1
|
Domínguez-Berzosa L, Cantarero L, Rodríguez-Sanz M, Tort G, Garrido E, Troya-Balseca J, Sáez M, Castro-Martínez XH, Fernandez-Lizarbe S, Urquizu E, Calvo E, López JA, Palomo T, Palau F, Hoenicka J. ANKK1 Is a Wnt/PCP Scaffold Protein for Neural F-ACTIN Assembly. Int J Mol Sci 2024; 25:10705. [PMID: 39409035 PMCID: PMC11477271 DOI: 10.3390/ijms251910705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The TaqIA polymorphism is a marker of both the Ankyrin Repeat and Kinase Domain containing I gene (ANKK1) encoding a RIP-kinase, and the DRD2 gene for the dopamine receptor D2. Despite a large number of studies of TaqIA in addictions and other psychiatric disorders, there is difficulty in interpreting this genetic phenomenon due to the lack of knowledge about ANKK1 function. In SH-SY5Y neuroblastoma models, we show that ANKK1 interacts with the synapse protein FERM ARH/RhoGEF and Pleckstrin Domain 1 (FARP1), which is a guanine nucleotide exchange factor (GEF) of the RhoGTPases RAC1 and RhoA. ANKK1-FARP1 colocalized in F-ACTIN-rich structures for neuronal maturation and migration, and both proteins activate the Wnt/PCP pathway. ANKK1, but not FARP1, promotes neuritogenesis, and both proteins are involved in neuritic spine outgrowth. Notably, the knockdown of ANKK1 or FARP1 affects RhoGTPases expression and neural differentiation. Additionally, ANKK1 binds WGEF, another GEF of Wnt/PCP, regulating its interaction with RhoA. During neuronal differentiation, ANKK1-WGEF interaction is downregulated, while ANKK1-FARP1 interaction is increased, suggesting that ANKK1 recruits Wnt/PCP components for bidirectional control of F-ACTIN assembly. Our results suggest a brain structural basis in TaqIA-associated phenotypes.
Collapse
Affiliation(s)
- Laura Domínguez-Berzosa
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (L.D.-B.); (L.C.); (M.R.-S.); (G.T.); (J.T.-B.); (X.H.C.-M.); (E.U.); (F.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 08950 Barcelona, Spain
| | - Lara Cantarero
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (L.D.-B.); (L.C.); (M.R.-S.); (G.T.); (J.T.-B.); (X.H.C.-M.); (E.U.); (F.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 08950 Barcelona, Spain
| | - María Rodríguez-Sanz
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (L.D.-B.); (L.C.); (M.R.-S.); (G.T.); (J.T.-B.); (X.H.C.-M.); (E.U.); (F.P.)
| | - Gemma Tort
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (L.D.-B.); (L.C.); (M.R.-S.); (G.T.); (J.T.-B.); (X.H.C.-M.); (E.U.); (F.P.)
| | - Elena Garrido
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario 12 de Octubre, Avda. Andalucía s/n, 28041 Madrid, Spain (T.P.)
| | - Johanna Troya-Balseca
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (L.D.-B.); (L.C.); (M.R.-S.); (G.T.); (J.T.-B.); (X.H.C.-M.); (E.U.); (F.P.)
| | - María Sáez
- Centro de Investigación Príncipe Felipe (CIPF), 45012 Valencia, Spain; (M.S.); (S.F.-L.)
| | - Xóchitl Helga Castro-Martínez
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (L.D.-B.); (L.C.); (M.R.-S.); (G.T.); (J.T.-B.); (X.H.C.-M.); (E.U.); (F.P.)
| | - Sara Fernandez-Lizarbe
- Centro de Investigación Príncipe Felipe (CIPF), 45012 Valencia, Spain; (M.S.); (S.F.-L.)
| | - Edurne Urquizu
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (L.D.-B.); (L.C.); (M.R.-S.); (G.T.); (J.T.-B.); (X.H.C.-M.); (E.U.); (F.P.)
| | - Enrique Calvo
- Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (E.C.); (J.A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, 28029 Madrid, Spain
| | - Juan Antonio López
- Unidad de Proteomica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (E.C.); (J.A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, 28029 Madrid, Spain
| | - Tomás Palomo
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario 12 de Octubre, Avda. Andalucía s/n, 28041 Madrid, Spain (T.P.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, 28041 Madrid, Spain
| | - Francesc Palau
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (L.D.-B.); (L.C.); (M.R.-S.); (G.T.); (J.T.-B.); (X.H.C.-M.); (E.U.); (F.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 08950 Barcelona, Spain
- ÚNICAS SJD Center, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine, Center for Genomic Sciences in Medicine, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (L.D.-B.); (L.C.); (M.R.-S.); (G.T.); (J.T.-B.); (X.H.C.-M.); (E.U.); (F.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 08950 Barcelona, Spain
| |
Collapse
|
2
|
Banerjee D, Bagchi S, Liu Z, Chou HC, Xu M, Sun M, Aloisi S, Vaksman Z, Diskin SJ, Zimmerman M, Khan J, Gryder B, Thiele CJ. Lineage specific transcription factor waves reprogram neuroblastoma from self-renewal to differentiation. Nat Commun 2024; 15:3432. [PMID: 38653778 DOI: 10.1038/s41467-024-47166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.
Collapse
Affiliation(s)
- Deblina Banerjee
- Cell & Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Sukriti Bagchi
- Cell & Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zhihui Liu
- Cell & Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hsien-Chao Chou
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Man Xu
- Cell & Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ming Sun
- Cell & Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sara Aloisi
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | | | - Sharon J Diskin
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Mark Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Berkley Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Carol J Thiele
- Cell & Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
3
|
Birkhoff JC, Korporaal AL, Brouwer RWW, Nowosad K, Milazzo C, Mouratidou L, van den Hout MCGN, van IJcken WFJ, Huylebroeck D, Conidi A. Zeb2 DNA-Binding Sites in Neuroprogenitor Cells Reveal Autoregulation and Affirm Neurodevelopmental Defects, Including in Mowat-Wilson Syndrome. Genes (Basel) 2023; 14:genes14030629. [PMID: 36980900 PMCID: PMC10048071 DOI: 10.3390/genes14030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Functional perturbation and action mechanism studies have shown that the transcription factor Zeb2 controls cell fate decisions, differentiation, and/or maturation in multiple cell lineages in embryos and after birth. In cultured embryonic stem cells (ESCs), Zeb2’s mRNA/protein upregulation is necessary for the exit from primed pluripotency and for entering general and neural differentiation. We edited mouse ESCs to produce Flag-V5 epitope-tagged Zeb2 protein from one endogenous allele. Using chromatin immunoprecipitation coupled with sequencing (ChIP-seq), we mapped 2432 DNA-binding sites for this tagged Zeb2 in ESC-derived neuroprogenitor cells (NPCs). A new, major binding site maps promoter-proximal to Zeb2 itself. The homozygous deletion of this site demonstrates that autoregulation of Zeb2 is necessary to elicit the appropriate Zeb2-dependent effects in ESC-to-NPC differentiation. We have also cross-referenced all the mapped Zeb2 binding sites with previously obtained transcriptome data from Zeb2 perturbations in ESC-derived NPCs, GABAergic interneurons from the ventral forebrain of mouse embryos, and stem/progenitor cells from the post-natal ventricular-subventricular zone (V-SVZ) in mouse forebrain, respectively. Despite the different characteristics of each of these neurogenic systems, we found interesting target gene overlaps. In addition, our study also contributes to explaining developmental disorders, including Mowat-Wilson syndrome caused by ZEB2 deficiency, and also other monogenic syndromes.
Collapse
Affiliation(s)
- Judith C. Birkhoff
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Anne L. Korporaal
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Rutger W. W. Brouwer
- Center for Biomics-Genomics, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Karol Nowosad
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
- The Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Claudia Milazzo
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Lidia Mouratidou
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | | | - Wilfred F. J. van IJcken
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Center for Biomics-Genomics, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-10-7043169
| |
Collapse
|
4
|
Gata2a Mutation Causes Progressive Microphthalmia and Blindness in Nile Tilapia. Int J Mol Sci 2023; 24:ijms24043567. [PMID: 36834978 PMCID: PMC9958714 DOI: 10.3390/ijms24043567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The normal development of lens fiber cells plays a critical role in lens morphogenesis and maintaining transparency. Factors involved in the development of lens fiber cells are largely unknown in vertebrates. In this study, we reported that GATA2 is essential for lens morphogenesis in Nile tilapia (Oreochromis niloticus). In this study, Gata2a was detected in the primary and secondary lens fiber cells, with the highest expression in primary fiber cells. gata2a homozygous mutants of tilapia were obtained using CRISPR/Cas9. Different from fetal lethality caused by Gata2/gata2a mutation in mice and zebrafish, some gata2a homozygous mutants of tilapia are viable, which provides a good model for studying the role of gata2 in non-hematopoietic organs. Our data showed that gata2a mutation caused extensive degeneration and apoptosis of primary lens fiber cells. The mutants exhibited progressive microphthalmia and blindness in adulthood. Transcriptome analysis of the eyes showed that the expression levels of almost all genes encoding crystallin were significantly down-regulated, while the expression levels of genes involved in visual perception and metal ion binding were significantly up-regulated after gata2a mutation. Altogether, our findings indicate that gata2a is required for the survival of lens fiber cells and provide insights into transcriptional regulation underlying lens morphogenesis in teleost fish.
Collapse
|
5
|
Dong R, Yang R, Zhan Y, Lai HD, Ye CJ, Yao XY, Luo WQ, Cheng XM, Miao JJ, Wang JF, Liu BH, Liu XQ, Xie LL, Li Y, Zhang M, Chen L, Song WC, Qian W, Gao WQ, Tang YH, Shen CY, Jiang W, Chen G, Yao W, Dong KR, Xiao XM, Zheng S, Li K, Wang J. Single-Cell Characterization of Malignant Phenotypes and Developmental Trajectories of Adrenal Neuroblastoma. Cancer Cell 2020; 38:716-733.e6. [PMID: 32946775 DOI: 10.1016/j.ccell.2020.08.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/08/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
Neuroblastoma (NB), which is a subtype of neural-crest-derived malignancy, is the most common extracranial solid tumor occurring in childhood. Despite extensive research, the underlying developmental origin of NB remains unclear. Using single-cell RNA sequencing, we generate transcriptomes of adrenal NB from 160,910 cells of 16 patients and transcriptomes of putative developmental cells of origin of NB from 12,103 cells of early human embryos and fetal adrenal glands at relatively late development stages. We find that most adrenal NB tumor cells transcriptionally mirror noradrenergic chromaffin cells. Malignant states also recapitulate the proliferation/differentiation status of chromaffin cells in the process of normal development. Our findings provide insight into developmental trajectories and cellular states underlying human initiation and progression of NB.
Collapse
Affiliation(s)
- Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China.
| | - Ran Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Hua-Dong Lai
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chun-Jing Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Xiao-Ying Yao
- Family Planning Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Wen-Qin Luo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiao-Mu Cheng
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ju-Ju Miao
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jun-Feng Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Bai-Hui Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Xiang-Qi Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Lu-Lu Xie
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Yi Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Man Zhang
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lian Chen
- Department of Pathology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wei-Chen Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wei Qian
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wei-Qiang Gao
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China; State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yun-Hui Tang
- Family Planning Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Chun-Yan Shen
- Family Planning Department, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Wei Jiang
- Genergy Bio-technology (Shanghai) Co., Ltd, Shanghai 200235, China
| | - Gong Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Wei Yao
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Kui-Ran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Xian-Min Xiao
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Kai Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China.
| | - Jia Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
6
|
Prodromidou K, Vlachos IS, Gaitanou M, Kouroupi G, Hatzigeorgiou AG, Matsas R. MicroRNA-934 is a novel primate-specific small non-coding RNA with neurogenic function during early development. eLife 2020; 9:e50561. [PMID: 32459171 PMCID: PMC7295570 DOI: 10.7554/elife.50561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Integrating differential RNA and miRNA expression during neuronal lineage induction of human embryonic stem cells we identified miR-934, a primate-specific miRNA that displays a stage-specific expression pattern during progenitor expansion and early neuron generation. We demonstrate the biological relevance of this finding by comparison with data from early to mid-gestation human cortical tissue. Further we find that miR-934 directly controls progenitor to neuroblast transition and impacts on neurite growth of newborn neurons. In agreement, miR-934 targets are involved in progenitor proliferation and neuronal differentiation whilst miR-934 inhibition results in profound global transcriptome changes associated with neurogenesis, axonogenesis, neuronal migration and neurotransmission. Interestingly, miR-934 inhibition affects the expression of genes associated with the subplate zone, a transient compartment most prominent in primates that emerges during early corticogenesis. Our data suggest that mir-934 is a novel regulator of early human neurogenesis with potential implications for a species-specific evolutionary role in brain function.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| | - Ioannis S Vlachos
- Department of Pathology, Beth Israel Deaconess Medical CenterBostonUnited States
- DIANA-Lab, Hellenic Pasteur InstituteAthensGreece
- Harvard Medical SchoolBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| | | | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| |
Collapse
|
7
|
Journiac N, Gilabert-Juan J, Cipriani S, Benit P, Liu X, Jacquier S, Faivre V, Delahaye-Duriez A, Csaba Z, Hourcade T, Melinte E, Lebon S, Violle-Poirsier C, Oury JF, Adle-Biassette H, Wang ZQ, Mani S, Rustin P, Gressens P, Nardelli J. Cell Metabolic Alterations due to Mcph1 Mutation in Microcephaly. Cell Rep 2020; 31:107506. [DOI: 10.1016/j.celrep.2020.03.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/21/2019] [Accepted: 03/21/2020] [Indexed: 12/13/2022] Open
|
8
|
Villa A, Gelosa P, Castiglioni L, Cimino M, Rizzi N, Pepe G, Lolli F, Marcello E, Sironi L, Vegeto E, Maggi A. Sex-Specific Features of Microglia from Adult Mice. Cell Rep 2019; 23:3501-3511. [PMID: 29924994 PMCID: PMC6024879 DOI: 10.1016/j.celrep.2018.05.048] [Citation(s) in RCA: 384] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 04/06/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022] Open
Abstract
Sex has a role in the incidence and outcome of neurological illnesses, also influencing the response to treatments. Neuroinflammation is involved in the onset and progression of several neurological diseases, and the fact that estrogens have anti-inflammatory activity suggests that these hormones may be a determinant in the sex-dependent manifestation of brain pathologies. We describe significant differences in the transcriptome of adult male and female microglia, possibly originating from perinatal exposure to sex steroids. Microglia isolated from adult brains maintain the sex-specific features when put in culture or transplanted in the brain of the opposite sex. Female microglia are neuroprotective because they restrict the damage caused by acute focal cerebral ischemia. This study therefore provides insight into a distinct perspective on the mechanisms underscoring a sexual bias in the susceptibility to brain diseases. Transcriptome sequencing indicates sexual differentiation in adult murine microglia Female microglia show a neuroprotective phenotype, independent from hormonal cues Female microglia phenotype is retained after transfer into male brains The presence of female microglia protects male brains from ischemic stroke
Collapse
Affiliation(s)
- Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases of the University of Milan, Milan 20133, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Paolo Gelosa
- Centro Cardiologico Monzino IRCCS, Milan 20138, Italy
| | - Laura Castiglioni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Mauro Cimino
- Department of Biomolecular Sciences, University of Urbino, Urbino 61029, Italy
| | - Nicoletta Rizzi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Giovanna Pepe
- Center of Excellence on Neurodegenerative Diseases of the University of Milan, Milan 20133, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Federica Lolli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Luigi Sironi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy; Centro Cardiologico Monzino IRCCS, Milan 20138, Italy
| | - Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases of the University of Milan, Milan 20133, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases of the University of Milan, Milan 20133, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy.
| |
Collapse
|
9
|
Samaridou E, Walgrave H, Salta E, Álvarez DM, Castro-López V, Loza M, Alonso MJ. Nose-to-brain delivery of enveloped RNA - cell permeating peptide nanocomplexes for the treatment of neurodegenerative diseases. Biomaterials 2019; 230:119657. [PMID: 31837821 DOI: 10.1016/j.biomaterials.2019.119657] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022]
Abstract
Direct nose-to-brain (N-to-B) delivery enables the rapid transport of drugs to the brain, while minimizing systemic exposure. The objective of this work was to engineer a nanocarrier intended to enhance N-to-B delivery of RNA and to explore its potential utility for the treatment of neurological disorders. Our approach involved the formation of electrostatically driven nanocomplexes between a hydrophobic derivative of octaarginine (r8), chemically conjugated with lauric acid (C12), and the RNA of interest. Subsequently, these cationic nanocomplexes were enveloped (enveloped nanocomplexes, ENCPs) with different protective polymers, i.e. polyethyleneglycol - polyglutamic acid (PEG-PGA) or hyaluronic acid (HA), intended to enhance their stability and mucodiffusion across the olfactory nasal mucosa. These rationally designed ENCPs were produced in bulk format and also using a microfluidics-based technique. This technique enabled the production of a scalable nanoformulation, exhibiting; (i) a unimodal size distribution with a tunable mean size, (ii) the capacity to highly associate (100%) and protect RNA from degradation, (iii) the ability to preserve its physicochemical properties in biorelevant media and prevent the premature RNA release. Moreover, in vitro cell culture studies showed the capacity of ENCPs to interact and be efficiently taken-up by CHO cells. Finally, in vivo experiments in a mouse model of Alzheimer's disease provided evidence of a statistically significant increase of a potentially therapeutic miRNA mimic in the hippocampus area and its further effect on two mRNA targets, following its intranasal administration. Overall, these findings stress the value of the rational design of nanocarriers towards overcoming the biological barriers associated to N-to-B RNA delivery and reveal their potential value as therapeutic strategies in Alzheimer's disease.
Collapse
Affiliation(s)
- Eleni Samaridou
- Center for Research in Molecular Medicine and Chronic Diseases, IDIS research Institute, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Hannah Walgrave
- Vlaams Instituut voor Biotechnologie (VIB) Center for Brain and Disease, VIB-Leuven, Center for Human Genetics, Universitaire Ziekenhuizen and Leuven Research Institute for Neuroscience and Disease, KU-Leuven, Leuven, Belgium
| | - Evgenia Salta
- Vlaams Instituut voor Biotechnologie (VIB) Center for Brain and Disease, VIB-Leuven, Center for Human Genetics, Universitaire Ziekenhuizen and Leuven Research Institute for Neuroscience and Disease, KU-Leuven, Leuven, Belgium
| | - David Moreira Álvarez
- BioFarma Research Group, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Vanessa Castro-López
- Center for Research in Molecular Medicine and Chronic Diseases, IDIS research Institute, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Mabel Loza
- BioFarma Research Group, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases, IDIS research Institute, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Wang Z, Cunningham JM, Yang XH. CisPi: a transcriptomic score for disclosing cis-acting disease-associated lincRNAs. Bioinformatics 2018; 34:i664-i670. [PMID: 30423099 PMCID: PMC6129262 DOI: 10.1093/bioinformatics/bty574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Motivation Long intergenic noncoding RNAs (lincRNAs) have risen to prominence in cancer biology as new biomarkers of disease. Those lincRNAs transcribed from active cis-regulatory elements (enhancers) have provided mechanistic insight into cis-acting regulation; however, in the absence of an enhancer hallmark, computational prediction of cis-acting transcription of lincRNAs remains challenging. Here, we introduce a novel transcriptomic method: a cis-regulatory lincRNA-gene associating metric, termed 'CisPi'. CisPi quantifies the mutual information between lincRNAs and local gene expression regarding their response to perturbation, such as disease risk-dependence. To predict risk-dependent lincRNAs in neuroblastoma, an aggressive pediatric cancer, we advance this scoring scheme to measure lincRNAs that represent the minority of reads in RNA-Seq libraries by a novel side-by-side analytical pipeline. Results Altered expression of lincRNAs that stratifies tumor risk is an informative readout of oncogenic enhancer activity. Our CisPi metric therefore provides a powerful computational model to identify enhancer-templated RNAs (eRNAs), eRNA-like lincRNAs, or active enhancers that regulate the expression of local genes. First, risk-dependent lincRNAs revealed active enhancers, over-represented neuroblastoma susceptibility loci, and uncovered novel clinical biomarkers. Second, the prioritized lincRNAs were significantly prognostic. Third, the predicted target genes further inherited the prognostic significance of these lincRNAs. In sum, RNA-Seq alone is sufficient to identify disease-associated lincRNAs using our methodologies, allowing broader applications to contexts in which enhancer hallmarks are not available or show limited sensitivity. Availability and implementation The source code is available on request. The prioritized lincRNAs and their target genes are in the Supplementary Material. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhezhen Wang
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | | | - Xinan H Yang
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Bresnick EH, Hewitt KJ, Mehta C, Keles S, Paulson RF, Johnson KD. Mechanisms of erythrocyte development and regeneration: implications for regenerative medicine and beyond. Development 2018; 145:145/1/dev151423. [PMID: 29321181 DOI: 10.1242/dev.151423] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemoglobin-expressing erythrocytes (red blood cells) act as fundamental metabolic regulators by providing oxygen to cells and tissues throughout the body. Whereas the vital requirement for oxygen to support metabolically active cells and tissues is well established, almost nothing is known regarding how erythrocyte development and function impact regeneration. Furthermore, many questions remain unanswered relating to how insults to hematopoietic stem/progenitor cells and erythrocytes can trigger a massive regenerative process termed 'stress erythropoiesis' to produce billions of erythrocytes. Here, we review the cellular and molecular mechanisms governing erythrocyte development and regeneration, and discuss the potential links between these events and other regenerative processes.
Collapse
Affiliation(s)
- Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kyle J Hewitt
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Charu Mehta
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA
| | - Kirby D Johnson
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
12
|
Molina A, Pituello F. Playing with the cell cycle to build the spinal cord. Dev Biol 2016; 432:14-23. [PMID: 28034699 DOI: 10.1016/j.ydbio.2016.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/14/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022]
Abstract
A fundamental issue in nervous system development and homeostasis is to understand the mechanisms governing the balance between the maintenance of proliferating progenitors versus their differentiation into post-mitotic neurons. Accumulating data suggest that the cell cycle and core regulators of the cell cycle machinery play a major role in regulating this fine balance. Here, we focus on the interplay between the cell cycle and cellular and molecular events governing spinal cord development. We describe the existing links between the cell cycle and interkinetic nuclear migration (INM). We show how the different morphogens patterning the neural tube also regulate the cell cycle machinery to coordinate proliferation and patterning. We give examples of how cell cycle core regulators regulate transcriptionally, or post-transcriptionally, genes involved in controlling the maintenance versus the differentiation of neural progenitors. Finally, we describe the changes in cell cycle kinetics occurring during neural tube patterning and at the time of neuronal differentiation, and we discuss future research directions to better understand the role of the cell cycle in cell fate decisions.
Collapse
Affiliation(s)
- Angie Molina
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France.
| | - Fabienne Pituello
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
13
|
Donev R, Alawam K. Alterations in Gene Expression in Depression: Prospects for Personalize Patient Treatment. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:97-124. [PMID: 26572977 DOI: 10.1016/bs.apcsb.2015.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The number of people around the world suffering from depression has dramatically increased in last few decades. It has been predicted that by 2020 depression will become the second most common cause of disability. Furthermore, depression is often misdiagnosed and confused with other psychiatric disorders showing similar symptoms, i.e., anxiety and bipolar disorder, due to the fact that diagnosing is often carried out by medical workers who are not psychiatrically trained. These facts prompt us to prepare this review which focuses on alterations in gene expression in depression. We believe that an in-depth knowledge of molecular bases of behavior in depression and other mood disorders would be of a great benefit for the correct diagnosing of these disorders, as well as for prescribing a treatment that best suits each individual depending on expression alterations in depression-related genes. Therefore, the main aim of this review is to promote further translational research on the biochemistry of mood disorders and take the results further for the design of new targeted therapeutics that can be used for personalized treatment with minimal adverse effects.
Collapse
Affiliation(s)
| | - Khaled Alawam
- Forensic Medicine Department, Ministry of Interior, Kuwait City, Kuwait
| |
Collapse
|
14
|
Francius C, Ravassard P, Hidalgo-Figueroa M, Mallet J, Clotman F, Nardelli J. Genetic dissection of Gata2 selective functions during specification of V2 interneurons in the developing spinal cord. Dev Neurobiol 2014; 75:721-37. [PMID: 25369423 DOI: 10.1002/dneu.22244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 10/23/2014] [Accepted: 10/29/2014] [Indexed: 11/09/2022]
Abstract
Motor activities are controlled by neural networks in the ventral spinal cord and consist in motor neurons and a set of distinct cardinal classes of spinal interneurons. These interneurons arise from distinct progenitor domains (p0-p3) delineated according to a transcriptional code. Neural progenitors of each domain express a unique combination of transcription factors (TFs) that largely contribute to determine the fate of four classes of interneurons (V0-V3) and motor neurons. In p2 domain, at least four subtypes of interneurons namely V2a, V2b, V2c, and Pax6(+) V2 are generated. Although genetic and molecular mechanisms that specify V2a and V2b are dependent on complex interplay between several TFs including Nkx6.1, Irx3, Gata2, Foxn4, and Ascl1, and signaling pathways such as Notch and TGF-β, the sequence order of the activation of these regulators and their respective contribution are not completely elucidated yet. Here, we provide evidence by loss- or gain-of-function experiments that Gata2 is necessary for the normal development of both V2a and V2b neurons. We demonstrate that Nkx6.1 and Dll4 positively regulate the activation of Gata2 and Foxn4 in p2 progenitors. Gata2 also participates in the maintenance of p2 domain by repressing motor neuron differentiation and exerting a feedback control on patterning genes. Finally, Gata2 promotes the selective activation of V2b program at the expense of V2a fate. Thus our results provide new insights on the hierarchy and complex interactions between regulators of V2 genetic program.
Collapse
Affiliation(s)
- Cédric Francius
- CRICM, UPMC/Inserm UMR_S 975; CNRS UMR 7225, Laboratoire de Biotechnologie et Biotherapie, Hôpital Pitié-Salpêtrière, CERVI, 83 bd de l'Hôpital, F-75013, Paris, France.,Laboratory of Neural Differentiation (NEDI), Université Catholique de Louvain (UCL), Institute of Neuroscience (IoNS), box UCL-5511, 55 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Philippe Ravassard
- CRICM, UPMC/Inserm UMR_S 975; CNRS UMR 7225, Laboratoire de Biotechnologie et Biotherapie, Hôpital Pitié-Salpêtrière, CERVI, 83 bd de l'Hôpital, F-75013, Paris, France
| | - María Hidalgo-Figueroa
- Laboratory of Neural Differentiation (NEDI), Université Catholique de Louvain (UCL), Institute of Neuroscience (IoNS), box UCL-5511, 55 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Jacques Mallet
- CRICM, UPMC/Inserm UMR_S 975; CNRS UMR 7225, Laboratoire de Biotechnologie et Biotherapie, Hôpital Pitié-Salpêtrière, CERVI, 83 bd de l'Hôpital, F-75013, Paris, France
| | - Frédéric Clotman
- Laboratory of Neural Differentiation (NEDI), Université Catholique de Louvain (UCL), Institute of Neuroscience (IoNS), box UCL-5511, 55 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Jeannette Nardelli
- CRICM, UPMC/Inserm UMR_S 975; CNRS UMR 7225, Laboratoire de Biotechnologie et Biotherapie, Hôpital Pitié-Salpêtrière, CERVI, 83 bd de l'Hôpital, F-75013, Paris, France.,Inserm U676, Hôpital Robert Debré, 48 bd Serurier, F-75019, Paris, France
| |
Collapse
|
15
|
Overexpression of human GATA-1 and GATA-2 interferes with spine formation and produces depressive behavior in rats. PLoS One 2014; 9:e109253. [PMID: 25340772 PMCID: PMC4207676 DOI: 10.1371/journal.pone.0109253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/08/2014] [Indexed: 12/14/2022] Open
Abstract
Functional consequences to which vertebrate GATA transcription factors contribute in the adult brain remain largely an open question. The present study examines how human GATA-1 and GATA-2 (hGATA-1 and hGATA-2) are linked to neuronal differentiation and depressive behaviors in rats. We investigated the effects of adeno-associated viral expression of hGATA-1 and hGATA-2 (AAV-hGATA1 and AAV-hGATA2) in the dentate gyrus (DG) of the dorsal hippocampus on dendrite branching and spine number. We also examined the influence of AAV-hGATA1 and AAV-hGATA2 infusions into the dorsal hippocampus on rodent behavior in models of depression. Viral expression of hGATA-1 and hGATA-2 cDNA in rat hippocampal neurons impaired dendritic outgrowth and spine formation. Moreover, viral-mediated expression of hGATA-1 and hGATA-2 in the dorsal hippocampus caused depressive-like deficits in the forced swim test and learned helplessness models of depression, and decreased the expression of several synapse-related genes as well as spine number in hippocampal neurons. Conversely, shRNA knockdown of GATA-2 increased synapse-related gene expression, spine number, and dendrite branching. The results demonstrate that hGATA-1 and hGATA-2 expression in hippocampus is sufficient to cause depressive like behaviors that are associated with reduction in spine synapse density and expression of synapse-related genes.
Collapse
|
16
|
McIver SC, Kang YA, DeVilbiss AW, O'Driscoll CA, Ouellette JN, Pope NJ, Camprecios G, Chang CJ, Yang D, Bouhassira EE, Ghaffari S, Bresnick EH. The exosome complex establishes a barricade to erythroid maturation. Blood 2014; 124:2285-97. [PMID: 25115889 PMCID: PMC4183988 DOI: 10.1182/blood-2014-04-571083] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/25/2014] [Indexed: 12/28/2022] Open
Abstract
Complex genetic networks control hematopoietic stem cell differentiation into progenitors that give rise to billions of erythrocytes daily. Previously, we described a role for the master regulator of erythropoiesis, GATA-1, in inducing genes encoding components of the autophagy machinery. In this context, the Forkhead transcription factor, Foxo3, amplified GATA-1-mediated transcriptional activation. To determine the scope of the GATA-1/Foxo3 cooperativity, and to develop functional insights, we analyzed the GATA-1/Foxo3-dependent transcriptome in erythroid cells. GATA-1/Foxo3 repressed expression of Exosc8, a pivotal component of the exosome complex, which mediates RNA surveillance and epigenetic regulation. Strikingly, downregulating Exosc8, or additional exosome complex components, in primary erythroid precursor cells induced erythroid cell maturation. Our results demonstrate a new mode of controlling erythropoiesis in which multiple components of the exosome complex are endogenous suppressors of the erythroid developmental program.
Collapse
Affiliation(s)
- Skye C McIver
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Yoon-A Kang
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Andrew W DeVilbiss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Chelsea A O'Driscoll
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Jonathan N Ouellette
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Nathaniel J Pope
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Genis Camprecios
- Department of Developmental and Regenerative Biology, Mt. Sinai School of Medicine, New York, NY
| | - Chan-Jung Chang
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY; and
| | - David Yang
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison WI
| | - Eric E Bouhassira
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY; and
| | - Saghi Ghaffari
- Department of Developmental and Regenerative Biology, Mt. Sinai School of Medicine, New York, NY
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
17
|
Agius E, Bel-Vialar S, Bonnet F, Pituello F. Cell cycle and cell fate in the developing nervous system: the role of CDC25B phosphatase. Cell Tissue Res 2014; 359:201-13. [PMID: 25260908 DOI: 10.1007/s00441-014-1998-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/04/2014] [Indexed: 12/20/2022]
Abstract
Deciphering the core machinery of the cell cycle and cell division has been primarily the focus of cell biologists, while developmental biologists have identified the signaling pathways and transcriptional programs controlling cell fate choices. As a result, until recently, the interplay between these two fundamental aspects of biology have remained largely unexplored. Increasing data show that the cell cycle and regulators of the core cell cycle machinery are important players in cell fate decisions during neurogenesis. Here, we summarize recent data describing how cell cycle dynamics affect the switch between proliferation and differentiation, with an emphasis on the roles played by the cell cycle regulators, the CDC25 phosphatases.
Collapse
Affiliation(s)
- Eric Agius
- Université Toulouse 3; Centre de Biologie du Développement (CBD), 118 route de Narbonne, 31062, Toulouse, France
| | | | | | | |
Collapse
|
18
|
Lahti L, Achim K, Partanen J. Molecular regulation of GABAergic neuron differentiation and diversity in the developing midbrain. Acta Physiol (Oxf) 2013; 207:616-27. [PMID: 23297792 DOI: 10.1111/apha.12062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/10/2012] [Accepted: 12/26/2012] [Indexed: 12/23/2022]
Abstract
The midbrain GABAergic neurones control several aspects of behaviour, play important roles in psychiatric disease and are targets of medical treatments as well as drugs of abuse. However, their molecular diversity and regulation of development are only beginning to be understood. In this review, we briefly introduce distinct subpopulations of the midbrain GABAergic neurones and discuss knowledge on their development, including the developmental origins of midbrain GABAergic neurones as well as transcriptional regulatory mechanisms guiding their differentiation and identity. Important GABAergic neuron subpopulations are found within the dopaminergic (DA) nuclei in the ventral midbrain. GABAergic substantia nigra pars reticulata is the main output pathway of the basal ganglia system regulating voluntary movements. Recent studies have also highlighted importance of the GABAergic neurones associated with the ventral tegmental area for the control of DA neuron activity and motivated behaviours. Interestingly, the development of the GABAergic neurones associated with the DA nuclei is very different from the rest of the midbrain. Knowledge on developmental regulation can lead to insights into the molecular, structural and functional diversity of the midbrain GABAergic neurones and their subpopulations, cell groups of great physiological and medical interest.
Collapse
Affiliation(s)
- L. Lahti
- Department of Biosciences; Viikki Biocenter; University of Helsinki; Helsinki; Finland
| | - K. Achim
- European Molecular Biology Laboratory; Heidelberg; Germany
| | - J. Partanen
- Department of Biosciences; Viikki Biocenter; University of Helsinki; Helsinki; Finland
| |
Collapse
|
19
|
Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, Lepack A, Majik MS, Jeong LS, Banasr M, Son H, Duman RS. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med 2012; 18:1413-7. [PMID: 22885997 PMCID: PMC3491115 DOI: 10.1038/nm.2886] [Citation(s) in RCA: 556] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 06/23/2012] [Indexed: 01/01/2023]
Abstract
Previous imaging and postmortem studies have reported a lower brain volume and a smaller size and density of neurons in the dorsolateral prefrontal cortex (dlPFC) of subjects with major depressive disorder (MDD). These findings suggest that synapse number and function are decreased in the dlPFC of patients with MDD. However, there has been no direct evidence reported for synapse loss in MDD, and the gene expression alterations underlying these effects have not been identified. Here we use microarray gene profiling and electron microscopic stereology to reveal lower expression of synaptic-function–related genes (CALM2, SYN1, RAB3A, RAB4B and TUBB4) in the dlPFC of subjects with MDD and a corresponding lower number of synapses. We also identify a transcriptional repressor, GATA1, expression of which is higher in MDD and that, when expressed in PFC neurons, is sufficient to decrease the expression of synapse-related genes, cause loss of dendritic spines and dendrites, and produce depressive behavior in rat models of depression.
Collapse
Affiliation(s)
- Hyo Jung Kang
- Department of Psychiatry, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Whitfield TW, Wang J, Collins PJ, Partridge EC, Aldred SF, Trinklein ND, Myers RM, Weng Z. Functional analysis of transcription factor binding sites in human promoters. Genome Biol 2012; 13:R50. [PMID: 22951020 PMCID: PMC3491394 DOI: 10.1186/gb-2012-13-9-r50] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 04/19/2012] [Accepted: 06/18/2012] [Indexed: 12/19/2022] Open
Abstract
Background The binding of transcription factors to specific locations in the genome is integral to the orchestration of transcriptional regulation in cells. To characterize transcription factor binding site function on a large scale, we predicted and mutagenized 455 binding sites in human promoters. We carried out functional tests on these sites in four different immortalized human cell lines using transient transfections with a luciferase reporter assay, primarily for the transcription factors CTCF, GABP, GATA2, E2F, STAT, and YY1. Results In each cell line, between 36% and 49% of binding sites made a functional contribution to the promoter activity; the overall rate for observing function in any of the cell lines was 70%. Transcription factor binding resulted in transcriptional repression in more than a third of functional sites. When compared with predicted binding sites whose function was not experimentally verified, the functional binding sites had higher conservation and were located closer to transcriptional start sites (TSSs). Among functional sites, repressive sites tended to be located further from TSSs than were activating sites. Our data provide significant insight into the functional characteristics of YY1 binding sites, most notably the detection of distinct activating and repressing classes of YY1 binding sites. Repressing sites were located closer to, and often overlapped with, translational start sites and presented a distinctive variation on the canonical YY1 binding motif. Conclusions The genomic properties that we found to associate with functional TF binding sites on promoters -- conservation, TSS proximity, motifs and their variations -- point the way to improved accuracy in future TFBS predictions.
Collapse
Affiliation(s)
- Troy W Whitfield
- Program in Bioinformatics and Integrative Biology and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
NEUROG2 drives cell cycle exit of neuronal precursors by specifically repressing a subset of cyclins acting at the G1 and S phases of the cell cycle. Mol Cell Biol 2012; 32:2596-607. [PMID: 22547683 DOI: 10.1128/mcb.06745-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proneural NEUROG2 (neurogenin 2 [Ngn2]) is essential for neuronal commitment, cell cycle withdrawal, and neuronal differentiation. Although NEUROG2's influence on neuronal commitment and differentiation is beginning to be clarified, its role in cell cycle withdrawal remains unknown. We therefore set out to investigate the molecular mechanisms by which NEUROG2 induces cell cycle arrest during spinal neurogenesis. We developed a large-scale chicken embryo strategy, designed to find gene networks modified at the onset of NEUROG2 expression, and thereby we identified those involved in controlling the cell cycle. NEUROG2 activation leads to a rapid decrease of a subset of cell cycle regulators acting at G(1) and S phases, including CCND1, CCNE1/2, and CCNA2 but not CCND2. The use of NEUROG2VP16 and NEUROG2EnR, acting as the constitutive activator and repressor, respectively, indicates that NEUROG2 indirectly represses CCND1 and CCNE2 but opens the possibility that CCNE2 is also repressed by a direct mechanism. We demonstrated by phenotypic analysis that this rapid repression of cyclins prevents S phase entry of neuronal precursors, thus favoring cell cycle exit. We also showed that cell cycle exit can be uncoupled from neuronal differentiation and that during normal development NEUROG2 is in charge of tightly coordinating these two processes.
Collapse
|
22
|
Xue G, Aida Y, Onodera T, Sakudo A. The 5' flanking region and intron1 of the bovine prion protein gene (PRNP) are responsible for negative feedback regulation of the prion protein. PLoS One 2012; 7:e32870. [PMID: 22412936 PMCID: PMC3296761 DOI: 10.1371/journal.pone.0032870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/01/2012] [Indexed: 11/19/2022] Open
Abstract
Transcription factors regulate gene expression by controlling the transcription rate. Some genes can repress their own expression to prevent over production of the corresponding protein, although the mechanism and significance of this negative feedback regulation remains unclear. In the present study, we describe negative feedback regulation of the bovine prion protein (PrP) gene PRNP in Japanese Black cattle. The PrP-expressing plasmid pEF-boPrP and luciferase-expressing plasmids containing the partial promoter fragment of PRNP incorporating naturally occurring single-nucleotide or insertion/deletion polymorphisms were transfected into N2a cells. Transfection of pEF-boPrP induced PrP overexpression and decreased the promoter activity of PRNP in the wild-type haplotype (23-bp Del, 12-bp Del, and −47C). Reporter gene assays further demonstrated that the 12- and 23-bp Ins/Del polymorphisms, which are thought to be associated with Sp1 (Specific protein 1) and RP58 (Repressor Protein with a predicted molecular mass of 58 kDa), in intron1 and the upstream region, respectively, and an additional polymorphism (−47C→A) in the Sp1-binding site responded differently to PrP overexpression. With the −47C SNP, the presence of the Del in either the 23-bp Ins/Del or the 12-bp Ins/Del allele was essential for the negative feedback caused by PrP overexpression. Furthermore, deletion mutants derived from the wild-type haplotype showed that nucleotides −315 to +2526, which include the 5′-flanking region and exon1, were essential for the response. These results indicate that certain negative feedback response elements are located in these sequences, suggesting that regulation by transcription factors such as Sp1 and RP58 may contribute to the negative feedback mechanism of PRNP.
Collapse
Affiliation(s)
- Guangai Xue
- Department of Molecular Immunology, School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Viral Infectious Diseases Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Yoko Aida
- Viral Infectious Diseases Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Takashi Onodera
- Department of Molecular Immunology, School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akikazu Sakudo
- Laboratory of Biometabolic Chemistry, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
- * E-mail:
| |
Collapse
|
23
|
Werbowetski-Ogilvie TE, Schnerch A, Rampalli S, Mills CE, Lee JB, Hong SH, Levadoux-Martin M, Bhatia M. Evidence for the transmission of neoplastic properties from transformed to normal human stem cells. Oncogene 2011; 30:4632-44. [PMID: 21625212 DOI: 10.1038/onc.2011.175] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The in vivo relationship between human tumor cells and interacting normal cells in their local environment is poorly understood. Here, using a uniquely developed in vitro co-culture system for human embryonic stem cells (hESCs), we examined the interactions between transformed and normal human stem cells. Co-culture of transformed-hESCs (t-hESCs) with normal hESCs led to enhanced self-renewal and niche independence in normal hESCs. Global gene expression analysis of normal hESCs after timed exposure to t-hESCs indicated a transition of the molecular network controlling the hESC state, which included epigenetic changes, towards neoplastic features. These included enhanced pluripotent marker expression and a differentiation blockade as major hallmark changes. Functional studies revealed a loss in normal terminal differentiation programs for both hematopoiesis and neural lineages after normal stem cell co-culture with transformed variants. This transmission of neoplastic properties from t-hESCs to normal hESCs was dependent on direct cell-cell contact. Our study indicates that normal human stem cells can co-opt neoplastic cancer stem cell properties, raising the possibility that assimilation of healthy cells towards neoplastic behavior maybe a contributing feature of sustained tumorigenesis in vivo.
Collapse
Affiliation(s)
- T E Werbowetski-Ogilvie
- McMaster Stem Cell and Cancer Research Institute, Michael G. Degroote School of Medicine, Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gata2 is required for migration and differentiation of retinorecipient neurons in the superior colliculus. J Neurosci 2011; 31:4444-55. [PMID: 21430145 DOI: 10.1523/jneurosci.4616-10.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The superior colliculus (SC)/optic tectum of the dorsal mesencephalon plays a major role in responses to visual input, yet regulation of neuronal differentiation within this layered structure is only partially understood. Here, we show that the zinc finger transcription factor Gata2 is required for normal SC development. Starting at embryonic day 15 (E15) (corresponding to the times at which neurons of the outer and intermediate layers of the SC are generated), Gata2 is transiently expressed in the rat embryonic dorsal mesencephalon within a restricted region between proliferating cells of the ventricular zone and the deepest neuronal layers of the developing SC. The Gata2-positive cells are postmitotic and lack markers of differentiated neurons, but express markers for immature neuronal precursors including Ascl1 and Pax3/7. In utero electroporation with Gata2 small hairpin RNAs at E16 into cells along the dorsal mesencephalic ventricle interferes with their normal migration into the SC and maintains them in a state characterized by retention of Pax3 expression and the absence of mature neuronal markers. Collectively, these findings indicate that Gata2 plays a required role in the transition of postmitotic neuronal precursor cells of the retinorecipient layers of the SC into mature neurons and that loss of Gata2 arrests them at an intermediate stage of differentiation.
Collapse
|
25
|
Tomás‐Roca L, Pérez‐Aytés A, Puelles L, Marín F. In silico identification of new candidate genes for hereditary congenital facial paresis. Int J Dev Neurosci 2011; 29:451-60. [DOI: 10.1016/j.ijdevneu.2011.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Accepted: 02/13/2011] [Indexed: 01/04/2023] Open
Affiliation(s)
- Laura Tomás‐Roca
- Department of Human Anatomy and PsychobiologySchool of MedicineUniversity of MurciaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U736MurciaSpain
| | - Antonio Pérez‐Aytés
- Dismorfología y Genética Reproductiva, Grupo de Investigación en PerinatologíaInstituto de Investigación SanitariaFundación Hospital La FeValenciaSpain
| | - Luis Puelles
- Department of Human Anatomy and PsychobiologySchool of MedicineUniversity of MurciaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U736MurciaSpain
| | - Faustino Marín
- Department of Human Anatomy and PsychobiologySchool of MedicineUniversity of MurciaMurciaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U736MurciaSpain
| |
Collapse
|
26
|
Haugas M, Lilleväli K, Hakanen J, Salminen M. Gata2 is required for the development of inner ear semicircular ducts and the surrounding perilymphatic space. Dev Dyn 2011; 239:2452-69. [PMID: 20652952 DOI: 10.1002/dvdy.22373] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gata2 has essential roles in the development of many organs. During mouse inner ear morphogenesis, it is expressed in otic vesicle and the surrounding periotic mesenchyme from early on, but no defects in the ear development of Gata2 null mice have been observed before lethality at embryonic day (E) 10.5. Here, we used conditional gene targeting to reveal the role of Gata2 at later stages of inner ear development. We show that Gata2 is critically required from E14.5-E15.5 onward for vestibular morphogenesis. Without Gata2 the semicircular ducts fail to grow to their normal size and the surrounding mesenchymal cells are not removed properly to generate the perilymphatic space. Gata2 is the first factor known to control the clearing of the vestibular perilymphatic mesenchyme, but interestingly, it is not required for the formation of the cochlear perilymphatic areas, suggesting distinct molecular control for these processes.
Collapse
Affiliation(s)
- Maarja Haugas
- Department of Veterinary Biosciences, University of Helsinki, Finland
| | | | | | | |
Collapse
|
27
|
Miller-Delaney SFC, Lieberam I, Murphy P, Mitchell KJ. Plxdc2 is a mitogen for neural progenitors. PLoS One 2011; 6:e14565. [PMID: 21283688 PMCID: PMC3024984 DOI: 10.1371/journal.pone.0014565] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 12/03/2010] [Indexed: 12/27/2022] Open
Abstract
The development of different brain regions involves the coordinated control of proliferation and cell fate specification along and across the neuraxis. Here, we identify Plxdc2 as a novel regulator of these processes, using in ovo electroporation and in vitro cultures of mammalian cells. Plxdc2 is a type I transmembrane protein with some homology to nidogen and to plexins. It is expressed in a highly discrete and dynamic pattern in the developing nervous system, with prominent expression in various patterning centres. In the chick neural tube, where Plxdc2 expression parallels that seen in the mouse, misexpression of Plxdc2 increases proliferation and alters patterns of neurogenesis, resulting in neural tube thickening at early stages. Expression of the Plxdc2 extracellular domain alone, which can be cleaved and shed in vivo, is sufficient for this activity, demonstrating a cell non-autonomous function. Induction of proliferation is also observed in cultured embryonic neuroepithelial cells (ENCs) derived from E9.5 mouse neural tube, which express a Plxdc2-binding activity. These experiments uncover a direct molecular activity of Plxdc2 in the control of proliferation, of relevance in understanding the role of this protein in various cancers, where its expression has been shown to be altered. They also implicate Plxdc2 as a novel component of the network of signalling molecules known to coordinate proliferation and differentiation in the developing nervous system.
Collapse
Affiliation(s)
| | - Ivo Lieberam
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, New York, New York, United States of America
| | - Paula Murphy
- Department of Zoology, Trinity College Dublin, Dublin, Ireland
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
28
|
Elmonir W, Inoshima Y, Elbassiouny A, Ishiguro N. Intron 1 mediated regulation of bovine prion protein gene expression: Role of donor splicing sites, sequences with potential enhancer and suppressor activities. Biochem Biophys Res Commun 2010; 397:706-10. [PMID: 20553871 DOI: 10.1016/j.bbrc.2010.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 06/03/2010] [Indexed: 11/18/2022]
Abstract
Prion protein plays a key role in the pathogenesis of transmissible spongiform encephalopathies. Because changes in expression of the prion protein gene (PRNP) alter the incubation time and severity of prion diseases. Our previous work revealed a strong association between the promoter (spanning base pairs (bp) -88 to -30) and intron 1 (spanning bp +114 to +892) that leads to optimum expression of the bovine PRNP. Here, we employed two mutation analysis strategies (deletion and insertion) and two reporter assay systems (luciferase and GFP expression) to define the regulatory domains within intron 1 and further elucidate its role in regulating the promoter activity of the bovine prion protein gene. We identified DNA sequences with potential suppressor and enhancer activities within the 5' end of intron 1. Moreover stability analyses for PRNP mRNAs demonstrated that splicing sites and mechanism are critical for bovine PRNP expression.
Collapse
Affiliation(s)
- Walid Elmonir
- Laboratory of Food and Environmental Hygiene, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu 501-1193, Japan
| | | | | | | |
Collapse
|
29
|
Godler DE, Tassone F, Loesch DZ, Taylor AK, Gehling F, Hagerman RJ, Burgess T, Ganesamoorthy D, Hennerich D, Gordon L, Evans A, Choo KH, Slater HR. Methylation of novel markers of fragile X alleles is inversely correlated with FMRP expression and FMR1 activation ratio. Hum Mol Genet 2010; 19:1618-32. [PMID: 20118148 DOI: 10.1093/hmg/ddq037] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The fragile X syndrome (FXS) is caused by silencing of the fragile X mental retardation gene (FMR1) and the absence of its product, fragile X mental retardation protein (FMRP), resulting from CpG island methylation associated with large CGG repeat expansions (more than 200) termed full mutation (FM). We have identified a number of novel epigenetic markers for FXS using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), naming the most informative fragile X-related epigenetic element 1 (FREE1) and 2 (FREE2). Methylation of both regions was correlated with that of the FMR1 CpG island detected using Southern blot (FREE1 R = 0.97; P < 0.00001, n = 23 and FREE2 R = 0.93; P < 0.00001, n = 23) and negatively correlated with lymphocyte expression of FMRP (FREE1 R = -0.62; P = 0.01, n = 15 and FREE2 R = -0.55; P = 0.03, n = 15) in blood of partially methylated 'high functioning' FM males. In blood of FM carrier females, methylation of both markers was inversely correlated with the FMR1 activation ratio (FREE1 R = -0.93; P < 0.0001, n = 12 and FREE2 R = -0.95; P < 0.0001, n = 9). In a sample set of 49 controls, 18 grey zone (GZ 40-54 repeats), 22 premutation (PM 55-170 repeats) and 22 (affected) FXS subjects, the FREE1 methylation pattern was consistent between blood and chorionic villi as a marker of methylated FM alleles and could be used to differentiate FXS males and females from controls, as well as from carriers of GZ/PM alleles, but not between GZ and PM alleles and controls. Considering its high-throughput and specificity for pathogenic FM alleles, low cost and minimal DNA requirements, FREE MALDI-TOF MS offers a unique tool in FXS diagnostics and newborn population screening.
Collapse
Affiliation(s)
- David Eugeny Godler
- Chromosome and Chromatin Research Laboratory, The Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Maeda A, Moriguchi T, Hamada M, Kusakabe M, Fujioka Y, Nakano T, Yoh K, Lim KC, Engel JD, Takahashi S. Transcription factor GATA-3 is essential for lens development. Dev Dyn 2009; 238:2280-91. [PMID: 19623612 DOI: 10.1002/dvdy.22035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
During vertebrate lens development, the anterior, ectoderm-derived lens vesicle cells differentiate into a monolayer of epithelial cells that retain proliferative potential. Subsequently, they exit the cell cycle and give rise to posterior lens fiber cells that form the lens body. In the present study, we demonstrate that the transcription factor GATA-3 is expressed in the posterior lens fiber cells during embryogenesis, and that GATA-3 deficiency impairs lens development. Interestingly, expression of E-cadherin, a premature lens vesicle marker, is abnormally prolonged in the posterior region of Gata3 homozygous mutant lenses. Furthermore, expression of gamma-crystallin, a differentiation marker for fiber cells, is reduced. This suppressed differentiation is accompanied by an abnormal cellular proliferation, as well as with diminished levels of the cell-cycle inhibitors Cdkn1b/p27 and Cdkn1c/p57 and increased Ccnd2/cyclin D2 abundance. Thus, these observations suggest that GATA-3 is essential for lens cells differentiation and proper cell cycle control.
Collapse
Affiliation(s)
- Atsuko Maeda
- Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Khalfallah O, Ravassard P, Lagache CS, Fligny C, Serre A, Bayard E, Faucon-Biguet N, Mallet J, Meloni R, Nardelli J. Zinc finger protein 191 (ZNF191/Zfp191) is necessary to maintain neural cells as cycling progenitors. Stem Cells 2009; 27:1643-53. [PMID: 19544452 DOI: 10.1002/stem.88] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The identification of the factors that allow better monitoring of stem cell renewal and differentiation is of paramount importance for the implementation of new regenerative therapies, especially with regard to the nervous and hematopoietic systems. In this article, we present new information on the function of zinc finger protein 191 (ZNF/Zfp191), a factor isolated in hematopoietic cell lines, within progenitors of the central nervous system (CNS). ZNF/Zfp191 has been found to be principally expressed in progenitors of the developing CNS of humans and mice. Such an overlap of the expression patterns in addition to the high homology of the protein in mammals suggested that ZNF/Zfp191 exerts a conserved function within such progenitors. Indeed, ZNF191 knockdown in human neural progenitors inhibits proliferation and leads to the exit of the cell cycle. Conversely, ZNF191 misexpression maintains progenitors in cycle and exerts negative control on the Notch pathway, which prevents them from differentiating. The present data, together with the fact that the inactivation of Zfp191 leads to embryonic lethality, confirm ZNF191 as an essential factor acting for the promotion of the cell cycle and thus maintenance in the progenitor stage. On the bases of expression data, such a function can be extended to progenitor cells of other tissues such as the hematopoietic system, which emphasizes the important issue of further understanding the molecular events controlled by ZNF/Zfp191.
Collapse
Affiliation(s)
- Olfa Khalfallah
- CRICM UPMC/Inserm UMR_S 975;CNRS UMR 7225, Biotechnology and Biotherapy Laboratory F-75005, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ahmed S, Gan HT, Lam CS, Poonepalli A, Ramasamy S, Tay Y, Tham M, Yu YH. Transcription factors and neural stem cell self-renewal, growth and differentiation. Cell Adh Migr 2009; 3:412-24. [PMID: 19535895 DOI: 10.4161/cam.3.4.8803] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The central nervous system (CNS) is a large network of interconnecting and intercommunicating cells that form functional circuits. Disease and injury of the CNS are prominent features of the healthcare landscape. There is an urgent unmet need to generate therapeutic solutions for CNS disease/injury. To increase our understanding of the CNS we need to generate cellular models that are experimentally tractable. Neural stem cells (NSCs), cells that generate the CNS during embryonic development, have been identified and propagated in vitro. To develop NSCs as a cellular model for the CNS we need to understand more about their genetics and cell biology. In particular, we need to define the mechanisms of self-renewal, proliferation and differentiation--i.e. NSC behavior. The analysis of pluripotency of embryonic stem cells through mapping regulatory networks of transcription factors has proven to be a powerful approach to understanding embryonic development. Here, we discuss the role of transcription factors in NSC behavior.
Collapse
Affiliation(s)
- Sohail Ahmed
- Institute of Medical Biology, Immunos, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Maier E, Gunhaga L. Dynamic expression of neurogenic markers in the developing chick olfactory epithelium. Dev Dyn 2009; 238:1617-25. [PMID: 19441054 DOI: 10.1002/dvdy.21966] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Neurogenesis in the olfactory epithelium begins in early embryos and proceeds throughout life. A comparison of neurogenic marker expression at different developmental stages and at different axes of the olfactory epithelium has not been reported in a coordinated way. In this study, we have in detail compared the temporal and spatial expression patterns of the precursor markers Hes5, Cash1, Ngn1, and the neuronal markers Gap43, HuC/D, Lhx2 in the developing olfactory placode and epithelium in chick embryos from HH10 to HH34. We show that Hes5 starts to be expressed in cells of the prospective olfactory placode at HH10, earlier then previously reported. During olfactory pit stages, the expression of Hes5, Cash1, Ngn1, Gap43, HuC/D, and Lhx2 varies throughout the anterior-posterior and superior-inferior axis of the olfactory epithelium. By HH34, expression of the precursor and neuronal markers show the first signs of apical-basal stratification of the epithelium. Developmental Dynamics 238:1617-1625, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Esther Maier
- Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | | |
Collapse
|
34
|
GATA factors in human neuroblastoma: distinctive expression patterns in clinical subtypes. Br J Cancer 2009; 101:1481-9. [PMID: 19707195 PMCID: PMC2768442 DOI: 10.1038/sj.bjc.6605276] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: The aim of this study is to elucidate the expression patterns of GATA transcription factors in neuroblastoma and the developing sympathetic nervous system (SNS). Methods: GATA-2, -3 and -4 and their cofactor friend-of-GATA (FOG)-2 were investigated in primary neuroblastoma by immunohistochemistry, real-time RT-PCR (n=73) and microarray analysis (n=251). In addition, GATA-2, -3 and FOG-2 expression was determined by northern-blot hybridisation. In the developing murine SNS, Gata-4 and Fog-2 were examined by immunohistochemistry. Results: Although Gata-2, -3 and Fog-2 are expressed in the developing nervous system, Gata-4 was not detected. In contrast, protein expression of all factors was observed in human neuroblastoma. Northern-blot hybridisation and real-time RT-PCR suggested specific expression patterns of the four genes in primary neuroblastoma, but did not show unequivocal results. In the large cohort examined by microarrays, a significant association of GATA-2, -3 and FOG-2 expression with low-risk features was observed, whereas GATA-4 mRNA levels correlated with MYCN-amplification. Conclusion: The transcription factors GATA-2 and -3, which are essential for normal SNS development, and their cofactor FOG-2 are downregulated in aggressive but not in favourable neuroblastoma. In contrast, upregulation of GATA-4 appears to be a common feature of this malignancy and might contribute to neuroblastoma pathogenesis.
Collapse
|
35
|
Nozawa D, Suzuki N, Kobayashi-Osaki M, Pan X, Engel JD, Yamamoto M. GATA2-dependent and region-specific regulation of Gata2 transcription in the mouse midbrain. Genes Cells 2009; 14:569-82. [PMID: 19371385 DOI: 10.1111/j.1365-2443.2009.01289.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transcription factor GATA2 is expressed in numerous mammalian tissues, including neural, hematopoietic, cardiovascular and urogenital systems, and yet it plays important roles in the regulation of tissue-restricted gene expression. The Gata2 gene itself is also under stringent tissue-specific control and multiple cis-regulatory domains have been identified in the Gata2 locus. In this study we sought out and then examined in detail the domains that regulate Gata2 in the midbrain. We identified two discrete domains in the Gata2 promoter that direct midbrain expression; these distal 5H and proximal 2H regulatory domains are located 3.0 and 1.9 kbp, respectively, upstream of the transcriptional initiation site. Importantly, both domains contain GATA factor binding sites. Our analyses further revealed that GATA2 is essential for Gata2 gene expression in the midbrain, whereas GATA3 is not. Both the 2H and 5H domains have the independent ability to activate Gata2 gene expression in the midbrain superior colliculus, whereas the distal-5H domain is additionally capable of activating Gata2 transcription in the inferior colliculus. These results demonstrate that two distinct regulatory domains contribute to the Gata2 gene expression in the mouse midbrain and that Gata2 midbrain transcription is under positive autoregulation.
Collapse
Affiliation(s)
- Daisuke Nozawa
- Center for Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Kala K, Haugas M, Lilleväli K, Guimera J, Wurst W, Salminen M, Partanen J. Gata2 is a tissue-specific post-mitotic selector gene for midbrain GABAergic neurons. Development 2008; 136:253-62. [PMID: 19088086 DOI: 10.1242/dev.029900] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Midbrain GABAergic neurons control several aspects of behavior, but regulation of their development and diversity is poorly understood. Here, we further refine the midbrain regions active in GABAergic neurogenesis and show their correlation with the expression of the transcription factor Gata2. Using tissue-specific inactivation and ectopic expression, we show that Gata2 regulates GABAergic neuron development in the mouse midbrain, but not in rhombomere 1, where it is needed in the serotonergic lineage. Without Gata2, all the precursors in the embryonic midbrain fail to activate GABAergic neuron-specific gene expression and instead switch to a glutamatergic phenotype. Surprisingly, this fate switch is also observed throughout the neonatal midbrain, except for the GABAergic neurons located in the ventral dopaminergic nuclei, suggesting a distinct developmental pathway for these neurons. These studies identify Gata2 as an essential post-mitotic selector gene of the GABAergic neurotransmitter identity and demonstrate developmental heterogeneity of GABAergic neurons in the midbrain.
Collapse
Affiliation(s)
- Kaia Kala
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
37
|
Kouros-Mehr H, Kim JW, Bechis SK, Werb Z. GATA-3 and the regulation of the mammary luminal cell fate. Curr Opin Cell Biol 2008; 20:164-70. [PMID: 18358709 DOI: 10.1016/j.ceb.2008.02.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/04/2008] [Accepted: 02/05/2008] [Indexed: 01/19/2023]
Abstract
The GATA family of transcription factors plays essential roles in the specification and maintenance of differentiated cell types. GATA-3 was identified in a microarray screen of the mouse mammary gland as the most highly expressed transcription factor in the mammary epithelium and is expressed exclusively in the luminal epithelial cell population. Targeted deletion of GATA-3 in mammary glands leads to profound defects in mammary development and inability to specify and maintain the luminal cell fate in the adult mouse. In breast cancer, GATA-3 has emerged as a strong predictor of tumor differentiation, estrogen-receptor status, and clinical outcome. GATA-3 maintains tumor differentiation and suppresses tumor dissemination in a mouse model of breast cancer. This review explores our current understanding of GATA-3 signaling in luminal cell differentiation, both in mammary development and breast cancer.
Collapse
Affiliation(s)
- Hosein Kouros-Mehr
- Department of Anatomy and the Biomedical Sciences Program, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0452, United States
| | | | | | | |
Collapse
|
38
|
Widera D, Kaus A, Kaltschmidt C, Kaltschmidt B. Neural stem cells, inflammation and NF-kappaB: basic principle of maintenance and repair or origin of brain tumours? J Cell Mol Med 2007; 12:459-70. [PMID: 18182066 PMCID: PMC3822535 DOI: 10.1111/j.1582-4934.2007.00208.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Several recent reports suggest that inflammatory signals play a decisive role in the self-renewal, migration and differentiation of multipotent neural stem cells (NSCs). NSCs are believed to be able to ameliorate the symptoms of several brain pathologies through proliferation, migration into the area of the lesion and either differentiation into the appropriate cell type or secretion of anti-inflammatory cytokines. Although NSCs have beneficial roles, current evidence indicates that brain tumours, such as astrogliomas or ependymomas are also caused by tumour-initiating cells with stem-like properties. However, little is known about the cellular and molecular processes potentially generating tumours from NSCs. Most pro-inflammatory conditions are considered to activate the transcription factor NF-kappaB in various cell types. Strong inductive effects of NF-kappaB on proliferation and migration of NSCs have been described. Moreover, NF-kappaB is constitutively active in most tumour cells described so far. Chronic inflammation is also known to initiate cancer. Thus, NF-kappaB might provide a novel mechanistic link between chronic inflammation, stem cells and cancer. This review discusses the apparently ambivalent role of NF-kappaB: physiological maintenance and repair of the brain via NSCs, and a potential role in tumour initiation. Furthermore, it reveals a possible mechanism of brain tumour formation based on inflammation and NF-kappaB activity in NSCs.
Collapse
Affiliation(s)
- D Widera
- Institut für Zellbiologie der Tiere, Fakultät für Biologie, Universität Bielefeld, Bielefeld, Germany
| | | | | | | |
Collapse
|
39
|
Bergsland M, Werme M, Malewicz M, Perlmann T, Muhr J. The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev 2007; 20:3475-86. [PMID: 17182872 PMCID: PMC1698453 DOI: 10.1101/gad.403406] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The progression of neurogenesis relies on proneural basic helix-loop-helix (bHLH) transcription factors. These factors operate in undifferentiated neural stem cells and induce cell cycle exit and the initiation of a neurogenic program. However, the transient expression of proneural bHLH proteins in neural progenitors indicates that expression of neuronal traits must rely on previously unexplored mechanisms operating downstream from proneural bHLH proteins. Here we show that the HMG-box transcription factors Sox4 and Sox11 are of critical importance, downstream from proneural bHLH proteins, for the establishment of pan-neuronal protein expression. Examination of a neuronal gene promoter reveals that Sox4 and Sox11 exert their functions as transcriptional activators. Interestingly, the capacity of Sox4 and Sox11 to induce the expression of neuronal traits is independent of mechanisms regulating the exit of neural progenitors from the cell cycle. The transcriptional repressor protein REST/NRSF has been demonstrated to block neuronal gene expression in undifferentiated neural cells. We now show that REST/NRSF restricts the expression of Sox4 and Sox11, explaining how REST/NRSF can prevent precocious expression of neuronal proteins. Together, these findings demonstrate a central regulatory role of Sox4 and Sox11 during neuronal maturation and mechanistically separate cell cycle withdrawal from the establishment of neuronal properties.
Collapse
Affiliation(s)
- Maria Bergsland
- Ludwig Institute for Cancer Research, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Martin Werme
- Ludwig Institute for Cancer Research, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Michal Malewicz
- Ludwig Institute for Cancer Research, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Thomas Perlmann
- Ludwig Institute for Cancer Research, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Jonas Muhr
- Ludwig Institute for Cancer Research, Karolinska Institute, SE-171 77 Stockholm, Sweden
- Corresponding author.E-MAIL ; FAX 46-8-332812
| |
Collapse
|
40
|
Koga S, Yamaguchi N, Abe T, Minegishi M, Tsuchiya S, Yamamoto M, Minegishi N. Cell-cycle-dependent oscillation of GATA2 expression in hematopoietic cells. Blood 2007; 109:4200-8. [PMID: 17255359 DOI: 10.1182/blood-2006-08-044149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In vitro manipulation of hematopoietic stem cells (HSCs) is a key issue in both transplantation therapy and regenerative medicine, and thus new methods are required to achieve HSC expansion with self-renewal. GATA2 is a transcription factor controlling pool size of HSCs. Of interest, continuous overexpression of GATA2 does not induce HSC proliferation. In this report, we demonstrate that GATA2 expression, in leukemic and normal hematopoietic cells, oscillates during the cell cycle, such that expression is high in S phase but low in G(1)/S and M phase. GATA2 binding to target Bcl-X gene also oscillates in accordance with GATA2 expression. Using a green fluorescent protein (GFP)-GATA2 fusion protein, we demonstrate cell-cycle-specific activity of proteasome-dependent degradation of GATA2. Immunoprecipitation/immunoblotting analysis demonstrated phosphorylation of GATA2 at cyclin-dependent kinase (Cdk)-consensus motifs, S/T(0)P(+1), and interaction of GATA2 with Cdk2/cyclin A2-, Cdk2/cyclin A2-, and Cdk4/cyclin D1-phosphorylated GATA2 in vitro. Mutants in phosphorylation motifs exhibited altered expression profiles of GFP-GATA2 domain fusion proteins. These results indicate that GATA2 phosphorylation by Cdk/cyclin systems is responsible for the cell-cycle-dependent regulation of GATA2 expression, and suggest the possibility that a cell-cycle-specific "on-off" response of GATA2 expression may control hematopoietic-cell proliferation and survival.
Collapse
Affiliation(s)
- Shinichiro Koga
- Tohoku University Biomedical Engineering Research Organization, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 2007; 127:1041-55. [PMID: 17129787 PMCID: PMC2646406 DOI: 10.1016/j.cell.2006.09.048] [Citation(s) in RCA: 508] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/29/2006] [Accepted: 09/21/2006] [Indexed: 01/06/2023]
Abstract
The GATA family of transcription factors plays fundamental roles in cell-fate specification. However, it is unclear if these genes are necessary for the maintenance of cellular differentiation after development. We identified GATA-3 as the most highly enriched transcription factor in the mammary epithelium of pubertal mice. GATA-3 was found in the luminal cells of mammary ducts and the body cells of terminal end buds (TEBs). Upon conditional deletion of GATA-3, mice exhibited severe defects in mammary development due to failure in TEB formation during puberty. After acute GATA-3 loss, adult mice exhibited undifferentiated luminal cell expansion with basement-membrane detachment, which led to caspase-mediated cell death in the long term. Further, FOXA1 was identified as a downstream target of GATA-3 in the mammary gland. This suggests that GATA-3 actively maintains luminal epithelial differentiation in the adult mammary gland, which raises important implications for the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Hosein Kouros-Mehr
- Department of Anatomy and The Biomedical Sciences Program, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Euan M. Slorach
- Department of Anatomy and The Biomedical Sciences Program, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Mark D. Sternlicht
- Department of Anatomy and The Biomedical Sciences Program, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Zena Werb
- Department of Anatomy and The Biomedical Sciences Program, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Contact:
| |
Collapse
|
42
|
Lugus JJ, Chung YS, Mills JC, Kim SI, Grass J, Kyba M, Doherty JM, Bresnick EH, Choi K. GATA2 functions at multiple steps in hemangioblast development and differentiation. Development 2006; 134:393-405. [PMID: 17166922 DOI: 10.1242/dev.02731] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular mechanisms that regulate the generation of hematopoietic and endothelial cells from mesoderm are poorly understood. To define the underlying mechanisms, we compared gene expression profiles between embryonic stem (ES) cell-derived hemangioblasts (Blast-Colony-Forming Cells, BL-CFCs) and their differentiated progeny, Blast cells. Bioinformatic analysis indicated that BL-CFCs resembled other stem cell populations. A role for Gata2, one of the BL-CFC-enriched transcripts, was further characterized by utilizing the in vitro model of ES cell differentiation. Our studies revealed that Gata2 was a direct target of BMP4 and that enforced GATA2 expression upregulated Bmp4, Flk1 and Scl. Conditional GATA2 induction resulted in a temporal-sensitive increase in hemangioblast generation, precocious commitment to erythroid fate, and increased endothelial cell generation. GATA2 additionally conferred a proliferative signal to primitive erythroid progenitors. Collectively, we provide compelling evidence that GATA2 plays specific, contextual roles in the generation of Flk-1+ mesoderm, the Flk-1+Scl+ hemangioblast, primitive erythroid and endothelial cells.
Collapse
Affiliation(s)
- Jesse J Lugus
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|