1
|
Tan L, Yan M, Su Z, Wang H, Li H, Zhao X, Liu S, Zhang L, Sun Q, Lu D. R-spondin-1 induces Axin degradation via the LRP6-CK1ε axis. Cell Commun Signal 2024; 22:14. [PMID: 38183076 PMCID: PMC10768284 DOI: 10.1186/s12964-023-01456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
R-spondins (RSPOs) are secreted signaling molecules that potentiate the Wnt/β-catenin pathway by cooperating with Wnt ligands. RSPO1 is crucial in tissue development and tissue homeostasis. However, the molecular mechanism by which RSPOs activate Wnt/β-catenin signaling remains elusive. In this study, we found that RSPOs could mediate the degradation of Axin through the ubiquitin-proteasome pathway. The results of Co-IP showed that the recombinant RSPO1 protein promoted the interaction between Axin1 and CK1ε. Either knockout of the CK1ε gene or treatment with the CK1δ/CK1ε inhibitor SR3029 caused an increase in Axin1 protein levels and attenuated RSPO1-induced degradation of the Axin1 protein. Moreover, we observed an increase in the number of associations of LRP6 with CK1ε and Axin1 following RSPO1 stimulation. Overexpression of LRP6 further potentiated Axin1 degradation mediated by RSPO1 or CK1ε. In addition, recombinant RSPO1 and Wnt3A proteins synergistically downregulated the protein expression of Axin1 and enhanced the transcriptional activity of the SuperTOPFlash reporter. Taken together, these results uncover the novel mechanism by which RSPOs activate Wnt/β-catenin signaling through LRP6/CK1ε-mediated degradation of Axin.
Collapse
Affiliation(s)
- Lifeng Tan
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Mengfang Yan
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Zijie Su
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Department of Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hanbin Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Huan Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qi Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
2
|
Azbazdar Y, De Robertis EM. The early dorsal signal in vertebrate embryos requires endolysosomal membrane trafficking. Bioessays 2024; 46:e2300179. [PMID: 37983969 DOI: 10.1002/bies.202300179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Fertilization triggers cytoplasmic movements in the frog egg that lead in mysterious ways to the stabilization of β-catenin on the dorsal side of the embryo. The novel Huluwa (Hwa) transmembrane protein, identified in China, is translated specifically in the dorsal side, acting as an egg cytoplasmic determinant essential for β-catenin stabilization. The Wnt signaling pathway requires macropinocytosis and the sequestration inside multivesicular bodies (MVBs, the precursors of endolysosomes) of Axin1 and Glycogen Synthase Kinase 3 (GSK3) that normally destroy β-catenin. In Xenopus, the Wnt-like activity of GSK3 inhibitors and of Hwa mRNA can be blocked by brief treatment with inhibitors of membrane trafficking or lysosomes at the 32-cell stage. In dorsal blastomeres, lysosomal cathepsin is activated and intriguing MVBs surrounded by electron dense vesicles are formed at the 64-cell stage. We conclude that membrane trafficking and lysosomal activity are critically important for the earliest asymmetries in vertebrate embryonic development.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Edward M De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
3
|
Kang K, Shi Q, Wang X, Chen YG. Dishevelled phase separation promotes Wnt signalosome assembly and destruction complex disassembly. J Cell Biol 2022; 221:213667. [PMID: 36342472 PMCID: PMC9811998 DOI: 10.1083/jcb.202205069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/21/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
The amplitude of Wnt/β-catenin signaling is precisely controlled by the assembly of the cell surface-localized Wnt receptor signalosome and the cytosolic β-catenin destruction complex. How these two distinct complexes are coordinately controlled remains largely unknown. Here, we demonstrated that the signalosome scaffold protein Dishevelled 2 (Dvl2) undergoes liquid-liquid phase separation (LLPS). Dvl2 LLPS is mediated by an intrinsically disordered region and facilitated by components of the signalosome, such as the receptor Fzd5. Assembly of the signalosome is initiated by rapid recruitment of Dvl2 to the membrane, followed by slow and dynamic recruitment of Axin1. Axin LLPS mediates assembly of the β-catenin destruction complex, and Dvl2 attenuates LLPS of Axin. Compared with the destruction complex, Axin partitions into the signalosome at a lower concentration and exhibits a higher mobility. Together, our results revealed that Dvl2 LLPS is crucial for controlling the assembly of the Wnt receptor signalosome and disruption of the phase-separated β-catenin destruction complex.
Collapse
Affiliation(s)
- Kexin Kang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiaoni Shi
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xu Wang
- Guangzhou Laboratory, Guangzhou, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China,Guangzhou Laboratory, Guangzhou, China,School of Basic Medicine, Nanchang University, Nanchang, China,Correspondence to Ye-Guang Chen:
| |
Collapse
|
4
|
Houston DW, Elliott KL, Coppenrath K, Wlizla M, Horb ME. Maternal Wnt11b regulates cortical rotation during Xenopus axis formation: analysis of maternal-effect wnt11b mutants. Development 2022; 149:dev200552. [PMID: 35946588 PMCID: PMC9515810 DOI: 10.1242/dev.200552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022]
Abstract
Asymmetric signalling centres in the early embryo are essential for axis formation in vertebrates. These regions (e.g. amphibian dorsal morula, mammalian anterior visceral endoderm) require stabilised nuclear β-catenin, but the role of localised Wnt ligand signalling activity in their establishment remains unclear. In Xenopus, dorsal β-catenin is initiated by vegetal microtubule-mediated symmetry breaking in the fertilised egg, known as 'cortical rotation'. Localised wnt11b mRNA and ligand-independent activators of β-catenin have been implicated in dorsal β-catenin activation, but the extent to which each contributes to axis formation in this paradigm remains unclear. Here, we describe a CRISPR-mediated maternal-effect mutation in Xenopus laevis wnt11b.L. We find that wnt11b is maternally required for robust dorsal axis formation and for timely gastrulation, and zygotically for left-right asymmetry. Importantly, we show that vegetal microtubule assembly and cortical rotation are reduced in wnt11b mutant eggs. In addition, we show that activated Wnt coreceptor Lrp6 and Dishevelled lack behaviour consistent with roles in early β-catenin stabilisation, and that neither is regulated by Wnt11b. This work thus implicates Wnt11b in the distribution of putative dorsal determinants rather than in comprising the determinants themselves. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Douglas W. Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA 52242-1324, USA
| | - Karen L. Elliott
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA 52242-1324, USA
| | - Kelsey Coppenrath
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Marcin Wlizla
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Marko E. Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
5
|
Global MicroRNA Expression Profiling of Buffalo (Bubalus bubalis) Embryos at Different Developmental Stages Produced by Somatic Cell Nuclear Transfer and In-Vitro Fertilization Using RNA Sequencing. Genes (Basel) 2022; 13:genes13030453. [PMID: 35328007 PMCID: PMC8952793 DOI: 10.3390/genes13030453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/29/2022] Open
Abstract
Despite the success of cloning technology in the production of offspring across several species, its application on a wide scale is severely limited by the very low offspring rate obtained with cloned embryos. The expression profile of microRNAs (miRNAs) in cloned embryos throughout embryonic development is reported to deviate from regular patterns. The present study is aimed at determining the dynamics of the global expression of miRNA profile in cloned and in-vitro fertilization (IVF) pre-implantation embryos at different developmental stages, i.e., the two-cell, eight-cell, and blastocyst stages, using next-generation sequencing. The results of this study suggest that there is a profound difference in global miRNA profile between cloned and IVF embryos. These differences are manifested throughout the course of embryonic development. The cloned embryos differ from their IVF counterparts in enriched Gene Ontology (GO) terms of biological process, molecular function, cellular component, and protein class categories in terms of the targets of differentially expressed miRNAs. The major pathways related to embryonic development, such as the Wnt signaling pathway, the apoptosis signaling pathway, the FGF signaling pathway, the p53 pathway, etc., were found to be affected in cloned relative to IVF embryos. Overall, these data reveal the distinct miRNA profile of cloned relative to IVF embryos, suggesting that the molecules or pathways affected may play an important role in cloned embryo development.
Collapse
|
6
|
Yan Y, Wang Q. BMP Signaling: Lighting up the Way for Embryonic Dorsoventral Patterning. Front Cell Dev Biol 2022; 9:799772. [PMID: 35036406 PMCID: PMC8753366 DOI: 10.3389/fcell.2021.799772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
One of the most significant events during early embryonic development is the establishment of a basic embryonic body plan, which is defined by anteroposterior, dorsoventral (DV), and left-right axes. It is well-known that the morphogen gradient created by BMP signaling activity is crucial for DV axis patterning across a diverse set of vertebrates. The regulation of BMP signaling during DV patterning has been strongly conserved across evolution. This is a remarkable regulatory and evolutionary feat, as the BMP gradient has been maintained despite the tremendous variation in embryonic size and shape across species. Interestingly, the embryonic DV axis exhibits robust stability, even in face of variations in BMP signaling. Multiple lines of genetic, molecular, and embryological evidence have suggested that numerous BMP signaling components and their attendant regulators act in concert to shape the developing DV axis. In this review, we summarize the current knowledge of the function and regulation of BMP signaling in DV patterning. Throughout, we focus specifically on popular model animals, such as Xenopus and zebrafish, highlighting the similarities and differences of the regulatory networks between species. We also review recent advances regarding the molecular nature of DV patterning, including the initiation of the DV axis, the formation of the BMP gradient, and the regulatory molecular mechanisms behind BMP signaling during the establishment of the DV axis. Collectively, this review will help clarify our current understanding of the molecular nature of DV axis formation.
Collapse
Affiliation(s)
- Yifang Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
LRP6 Receptor Plays Essential Functions in Development and Human Diseases. Genes (Basel) 2022; 13:genes13010120. [PMID: 35052459 PMCID: PMC8775365 DOI: 10.3390/genes13010120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
LRP6 is a member of the low-density lipoprotein receptor superfamily of cell-surface receptors. It is required for the activation of the Wnt/β-catenin signalling pathway. LRP6 is detected in different tissue types and is involved in numerous biological activities such as cell proliferation, specification, metastatic cancer, and embryonic development. LRP6 is essential for the proper development of different organs in vertebrates, such as Xenopus laevis, chickens, and mice. In human, LRP6 overexpression and mutations have been reported in multiple complex diseases including hypertension, atherosclerosis, and cancers. Clinical studies have shown that LRP6 is involved in various kinds of cancer, such as bladder and breast cancer. Therefore, in this review, we focus on the structure of LRP6 and its interactions with Wnt inhibitors (DKK1, SOST). We also discuss the expression of LRP6 in different model systems, with emphasis on its function in development and human diseases.
Collapse
|
8
|
He QL, Yuan P, Yang L, Yan ZQ, Chen W, Chen YD, Kong SM, Tang FC, Qiao J, Yan LY. Single-cell RNA sequencing reveals abnormal fluctuations in human eight-cell embryos associated with blastocyst formation failure. Mol Hum Reprod 2022; 28:6460826. [PMID: 34904654 DOI: 10.1093/molehr/gaab069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
Infertility has become a global health issue, with the number of people suffering from the disease increasing year by year, and ART offering great promise for infertility treatment. However, the regulation of early embryonic development is complicated and a series of processes takes place, including the maternal-to-zygotic transition. In addition, developmental arrest is frequently observed during human early embryonic development. In this study, we performed single-cell RNA sequencing on a biopsied blastomere from human eight-cell embryos and tracked the developmental potential of the remaining cells. To compare the sequencing results between different eight-cell embryos, we have combined the research data of this project with the data previously shared in the database and found that cells from the same embryo showed a higher correlation. Additionally, the transcriptome of embryos with blastocyst formation failure was significantly different from developed embryos, and the gene expression as well as cell signaling pathways related to embryonic development were also altered. In particular, the expression of some maternal and zygotic genes in the failed blastocyst formation group was significantly altered: the overall expression level of maternal genes was significantly higher in the failed blastocyst than the developed blastocyst group. In general, these findings provide clues for the causes of human embryonic arrest after the eight-cell stage, and they also provide new ideas for improving the success rate of ART in clinical practice.
Collapse
Affiliation(s)
- Qi-Long He
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Peng Yuan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Lu Yang
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhi-Qiang Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Wei Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yi-Dong Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Si-Ming Kong
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Fu-Chou Tang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Li-Ying Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
9
|
Tagami Y, Nishiyama T, Omote M, Watanabe M. Application of the RNA interference technique to Xenopus embryos: Specific reduction of the β-catenin gene products by short double-stranded RNA produced by recombinant human Dicer. Dev Growth Differ 2021; 63:467-477. [PMID: 34817899 DOI: 10.1111/dgd.12762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/05/2021] [Accepted: 10/23/2021] [Indexed: 02/06/2023]
Abstract
RNA interference (RNAi) is a technique for suppressing the function of specific genes and is widely used in many organisms, including yeast, nematodes, flies, plants, mice, and cultured mammalian cells. As of date, this technique has not been successfully applied to Xenopus laevis embryos. In this study, we applied RNAi to Xenopus embryos using β-catenin as a model gene. Injection of long double-stranded RNA (dsRNA) corresponding to the 3'-untranslated region of β-catenin mRNA into embryos induced embryonic lethality without any specific phenotype. However, injection of short dsRNA, generated from long dsRNA by treatment with recombinant human Dicer, into embryos resulted in decreased expression of endogenous β-catenin mRNA and protein, as well as decreased Wnt signaling activity in the embryos. The decrease in β-catenin mRNA and protein levels was observed only after mid-blastula transition. Embryos injected with short dsRNA showed a characteristic phenotype of enlarged anterior structures and loss of posterior structures. These phenotypes, as well as the increased expression of the anterior gene and decreased expression of the posterior gene, suggest that RNAi against the β-catenin gene suppresses the "late Wnt signaling" involved in proper anterior-posterior patterning of Xenopus embryos. The effect of RNAi on Xenopus embryos was also found to be sensitive to temperature. These results strongly suggest that the RNAi technique can be applied to Xenopus embryos using short dsRNAs, appropriate temperature control, and proper selection of target genes.
Collapse
Affiliation(s)
- Yuta Tagami
- Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima, Japan
| | - Takeshi Nishiyama
- Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima, Japan
| | - Michiko Omote
- Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima, Japan
| | - Minoru Watanabe
- Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima, Japan.,Institute of Liberal Arts and Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
10
|
Niehrs C. The role of Xenopus developmental biology in unraveling Wnt signalling and antero-posterior axis formation. Dev Biol 2021; 482:1-6. [PMID: 34818531 DOI: 10.1016/j.ydbio.2021.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Wnt signalling plays an eminent role in development, stem cell growth, and tissue homeostasis. Much of what we know about Wnt signalling, we owe to research in developmental biology. Here I review some salient discoveries in the older literature, beginning with the Lithium experiments in sea urchin by Curt Herbst in the 1890ies, when unknown to him he observed the gradual effects of Wnt overactivation upon embryonic axis formation. After revisiting key discoveries into Wingless signalling in Drosophila, I examine the role that the Xenopus embryo has played as model system in this regard. Not only were components of the Wnt cascade dissected and secreted Wnt antagonists discovered in Xenopus, but it also played a key role in unveiling the evolutionary conserved role of Wnt signalling in primary body axis formation. I conclude that Xenopus developmental biology has played a major role in elucidating the mechanisms of embryonic Wnt signalling.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| |
Collapse
|
11
|
Zhu X, Wang P, Wei J, Li Y, Zhai J, Zheng T, Tao Q. Lysosomal degradation of the maternal dorsal determinant Hwa safeguards dorsal body axis formation. EMBO Rep 2021; 22:e53185. [PMID: 34652064 DOI: 10.15252/embr.202153185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023] Open
Abstract
The Spemann and Mangold Organizer (SMO) is of fundamental importance for dorsal ventral body axis formation during vertebrate embryogenesis. Maternal Huluwa (Hwa) has been identified as the dorsal determinant that is both necessary and sufficient for SMO formation. However, it remains unclear how Hwa is regulated. Here, we report that the E3 ubiquitin ligase zinc and ring finger 3 (ZNRF3) is essential for restricting the spatial activity of Hwa and therefore correct SMO formation in Xenopus laevis. ZNRF3 interacts with and ubiquitinates Hwa, thereby regulating its lysosomal trafficking and protein stability. Perturbation of ZNRF3 leads to the accumulation of Hwa and induction of an ectopic axis in embryos. Ectopic expression of ZNRF3 promotes Hwa degradation and dampens the axis-inducing activity of Hwa. Thus, our findings identify a substrate of ZNRF3, but also highlight the importance of the regulation of Hwa temporospatial activity in body axis formation in vertebrate embryos.
Collapse
Affiliation(s)
- Xuechen Zhu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China.,Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Pan Wang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| | - Jiale Wei
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongyu Li
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiayu Zhai
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tianrui Zheng
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qinghua Tao
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Beijing, China
| |
Collapse
|
12
|
Nishiya N, Yonezawa H. Domestication of chemicals attacking metazoan embryogenesis: identification of safe natural products modifying developmental signaling pathways in human. J Antibiot (Tokyo) 2021; 74:651-659. [PMID: 34381189 DOI: 10.1038/s41429-021-00461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 02/06/2023]
Abstract
Soil microorganisms are rich sources of bioactive natural products. Interspecies interactions are the cues of their production and refine biological activities. These interactions in natural environments include the interplay between microorganisms and Metazoans (animals), such as nematodes, insects, and ticks. Chemical intercellular communication modulators could exert ideal Metazoan-selective toxicity for defending microorganisms. Developmental signaling pathways, such as the Notch, TGF-beta, and Wnt pathways, are intercellular communication networks that contribute to the reproducible formation of complex higher-order Metazoan body structures. Natural modifiers of the developmental signaling pathway are attractive therapeutic seeds for carcinoma and sarcoma treatment. However, these fundamental signaling pathways also play indispensable physiological roles and their perturbation could lead to toxicity, such as defects in stem cell physiology and tissue regeneration processes. In this review, we introduce a screening system that selects developmental signaling inhibitors with wide therapeutic windows using zebrafish embryonic phenotypes and provide examples of microorganism-derived Wnt pathway inhibitors. Moreover, we discuss safety prospects of the developmental signaling inhibitors.
Collapse
Affiliation(s)
- Naoyuki Nishiya
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, Yahaba, Japan.
| | - Honami Yonezawa
- Division of Integrated Information for Pharmaceutical Sciences, Department of Clinical Pharmacy, Iwate Medical University School of Pharmacy, Yahaba, Japan
| |
Collapse
|
13
|
Expression of Wnt and TGF-Beta Pathway Components during Whole-Body Regeneration from Cell Aggregates in Demosponge Halisarca dujardinii. Genes (Basel) 2021; 12:genes12060944. [PMID: 34203064 PMCID: PMC8235796 DOI: 10.3390/genes12060944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
The phenomenon of whole-body regeneration means rebuilding of the whole body of an animal from a small fragment or even a group of cells. In this process, the old axial relationships are often lost, and new ones are established. An amazing model for studying this process is sponges, some of which are able to regenerate into a definitive organism after dissociation into cells. We hypothesized that during the development of cell aggregates, primmorphs, new axes are established due to the activation of the Wnt and TGF-beta signaling pathways. Using in silico analysis, RNA-seq, and whole-mount in situ hybridization, we identified the participants in these signaling pathways and determined the spatiotemporal changes in their expression in demosponge Halisarca dujardinii. It was shown that Wnt and TGF-beta ligands are differentially expressed during primmorph development, and transcripts of several genes are localized at the poles of primmorphs, in the form of a gradient. We suppose that the Wnt and TGF-beta signaling cascades are involved in the initial axial patterning of the sponge body, which develops from cells after dissociation.
Collapse
|
14
|
Colozza G, Jami-Alahmadi Y, Dsouza A, Tejeda-Muñoz N, Albrecht LV, Sosa EA, Wohlschlegel JA, De Robertis EM. Wnt-inducible Lrp6-APEX2 interacting proteins identify ESCRT machinery and Trk-fused gene as components of the Wnt signaling pathway. Sci Rep 2020; 10:21555. [PMID: 33299006 PMCID: PMC7726150 DOI: 10.1038/s41598-020-78019-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
The canonical Wnt pathway serves as a hub connecting diverse cellular processes, including β-catenin signaling, differentiation, growth, protein stability, macropinocytosis, and nutrient acquisition in lysosomes. We have proposed that sequestration of β-catenin destruction complex components in multivesicular bodies (MVBs) is required for sustained canonical Wnt signaling. In this study, we investigated the events that follow activation of the canonical Wnt receptor Lrp6 using an APEX2-mediated proximity labeling approach. The Wnt co-receptor Lrp6 was fused to APEX2 and used to biotinylate targets that are recruited near the receptor during Wnt signaling at different time periods. Lrp6 proximity targets were identified by mass spectrometry, and revealed that many endosomal proteins interacted with Lrp6 within 5 min of Wnt3a treatment. Interestingly, we found that Trk-fused gene (TFG), previously known to regulate the cell secretory pathway and to be rearranged in thyroid and lung cancers, was strongly enriched in the proximity of Lrp6. TFG depletion with siRNA, or knock-out with CRISPR/Cas9, significantly reduced Wnt/β-catenin signaling in cell culture. In vivo, studies in the Xenopus system showed that TFG is required for endogenous Wnt-dependent embryonic patterning. The results suggest that the multivesicular endosomal machinery and the novel player TFG have important roles in Wnt signaling.
Collapse
Affiliation(s)
- Gabriele Colozza
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA. .,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA. .,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, 1030, Austria.
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Alyssa Dsouza
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA.,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA
| | - Nydia Tejeda-Muñoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA.,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA
| | - Lauren V Albrecht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA.,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA
| | - Eric A Sosa
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Edward M De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA. .,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA.
| |
Collapse
|
15
|
Schaefer KN, Peifer M. Wnt/Beta-Catenin Signaling Regulation and a Role for Biomolecular Condensates. Dev Cell 2019; 48:429-444. [PMID: 30782412 PMCID: PMC6386181 DOI: 10.1016/j.devcel.2019.01.025] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022]
Abstract
Wnt/β-Catenin signaling plays key roles in tissue homeostasis and cell fate decisions in embryonic and post-embryonic development across the animal kingdom. As a result, pathway mutations are associated with developmental disorders and many human cancers. The multiprotein destruction complex keeps signaling off in the absence of Wnt ligands and needs to be downregulated for pathway activation. We discuss new insights into destruction complex activity and regulation, highlighting parallels to the control of other cell biological processes by biomolecular condensates that form by phase separation to suggest that the destruction complex acts as a biomolecular condensate in Wnt pathway regulation.
Collapse
Affiliation(s)
- Kristina N Schaefer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Yan L, Chen J, Zhu X, Sun J, Wu X, Shen W, Zhang W, Tao Q, Meng A. Maternal Huluwa dictates the embryonic body axis through β-catenin in vertebrates. Science 2018; 362:362/6417/eaat1045. [DOI: 10.1126/science.aat1045] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022]
Abstract
The vertebrate body is formed by cell movements and shape change during embryogenesis. It remains undetermined which maternal signals govern the formation of the dorsal organizer and the body axis. We found that maternal depletion of huluwa, a previously unnamed gene, causes loss of the dorsal organizer, the head, and the body axis in zebrafish and Xenopus embryos. Huluwa protein is found on the plasma membrane of blastomeres in the future dorsal region in early zebrafish blastulas. Huluwa has strong dorsalizing and secondary axis–inducing activities, which require β-catenin but can function independent of Wnt ligand/receptor signaling. Mechanistically, Huluwa binds to and promotes the tankyrase-mediated degradation of Axin. Therefore, maternal Huluwa is an essential determinant of the dorsal organizer and body axis in vertebrate embryos.
Collapse
|
17
|
Clotrimazole inhibits the Wnt/β-catenin pathway by activating two eIF2α kinases: The heme-regulated translational inhibitor and the double-stranded RNA-induced protein kinase. Biochem Biophys Res Commun 2018; 506:183-188. [PMID: 30342850 DOI: 10.1016/j.bbrc.2018.10.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 01/08/2023]
Abstract
The Wnt/β-catenin signaling pathway controls cell proliferation and differentiation, and therefore, when this pathway is excessively activated, it causes tumorigenesis. Our chemical suppressor screening in zebrafish embryos identified antifungal azoles including clotrimazole, miconazole, and itraconazole, as Wnt/β-catenin signaling inhibitors. Here we show the mechanism underlying the Wnt/β-catenin pathway inhibition by antifungal azoles. Clotrimazole reduced β-catenin revels in a proteasome-independent fashion. By gene knockdown of two translational regulators, heme-regulated translational inhibitor and double-stranded RNA-induced protein kinase, we show that they mediate the clotrimazole-induced inhibition of the Wnt/β-catenin pathway. Thus, clotrimazole inhibits the Wnt/β-catenin pathway by decreasing β-catenin protein levels through translational regulation. Antifungal azoles represent genuine candidate compounds for anticancer drugs or chemopreventive agents that reduce adenomatous polyps.
Collapse
|
18
|
Grainger S, Willert K. Mechanisms of Wnt signaling and control. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1422. [PMID: 29600540 PMCID: PMC6165711 DOI: 10.1002/wsbm.1422] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 01/17/2023]
Abstract
The Wnt signaling pathway is a highly conserved system that regulates complex biological processes across all metazoan species. At the cellular level, secreted Wnt proteins serve to break symmetry and provide cells with positional information that is critical to the patterning of the entire body plan. At the organismal level, Wnt signals are employed to orchestrate fundamental developmental processes, including the specification of the anterior-posterior body axis, induction of the primitive streak and ensuing gastrulation movements, and the generation of cell and tissue diversity. Wnt functions extend into adulthood where they regulate stem cell behavior, tissue homeostasis, and damage repair. Disruption of Wnt signaling activity during embryonic development or in adults results in a spectrum of abnormalities and diseases, including cancer. The molecular mechanisms that underlie the myriad of Wnt-regulated biological effects have been the subject of intense research for over three decades. This review is intended to summarize our current understanding of how Wnt signals are generated and interpreted. This article is categorized under: Biological Mechanisms > Cell Signaling Developmental Biology > Stem Cell Biology and Regeneration.
Collapse
Affiliation(s)
- Stephanie Grainger
- Department of Cellular and Molecular Medicine University of California San Diego La Jolla California
| | - Karl Willert
- Department of Cellular and Molecular Medicine University of California San Diego La Jolla California
| |
Collapse
|
19
|
Tacchelly-Benites O, Wang Z, Yang E, Benchabane H, Tian A, Randall MP, Ahmed Y. Axin phosphorylation in both Wnt-off and Wnt-on states requires the tumor suppressor APC. PLoS Genet 2018; 14:e1007178. [PMID: 29408853 PMCID: PMC5800574 DOI: 10.1371/journal.pgen.1007178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/30/2017] [Indexed: 12/24/2022] Open
Abstract
The aberrant activation of Wnt signal transduction initiates the development of 90% of colorectal cancers, the majority of which arise from inactivation of the tumor suppressor Adenomatous polyposis coli (APC). In the classical model for Wnt signaling, the primary role of APC is to act, together with the concentration-limiting scaffold protein Axin, in a “destruction complex” that directs the phosphorylation and consequent proteasomal degradation of the transcriptional activator β-catenin, thereby preventing signaling in the Wnt-off state. Following Wnt stimulation, Axin is recruited to a multiprotein “signalosome” required for pathway activation. Whereas it is well-documented that APC is essential in the destruction complex, APC’s role in this complex remains elusive. Here, we demonstrate in Drosophila that Axin exists in two distinct phosphorylation states in Wnt-off and Wnt-on conditions, respectively, that underlie its roles in the destruction complex and signalosome. These two Axin phosphorylation states are catalyzed by glycogen synthase kinase 3 (GSK3), and unexpectedly, completely dependent on APC in both unstimulated and Wnt-stimulated conditions. In a major revision of the classical model, we show that APC is essential not only in the destruction complex, but also for the rapid transition in Axin that occurs after Wnt stimulation and Axin’s subsequent association with the Wnt co-receptor LRP6/Arrow, one of the earliest steps in pathway activation. We propose that this novel requirement for APC in Axin regulation through phosphorylation both prevents signaling in the Wnt-off state and promotes signaling immediately following Wnt stimulation. The Wnt signal transduction pathway directs fundamental cellular processes during development and in homeostasis. Wnt signaling is deregulated in 90% of colorectal cancers, most of which are triggered by inactivation of the tumor suppressor Adenomatous polyposis coli (APC). In the classical model, APC’s sole role in Wnt signaling is to target the transcriptional coactivator β-catenin for phosphorylation and subsequent degradation, and thereby to inhibit signaling in the unstimulated state. However, the mechanisms by which APC functions remain unknown. Herein, we provide evidence in Drosophila that supports a major role for APC in the direct regulation of the scaffold protein Axin in both Wnt-on and Wnt-off conditions. Our results indicate that APC promotes Axin phosphorylation, which is required not only to inhibit signaling in the unstimulated state, but also to activate signaling following Wnt stimulation. These unanticipated findings support a more active and multifaceted role for APC in Wnt signaling than previously known, and force revision of the current model for APC function.
Collapse
Affiliation(s)
- Ofelia Tacchelly-Benites
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Zhenghan Wang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Eungi Yang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Ai Tian
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Michael P. Randall
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
- * E-mail:
| |
Collapse
|
20
|
Do Gametes Woo? Evidence for Their Nonrandom Union at Fertilization. Genetics 2018; 207:369-387. [PMID: 28978771 DOI: 10.1534/genetics.117.300109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022] Open
Abstract
A fundamental tenet of inheritance in sexually reproducing organisms such as humans and laboratory mice is that gametes combine randomly at fertilization, thereby ensuring a balanced and statistically predictable representation of inherited variants in each generation. This principle is encapsulated in Mendel's First Law. But exceptions are known. With transmission ratio distortion, particular alleles are preferentially transmitted to offspring. Preferential transmission usually occurs in one sex but not both, and is not known to require interactions between gametes at fertilization. A reanalysis of our published work in mice and of data in other published reports revealed instances where any of 12 mutant genes biases fertilization, with either too many or too few heterozygotes and homozygotes, depending on the mutant gene and on dietary conditions. Although such deviations are usually attributed to embryonic lethality of the underrepresented genotypes, the evidence is more consistent with genetically-determined preferences for specific combinations of egg and sperm at fertilization that result in genotype bias without embryo loss. This unexpected discovery of genetically-biased fertilization could yield insights about the molecular and cellular interactions between sperm and egg at fertilization, with implications for our understanding of inheritance, reproduction, population genetics, and medical genetics.
Collapse
|
21
|
Griffin JN, del Viso F, Duncan AR, Robson A, Hwang W, Kulkarni S, Liu KJ, Khokha MK. RAPGEF5 Regulates Nuclear Translocation of β-Catenin. Dev Cell 2018; 44:248-260.e4. [PMID: 29290587 PMCID: PMC5818985 DOI: 10.1016/j.devcel.2017.12.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/04/2017] [Accepted: 11/30/2017] [Indexed: 12/16/2022]
Abstract
Canonical Wnt signaling coordinates many critical aspects of embryonic development, while dysregulated Wnt signaling contributes to common diseases, including congenital malformations and cancer. The nuclear localization of β-catenin is the defining step in pathway activation. However, despite intensive investigation, the mechanisms regulating β-catenin nuclear transport remain undefined. In a patient with congenital heart disease and heterotaxy, a disorder of left-right patterning, we previously identified the guanine nucleotide exchange factor, RAPGEF5. Here, we demonstrate that RAPGEF5 regulates left-right patterning via Wnt signaling. In particular, RAPGEF5 regulates the nuclear translocation of β-catenin independently of both β-catenin cytoplasmic stabilization and the importin β1/Ran-mediated transport system. We propose a model whereby RAPGEF5 activates the nuclear GTPases, Rap1a/b, to facilitate the nuclear transport of β-catenin, defining a parallel nuclear transport pathway to Ran. Our results suggest new targets for modulating Wnt signaling in disease states.
Collapse
Affiliation(s)
- John N. Griffin
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA,Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, United Kingdom
| | - Florencia del Viso
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Anna R. Duncan
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Andrew Robson
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Woong Hwang
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Saurabh Kulkarni
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, United Kingdom
| | - Mustafa K. Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA,Correspondence to: Lead contact Mustafa Khokha,
| |
Collapse
|
22
|
Piezo2 protein: A novel regulator of tumor angiogenesis and hyperpermeability. Oncotarget 2018; 7:44630-44643. [PMID: 27329839 PMCID: PMC5190124 DOI: 10.18632/oncotarget.10134] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/29/2016] [Indexed: 01/01/2023] Open
Abstract
Angiogenesis is important for invasive tumor growth and metastasis. Its inhibition is a promising tactic for limiting tumor progression. Here, we showed that Piezo2 knockdown led to decreased glioma angiogenesis and reduced vascular hyperpermeability. Piezo2 was highly expressed in tumor endothelial cells, and its knockdown suppressed vascular leakage and tumor angiogenesis. In a retinal vasculature development assay, corneal angiogenesis assay and a modified Miles assay, Piezo2 knockdown obviously decreased angiogenesis and vascular hyperpermeability. In vitro assays revealed that Piezo2 knockdown inhibited endothelial cell proliferation, migration, and tube formation. Moreover, In vitro co-culture system assay showed that Piezo2 knockdown in endothelial cells suppressed cell proliferation, migration, and invasion of glioma tumor cells. Piezo2 could regulate glioma angiogenesis via Ca2+/Wnt11/β-catenin signaling in endothelial cells. Taken together, these studies provide the evidence for Piezo2 as a critical regulator of tumor angiogenesis and vascular permeability.
Collapse
|
23
|
Tortelote GG, Reis RR, de Almeida Mendes F, Abreu JG. Complexity of the Wnt/β‑catenin pathway: Searching for an activation model. Cell Signal 2017; 40:30-43. [PMID: 28844868 DOI: 10.1016/j.cellsig.2017.08.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Wnt signaling refers to a conserved signaling pathway, widely studied due to its roles in cellular communication, cell fate decisions, development and cancer. However, the exact mechanism underlying inhibition of the GSK phosphorylation towards β-catenin and activation of the pathway after biding of Wnt ligand to its cognate receptors at the plasma membrane remains unclear. Wnt target genes are widely spread over several animal phyla. They participate in a plethora of functions during the development of an organism, from axial specification, gastrulation and organogenesis all the way to regeneration and repair in adults. Temporal and spatial oncogenetic re-activation of Wnt signaling almost certainly leads to cancer. Wnt signaling components have been extensively studied as possible targets in anti-cancer therapies. In this review we will discuss one of the most intriguing questions in this field, that is how β-catenin, a major component in this pathway, escapes the destruction complex, gets stabilized in the cytosol and it is translocated to the nucleus where it acts as a co-transcription factor. Four major models have evolved during the past 20years. We dissected each of them along with current views and future perspectives on this pathway. This review will focus on the molecular mechanisms by which Wnt proteins modulate β-catenin cytoplasmic levels and the relevance of this pathway for the development and cancer.
Collapse
Affiliation(s)
- Giovane G Tortelote
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Renata R Reis
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio de Almeida Mendes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Garcia Abreu
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
24
|
The RNF146 E3 ubiquitin ligase is required for the control of Wnt signaling and body pattern formation in Xenopus. Mech Dev 2017; 147:28-36. [PMID: 28807725 DOI: 10.1016/j.mod.2017.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/05/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022]
Abstract
The RING finger protein Rnf146 encodes an E3 ubiquitin ligase capable of targeting poly-ADP-ribosylated substrates for proteasomal degradation. Rnf146 has been identified as a critical regulator of Axin1 and thus of Wnt/β-catenin signaling. However its physiological significance in vertebrate embryonic development remains to be demonstrated. In this study, we take advantages of early Xenopus embryos to demonstrate that Rnf146 is essential for embryonic pattern formation. Depletion of zygotic Rnf146 using a translation blocking morpholino oligo (MO) results in anteriorized development and increased expression the anterior marker gene Otx2, consistent the notion that Rnf146 is a positive regulator of Wnt/β-catenin signaling through negatively regulating Axin1 expression. This notion is further supported by examination of the role of maternal Rnf146 in the context of Spemann organizer formation and dorsal axis development. Depletion of maternal Rnf146 using an antisense oligodeoxynucleic acid (ODN) leads to ventralized development and diminished expression of organizer genes. Together, we have provided evidence for the first time that Rnf146 is a critical regulator of embryonic pattern formation in vertebrates.
Collapse
|
25
|
Li B, Orton D, Neitzel LR, Astudillo L, Shen C, Long J, Chen X, Kirkbride KC, Doundoulakis T, Guerra ML, Zaias J, Fei DL, Rodriguez-Blanco J, Thorne C, Wang Z, Jin K, Nguyen DM, Sands LR, Marchetti F, Abreu MT, Cobb MH, Capobianco AJ, Lee E, Robbins DJ. Differential abundance of CK1α provides selectivity for pharmacological CK1α activators to target WNT-dependent tumors. Sci Signal 2017; 10:eaak9916. [PMID: 28655862 PMCID: PMC5555225 DOI: 10.1126/scisignal.aak9916] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Constitutive WNT activity drives the growth of various human tumors, including nearly all colorectal cancers (CRCs). Despite this prominence in cancer, no WNT inhibitor is currently approved for use in the clinic largely due to the small number of druggable signaling components in the WNT pathway and the substantial toxicity to normal gastrointestinal tissue. We have shown that pyrvinium, which activates casein kinase 1α (CK1α), is a potent inhibitor of WNT signaling. However, its poor bioavailability limited the ability to test this first-in-class WNT inhibitor in vivo. We characterized a novel small-molecule CK1α activator called SSTC3, which has better pharmacokinetic properties than pyrvinium, and found that it inhibited the growth of CRC xenografts in mice. SSTC3 also attenuated the growth of a patient-derived metastatic CRC xenograft, for which few therapies exist. SSTC3 exhibited minimal gastrointestinal toxicity compared to other classes of WNT inhibitors. Consistent with this observation, we showed that the abundance of the SSTC3 target, CK1α, was decreased in WNT-driven tumors relative to normal gastrointestinal tissue, and knocking down CK1α increased cellular sensitivity to SSTC3. Thus, we propose that distinct CK1α abundance provides an enhanced therapeutic index for pharmacological CK1α activators to target WNT-driven tumors.
Collapse
Affiliation(s)
- Bin Li
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Darren Orton
- StemSynergy Therapeutics Inc., Miami, FL 33136, USA
| | - Leif R Neitzel
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Luisana Astudillo
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Chen Shen
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jun Long
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Xi Chen
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | - Julia Zaias
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Dennis Liang Fei
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jezabel Rodriguez-Blanco
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Curtis Thorne
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiqiang Wang
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ke Jin
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Dao M Nguyen
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Laurence R Sands
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Floriano Marchetti
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Maria T Abreu
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anthony J Capobianco
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David J Robbins
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
26
|
Shi H, Xu X, Zhang B, Xu J, Pan Z, Gong A, Zhang X, Li R, Sun Y, Yan Y, Mao F, Qian H, Xu W. 3,3'-Diindolylmethane stimulates exosomal Wnt11 autocrine signaling in human umbilical cord mesenchymal stem cells to enhance wound healing. Theranostics 2017; 7:1674-1688. [PMID: 28529644 PMCID: PMC5436520 DOI: 10.7150/thno.18082] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hucMSCs) are suggested as a promising therapeutic tool in regenerative medicine, however, their efficacy requires improvement. Small molecules and drugs come up to be a convenient strategy in regulating stem cells fate and function. Here, we evaluated 3,3'-diindolylmethane (DIM), a natural small-molecule compound involved in the repairing effects of hucMSCs on a deep second-degree burn injury rat model. HucMSCs primed with 50 μM of DIM exhibited desirable repairing effects compared with untreated hucMSCs. DIM enhanced the stemness of hucMSCs, which was related to the activation of Wnt/β-catenin signaling. β-catenin inhibition impaired the healing effects of DIM-primed hucMSCs (DIM-hucMSCs) in vivo. Moreover, we demonstrated that DIM upregulated Wnt11 expression in hucMSC-derived exosomes. Wnt11 knockdown inhibited β-catenin activation and stemness induction in DIM-hucMSCs and abrogated their therapeutic effects in vivo. Thus, our findings indicate that DIM promotes the stemness of hucMSCs through increased exosomal Wnt11 autocrine signaling, which provides a novel strategy for improving the therapeutic effects of hucMSCs on wound healing.
Collapse
Affiliation(s)
- Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiao Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiahao Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhaoji Pan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Aihua Gong
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Rong Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yaoxiang Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yongmin Yan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Fei Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
27
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
28
|
Wang Z, Tacchelly-Benites O, Yang E, Ahmed Y. Dual Roles for Membrane Association of Drosophila Axin in Wnt Signaling. PLoS Genet 2016; 12:e1006494. [PMID: 27959917 PMCID: PMC5154497 DOI: 10.1371/journal.pgen.1006494] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022] Open
Abstract
Deregulation of the Wnt signal transduction pathway underlies numerous congenital disorders and cancers. Axin, a concentration-limiting scaffold protein, facilitates assembly of a “destruction complex” that prevents signaling in the unstimulated state and a plasma membrane-associated “signalosome” that activates signaling following Wnt stimulation. In the classical model, Axin is cytoplasmic under basal conditions, but relocates to the cell membrane after Wnt exposure; however, due to the very low levels of endogenous Axin, this model is based largely on examination of Axin at supraphysiological levels. Here, we analyze the subcellular distribution of endogenous Drosophila Axin in vivo and find that a pool of Axin localizes to cell membrane proximal puncta even in the absence of Wnt stimulation. Axin localization in these puncta is dependent on the destruction complex component Adenomatous polyposis coli (Apc). In the unstimulated state, the membrane association of Axin increases its Tankyrase-dependent ADP-ribosylation and consequent proteasomal degradation to control its basal levels. Furthermore, Wnt stimulation does not result in a bulk redistribution of Axin from cytoplasmic to membrane pools, but causes an initial increase of Axin in both of these pools, with concomitant changes in two post-translational modifications, followed by Axin proteolysis hours later. Finally, the ADP-ribosylated Axin that increases rapidly following Wnt stimulation is membrane associated. We conclude that even in the unstimulated state, a pool of Axin forms membrane-proximal puncta that are dependent on Apc, and that membrane association regulates both Axin levels and Axin’s role in the rapid activation of signaling that follows Wnt exposure. Axin is a scaffold protein with essential roles in Wnt signal transduction. In the classical model, the transition from the unstimulated to stimulated state is thought to be achieved by recruitment of Axin from cytosol to plasma membrane. We find that a pool of endogenous Drosophila Axin is localized in puncta juxtaposed with the cell membrane even under basal conditions and is targeted for degradation by the ADP-ribose polymerase Tankyrase. Wnt stimulation initially results in increased Axin levels in both the cytosolic and membrane pools, which may enhance the robust activation of signaling.
Collapse
Affiliation(s)
- Zhenghan Wang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Ofelia Tacchelly-Benites
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Eungi Yang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
- * E-mail:
| |
Collapse
|
29
|
Gillis WQ, Kirmizitas A, Iwasaki Y, Ki DH, Wyrick JM, Thomsen GH. Gtpbp2 is a positive regulator of Wnt signaling and maintains low levels of the Wnt negative regulator Axin. Cell Commun Signal 2016; 14:15. [PMID: 27484226 PMCID: PMC4969687 DOI: 10.1186/s12964-016-0138-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/29/2016] [Indexed: 12/29/2022] Open
Abstract
Background Canonical Wnt signals, transduced by stabilized β-catenin, play similar roles across animals in maintaining stem cell pluripotency, regulating cell differentiation, and instructing normal embryonic development. Dysregulated Wnt/β-catenin signaling causes diseases and birth defects, and a variety of regulatory processes control this pathway to ensure its proper function and integration with other signaling systems. We previously identified GTP-binding protein 2 (Gtpbp2) as a novel regulator of BMP signaling, however further exploration revealed that Gtpbp2 can also affect Wnt signaling, which is a novel finding reported here. Results Knockdown of Gtpbp2 in Xenopus embryos causes severe axial defects and reduces expression of Spemann-Mangold organizer genes. Gtpbp2 knockdown blocks responses to ectopic Wnt8 ligand, such as organizer gene induction in ectodermal tissue explants and induction of secondary axes in whole embryos. However, organizer gene induction by ectopic Nodal2 is unaffected by Gtpbp2 knockdown. Epistasis tests, conducted by activating Wnt signal transduction at sequential points in the canonical pathway, demonstrate that Gtpbp2 is required downstream of Dishevelled and Gsk3β but upstream of β-catenin, which is similar to the previously reported effects of Axin1 overexpression in Xenopus embryos. Focusing on Axin in Xenopus embryos, we find that knockdown of Gtpbp2 elevates endogenous or exogenous Axin protein levels. Furthermore, Gtpbp2 fusion proteins co-localize with Dishevelled and co-immunoprecipitate with Axin and Gsk3b. Conclusions We conclude that Gtpbp2 is required for canonical Wnt/β-catenin signaling in Xenopus embryos. Our data suggest a model in which Gtpbp2 suppresses the accumulation of Axin protein, a rate-limiting component of the β-catenin destruction complex, such that Axin protein levels negatively correlate with Gtpbp2 levels. This model is supported by the similarity of our Gtpbp2-Wnt epistasis results and previously reported effects of Axin overexpression, the physical interactions of Gtpbp2 with Axin, and the correlation between elevated Axin protein levels and lost Wnt responsiveness upon Gtpbp2 knockdown. A wide variety of cancer-causing Wnt pathway mutations require low Axin levels, so development of Gtpbp2 inhibitors may provide a new therapeutic strategy to elevate Axin and suppress aberrant β-catenin signaling in cancer and other Wnt-related diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12964-016-0138-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- William Q Gillis
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794-5215, USA.,Present Address: Department of Biological Sciences, State University of New York, College at Old Westbury, Old Westbury, NY, 11568, USA
| | - Arif Kirmizitas
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794-5215, USA.,Present Address: The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Yasuno Iwasaki
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794-5215, USA
| | - Dong-Hyuk Ki
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794-5215, USA.,Present Address: Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Jonathan M Wyrick
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794-5215, USA
| | - Gerald H Thomsen
- Department of Biochemistry and Cell Biology, Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794-5215, USA.
| |
Collapse
|
30
|
Wnt pathway activation by ADP-ribosylation. Nat Commun 2016; 7:11430. [PMID: 27138857 PMCID: PMC4857404 DOI: 10.1038/ncomms11430] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 03/23/2016] [Indexed: 01/12/2023] Open
Abstract
Wnt/β-catenin signalling directs fundamental processes during metazoan development and can be aberrantly activated in cancer. Wnt stimulation induces the recruitment of the scaffold protein Axin from an inhibitory destruction complex to a stimulatory signalosome. Here we analyse the early effects of Wnt on Axin and find that the ADP-ribose polymerase Tankyrase (Tnks)--known to target Axin for proteolysis-regulates Axin's rapid transition following Wnt stimulation. We demonstrate that the pool of ADP-ribosylated Axin, which is degraded under basal conditions, increases immediately following Wnt stimulation in both Drosophila and human cells. ADP-ribosylation of Axin enhances its interaction with the Wnt co-receptor LRP6, an essential step in signalosome assembly. We suggest that in addition to controlling Axin levels, Tnks-dependent ADP-ribosylation promotes the reprogramming of Axin following Wnt stimulation; and propose that Tnks inhibition blocks Wnt signalling not only by increasing destruction complex activity, but also by impeding signalosome assembly.
Collapse
|
31
|
Kiecker C, Bates T, Bell E. Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci 2016; 73:923-47. [PMID: 26667903 PMCID: PMC4744249 DOI: 10.1007/s00018-015-2092-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/11/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
Abstract
In order to generate the tissues and organs of a multicellular organism, different cell types have to be generated during embryonic development. The first step in this process of cellular diversification is the formation of the three germ layers: ectoderm, endoderm and mesoderm. The ectoderm gives rise to the nervous system, epidermis and various neural crest-derived tissues, the endoderm goes on to form the gastrointestinal, respiratory and urinary systems as well as many endocrine glands, and the mesoderm will form the notochord, axial skeleton, cartilage, connective tissue, trunk muscles, kidneys and blood. Classic experiments in amphibian embryos revealed the tissue interactions involved in germ layer formation and provided the groundwork for the identification of secreted and intracellular factors involved in this process. We will begin this review by summarising the key findings of those studies. We will then evaluate them in the light of more recent genetic studies that helped clarify which of the previously identified factors are required for germ layer formation in vivo, and to what extent the mechanisms identified in amphibians are conserved across other vertebrate species. Collectively, these studies have started to reveal the gene regulatory network (GRN) underlying vertebrate germ layer specification and we will conclude our review by providing examples how our understanding of this GRN can be employed to differentiate stem cells in a targeted fashion for therapeutic purposes.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
| | - Thomas Bates
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Esther Bell
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK.
| |
Collapse
|
32
|
Maternal Wnt/STOP signaling promotes cell division during early Xenopus embryogenesis. Proc Natl Acad Sci U S A 2015; 112:5732-7. [PMID: 25901317 DOI: 10.1073/pnas.1423533112] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
During Xenopus development, Wnt signaling is thought to function first after midblastula transition to regulate axial patterning via β-catenin-mediated transcription. Here, we report that Wnt/glycogen synthase kinase 3 (GSK3) signaling functions posttranscriptionally already in mature oocytes via Wnt/stabilization of proteins (STOP) signaling. Wnt signaling is induced in oocytes after their entry into meiotic metaphase II and declines again upon exit into interphase. Wnt signaling inhibits Gsk3 and thereby protects proteins from polyubiquitination and degradation in mature oocytes. In a protein array screen, we identify a cluster of mitotic effector proteins that are polyubiquitinated in a Gsk3-dependent manner in Xenopus. Consequently inhibition of maternal Wnt/STOP signaling, but not β-catenin signaling, leads to early cleavage arrest after fertilization. The results support a novel role for Wnt signaling in cell cycle progression independent of β-catenin.
Collapse
|
33
|
Feng R, Sang Q, Zhu Y, Fu W, Liu M, Xu Y, Shi H, Xu Y, Qu R, Chai R, Shao R, Jin L, He L, Sun X, Wang L. MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro. Sci Rep 2015; 5:8689. [PMID: 25732513 PMCID: PMC4346788 DOI: 10.1038/srep08689] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/29/2015] [Indexed: 12/29/2022] Open
Abstract
Previous work from our laboratory demonstrated the existence of miRNAs in human follicular fluid. In the current study, we have sought to identify miRNAs that might affect oocyte/embryo quality in patients undergoing intracytoplasmic sperm injection and to investigate their roles in in vitro fertilization outcomes in mouse oocytes. 53 samples were classified as Group 1 (high quality) if the day-3 embryos had seven and more cells or as Group 2 (low quality) if the embryos had six and fewer cells. TaqMan Human microRNAs cards and qRT-PCR were performed to verify differently expressed miRNAs. The function of the corresponding miRNA was investigated in mouse oocytes by injecting them with miRNA-inhibitor oligonucleotides. We found that hsa-miR-320a and hsa-miR-197 had significantly higher expression levels in the Group 1 follicular fluids than in Group 2 (p = 0.0073 and p = 0.008, respectively). Knockdown of mmu-miR-320 in mouse oocytes strongly decreased the proportions of MII oocytes that developed into two-cell and blastocyst stage embryos (p = 0.0048 and p = 0.0069, respectively). Wnt signaling pathway components had abnormal expression level in miR-320 inhibitor-injected oocytes. This study provides the first evidence that miRNAs in human follicular fluid are indicative of and can influence embryo quality.
Collapse
Affiliation(s)
- Ruizhi Feng
- 1] State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China [2] Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qing Sang
- 1] State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China [2] Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan Zhu
- Guangdong No.2 provincial people's hospital, Guangzhou, China
| | - Wei Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Miao Liu
- Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Yan Xu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Huijuan Shi
- Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Yao Xu
- 1] State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China [2] Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ronggui Qu
- 1] State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China [2] Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Ruijin Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Li Jin
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin He
- 1] Institutes of Biomedical Sciences, Fudan University, Shanghai, China [2] Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lei Wang
- 1] State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China [2] Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Dichmann DS, Walentek P, Harland RM. The alternative splicing regulator Tra2b is required for somitogenesis and regulates splicing of an inhibitory Wnt11b isoform. Cell Rep 2015; 10:527-36. [PMID: 25620705 DOI: 10.1016/j.celrep.2014.12.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/25/2014] [Accepted: 12/18/2014] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing is pervasive in vertebrates, yet little is known about most isoforms or their regulation. transformer-2b (tra2b) encodes a splicing regulator whose endogenous function is poorly understood. Tra2b knockdown in Xenopus results in embryos with multiple defects, including defective somitogenesis. Using RNA sequencing, we identify 142 splice changes (mostly intron retention and exon skipping), 89% of which are not in current annotations. A previously undescribed isoform of wnt11b retains the last intron, resulting in a truncated ligand (Wnt11b-short). We show that this isoform acts as a dominant-negative ligand in cardiac gene induction and pronephric tubule formation. To determine the contribution of Wnt11b-short to the tra2b phenotype, we induce retention of intron 4 in wnt11b, which recapitulates the failure to form somites but not other tra2b morphant defects. This alternative splicing of a Wnt ligand adds intricacy to a complex signaling pathway and highlights intron retention as a regulatory mechanism.
Collapse
Affiliation(s)
- Darwin S Dichmann
- Department of Molecular & Cell Biology, 142 Life Sciences Addition #3200, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| | - Peter Walentek
- Department of Molecular & Cell Biology, 142 Life Sciences Addition #3200, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Richard M Harland
- Department of Molecular & Cell Biology, 142 Life Sciences Addition #3200, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
35
|
Maternal syntabulin is required for dorsal axis formation and is a germ plasm component in Xenopus. Differentiation 2014; 88:17-26. [PMID: 24798204 DOI: 10.1016/j.diff.2014.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 11/23/2022]
Abstract
In amphibians and teleosts, early embryonic axial development is driven by maternally deposited mRNAs and proteins, called dorsal determinants, which migrate to the presumptive dorsal side of the embryo in a microtubule-dependent manner after fertilization. Syntabulin is an adapter protein that binds to kinesin KIF5B and to the transmembrane protein Syntaxin1. In zebrafish, a mutation in Syntabulin causes complete embryo ventralization. It is unknown whether Syntabulin plays an analogous role during early development of other species, a question addressed here in Xenopus laevis. in situ hybridization of syntabulin mRNA was carried out at different stages of Xenopus development. In oocytes, syntabulin transcripts were localized to the vegetal cortex of large oocytes and the mitochondrial cloud of very young oocytes. We extended the zebrafish data by finding that during cleavage Xenopus syntabulin mRNA localized to the germ plasm and was later expressed in primordial germ cells (PGCs). This new finding suggested a role for Syntabulin during germ cell differentiation. The functional role of maternal syntabulin mRNA was investigated by knock-down with phosphorothioate DNA antisense oligos followed by oocyte transfer. The results showed that syntabulin mRNA depletion caused the complete loss of dorso-anterior axis formation in frog embryos. Consistent with the ventralized phenotype, syntabulin-depleted embryos displayed severe reduction of dorsal markers and ubiquitous transcription of the ventral marker sizzled. Syntabulin was required for the maternal Wnt/β-Catenin signal, since ventralization could be completely rescued by injection of β-catenin (or syntabulin) mRNA. The data suggest an evolutionarily conserved role for Syntabulin, a protein that bridges microtubule motors and membrane vesicles, during dorso-ventral axis formation in the vertebrates.
Collapse
|
36
|
Nishiya N, Oku Y, Kumagai Y, Sato Y, Yamaguchi E, Sasaki A, Shoji M, Ohnishi Y, Okamoto H, Uehara Y. A zebrafish chemical suppressor screening identifies small molecule inhibitors of the Wnt/β-catenin pathway. ACTA ACUST UNITED AC 2014; 21:530-540. [PMID: 24684907 DOI: 10.1016/j.chembiol.2014.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/14/2014] [Accepted: 02/20/2014] [Indexed: 01/26/2023]
Abstract
Genetic screening for suppressor mutants has been successfully used to identify important signaling regulators. Using an analogy to genetic suppressor screening, we developed a chemical suppressor screening method to identify inhibitors of the Wnt/β-catenin signaling pathway. We used zebrafish embryos in which chemically induced β-catenin accumulation led to an "eyeless" phenotype and conducted a pilot screening for compounds that restored eye development. This approach allowed us to identify geranylgeranyltransferase inhibitor 286 (GGTI-286), a geranylgeranyltransferase (GGTase) inhibitor. Our follow-up studies showed that GGTI-286 reduces nuclear localization of β-catenin and transcription dependent on β-catenin/T cell factor in mammalian cells. In addition to pharmacological inhibition, GGTase gene knockdown also attenuates the nuclear function of β-catenin. Overall, we validate our chemical suppressor screening as a method for identifying Wnt/β-catenin pathway inhibitors and implicate GGTase as a potential therapeutic target for Wnt-activated cancers.
Collapse
Affiliation(s)
- Naoyuki Nishiya
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmacy, Yahaba, Iwate 028-3694, Japan.
| | - Yusuke Oku
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmacy, Yahaba, Iwate 028-3694, Japan
| | - Yusuke Kumagai
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmacy, Yahaba, Iwate 028-3694, Japan
| | - Yuki Sato
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmacy, Yahaba, Iwate 028-3694, Japan
| | - Emi Yamaguchi
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmacy, Yahaba, Iwate 028-3694, Japan
| | - Akari Sasaki
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmacy, Yahaba, Iwate 028-3694, Japan
| | - Momoko Shoji
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmacy, Yahaba, Iwate 028-3694, Japan
| | - Yukimi Ohnishi
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmacy, Yahaba, Iwate 028-3694, Japan
| | - Hitoshi Okamoto
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Yoshimasa Uehara
- Department of Microbial Chemical Biology and Drug Discovery, Iwate Medical University School of Pharmacy, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
37
|
Single blastomere expression profiling of Xenopus laevis embryos of 8 to 32-cells reveals developmental asymmetry. Sci Rep 2014; 3:2278. [PMID: 23880666 PMCID: PMC3721081 DOI: 10.1038/srep02278] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/05/2013] [Indexed: 12/24/2022] Open
Abstract
We have measured the expression of 41 maternal mRNAs in individual blastomeres collected from the 8 to 32-cell Xenopus laevis embryos to determine when and how asymmetry in the body plan is introduced. We demonstrate that the asymmetry along the animal-vegetal axis in the oocyte is transferred to the daughter cells during early cell divisions. All studied mRNAs are distributed evenly among the set of animal as well as vegetal blastomeres. We find no asymmetry in mRNA levels that might be ascribed to the dorso-ventral specification or the left-right axis formation. We hypothesize that while the animal-vegetal asymmetry is a consequence of mRNA gradients, the dorso-ventral and left-right axes specifications are induced by asymmetric distribution of other biomolecules, probably proteins.
Collapse
|
38
|
Bin-Nun N, Lichtig H, Malyarova A, Levy M, Elias S, Frank D. PTK7 modulates Wnt signaling activity via LRP6. Development 2014; 141:410-21. [DOI: 10.1242/dev.095984] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein tyrosine kinase 7 (PTK7) is a transmembrane protein expressed in the developing Xenopus neural plate. PTK7 regulates vertebrate planar cell polarity (PCP), controlling mesodermal and neural convergent-extension (CE) cell movements, neural crest migration and neural tube closure in vertebrate embryos. Besides CE phenotypes, we now show that PTK7 protein knockdown also inhibits Wnt/β-catenin activity. Canonical Wnt signaling caudalizes the neural plate via direct transcriptional activation of the meis3 TALE-class homeobox gene, which subsequently induces neural CE. PTK7 controls meis3 gene expression to specify posterior tissue and downstream PCP activity. Furthermore, PTK7 morphants phenocopy embryos depleted for Wnt3a, LRP6 and Meis3 proteins. PTK7 protein depletion inhibits embryonic Wnt/β-catenin signaling by strongly reducing LRP6 protein levels. LRP6 protein positively modulates Wnt/β-catenin, but negatively modulates Wnt/PCP activities. The maintenance of high LRP6 protein levels by PTK7 triggers PCP inhibition. PTK7 and LRP6 proteins physically interact, suggesting that PTK7 stabilization of LRP6 protein reciprocally regulates both canonical and noncanonical Wnt activities in the embryo. We suggest a novel role for PTK7 protein as a modulator of LRP6 that negatively regulates Wnt/PCP activity.
Collapse
Affiliation(s)
- Naama Bin-Nun
- Department of Biochemistry, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Hava Lichtig
- Department of Biochemistry, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Anastasia Malyarova
- Department of Biochemistry, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Michal Levy
- Department of Biochemistry, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Sara Elias
- Department of Biochemistry, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Dale Frank
- Department of Biochemistry, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
39
|
Wnt11b is involved in cilia-mediated symmetry breakage during Xenopus left-right development. PLoS One 2013; 8:e73646. [PMID: 24058481 PMCID: PMC3772795 DOI: 10.1371/journal.pone.0073646] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/26/2013] [Indexed: 11/19/2022] Open
Abstract
Breakage of bilateral symmetry in amphibian embryos depends on the development of a ciliated epithelium at the gastrocoel roof during early neurulation. Motile cilia at the gastrocoel roof plate (GRP) give rise to leftward flow of extracellular fluids. Flow is required for asymmetric gene expression and organ morphogenesis. Wnt signaling has previously been involved in two steps, Wnt/ß-catenin mediated induction of Foxj1, a regulator of motile cilia, and Wnt/planar cell polarity (PCP) dependent cilia polarization to the posterior pole of cells. We have studied Wnt11b in the context of laterality determination, as this ligand was reported to activate canonical and non-canonical Wnt signaling. Wnt11b was found to be expressed in the so-called superficial mesoderm (SM), from which the GRP derives. Surprisingly, Foxj1 was only marginally affected in loss-of-function experiments, indicating that another ligand acts in this early step of laterality specification. Wnt11b was required, however, for polarization of GRP cilia and GRP morphogenesis, in line with the known function of Wnt/PCP in cilia-driven leftward flow. In addition Xnr1 and Coco expression in the lateral-most GRP cells, which sense flow and generate the first asymmetric signal, was attenuated in morphants, involving Wnt signaling in yet another process related to symmetry breakage in Xenopus.
Collapse
|
40
|
Full transcriptome analysis of early dorsoventral patterning in zebrafish. PLoS One 2013; 8:e70053. [PMID: 23922899 PMCID: PMC3726443 DOI: 10.1371/journal.pone.0070053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/14/2013] [Indexed: 11/20/2022] Open
Abstract
Understanding the molecular interactions that lead to the establishment of the major body axes during embryogenesis is one of the main goals of developmental biology. Although the past two decades have revolutionized our knowledge about the genetic basis of these patterning processes, the list of genes involved in axis formation is unlikely to be complete. In order to identify new genes involved in the establishment of the dorsoventral (DV) axis during early stages of zebrafish embryonic development, we employed next generation sequencing for full transcriptome analysis of normal embryos and embryos lacking overt DV pattern. A combination of different statistical approaches yielded 41 differentially expressed candidate genes and we confirmed by in situ hybridization the early dorsal expression of 32 genes that are transcribed shortly after the onset of zygotic transcription. Although promoter analysis of the validated genes suggests no general enrichment for the binding sites of early acting transcription factors, most of these genes carry “bivalent” epigenetic histone modifications at the time when zygotic transcription is initiated, suggesting a “poised” transcriptional status. Our results reveal some new candidates of the dorsal gene regulatory network and suggest that a plurality of the earliest upregulated genes on the dorsal side have a role in the modulation of the canonical Wnt pathway.
Collapse
|
41
|
Mei W, Jin Z, Lai F, Schwend T, Houston DW, King ML, Yang J. Maternal Dead-End1 is required for vegetal cortical microtubule assembly during Xenopus axis specification. Development 2013; 140:2334-44. [PMID: 23615278 DOI: 10.1242/dev.094748] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vertebrate axis specification is an evolutionarily conserved developmental process that relies on asymmetric activation of Wnt signaling and subsequent organizer formation on the future dorsal side of the embryo. Although roles of Wnt signaling during organizer formation have been studied extensively, it is unclear how the Wnt pathway is asymmetrically activated. In Xenopus and zebrafish, the Wnt pathway is triggered by dorsal determinants, which are translocated from the vegetal pole to the future dorsal side of the embryo shortly after fertilization. The transport of dorsal determinants requires a unique microtubule network formed in the vegetal cortex shortly after fertilization. However, molecular mechanisms governing the formation of vegetal cortical microtubule arrays are not fully understood. Here we report that Dead-End 1 (Dnd1), an RNA-binding protein required for primordial germ cell development during later stages of embryogenesis, is essential for Xenopus axis specification. We show that knockdown of maternal Dnd1 specifically interferes with the formation of vegetal cortical microtubules. This, in turn, impairs translocation of dorsal determinants, the initiation of Wnt signaling, organizer formation, and ultimately results in ventralized embryos. Furthermore, we found that Dnd1 binds to a uridine-rich sequence in the 3'-UTR of trim36, a vegetally localized maternal RNA essential for vegetal cortical microtubule assembly. Dnd1 anchors trim36 to the vegetal cortex in the egg, promoting high concentrations of Trim36 protein there. Our work thus demonstrates a novel and surprising function for Dnd1 during early development and provides an important link between Dnd1, mRNA localization, the microtubule cytoskeleton and axis specification.
Collapse
Affiliation(s)
- Wenyan Mei
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, 3411 Veterinary Medicine Basic Sciences Building, Urbana, IL 61802, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Nestorov P, Battke F, Levesque MP, Gerberding M. The maternal transcriptome of the crustacean Parhyale hawaiensis is inherited asymmetrically to invariant cell lineages of the ectoderm and mesoderm. PLoS One 2013; 8:e56049. [PMID: 23418507 PMCID: PMC3572164 DOI: 10.1371/journal.pone.0056049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/04/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The embryo of the crustacean Parhyale hawaiensis has a total, unequal and invariant early cleavage pattern. It specifies cell fates earlier than other arthropods, including Drosophila, as individual blastomeres of the 8-cell stage are allocated to the germ layers and the germline. Furthermore, the 8-cell stage is amenable to embryological manipulations. These unique features make Parhyale a suitable system for elucidating germ layer specification in arthropods. Since asymmetric localization of maternally provided RNA is a widespread mechanism to specify early cell fates, we asked whether this is also true for Parhyale. A candidate gene approach did not find RNAs that are asymmetrically distributed at the 8-cell stage. Therefore, we designed a high-density microarray from 9400 recently sequenced ESTs (1) to identify maternally provided RNAs and (2) to find RNAs that are differentially distributed among cells of the 8-cell stage. RESULTS Maternal-zygotic transition takes place around the 32-cell stage, i.e. after the specification of germ layers. By comparing a pool of RNAs from early embryos without zygotic transcription to zygotic RNAs of the germband, we found that more than 10% of the targets on the array were enriched in the maternal transcript pool. A screen for asymmetrically distributed RNAs at the 8-cell stage revealed 129 transcripts, from which 50% are predominantly expressed in the early embryonic stages. Finally, we performed knockdown experiments for two of these genes and observed cell-fate-related defects of embryonic development. CONCLUSIONS In contrast to Drosophila, the four primary germ layer cell lineages in Parhyale are specified during the maternal control phase of the embryo. A key step in this process is the asymmetric distribution of a large number of maternal RNAs to the germ layer progenitor cells.
Collapse
Affiliation(s)
- Peter Nestorov
- Max Planck Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Florian Battke
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
43
|
Abstract
The canonical Wnt/β-catenin pathway is an ancient and evolutionarily conserved signaling pathway that is required for the proper development of all metazoans, from the basal demosponge Amphimedon queenslandica to humans. Misregulation of Wnt signaling is implicated in many human diseases, making this pathway an intense area of research in industry as well as academia. In this review, we explore our current understanding of the molecular steps involved in the transduction of a Wnt signal. We will focus on how the critical Wnt pathway component, β-catenin, is in a "futile cycle" of constant synthesis and degradation and how this cycle is disrupted upon pathway activation. We describe the role of the Wnt pathway in major human cancers and in the control of stem cell self-renewal in the developing organism and in adults. Finally, we describe well-accepted criteria that have been proposed as evidence for the involvement of a molecule in regulating the canonical Wnt pathway.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets. Pharmacol Ther 2013; 138:66-83. [PMID: 23328704 DOI: 10.1016/j.pharmthera.2013.01.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/22/2022]
Abstract
Wingless/integrase-1 (WNT) signaling is a key pathway regulating various aspects of embryonic development; however it also underlies several pathological conditions in man, including various cancers and fibroproliferative diseases in several organs. Investigating the molecular processes involved in (canonical) WNT signaling will open new avenues for generating new therapeutics to specifically target diseases in which WNT signaling is aberrantly regulated. Here we describe the complexity of WNT signal transduction starting from the processes involved in WNT ligand biogenesis and secretion by WNT producing cells followed by a comprehensive overview of the molecular signaling events ultimately resulting in enhanced transcription of specific genes in WNT receiving cells. Finally, the possible targets for therapeutic intervention and the available pharmacological inhibitors for this complex signaling pathway are discussed.
Collapse
|
45
|
Regulation of cell polarity and RNA localization in vertebrate oocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:127-85. [PMID: 24016525 DOI: 10.1016/b978-0-12-407694-5.00004-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has long been appreciated that the inheritance of maternal cytoplasmic determinants from different regions of the egg can lead to differential specification of blastomeres during cleavage. Localized RNAs are important determinants of cell fate in eggs and embryos but are also recognized as fundamental regulators of cell structure and function. This chapter summarizes recent molecular and genetic experiments regarding: (1) mechanisms that regulate polarity during different stages of vertebrate oogenesis, (2) pathways that localize presumptive protein and RNA determinants within the polarized oocyte and egg, and (3) how these determinants act in the embryo to determine the ultimate cell fates. Emphasis is placed on studies done in Xenopus, where extensive work has been done in these areas, and comparisons are drawn with fish and mammals. The prospects for future work using in vivo genome manipulation and other postgenomic approaches are also discussed.
Collapse
|
46
|
Cadwalader EL, Condic ML, Yost HJ. 2-O-sulfotransferase regulates Wnt signaling, cell adhesion and cell cycle during zebrafish epiboly. Development 2012; 139:1296-305. [PMID: 22357927 DOI: 10.1242/dev.078238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
O-sulfotransferases modify heparan sulfate proteoglycans (HSPGs) by catalyzing the transfer of a sulfate to a specific position on heparan sulfate glycosaminoglycan (GAG) chains. Although the roles of specific HSPG modifications have been described in cell culture and invertebrates, little is known about their functions or abilities to modulate specific cell signaling pathways in vertebrate development. Here, we report that 2-O-sulfotransferase (2-OST) is an essential component of canonical Wnt signaling in zebrafish development. 2-OST-deficient embryos have reduced GAG chain sulfation and are refractory to exogenous Wnt8 overexpression. Embryos in which maternally encoded 2-OST is knocked down have normal activation of several zygotic mesoderm, endoderm and ectoderm patterning genes, but have decreased deep cell adhesion and fail to initiate epiboly, which can be rescued by re-expression of 2-OST protein. Reduced cell adhesion and altered cell cycle regulation in 2-OST-deficient embryos are associated with decreased β-catenin and E-cadherin protein levels at cell junctions, and these defects can be rescued by reactivation of the intracellular Wnt pathway, utilizing stabilized β-catenin or dominant-negative Gsk3, but not by overexpression of Wnt8 ligand. Together, these results indicate that 2-OST functions within the Wnt pathway, downstream of Wnt ligand signaling and upstream of Gsk3β and β-catenin intracellular localization and function.
Collapse
Affiliation(s)
- Erin L Cadwalader
- Department of Neurobiology and Anatomy, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
47
|
Houston DW. Cortical rotation and messenger RNA localization in Xenopus axis formation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:371-88. [PMID: 23801488 DOI: 10.1002/wdev.29] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In Xenopus eggs, fertilization initiates a rotational movement of the cortex relative to the cytoplasm, resulting in the transport of critical determinants to the future dorsal side of the embryo. Cortical rotation is mediated by microtubules, resulting in activation of the Wnt/β-catenin signaling pathway and expression of organizer genes on the dorsal side of the blastula. Similar cytoplasmic localizations resulting in β-catenin activation occur in many chordate embryos, suggesting a deeply conserved mechanism for patterning early embryos. This review summarizes the experimental evidence for the molecular basis of this model, focusing on recent maternal loss-of-function studies that shed light on two main unanswered questions: (1) what regulates microtubule assembly during cortical rotation and (2) how is Wnt/β-catenin signaling activated dorsally? In addition, as these processes depend on vegetally localized molecules in the oocyte, the mechanisms of RNA localization and novel roles for localized RNAs in axis formation are discussed. The work reviewed here provides a beginning framework for understanding the coupling of asymmetry in oogenesis with the establishment of asymmetry in the embryo.
Collapse
|
48
|
Abstract
Genetic studies of Wnt11 have revealed many insights into the roles and regulation of Wnt11, particularly during development. New tools to study Wnt11 have recently become available, making it timely to review the literature regarding this unique Wnt family member. In this study, we focus on mammalian Wnt11, describing its main sites of expression during development, and how the Wnt11 gene is regulated. We highlight an emerging theme in which canonical Wnt signals regulate Wnt11 expression through transcription factors in addition to, or other than, Tcf/LEF family members. We also discuss the frizzled family and other receptors that bind to Wnt11, the intracellular kinases and small GTPases that act downstream of Wnt11, and the effects of Wnt11 on Wnt/β-catenin signalling. Finally, we elaborate on the relevance of Wnt11 to human cancer, where it appears to be important both for proliferation and/or survival during normal differentiation and for migration/invasion.
Collapse
Affiliation(s)
- P Uysal-Onganer
- Department of Surgery and Cancer, Imperial College London, UK
| | | |
Collapse
|
49
|
Screening for small molecule inhibitors of embryonic pathways: sometimes you gotta crack a few eggs. Bioorg Med Chem 2011; 20:1869-77. [PMID: 22261025 DOI: 10.1016/j.bmc.2011.12.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/07/2011] [Accepted: 12/20/2011] [Indexed: 12/17/2022]
Abstract
Extract prepared from Xenopus eggs represents a cell-free system that has been shown to recapitulate a multitude of cellular processes, including cell cycle regulation, DNA replication/repair, and cytoskeletal dynamics. In addition, this system has been used to successfully reconstitute the Wnt pathway. Xenopus egg extract, which can be biochemically manipulated, offers an ideal medium in which small molecule screening can be performed in near native milieu. Thus, the use of Xenopus egg extract for small molecule screening represents an ideal bridge between targeted and phenotypic screening approaches. This review focuses on the use of this system for small molecules modulators of major signal transduction pathways (Notch, Hedgehog, and Wnt) that are critical for the development of the early Xenopus embryo. We describe the properties of Xenopus egg extract and our own high throughput screen for small molecules that modulate the Wnt pathway using this cell-free system. We propose that Xenopus egg extract could similarly be adapted for screening for modulators of the Notch and Hedgehog pathways.
Collapse
|
50
|
Thorne CA, Lafleur B, Lewis M, Hanson AJ, Jernigan KK, Weaver DC, Huppert KA, Chen TW, Wichaidit C, Cselenyi CS, Tahinci E, Meyers KC, Waskow E, Orton D, Salic A, Lee LA, Robbins DJ, Huppert SS, Lee E. A biochemical screen for identification of small-molecule regulators of the Wnt pathway using Xenopus egg extracts. ACTA ACUST UNITED AC 2011; 16:995-1006. [PMID: 21859680 DOI: 10.1177/1087057111416657] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Misregulation of the Wnt pathway has been shown to be responsible for a variety of human diseases, most notably cancers. Screens for inhibitors of this pathway have been performed almost exclusively using cultured mammalian cells or with purified proteins. We have previously developed a biochemical assay using Xenopus egg extracts to recapitulate key cytoplasmic events in the Wnt pathway. Using this biochemical system, we show that a recombinant form of the Wnt coreceptor, LRP6, regulates the stability of two key components of the Wnt pathway (β-catenin and Axin) in opposing fashion. We have now fused β-catenin and Axin to firefly and Renilla luciferase, respectively, and demonstrate that the fusion proteins behave similarly as their wild-type counterparts. Using this dual luciferase readout, we adapted the Xenopus extracts system for high-throughput screening. Results from these screens demonstrate signal distribution curves that reflect the complexity of the library screened. Of several compounds identified as cytoplasmic modulators of the Wnt pathway, one was further validated as a bona fide inhibitor of the Wnt pathway in cultured mammalian cells and Xenopus embryos. We show that other embryonic pathways may be amendable to screening for inhibitors/modulators in Xenopus egg extracts.
Collapse
Affiliation(s)
- Curtis A Thorne
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8240, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|