliferation, collagen fibril organization and migration. In our global transcriptome RNA-sequencing approach to systematically identify new ovulation-associated genes, DCN was identified as one of the highly regulated genes. We therefore hypothesize that DCN may have a role in ovulatory processes such as cell migration and proliferation. Aim To characterize the expression, regulation and function of the proteoglycan DCN in the human ovarian follicles during the preovulatory period. Methods The in-vivo expression of DCN mRNA in mural (MGCs) and cumulus (CGCs) granulosa cells was characterized using quantitative RT-PCR and western blot. A signaling study was performed by treating human MGCs cultures with gonadotropins and different stimulators and inhibitors to determine their effect on DCN expression by qRT- PCR and elucidate the pathways regulating these proteins. In a functional study, KGN granulosa cell line was used to study cell migration with a scratch assay. Results DCN mRNA expression was significantly higher in MGCs compared to CGCs. DCN mRNA was significantly higher in CGCs surrounding mature metaphase II (MII) oocytes compared to CGCs of germinal vesicle (GV) and metaphase I (MI) oocytes. hCG significantly increased DCN mRNA and protein expression levels in cultured MGCs. Using signal transduction activators and inhibitors, we demonstrated that DCN induction by LH/hCG is carried out via PKA, PKC, ERK/MEK, and PI3K pathways. We showed that DCN expression is also induced in high-density cell cultures, in a dose-dependent pattern. In addition, progesterone induced a significant increase in DCN secretion to the media. MGCs from follicles of endometriosis patients exhibited reduced (about 20% of) mRNA transcriptions levels compared to MGCs follicles of control patients. More significantly, we found that DCN has an inhibiting effect on KGN cell migration. Conclusions Our study indicates that DCN is a unique ovulatory gene. Our findings support the hypothesis that DCN plays an important new role during the preovulatory period and ovulation, and stress its involvement in endometriosis infertility. A better understanding of DCN role in ovulation and endometriosis may provide treatment for some types of infertility.
Collapse
Affiliation(s)
- A Kedem
- Human Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Affiliated to Tel Aviv University, Sackler Faculty of Medicine, Tel-Hashomer, Ramat Gan, Israel. .,IVF unit, Shamir Medical center (Assaf Hrofeh), Affiliated to Tel Aviv University, Sackler Faculty of Medicine, Tel-Aviv, Israel.
| | - K Ulanenko-Shenkar
- Human Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Affiliated to Tel Aviv University, Sackler Faculty of Medicine, Tel-Hashomer, Ramat Gan, Israel
| | - Y Yung
- Human Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Affiliated to Tel Aviv University, Sackler Faculty of Medicine, Tel-Hashomer, Ramat Gan, Israel
| | - G M Yerushalmi
- Human Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Affiliated to Tel Aviv University, Sackler Faculty of Medicine, Tel-Hashomer, Ramat Gan, Israel.,IVF unit, Shamir Medical center (Assaf Hrofeh), Affiliated to Tel Aviv University, Sackler Faculty of Medicine, Tel-Aviv, Israel
| | - E Maman
- Human Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Affiliated to Tel Aviv University, Sackler Faculty of Medicine, Tel-Hashomer, Ramat Gan, Israel
| | - A Hourvitz
- Human Reproduction Lab and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Affiliated to Tel Aviv University, Sackler Faculty of Medicine, Tel-Hashomer, Ramat Gan, Israel.,IVF unit, Shamir Medical center (Assaf Hrofeh), Affiliated to Tel Aviv University, Sackler Faculty of Medicine, Tel-Aviv, Israel
| |
Collapse
|
33
|
Doblado M, Zhang L, Toloubeydokhti T, Garzo GT, Chang RJ, Duleba AJ. Androgens Modulate Rat Granulosa Cell Steroidogenesis. Reprod Sci 2020; 27:1002-1007. [PMID: 31916094 DOI: 10.1007/s43032-019-00099-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/15/2019] [Indexed: 11/21/2022]
Abstract
Paracrine interactions between ovarian theca-interstitial cells (TICs) and granulosa cells (GCs) play an important role in the regulation of follicular steroidogenesis. Androgens serve as substrates for aromatization as well as affect GC function. This study evaluated the effects of co-culture of GC with TICs and the role of testosterone (T) and 5-alpha-dihydrotestosterone (DHT), and estradiol (E2) in modulation of GC expression of genes involved in the production of progesterone: 3β-hydroxysteroid dehydrogenase/Δ5-4 isomerase (Hsd3b) and cholesterol side-chain cleavage (Cyp11). GCs obtained from immature Sprague-Dawley rats and were cultured in chemically defined media without or with TICs, DHT, or T. Hsd3b and Cyp11 transcripts were analyzed by qt-PCR. Co-culture of GCs with TICs stimulated Hsd3b and CYP11 expression in GCs. DHT and T induced a concentration-dependent upregulation of Hsd3b and CYP11 expression, as well as increased progesterone concentrations in spent media. E2 also increased expression of Hsd3b, and Cyp11. Effects of androgens were abrogated in the presence of an anti-androgen bicalutamide and the antiestrogen ICI 182780 (ICI). In conclusion, present findings demonstrate that androgens upregulate production of progesterone in GCs; these effects are likely due to a combination of direct action on androgen receptors and effects mediated by estrogen receptors.
Collapse
Affiliation(s)
- Manuel Doblado
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, 9500 Gilman Drive, 0633, La Jolla, San Diego, CA, 92093-0633, USA
| | - Lingzhi Zhang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, 9500 Gilman Drive, 0633, La Jolla, San Diego, CA, 92093-0633, USA
| | - Tannaz Toloubeydokhti
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, 9500 Gilman Drive, 0633, La Jolla, San Diego, CA, 92093-0633, USA
| | - Gabriel T Garzo
- Reproductive Partners Fertility Center-San Diego, La Jolla, San Diego, CA, 92037, USA
| | - R Jeffrey Chang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, 9500 Gilman Drive, 0633, La Jolla, San Diego, CA, 92093-0633, USA
| | - Antoni J Duleba
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, 9500 Gilman Drive, 0633, La Jolla, San Diego, CA, 92093-0633, USA.
| |
Collapse
|
34
|
Tsoi M, Morin M, Rico C, Johnson RL, Paquet M, Gévry N, Boerboom D. Lats1 and Lats2 are required for ovarian granulosa cell fate maintenance. FASEB J 2019; 33:10819-10832. [PMID: 31268774 PMCID: PMC6766663 DOI: 10.1096/fj.201900609r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/04/2019] [Indexed: 01/19/2023]
Abstract
Recent reports suggest that the Hippo signaling pathway influences ovarian follicle development; however, its exact roles remain unknown. Here, we examined the ovarian functions of the Hippo kinases large tumor suppressors (LATS)1 and 2, which serve to inactivate the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Inactivation of Lats1/2 in murine granulosa cells either in vitro or in vivo resulted in a loss of granulosa cell morphology, function, and gene expression. Mutant cells further underwent changes in structure and gene expression suggestive of epithelial-to-mesenchymal transition and transdifferentiation into multiple lineages. In vivo, granulosa cell-specific loss of Lats1/2 caused the ovarian parenchyma to be mostly replaced by bone tissue and seminiferous tubule-like structures. Transdifferentiation into Sertoli-like cells and osteoblasts was attributed in part to the increased recruitment of YAP and TAZ to the promoters of sex-determining region Y box 9 and bone γ-carboxyglutamate protein, key mediators of male sex determination and osteogenesis, respectively. Together, these results demonstrate for the first time a critical role for Lats1/2 in the maintenance of the granulosa cell genetic program and further highlight the remarkable plasticity of granulosa cells.-Tsoi, M., Morin, M., Rico, C., Johnson, R. L., Paquet, M., Gévry, N., Boerboom, D. Lats1 and Lats2 are required for ovarian granulosa cell fate maintenance.
Collapse
Affiliation(s)
- Mayra Tsoi
- Département de Biomédecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Martin Morin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Charlène Rico
- Département de Biomédecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Randy L. Johnson
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Marilène Paquet
- Département de Pathologie et de Microbiologie, Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Nicolas Gévry
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
35
|
Landry DA, Labrecque R, Grand FX, Vigneault C, Blondin P, Sirard MA. Effect of heifer age on the granulosa cell transcriptome after ovarian stimulation. Reprod Fertil Dev 2019; 30:980-990. [PMID: 30447702 DOI: 10.1071/rd17225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
Genomic selection is accelerating genetic gain in dairy cattle. Decreasing generation time by using younger gamete donors would further accelerate breed improvement programs. Although ovarian stimulation of peripubertal animals is possible and embryos produced in vitro from the resulting oocytes are viable, developmental competence is lower than when sexually mature cows are used. The aim of the present study was to shed light on how oocyte developmental competence is acquired as a heifer ages. Ten peripubertal Bos taurus Holstein heifers underwent ovarian stimulation cycles at the ages of 8, 11 (mean 10.8) and 14 (mean 13.7) months. Collected oocytes were fertilised in vitro with spermatozoa from the same adult male. Each heifer served as its own control. The transcriptomes of granulosa cells recovered with the oocytes were analysed using microarrays. Differential expression of certain genes was measured using polymerase chain reaction. Principal component analysis of microarray data revealed that the younger the animal, the more distinctive the gene expression pattern. Using ingenuity pathway analysis (IPA) and NetworkAnalyst (www.networkanalyst.ca), the main biological functions affected in younger donors were identified. The results suggest that cell differentiation, inflammation and apoptosis signalling are less apparent in peripubertal donors. Such physiological traits have been associated with a lower basal concentration of LH.
Collapse
Affiliation(s)
- David A Landry
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, 2325 Rue de l'Université, Québec, G1V0A6, Canada
| | - Rémi Labrecque
- Boviteq Inc., 19320 Rang Grand Saint Francois Ouest, J2T 5H1, Saint-Hyacinthe, Québec, Canada
| | - François-Xavier Grand
- Boviteq Inc., 19320 Rang Grand Saint Francois Ouest, J2T 5H1, Saint-Hyacinthe, Québec, Canada
| | - Christian Vigneault
- Boviteq Inc., 19320 Rang Grand Saint Francois Ouest, J2T 5H1, Saint-Hyacinthe, Québec, Canada
| | - Patrick Blondin
- Boviteq Inc., 19320 Rang Grand Saint Francois Ouest, J2T 5H1, Saint-Hyacinthe, Québec, Canada
| | - Marc-André Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, 2325 Rue de l'Université, Québec, G1V0A6, Canada
| |
Collapse
|
36
|
Olabarrieta E, Totorikaguena L, Agirregoitia N, Agirregoitia E. Implication of mu opioid receptor in the in vitro maturation of oocytes and its effects on subsequent fertilization and embryo development in mice. Mol Reprod Dev 2019; 86:1236-1244. [PMID: 31355501 DOI: 10.1002/mrd.23248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/13/2019] [Indexed: 11/12/2022]
Abstract
Oocyte maturation is the process by which immature oocytes acquire all the necessary characteristics for successful fertilization. The endogenous opioid peptides have been suggested to have a role modulating this process. However, little is known about its implication and the effect of exposing oocyte maturation to opioids on the subsequent fertilization and embryo development. Hence, in the present work, we focused on elucidating the function of the mu opioid receptor (OPRM1) in the modulation of the oocyte maturation. We analyzed the expression and localization of OPRM1 in mice oocytes and granulosa cells by reverse-transcription polymerase chain reaction (RT-PCR) and immunocytochemistry. To observe the activity of the OPRM1, immature oocytes were incubated with morphine agonist and/or naloxone antagonist and we evaluated the PI3K/Akt and MAPK pathways, as well as the effect on the subsequent fertilization and embryo development. OPRM1 was present in mice oocytes and granulosa cells, changing its expression pattern depending on the maturation stage. Moreover, morphine, modulating PI3K/Akt and MAPK pathways, helped oocytes to reach blastocyst stage, which was reverted by naloxone. These results propose the OPRM1 as a possible therapeutic target for in vitro maturation culture medium, as it could improve the blastocyst rates obtained in the actual reproduction assisted techniques.
Collapse
Affiliation(s)
- Estibaliz Olabarrieta
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Bizkaia, Spain
| | - Lide Totorikaguena
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Bizkaia, Spain
| | - Naiara Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Bizkaia, Spain
| | - Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Bizkaia, Spain
| |
Collapse
|
37
|
Zhang M, Jang H, Nussinov R. The structural basis for Ras activation of PI3Kα lipid kinase. Phys Chem Chem Phys 2019; 21:12021-12028. [PMID: 31135801 PMCID: PMC6556208 DOI: 10.1039/c9cp00101h] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PI3Kα is a principal Ras effector that phosphorylates PIP2 to PIP3 in the PI3K/Akt/mTOR pathway. How Ras activates PI3K has been unclear: is Ras' role confined to PI3K recruitment to the membrane or does Ras activation also involve allostery? Recently, we determined the mechanism of PI3Kα activation at the atomic level. We showed the vital role and significance of conformational change in PI3Kα activation. Here, by a 'best-match for hydrogen-bonding pair' (BMHP) computational protocol and molecular dynamics (MD) simulations, we model the atomic structure of KRas4B in complex with the Ras binding domain (RBD) of PI3Kα, striving to understand the mechanism of PI3Kα activation by Ras. Point mutations T208D, K210E, and K227E disrupt the KRas4B-RBD interface in the models, in line with the experiments. We identify allosteric signaling pathways connecting Ras to RBD in the p110α subunit. However, the observed weak allosteric signals coupled with the detailed mechanism of PI3Kα activation make us conclude that the dominant mechanistic role of Ras is likely to be recruitment and restriction of the PI3Kα population at the membrane. Thus, RTK recruits the PI3Kα to the membrane and activates it by relieving its autoinhibition exerted by the nSH2 domain, leading to exposure of the kinase domain, which permits PIP2 binding. Ras recruitment can shift the PI3Kα ensemble toward a population where the kinase domain surface and the active site position and orientation favor PIP2 insertion. This work helps elucidate Ras-mediated PI3K activation and explores the structural basis for Ras-PI3Kα drug discovery.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
38
|
Xu J, Wang G, Luo X, Wang L, Bao Y, Yang X. Role of nuclear factor‐κB pathway in the transition of mouse secondary follicles to antral follicles. J Cell Physiol 2019; 234:22565-22580. [DOI: 10.1002/jcp.28822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Jun‐Jie Xu
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education Medical College, Jinan University Guangzhou China
- International Joint Laboratory for Embryonic Development and Prenatal Medicine Medical College, Jinan University Guangzhou China
| | - Guang Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education Medical College, Jinan University Guangzhou China
- International Joint Laboratory for Embryonic Development and Prenatal Medicine Medical College, Jinan University Guangzhou China
| | - Xin Luo
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education Medical College, Jinan University Guangzhou China
- International Joint Laboratory for Embryonic Development and Prenatal Medicine Medical College, Jinan University Guangzhou China
| | - Li‐Jing Wang
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University Guangzhou China
| | - Yongping Bao
- Norwich Medical School, University of East Anglia Norwich UK
| | - Xuesong Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education Medical College, Jinan University Guangzhou China
- International Joint Laboratory for Embryonic Development and Prenatal Medicine Medical College, Jinan University Guangzhou China
| |
Collapse
|
39
|
Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: Parallels With Inflammatory Processes. Endocr Rev 2019; 40:369-416. [PMID: 30496379 PMCID: PMC6405411 DOI: 10.1210/er.2018-00075] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
The midcycle surge of LH sets in motion interconnected networks of signaling cascades to bring about rupture of the follicle and release of the oocyte during ovulation. Many mediators of these LH-induced signaling cascades are associated with inflammation, leading to the postulate that ovulation is similar to an inflammatory response. First responders to the LH surge are granulosa and theca cells, which produce steroids, prostaglandins, chemokines, and cytokines, which are also mediators of inflammatory processes. These mediators, in turn, activate both nonimmune ovarian cells as well as resident immune cells within the ovary; additional immune cells are also attracted to the ovary. Collectively, these cells regulate proteolytic pathways to reorganize the follicular stroma, disrupt the granulosa cell basal lamina, and facilitate invasion of vascular endothelial cells. LH-induced mediators initiate cumulus expansion and cumulus oocyte complex detachment, whereas the follicular apex undergoes extensive extracellular matrix remodeling and a loss of the surface epithelium. The remainder of the follicle undergoes rapid angiogenesis and functional differentiation of granulosa and theca cells. Ultimately, these functional and structural changes culminate in follicular rupture and oocyte release. Throughout the ovulatory process, the importance of inflammatory responses is highlighted by the commonalities and similarities between many of these events associated with ovulation and inflammation. However, ovulation includes processes that are distinct from inflammation, such as regulation of steroid action, oocyte maturation, and the eventual release of the oocyte. This review focuses on the commonalities between inflammatory responses and the process of ovulation.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| | - Mats Brannstrom
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden.,Stockholm IVF, Stockholm, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
40
|
Wendel JRH, Wang X, Hawkins SM. The Endometriotic Tumor Microenvironment in Ovarian Cancer. Cancers (Basel) 2018; 10:cancers10080261. [PMID: 30087267 PMCID: PMC6115869 DOI: 10.3390/cancers10080261] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
Women with endometriosis are at increased risk of developing ovarian cancer, specifically ovarian endometrioid, low-grade serous, and clear-cell adenocarcinoma. An important clinical caveat to the association of endometriosis with ovarian cancer is the improved prognosis for women with endometriosis at time of ovarian cancer staging. Whether endometriosis-associated ovarian cancers develop from the molecular transformation of endometriosis or develop because of the endometriotic tumor microenvironment remain unknown. Additionally, how the presence of endometriosis improves prognosis is also undefined, but likely relies on the endometriotic microenvironment. The unique tumor microenvironment of endometriosis is composed of epithelial, stromal, and immune cells, which adapt to survive in hypoxic conditions with high levels of iron, estrogen, and inflammatory cytokines and chemokines. Understanding the unique molecular features of the endometriotic tumor microenvironment may lead to impactful precision therapies and/or modalities for prevention. A challenge to this important study is the rarity of well-characterized clinical samples and the limited model systems. In this review, we will describe the unique molecular features of endometriosis-associated ovarian cancers, the endometriotic tumor microenvironment, and available model systems for endometriosis-associated ovarian cancers. Continued research on these unique ovarian cancers may lead to improved prevention and treatment options.
Collapse
Affiliation(s)
- Jillian R Hufgard Wendel
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Xiyin Wang
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Shannon M Hawkins
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
41
|
Kuwahara Y, Kennedy LM, Karnezis AN, Mora-Blanco EL, Rogers AB, Fletcher CD, Huntsman DG, Roberts CWM, Rathmell WK, Weissman BE. High Frequency of Ovarian Cyst Development in Vhl 2B/+;Snf5 +/- Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1510-1516. [PMID: 29684361 DOI: 10.1016/j.ajpath.2018.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
The new paradigm of mutations in chromatin-modifying genes as driver events in the development of cancers has proved challenging to resolve the complex influences over disease phenotypes. In particular, impaired activities of members of the SWI/SNF chromatin remodeling complex have appeared in an increasing variety of tumors. Mutations in SNF5, a member of this ubiquitously expressed complex, arise in almost all cases of malignant rhabdoid tumor in the absence of additional genetic alterations. Therefore, we studied how activation of additional oncogenic pathways might shift the phenotype of disease driven by SNF5 loss. With the use of a genetically engineered mouse model, we examined the effects of a hypomorphic Vhl2B allele on disease phenotype, with a modest up-regulation of the hypoxia response pathway. Snf5+/-;Vhl2B/+ mice did not demonstrate a substantial difference in overall survival or a change in malignant rhabdoid tumor development. However, a high percentage of female mice showed complex hemorrhagic ovarian cysts, a phenotype rarely found in either parental mouse strain. These lesions also showed mosaic expression of SNF5 by immunohistochemistry. Therefore, our studies implicate that modest changes in angiogenic regulation interact with perturbations of SWI/SNF complex activity to modulate disease phenotypes.
Collapse
Affiliation(s)
- Yasumichi Kuwahara
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Leslie M Kennedy
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Anthony N Karnezis
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - E Lorena Mora-Blanco
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Children's Hospital Boston and Harvard University, Boston, Massachusetts
| | - Arlin B Rogers
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| | | | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Charles W M Roberts
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Children's Hospital Boston and Harvard University, Boston, Massachusetts
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina; Division of Hematology and Oncology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Bernard E Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
42
|
Maurer JM, Sagerström CG. A parental requirement for dual-specificity phosphatase 6 in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2018; 18:6. [PMID: 29544468 PMCID: PMC5856328 DOI: 10.1186/s12861-018-0164-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/13/2018] [Indexed: 02/06/2023]
Abstract
Background Signaling cascades, such as the extracellular signal-regulated kinase (ERK) pathway, play vital roles in early vertebrate development. Signals through these pathways are initiated by a growth factor or hormone, are transduced through a kinase cascade, and result in the expression of specific downstream genes that promote cellular proliferation, growth, or differentiation. Tight regulation of these signals is provided by positive or negative modulators at varying levels in the pathway, and is required for proper development and function. Two members of the dual-specificity phosphatase (Dusp) family, dusp6 and dusp2, are believed to be negative regulators of the ERK pathway and are expressed in both embryonic and adult zebrafish, but their specific roles in embryogenesis remain to be fully understood. Results Using CRISPR/Cas9 genome editing technology, we generated zebrafish lines harboring germ line deletions in dusp6 and dusp2. We do not detect any overt defects in dusp2 mutants, but we find that approximately 50% of offspring from homozygous dusp6 mutants do not proceed through embryonic development. These embryos are fertilized, but are unable to proceed past the first zygotic mitosis and stall at the 1-cell stage for several hours before dying by 10 h post fertilization. We demonstrate that dusp6 is expressed in gonads of both male and female zebrafish, suggesting that loss of dusp6 causes defects in germ cell production. Notably, the 50% of homozygous dusp6 mutants that complete the first cell division appear to progress through embryogenesis normally and give rise to fertile adults. Conclusions The fact that offspring of homozygous dusp6 mutants stall prior to activation of the zygotic genome, suggests that loss of dusp6 affects gametogenesis and/or parentally-directed early development. Further, since only approximately 50% of homozygous dusp6 mutants are affected, we postulate that ERK signaling is tightly regulated and that dusp6 is required to keep ERK signaling within a range that is permissive for proper embryogenesis. Lastly, since dusp6 is expressed throughout zebrafish embryogenesis, but dusp6 mutants do not exhibit defects after the first cell division, it is possible that other regulators of the ERK pathway compensate for loss of dusp6 at later stages. Electronic supplementary material The online version of this article (10.1186/s12861-018-0164-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer M Maurer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Charles G Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
43
|
Richards JS. From Follicular Development and Ovulation to Ovarian Cancers: An Unexpected Journey. VITAMINS AND HORMONES 2018; 107:453-472. [PMID: 29544640 DOI: 10.1016/bs.vh.2018.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Follicular development and ovulation are complex development processes that are regulated by multiple, interacting pathways and cell types. The oocyte, cumulus cells, granulosa cells, and theca cells communicate to impact follicular development and ovulation. Many hormones and cytokines control intracellular regulatory networks and transcription factors, some of which are cell type specific. Molecular biology approaches and mutant mouse models have contributed immensely to our knowledge of what genes and signaling cascades impact each stage of follicular development and ovulation, and how the alteration of gene expression profiles and the activation of specific signaling pathways can impact ovarian cancer development in ovarian surface epithelial cells as well as granulosa cells. This chapter explores how pathways controlling normal follicle development and ovulation can be diverted to abnormal development.
Collapse
Affiliation(s)
- JoAnne S Richards
- Baylor College of Medicine, Houston, TX, United States; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States; Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
44
|
Umehara T, Kawai T, Kawashima I, Tanaka K, Okuda S, Kitasaka H, Richards JS, Shimada M. The acceleration of reproductive aging in Nrg1 flox/flox ;Cyp19-Cre female mice. Aging Cell 2017; 16:1288-1299. [PMID: 28857490 PMCID: PMC5676068 DOI: 10.1111/acel.12662] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2017] [Indexed: 11/30/2022] Open
Abstract
Irregular menstrual cycles, reduced responses to exogenous hormonal treatments, and altered endocrine profiles (high FSH/high LH/low AMH) are observed in women with increasing age before menopause. In this study, because the granulosa cell‐specific Nrg1 knockout mice (gcNrg1KO) presented ovarian and endocrine phenotypes similar to older women, we sought to understand the mechanisms of ovarian aging and to develop a new strategy for improving fertility in older women prior to menopause. In the ovary of 6‐month‐old gcNrg1KO mice, follicular development was blocked in bilayer secondary follicles and heterogeneous cells accumulated in ovarian stroma. The heterogeneous cells in ovarian stroma were distinguished as two different types: (i) the LH receptor‐positive endocrine cells and (ii) actin‐rich fibrotic cells expressing collagen. Both the endocrine and fibrotic cells disappeared following long‐term treatment with a GnRH antagonist, indicating that the high levels of serum LH induced the survival of both cell types and the abnormal endocrine profile to reduce fertility. Moreover, follicular development to the antral stages was observed with reduced LH and the disappearance of the abnormal stromal cells. Mice treated with the GnRH antagonist regained normal, recurrent estrous cycles and continuously delivered pups for at least for 3 months. We conclude that endocrine and matrix alternations occur within the ovarian stroma with increasing age and that abolishing these alternations resets the cyclical release of LH. Thus, GnRH antagonist treatments might provide a new, noninvasive strategy for improving fertility in a subset of aging women before menopause.
Collapse
Affiliation(s)
- Takashi Umehara
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| | - Tomoko Kawai
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| | - Ikko Kawashima
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| | - Katsuhiro Tanaka
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| | - Satoshi Okuda
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| | - Hiroya Kitasaka
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| | - JoAnne S. Richards
- Department of Molecular & Cellular Biology Baylor College of Medicine Houston TX USA
| | - Masayuki Shimada
- Graduate School of Biosphere Science Hiroshima University Higashi‐Hiroshima Japan
| |
Collapse
|
45
|
The effect of estradiol, testosterone, and human chorionic gonadotropin on the proliferation of Schwann cells with NF1
+/− or NF1
−/− genotype derived from human cutaneous neurofibromas. Mol Cell Biochem 2017; 444:27-33. [DOI: 10.1007/s11010-017-3227-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/24/2017] [Indexed: 10/18/2022]
|
46
|
Liu XM, Zhang YL, Ji SY, Zhao LW, Shang WN, Li D, Chen Z, Tong C, Fan HY. Mitochondrial Function Regulated by Mitoguardin-1/2 Is Crucial for Ovarian Endocrine Functions and Ovulation. Endocrinology 2017; 158:3988-3999. [PMID: 28938432 DOI: 10.1210/en.2017-00487] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/16/2017] [Indexed: 11/19/2022]
Abstract
The balances of mitochondrial dynamic changes, mitochondrial morphology, and mitochondrial number are critical in cell metabolism. Once they are disturbed, disorders in these processes generally cause diseases or even death in animals. We performed large-scale genetic screenings in fruit flies and discovered the mitoguardin gene (Miga) that encodes for a mitochondrial outer membrane protein. To examine the physiological functions of its mammalian homologs Miga1 and Miga2, we generated Miga1 and Miga2 single- and double-knockout mouse strains and found that the knockout mice were viable, but the females were subfertile. The ovarian phenotypes of these mice suggested that the MIGA1/2 proteins play an important role in ovulation and ovarian steroidogenesis. In vivo and in vitro analyses of Miga1/2-knockout granulosa cells showed severe defects in luteinization and steroidogenesis and disordered mitochondrial morphology and function in response to gonadotropins. This is a report of genes involved in mitochondrial fusion and morphology-regulating mitochondrial functions during ovulation and luteinization. These results suggest a mechanism of gonadotropin-regulated ovarian endocrine functions and provide clues for therapeutic treatments of infertile females.
Collapse
Affiliation(s)
- Xiao-Man Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
- The Key Laboratory for Reproductive Endocrinology of the Ministry of Education, Jinan, Shandong 250001, China
| | - Yin-Li Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Shu-Yan Ji
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Long-Wen Zhao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Wei-Na Shang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zijiang Chen
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
- The Key Laboratory for Reproductive Endocrinology of the Ministry of Education, Jinan, Shandong 250001, China
| | - Chao Tong
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
47
|
Ji SY, Liu XM, Li BT, Zhang YL, Liu HB, Zhang YC, Chen ZJ, Liu J, Fan HY. The polycystic ovary syndrome-associated gene Yap1 is regulated by gonadotropins and sex steroid hormones in hyperandrogenism-induced oligo-ovulation in mouse. Mol Hum Reprod 2017; 23:698-707. [PMID: 28961951 DOI: 10.1093/molehr/gax046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/04/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shu-Yan Ji
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Man Liu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
- The Key Laboratory for Reproductive Endocrinology of the Ministry of Education, Jinan, Shandong 250001, China
| | - Bo-Tai Li
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yin-Li Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hong-Bin Liu
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
- The Key Laboratory for Reproductive Endocrinology of the Ministry of Education, Jinan, Shandong 250001, China
| | - Yu-Chao Zhang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
- The Key Laboratory for Reproductive Endocrinology of the Ministry of Education, Jinan, Shandong 250001, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
- The Key Laboratory for Reproductive Endocrinology of the Ministry of Education, Jinan, Shandong 250001, China
| | - Junping Liu
- Institute of Aging Research, Hangzhou Normal University, Hangzhou 310058, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
48
|
Bertolin K, Meinsohn MC, Suzuki J, Gossen J, Schoonjans K, Duggavathi R, Murphy BD. Ovary-specific depletion of the nuclear receptor Nr5a2 compromises expansion of the cumulus oophorus but not fertilization by intracytoplasmic sperm injection†. Biol Reprod 2017; 96:1231-1243. [DOI: 10.1093/biolre/iox045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/17/2017] [Indexed: 11/14/2022] Open
|
49
|
Cacioppo JA, Lin PCP, Hannon PR, McDougle DR, Gal A, Ko C. Granulosa cell endothelin-2 expression is fundamental for ovulatory follicle rupture. Sci Rep 2017; 7:817. [PMID: 28400616 PMCID: PMC5429765 DOI: 10.1038/s41598-017-00943-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/20/2017] [Indexed: 12/22/2022] Open
Abstract
Ovulation is dependent upon numerous factors mediating follicular growth, vascularization, and ultimately oocyte release via follicle rupture. Endothelin-2 (EDN2) is a potent vasoconstrictor that is transiently produced prior to follicle rupture by granulosa cells of periovulatory follicles and induces ovarian contraction. To determine the role of Edn2 expression, surgical transplant and novel conditional knockout mice were super-ovulated and analyzed. Conditional knockout mice utilized a new iCre driven by the Esr2 promoter to selectively remove Edn2. Follicle rupture and fertility were significantly impaired in the absence of ovarian Edn2 expression. When ovaries of Edn2KO mice were transplanted in wild type recipients, significantly more corpora lutea containing un-ovulated oocytes were present after hormonal stimulation (1.0 vs. 5.4, p = 0.010). Following selective ablation of Edn2 in granulosa cells, Esr2-Edn2KO dams had reduced oocytes ovulated (3.8 vs. 16.4 oocytes/ovary) and smaller litters (4.29 ± l.02 vs. 8.50 pups/dam). However, the number of pregnancies per pairing was not different and the reproductive axis remained intact. Esr2-Edn2KO ovaries had a higher percentage of antral follicles and fewer corpora lutea; follicles progressed to the antral stage but many were unable to rupture. Conditional loss of endothelin receptor A in granulosa cells also decreased ovulation but did not affect fecundity. These data demonstrate that EDN2-induced intraovarian contraction is a critical trigger of normal ovulation and subsequent fecundity.
Collapse
Affiliation(s)
- Joseph A Cacioppo
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Po-Ching Patrick Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Patrick R Hannon
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.,Department of Obstetrics & Gynecology, University of Kentucky, Lexington, KY, 40536, USA
| | - Daniel R McDougle
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Arnon Gal
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.,Department of Small Animal Internal Medicine, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
50
|
Umehara T, Kawashima I, Kawai T, Hoshino Y, Morohashi KI, Shima Y, Zeng W, Richards JS, Shimada M. Neuregulin 1 Regulates Proliferation of Leydig Cells to Support Spermatogenesis and Sexual Behavior in Adult Mice. Endocrinology 2016; 157:4899-4913. [PMID: 27732090 PMCID: PMC5133346 DOI: 10.1210/en.2016-1478] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adult Leydig cells are derived from proliferating stem/progenitor Leydig cells in the infant testis and subsequent differentiation to steroidogenic cells in adult mice. Leydig cell proliferation in the infant testis occurs primarily in response to increased levels of LH that induce Leydig cell expression of neuregulin 1 (NRG1). Depletion of NRG1 in Nrg1 mutant mice (Nrg1flox;flox;Cyp19a1Cre mice) dramatically reduces Leydig cell proliferation in the infant testes, leading to a reduction of testis weight, epididymial weight, and serum T in the adult mutant mice. The mutant mice are subfertile due to impaired sexual behavior and abnormal elongation of the spermatogenic cells. These defects were reversed by T treatment of the mutant mice in vivo. Furthermore, NRG1 alone induces the proliferation of Leydig cells in cultures of infant (d 10) testes obtained from mutant mice. Collectively these results show that LH induction of NRG1 directly drives the proliferation of Leydig cells in the infant testis, leading to an obligatory number of adult Leydig cells required for the production of sufficient androgen to support and maintain spermatogenesis and sexual behavior of adult male mice.
Collapse
Affiliation(s)
- Takashi Umehara
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Ikko Kawashima
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Tomoko Kawai
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Yumi Hoshino
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Ken-Ichirou Morohashi
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Yuichi Shima
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Wenxian Zeng
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - JoAnne S Richards
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Masayuki Shimada
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|