1
|
Zajac M, Mukherjee S, Anees P, Oettinger D, Henn K, Srikumar J, Zou J, Saminathan A, Krishnan Y. A mechanism of lysosomal calcium entry. SCIENCE ADVANCES 2024; 10:eadk2317. [PMID: 38354239 PMCID: PMC10866540 DOI: 10.1126/sciadv.adk2317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Lysosomal calcium (Ca2+) release is critical to cell signaling and is mediated by well-known lysosomal Ca2+ channels. Yet, how lysosomes refill their Ca2+ remains hitherto undescribed. Here, from an RNA interference screen in Caenorhabditis elegans, we identify an evolutionarily conserved gene, lci-1, that facilitates lysosomal Ca2+ entry in C. elegans and mammalian cells. We found that its human homolog TMEM165, previously designated as a Ca2+/H+ exchanger, imports Ca2+ pH dependently into lysosomes. Using two-ion mapping and electrophysiology, we show that TMEM165, hereafter referred to as human LCI, acts as a proton-activated, lysosomal Ca2+ importer. Defects in lysosomal Ca2+ channels cause several neurodegenerative diseases, and knowledge of lysosomal Ca2+ importers may provide previously unidentified avenues to explore the physiology of Ca2+ channels.
Collapse
Affiliation(s)
- Matthew Zajac
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Sourajit Mukherjee
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Palapuravan Anees
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Daphne Oettinger
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Katharine Henn
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Jainaha Srikumar
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Junyi Zou
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Anand Saminathan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Sarkar A, Kumar L, Hameed R, Nazir A. Multiple checkpoints of protein clearance machinery are modulated by a common microRNA, miR-4813-3p, through its putative target genes: Studies employing transgenic C. elegans model. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119342. [PMID: 35998789 DOI: 10.1016/j.bbamcr.2022.119342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
In order to maintain cellular homeostasis and a healthy state, aberrant and aggregated proteins are to be recognized and rapidly cleared from cells. Parkinson's disease, known to be associated with multiple factors; presents with impaired clearance of aggregated alpha synuclein as a key factor. We endeavored to study microRNA molecules with potential role on regulating multiple checkpoints of protein quality control within cells. Carrying out global miRNA profiling in a transgenic C. elegans model that expresses human alpha synuclein, we identified novel miRNA, miR-4813-3p, as a significantly downregulated molecule. Further studying its putative downstream target genes, we were able to mechanistically characterize six genes gbf-1, vha-5, cup-5, cpd-2, acs-1 and C27A12.7, which relate to endpoints associated with alpha synuclein expression, oxidative stress, locomotory behavior, autophagy and apoptotic pathways. Our study reveals the novel role of miR-4813-3p and provides potential functional characterization of its putative target genes, in regulating the various pathways associated with PQC network. miR-4813-3p modulates ERUPR, MTUPR, autophagosome-lysosomal-pathway and the ubiquitin-proteasomal-system, making this molecule an interesting target for further studies towards therapeutically addressing multifactorial aspect of Parkinson's disease.
Collapse
Affiliation(s)
- Arunabh Sarkar
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Lalit Kumar
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Rohil Hameed
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Voss L, Foster OK, Harper L, Morris C, Lavoy S, Brandt JN, Peloza K, Handa S, Maxfield A, Harp M, King B, Eichten V, Rambo FM, Hermann GJ. An ABCG Transporter Functions in Rab Localization and Lysosome-Related Organelle Biogenesis in Caenorhabditis elegans. Genetics 2020; 214:419-445. [PMID: 31848222 PMCID: PMC7017009 DOI: 10.1534/genetics.119.302900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
ABC transporters couple ATP hydrolysis to the transport of substrates across cellular membranes. This protein superfamily has diverse activities resulting from differences in their cargo and subcellular localization. Our work investigates the role of the ABCG family member WHT-2 in the biogenesis of gut granules, a Caenorhabditis elegans lysosome-related organelle. In addition to being required for the accumulation of birefringent material within gut granules, WHT-2 is necessary for the localization of gut granule proteins when trafficking pathways to this organelle are partially disrupted. The role of WHT-2 in gut granule protein targeting is likely linked to its function in Rab GTPase localization. We show that WHT-2 promotes the gut granule association of the Rab32 family member GLO-1 and the endolysosomal RAB-7, identifying a novel function for an ABC transporter. WHT-2 localizes to gut granules where it could play a direct role in controlling Rab localization. Loss of CCZ-1 and GLO-3, which likely function as a guanine nucleotide exchange factor (GEF) for GLO-1, lead to similar disruption of GLO-1 localization. We show that CCZ-1, like GLO-3, is localized to gut granules. WHT-2 does not direct the gut granule association of the GLO-1 GEF and our results point to WHT-2 functioning differently than GLO-3 and CCZ-1 Point mutations in WHT-2 that inhibit its transport activity, but not its subcellular localization, lead to the loss of GLO-1 from gut granules, while other WHT-2 activities are not completely disrupted, suggesting that WHT-2 functions in organelle biogenesis through transport-dependent and transport-independent activities.
Collapse
Affiliation(s)
- Laura Voss
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Olivia K Foster
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Logan Harper
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Caitlin Morris
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Sierra Lavoy
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - James N Brandt
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Kimberly Peloza
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Simran Handa
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Amanda Maxfield
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Marie Harp
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Brian King
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | | | - Fiona M Rambo
- Department of Biology, Lewis & Clark College, Portland, Oregon
| | - Greg J Hermann
- Department of Biology, Lewis & Clark College, Portland, Oregon
| |
Collapse
|
4
|
Narayanaswamy N, Chakraborty K, Saminathan A, Zeichner E, Leung K, Devany J, Krishnan Y. A pH-correctable, DNA-based fluorescent reporter for organellar calcium. Nat Methods 2018; 16:95-102. [PMID: 30532082 DOI: 10.1038/s41592-018-0232-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023]
Abstract
It is extremely challenging to quantitate lumenal Ca2+ in acidic Ca2+ stores of the cell because all Ca2+ indicators are pH sensitive, and Ca2+ transport is coupled to pH in acidic organelles. We have developed a fluorescent DNA-based reporter, CalipHluor, that is targetable to specific organelles. By ratiometrically reporting lumenal pH and Ca2+ simultaneously, CalipHluor functions as a pH-correctable Ca2+ reporter. By targeting CalipHluor to the endolysosomal pathway, we mapped lumenal Ca2+ changes during endosomal maturation and found a surge in lumenal Ca2+ specifically in lysosomes. Using lysosomal proteomics and genetic analysis, we found that catp-6, a Caenorhabditis elegans homolog of ATP13A2, was responsible for lysosomal Ca2+ accumulation-an example of a lysosome-specific Ca2+ importer in animals. By enabling the facile quantification of compartmentalized Ca2+, CalipHluor can expand the understanding of subcellular Ca2+ importers.
Collapse
Affiliation(s)
- Nagarjun Narayanaswamy
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - Kasturi Chakraborty
- Department of Chemistry, The University of Chicago, Chicago, IL, USA. .,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
| | - Anand Saminathan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | | | - KaHo Leung
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - John Devany
- Department of Physics, The University of Chicago, Chicago, IL, USA
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA. .,Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Devany J, Chakraborty K, Krishnan Y. Subcellular Nanorheology Reveals Lysosomal Viscosity as a Reporter for Lysosomal Storage Diseases. NANO LETTERS 2018; 18:1351-1359. [PMID: 29313356 DOI: 10.1021/acs.nanolett.7b05040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We describe a new method to measure viscosity within subcellular organelles of a living cell using nanorheology. We demonstrate proof of concept by measuring viscosity in lysosomes in multiple cell types and disease models. The lysosome is an organelle responsible for the breakdown of complex biomolecules. When different lysosomal proteins are defective, they are unable to break down specific biological substrates, which get stored within the lysosome, causing about 70 fatal diseases called lysosomal storage disorders (LSDs). Although the buildup of storage material is critical to the pathology of these diseases, methods to monitor cargo accumulation in the lysosome are lacking for most LSDs. Using passive particle tracking nanorheology and fluorescence recovery after photobleaching, we report that viscosity in the lysosome increases significantly during cargo accumulation in several LSD models. In a mammalian cell culture model of Niemann Pick C, lysosomal viscosity directly correlates with the levels of accumulated cholesterol. We also observed increased viscosity in diverse LSD models in Caenorhabditis elegans, revealing that lysosomal viscosity is a powerful reporter with which to monitor substrate accumulation in LSDs for new diagnostics or to assay therapeutic efficacy.
Collapse
Affiliation(s)
- John Devany
- Department of Physics, ‡Department of Chemistry, and §Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago , Chicago, Illinois 60637, United States
| | - Kasturi Chakraborty
- Department of Physics, ‡Department of Chemistry, and §Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago , Chicago, Illinois 60637, United States
| | - Yamuna Krishnan
- Department of Physics, ‡Department of Chemistry, and §Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Huynh JM, Dang H, Fares H. Measurement of Lysosomal Size and Lysosomal Marker Intensities in Adult Caenorhabditis elegans. Bio Protoc 2018; 8:e2724. [PMID: 34179259 DOI: 10.21769/bioprotoc.2724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 11/02/2022] Open
Abstract
Assays have been developed to study trafficking in various tissues of Caenorhabditis elegans. Adult C. elegans intestinal cells are large and have extensive endocytic networks, thus making them a good system for deciphering the endocytic pathway using live imaging techniques. However, the presence of auto-fluorescent gut granules in adult intestine can interfere with the signals of endocytic compartment reporters, like GFP. Here we demonstrate a protocol adapted from the original method developed by the Grant laboratory to identify signals from reporters in adult intestinal cells. The goal of this protocol is to identify endocytic compartments tagged with fluorescent markers without any confounding effects of background autofluorescent gut granules in adult intestinal cells of Caenorhabditis elegans.
Collapse
Affiliation(s)
- Julie M Huynh
- College of Medicine-Tucson, University of Arizona, Tucson, USA
| | - Hope Dang
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, USA
| | - Hanna Fares
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, USA
| |
Collapse
|
7
|
Abstract
INTRODUCTION The blood-brain barrier (BBB) possesses an outstanding ability to protect the brain against xenobiotics and potentially poisonous metabolites. Owing to this, ATP binding cassette (ABC) export proteins have garnered significant interest in the research community. These transport proteins are predominantly localized to the luminal membrane of brain microvessels, where they recognize a wide range of different substrates and transport them back into the blood circulation. AREAS COVERED This review summarizes recent findings on these transport proteins, including their expression in the endothelial cell membrane and their substrate recognition. Signaling cascades underlying the expression and function of these proteins will be discussed as well as their role in diseases such as Alzheimer's disease, epilepsy, amyotrophic lateral sclerosis and brain tumors. EXPERT OPINION ABC transporters represent an integral part of the human transportome and are of particular interest at the blood-brain barrier they as they significantly contribute to brain homeostasis. In addition, they appear to be involved in myriad CNS diseases. Therefore studying their mechanisms of action as well as their signaling cascades and responses to internal and external stimuli will help us understand the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Anne Mahringer
- a Institute of Pharmacy and Molecular Biotechnology , Ruprecht-Karls University , Heidelberg , Germany
| | - Gert Fricker
- a Institute of Pharmacy and Molecular Biotechnology , Ruprecht-Karls University , Heidelberg , Germany
| |
Collapse
|
8
|
ESCRT-Dependent Cell Death in a Caenorhabditis elegans Model of the Lysosomal Storage Disorder Mucolipidosis Type IV. Genetics 2015; 202:619-38. [PMID: 26596346 DOI: 10.1534/genetics.115.182485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/14/2015] [Indexed: 01/08/2023] Open
Abstract
Mutations in MCOLN1, which encodes the cation channel protein TRPML1, result in the neurodegenerative lysosomal storage disorder Mucolipidosis type IV. Mucolipidosis type IV patients show lysosomal dysfunction in many tissues and neuronal cell death. The ortholog of TRPML1 in Caenorhabditis elegans is CUP-5; loss of CUP-5 results in lysosomal dysfunction in many tissues and death of developing intestinal cells that results in embryonic lethality. We previously showed that a null mutation in the ATP-Binding Cassette transporter MRP-4 rescues the lysosomal defect and embryonic lethality of cup-5(null) worms. Here we show that reducing levels of the Endosomal Sorting Complex Required for Transport (ESCRT)-associated proteins DID-2, USP-50, and ALX-1/EGO-2, which mediate the final de-ubiquitination step of integral membrane proteins being sequestered into late endosomes, also almost fully suppresses cup-5(null) mutant lysosomal defects and embryonic lethality. Indeed, we show that MRP-4 protein is hypo-ubiquitinated in the absence of CUP-5 and that reducing levels of ESCRT-associated proteins suppresses this hypo-ubiquitination. Thus, increased ESCRT-associated de-ubiquitinating activity mediates the lysosomal defects and corresponding cell death phenotypes in the absence of CUP-5.
Collapse
|
9
|
The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium 2014; 58:48-56. [PMID: 25465891 DOI: 10.1016/j.ceca.2014.10.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/24/2022]
Abstract
Members of the Transient Receptor Potential-Mucolipin (TRPML) constitute a family of evolutionarily conserved cation channels that function predominantly in endolysosomal vesicles. Whereas loss-of-function mutations in human TRPML1 were first identified as being causative for the lysosomal storage disease, Mucolipidosis type IV, most mammals also express two other TRPML isoforms called TRPML2 and TRPML3. All three mammalian TRPMLs as well as TRPML related genes in other species including Caenorhabditis elegans and Drosophila exhibit overlapping functional and biophysical properties. The functions of TRPML proteins include roles in vesicular trafficking and biogenesis, maintenance of neuronal development, function, and viability, and regulation of intracellular and organellar ionic homeostasis. Biophysically, TRPML channels are non-selective cation channels exhibiting variable permeability to a host of cations including Na(+), Ca(2+), Fe(2+), and Zn(2+), and are activated by a phosphoinositide species, PI(3,5)P2, that is mostly found in endolysosomal membranes. Here, we review the functional and biophysical properties of these enigmatic cation channels, which represent the most ancient and archetypical TRP channels.
Collapse
|
10
|
Abstract
The counterbalancing action of the endocytosis and secretory pathways maintains a dynamic equilibrium that regulates the composition of the plasma membrane, allowing it to maintain homeostasis and to change rapidly in response to alterations in the extracellular environment and/or intracellular metabolism. These pathways are intimately integrated with intercellular signaling systems and play critical roles in all cells. Studies in Caenorhabditis elegans have revealed diverse roles of membrane trafficking in physiology and development and have also provided molecular insight into the fundamental mechanisms that direct cargo sorting, vesicle budding, and membrane fisson and fusion. In this review, we summarize progress in understanding membrane trafficking mechanisms derived from work in C. elegans, focusing mainly on work done in non-neuronal cell-types, especially the germline, early embryo, coelomocytes, and intestine.
Collapse
Affiliation(s)
- Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan. ;
| | | | | | | |
Collapse
|
11
|
Ardelli BF. Transport proteins of the ABC systems superfamily and their role in drug action and resistance in nematodes. Parasitol Int 2013; 62:639-46. [DOI: 10.1016/j.parint.2013.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 11/28/2022]
|
12
|
Wakabayashi K, Gustafson AM, Sidransky E, Goldin E. Mucolipidosis type IV: an update. Mol Genet Metab 2011; 104:206-13. [PMID: 21763169 PMCID: PMC3205274 DOI: 10.1016/j.ymgme.2011.06.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/09/2011] [Accepted: 06/09/2011] [Indexed: 11/28/2022]
Abstract
Mucolipidosis type IV (MLIV) is a neurodevelopmental as well as neurodegenerative disorder with severe psychomotor developmental delay, progressive visual impairment, and achlorydria. It is characterized by the presence of lysosomal inclusions in many cell types in patients. MLIV is an autosomal recessive disease caused by mutations in MCOLN1, which encodes for mucolipin-1, a member of the transient receptor potential (TRP) cation channel family. Although approximately 70-80% of patients identified are Ashkenazi Jewish, MLIV is a pan-ethnic disorder. Importantly, while MLIV is thought to be a rare disease, its frequency may be greater than currently appreciated, for its common presentation as a cerebral palsy-like encephalopathy can lead to misdiagnosis. Moreover, patients with milder variants are often not recognized as having MLIV. This review provides an update on the ethnic distribution, clinical manifestations, laboratory findings, methods of diagnosis, molecular genetics, differential diagnosis, and treatment of patients with MLIV. An enhanced awareness of the manifestations of this disorder may help to elucidate the true frequency and range of symptoms associated with MLIV, providing insight into the pathogenesis of this multi-system disease.
Collapse
Affiliation(s)
| | | | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35, Room 1A213, 35 Convent Dr., MSC 3708, Bethesda, MD 20892-3708
| | - Ehud Goldin
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35, Room 1A213, 35 Convent Dr., MSC 3708, Bethesda, MD 20892-3708
| |
Collapse
|
13
|
Invertebrate models of lysosomal storage disease: what have we learned so far? INVERTEBRATE NEUROSCIENCE 2011; 11:59-71. [PMID: 22038288 DOI: 10.1007/s10158-011-0125-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/08/2011] [Indexed: 01/17/2023]
Abstract
The lysosomal storage diseases (LSDs) collectively account for death in 1 in 8,000 children. Although some forms are treatable, they are essentially incurable and usually are lethal in the first decade of life. The most intractable forms of LSD are those with neuronal involvement. In an effort to identify the pathological signaling driving pathology in the LSDs, invertebrate models have been developed. In this review, we outline our current understanding of LSDs and recent findings using invertebrate models. We outline strategies and pitfalls for the development of such models. Available models of LSD in Drosophila and Caenorhabditis elegans are uncovering roles for LSD-related proteins with previously unknown function using both gain-of-function and loss-of-function strategies. These models of LSD in Drosophila and C. elegans have identified potential pathogenic signaling cascades that are proving critical to our understanding of these lethal diseases.
Collapse
|
14
|
Abstract
Biochemical disorders in lysosomal storage diseases consist of the interruption of metabolic pathways involved in the recycling of the degradation products of one or several types of macromolecules. The progressive accumulation of these primary storage products is the direct consequence of the genetic defect and represents the initial pathogenic event. Downstream consequences for the affected cells include the accumulation of secondary storage products and the formation of histological storage lesions, which appear as intracellular vacuoles that represent the pathological hallmark of lysosomal storage diseases. Relationships between storage products and storage lesions are not simple and are still largely not understood. Primary storage products induce malfunction of the organelles where they accumulate, these being primarily, but not only, lysosomes. Consequences for cell metabolism and intracellular trafficking combine the effects of primary storage product toxicity and the compensatory mechanisms activated to protect the cell. Induced disorders extend far beyond the primarily interrupted metabolic pathway.
Collapse
|
15
|
|
16
|
Abstract
MLIV (mucolipidosis type IV) is a neurodegenerative lysosomal storage disorder caused by mutations in MCOLN1, a gene that encodes TRPML1 (mucolipin-1), a member of the TRPML (transient receptor potential mucolipin) cation channels. Two additional homologues are TRPML2 and TRPML3 comprising the TRPML subgroup in the TRP superfamily. The three proteins play apparently key roles along the endocytosis process, and thus their cellular localization varies among the different group members. Thus TRPML1 is localized exclusively to late endosomes and lysosomes, TRPML2 is primarily located in the recycling clathrin-independent GPI (glycosylphosphatidylinositol)-anchored proteins and early endosomes, and TRPML3 is primarily located in early endosomes. Apparently, all three proteins' main physiological function underlies Ca2+ channelling, regulating the endocytosis process. Recent findings also indicate that the three TRPML proteins form heteromeric complexes at least in some of their cellular content. The physiological role of these complexes in lysosomal function remains to be elucidated, as well as their effect on the pathophysiology of MLIV. Another open question is whether any one of the TRPMLs bears additional function in channel activity
Collapse
|
17
|
Campbell EM, Fares H. Roles of CUP-5, the Caenorhabditis elegans orthologue of human TRPML1, in lysosome and gut granule biogenesis. BMC Cell Biol 2010; 11:40. [PMID: 20540742 PMCID: PMC2891664 DOI: 10.1186/1471-2121-11-40] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 06/11/2010] [Indexed: 01/09/2023] Open
Abstract
Background CUP-5 is a Transient Receptor Potential protein in C. elegans that is the orthologue of mammalian TRPML1. Loss of TRPML1 results in the lysosomal storage disorder Mucolipidosis type IV. Loss of CUP-5 results in embryonic lethality and the accumulation of enlarged yolk granules in developing intestinal cells. The embryonic lethality of cup-5 mutants is rescued by mutations in mrp-4, which is required for gut granule differentiation. Gut granules are intestine-specific lysosome-related organelles that accumulate birefringent material. This link between CUP-5 and gut granules led us to determine the roles of CUP-5 in lysosome and gut granule biogenesis in developing intestinal cells. Results We show that CUP-5 protein localizes to lysosomes, but not to gut granules, in developing intestinal cells. Loss of CUP-5 results in defects in endo-lysosomal transport in developing intestinal cells of C. elegans embryos. This ultimately leads to the appearance of enlarged terminal vacuoles that show defective lysosomal degradation and that have lysosomal and endosomal markers. In contrast, gut granule biogenesis is normal in the absence of CUP-5. Furthermore, loss of CUP-5 does not result in inappropriate fusion or mixing of content between lysosomes and gut granules. Conclusions Using an in vivo model of MLIV, we show that there is a defect in lysosomal transport/biogenesis that is earlier than the presumed function of TRPML1 in terminal lysosomes. Our results indicate that CUP-5 is required for the biogenesis of lysosomes but not of gut granules. Thus, cellular phenotypes in Mucolipidosis type IV are likely not due to defects in lysosome-related organelle biogenesis, but due to progressive defects in lysosomal transport that lead to severe lysosomal dysfunction.
Collapse
Affiliation(s)
- Erin M Campbell
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
18
|
Schwartz MS, Benci JL, Selote DS, Sharma AK, Chen AGY, Dang H, Fares H, Vatamaniuk OK. Detoxification of multiple heavy metals by a half-molecule ABC transporter, HMT-1, and coelomocytes of Caenorhabditis elegans. PLoS One 2010; 5:e9564. [PMID: 20221439 PMCID: PMC2832763 DOI: 10.1371/journal.pone.0009564] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 02/11/2010] [Indexed: 11/22/2022] Open
Abstract
Background Developing methods for protecting organisms in metal-polluted environments is contingent upon our understanding of cellular detoxification mechanisms. In this regard, half-molecule ATP-binding cassette (ABC) transporters of the HMT-1 subfamily are required for cadmium (Cd) detoxification. HMTs have conserved structural architecture that distinguishes them from other ABC transporters and allows the identification of homologs in genomes of different species including humans. We recently discovered that HMT-1 from the simple, unicellular organism, Schizosaccharomyces pombe, SpHMT1, acts independently of phytochelatin synthase (PCS) and detoxifies Cd, but not other heavy metals. Whether HMTs from multicellular organisms confer tolerance only to Cd or also to other heavy metals is not known. Methodology/Principal Findings Using molecular genetics approaches and functional in vivo assays we showed that HMT-1 from a multicellular organism, Caenorhabditis elegans, functions distinctly from its S. pombe counterpart in that in addition to Cd it confers tolerance to arsenic (As) and copper (Cu) while acting independently of pcs-1. Further investigation of hmt-1 and pcs-1 revealed that these genes are expressed in different cell types, supporting the notion that hmt-1 and pcs-1 operate in distinct detoxification pathways. Interestingly, pcs-1 and hmt-1 are co-expressed in highly endocytic C. elegans cells with unknown function, the coelomocytes. By analyzing heavy metal and oxidative stress sensitivities of the coelomocyte-deficient C. elegans strain we discovered that coelomocytes are essential mainly for detoxification of heavy metals, but not of oxidative stress, a by-product of heavy metal toxicity. Conclusions/Significance We established that HMT-1 from the multicellular organism confers tolerance to multiple heavy metals and is expressed in liver-like cells, the coelomocytes, as well as head neurons and intestinal cells, which are cell types that are affected by heavy metal poisoning in humans. We also showed that coelomocytes are involved in detoxification of heavy metals. Therefore, the HMT-1-dependent detoxification pathway and coelomocytes of C. elegans emerge as novel models for studies of heavy metal-promoted diseases.
Collapse
Affiliation(s)
- Marc S. Schwartz
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York, United States of America
| | - Joseph L. Benci
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York, United States of America
| | - Devarshi S. Selote
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York, United States of America
| | - Anuj K. Sharma
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York, United States of America
| | - Andy G. Y. Chen
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York, United States of America
| | - Hope Dang
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Hanna Fares
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Olena K. Vatamaniuk
- Department of Crop and Soil Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Kawai H, Tanji T, Shiraishi H, Yamada M, Iijima R, Inoue T, Kezuka Y, Ohashi K, Yoshida Y, Tohyama K, Gengyo-Ando K, Mitani S, Arai H, Ohashi-Kobayashi A, Maeda M. Normal formation of a subset of intestinal granules in Caenorhabditis elegans requires ATP-binding cassette transporters HAF-4 and HAF-9, which are highly homologous to human lysosomal peptide transporter TAP-like. Mol Biol Cell 2009; 20:2979-90. [PMID: 19403699 PMCID: PMC2695804 DOI: 10.1091/mbc.e08-09-0912] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 04/10/2009] [Accepted: 04/17/2009] [Indexed: 11/11/2022] Open
Abstract
TAP-like (TAPL; ABCB9) is a half-type ATP-binding cassette (ABC) transporter that localizes in lysosome and putatively conveys peptides from cytosol to lysosome. However, the physiological role of this transporter remains to be elucidated. Comparison of genome databases reveals that TAPL is conserved in various species from a simple model organism, Caenorhabditis elegans, to mammals. C. elegans possesses homologous TAPL genes: haf-4 and haf-9. In this study, we examined the tissue-specific expression of these two genes and analyzed the phenotypes of the loss-of-function mutants for haf-4 and haf-9 to elucidate the in vivo function of these genes. Both HAF-4 and HAF-9 tagged with green fluorescent protein (GFP) were mainly localized on the membrane of nonacidic but lysosome-associated membrane protein homologue (LMP-1)-positive intestinal granules from larval to adult stage. The mutants for haf-4 and haf-9 exhibited granular defects in late larval and young adult intestinal cells, associated with decreased brood size, prolonged defecation cycle, and slow growth. The intestinal granular phenotype was rescued by the overexpression of the GFP-tagged wild-type protein, but not by the ATP-unbound form of HAF-4. These results demonstrate that two ABC transporters, HAF-4 and HAF-9, are related to intestinal granular formation and some other physiological aspects.
Collapse
Affiliation(s)
- Hiromi Kawai
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takahiro Tanji
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, Yahaba, Shiwa-gun, Iwate 028-3694, Japan
| | - Hirohisa Shiraishi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, Yahaba, Shiwa-gun, Iwate 028-3694, Japan
| | - Mitsuo Yamada
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryoko Iijima
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takao Inoue
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuko Kezuka
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuaki Ohashi
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuo Yoshida
- The Center for Electron Microscopy and Bio-Imaging Research, Iwate Medical University, Morioka, Iwate 020-8505, Japan; and
| | - Koujiro Tohyama
- The Center for Electron Microscopy and Bio-Imaging Research, Iwate Medical University, Morioka, Iwate 020-8505, Japan; and
| | - Keiko Gengyo-Ando
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Shohei Mitani
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ayako Ohashi-Kobayashi
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, Yahaba, Shiwa-gun, Iwate 028-3694, Japan
| | - Masatomo Maeda
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Xiao R, Xu XZS. Function and regulation of TRP family channels in C. elegans. Pflugers Arch 2009; 458:851-60. [PMID: 19421772 DOI: 10.1007/s00424-009-0678-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 04/25/2009] [Accepted: 04/28/2009] [Indexed: 12/26/2022]
Abstract
Seventeen transient receptor potential (TRP) family proteins are encoded by the C. elegans genome, and they cover all of the seven TRP subfamilies, including TRPC, TRPV, TRPM, TRPN, TRPA, TRPP, and TRPML. Classical forward and reverse genetic screens have isolated mutant alleles in every C. elegans trp gene, and their characterizations have revealed novel functions and regulatory mechanisms of TRP channels. For example, the TRPC channels TRP-1 and TRP-2 control nicotine-dependent behavior, while TRP-3, a sperm TRPC channel, is regulated by sperm activation and required for sperm-egg interactions during fertilization. Similar to their vertebrate counterparts, C. elegans TRPs function in sensory physiology. For instance, the TRPV channels OSM-9 and OCR-2 act in chemosensation, osmosensation, and touch sensation, the TRPA member TRPA-1 regulates touch sensation, while the TRPN channel TRP-4 mediates proprioception. Some C. elegans TRPM, TRPP, and TRPML members exhibit cellular functions similar to their vertebrate homologues and have provided insights into human diseases, including polycystic kidney disease, hypomagnesemia, and mucolipidosis type IV. The availability of a complete set of trp gene mutants in conjunction with its facile genetics makes C. elegans a powerful model for studying the function and regulation of TRP family channels in vivo.
Collapse
Affiliation(s)
- Rui Xiao
- Life Sciences Institute and Department of Molecular & Integrative Physiology, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
21
|
Ruivo R, Anne C, Sagné C, Gasnier B. Molecular and cellular basis of lysosomal transmembrane protein dysfunction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:636-49. [DOI: 10.1016/j.bbamcr.2008.12.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/10/2008] [Accepted: 12/11/2008] [Indexed: 02/04/2023]
|
22
|
de Voer G, Peters D, Taschner PEM. Caenorhabditis elegans as a model for lysosomal storage disorders. Biochim Biophys Acta Mol Basis Dis 2008; 1782:433-46. [PMID: 18501720 DOI: 10.1016/j.bbadis.2008.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Revised: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 02/08/2023]
Abstract
The nematode Caenorhabditis elegans is the simplest animal model available to study human disease. In this review, the worm homologues for the 58 human genes involved in lysosomal storage disorders and for 105 human genes associated with lysosomal function have been compiled. Most human genes had at least one worm homologue. In addition, the phenotypes of 147 mutants, in which these genes have been disrupted or knocked down, have been summarized and discussed. The phenotypic spectrum of worm models of lysosomal storage disorders varies from lethality to none obvious, with a large variety of intermediate phenotypes. The genetic power of C. elegans provides a means to identify genes involved in specific processes with relative ease. The overview of potential lysosomal phenotypes presented here might be used as a starting point for the phenotypic characterization of newly developed knock-out models or for the design of genetic screens selecting for loss or gain of suitable knock-out model phenotypes. Screens for genes involved in lysosomal biogenesis and function have been performed successfully resulting in the cup and glo mutants, but screens involving subtle phenotypes are likely to be difficult.
Collapse
Affiliation(s)
- Gert de Voer
- Department of Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
23
|
Goldin E, Caruso RC, Benko W, Kaneski CR, Stahl S, Schiffmann R. Isolated ocular disease is associated with decreased mucolipin-1 channel conductance. Invest Ophthalmol Vis Sci 2008; 49:3134-42. [PMID: 18326692 DOI: 10.1167/iovs.07-1649] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To evaluate a 15-year-old boy with MLIV (mucolipidosis type IV) and clinical abnormalities restricted to the eye who also had achlorhydria with elevated blood gastrin levels. METHODS In addition to a detailed neuro-ophthalmic and electrophysiological assessment, his mutant mucolipin-1 was experimentally expressed in liposomes and its channel properties studied in vitro. RESULTS The patient was a compound heterzygote for c.920delT and c.1615delG. Detailed neuro-ophthalmic examination including electroretinography showed him to have a typical retinal dystrophy predominantly affecting rod and bipolar cell function. In vitro expression of MCOLN1 in liposomes showed that the c.1615delG mutated channel had significantly reduced conductance compared with wild-type mucolipin-1, whereas the inhibitory effect of low pH and amiloride remained intact. CONCLUSIONS These findings suggest that reduced channel conductance is relatively well tolerated by the brain during development, whereas retinal cells and stomach parietal cells require normal protein function. MLIV should be considered in patients with retinal dystrophy of unknown cause and screened for using blood gastrin levels.
Collapse
Affiliation(s)
- Ehud Goldin
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
RNA interference (RNAi) mechanisms are conserved and consist of an interrelated network of activities that not only respond to exogenous dsRNA, but also perform endogenous functions required in the fine tuning of gene expression and in maintaining genome integrity. Not surprisingly, RNAi functions have widespread influences on cellular function and organismal development. Previously, we observed a reduced capacity to mount an RNAi response in nine Caenorhabditis elegans mutants that are defective in ABC transporter genes (ABC(RNAi) mutants). Here, we report an exhaustive study of mutants, collectively defective in 49 different ABC transporter genes, that allowed for the categorization of one additional transporter into the ABC(RNAi) gene class. Genetic complementation tests reveal functions for ABC(RNAi) transporters in the mut-7/rde-2 branch of the RNAi pathway. These second-site noncomplementation interactions suggest that ABC(RNAi) proteins and MUT-7/RDE-2 function together in parallel pathways and/or as multiprotein complexes. Like mut-7 and rde-2, some ABC(RNAi) mutants display transposon silencing defects. Finally, our analyses reveal a genetic interaction network of ABC(RNAi) gene function with respect to this part of the RNAi pathway. From our results, we speculate that the coordinated activities of ABC(RNAi) transporters, through their effects on endogenous RNAi-related mechanisms, ultimately affect chromosome function and integrity.
Collapse
|
25
|
Role of the Caenorhabditis elegans multidrug resistance gene, mrp-4, in gut granule differentiation. Genetics 2007; 177:1569-82. [PMID: 17947407 DOI: 10.1534/genetics.107.080689] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Caenorhabditis elegans gut granules are lysosome-related organelles with birefringent contents. mrp-4, which encodes an ATP-binding cassette (ABC) transporter homologous to mammalian multidrug resistance proteins, functions in the formation of gut granule birefringence. mrp-4(-) embryos show a delayed appearance of birefringent material in the gut granule but otherwise appear to form gut granules properly. mrp-4(+) activity is required for the extracellular mislocalization of birefringent material, body-length retraction, and NaCl sensitivity, phenotypes associated with defective gut granule biogenesis exhibited by embryos lacking the activity of GLO-1/Rab38, a putative GLO-1 guanine nucleotide exchange factor GLO-4, and the AP-3 complex. Multidrug resistance protein (MRP)-4 localizes to the gut granule membrane, consistent with it playing a direct role in the transport of molecules that compose and/or facilitate the formation of birefringent crystals within the gut granule. However, MRP-4 is also present in oocytes and early embryos, and our genetic analyses indicate that its site of action in the formation of birefringent material may not be limited to just the gut granule in embryos. In a search for genes that function similarly to mrp-4(+), we identified WHT-2, another ABC transporter that acts in parallel to MRP-4 for the formation of birefringent material in the gut granule.
Collapse
|
26
|
Zeevi DA, Frumkin A, Bach G. TRPML and lysosomal function. Biochim Biophys Acta Mol Basis Dis 2007; 1772:851-8. [PMID: 17306511 DOI: 10.1016/j.bbadis.2007.01.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/10/2007] [Accepted: 01/10/2007] [Indexed: 11/28/2022]
Abstract
Mucolipin 1 (MLN1), also known as TRPML1, is a member of the mucolipin family. The mucolipins are the only lysosomal proteins within the TRP superfamily. Mutations in the gene coding for TRPML1 result in a lysosomal storage disorder (LSD). This review summarizes the current knowledge related to this protein and the rest of the mucolipin family.
Collapse
Affiliation(s)
- David A Zeevi
- Department of Human Genetics, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | | | | |
Collapse
|