1
|
Jaszczak RG, Zussman JW, Wagner DE, Laird DJ. Comprehensive profiling of migratory primordial germ cells reveals niche-specific differences in non-canonical Wnt and Nodal-Lefty signaling in anterior vs posterior migrants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610420. [PMID: 39257761 PMCID: PMC11383659 DOI: 10.1101/2024.08.29.610420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Mammalian primordial germ cells (PGCs) migrate asynchronously through the embryonic hindgut and dorsal mesentery to reach the gonads. We previously found that interaction with different somatic niches regulates PGC proliferation along the migration route. To characterize transcriptional heterogeneity of migrating PGCs and their niches, we performed single-cell RNA sequencing of 13,262 mouse PGCs and 7,868 surrounding somatic cells during migration (E9.5, E10.5, E11.5) and in anterior versus posterior locations to enrich for leading and lagging migrants. Analysis of PGCs by position revealed dynamic gene expression changes between faster or earlier migrants in the anterior and slower or later migrants in the posterior at E9.5; these differences include migration-associated actin polymerization machinery and epigenetic reprogramming-associated genes. We furthermore identified changes in signaling with various somatic niches, notably strengthened interactions with hindgut epithelium via non-canonical WNT (ncWNT) in posterior PGCs compared to anterior. Reanalysis of a previously published dataset suggests that ncWNT signaling from the hindgut epithelium to early migratory PGCs is conserved in humans. Trajectory inference methods identified putative differentiation trajectories linking cell states across timepoints and from posterior to anterior in our mouse dataset. At E9.5, we mainly observed differences in cell adhesion and actin cytoskeletal dynamics between E9.5 posterior and anterior migrants. At E10.5, we observed divergent gene expression patterns between putative differentiation trajectories from posterior to anterior including Nodal signaling response genes Lefty1, Lefty2, and Pycr2 and reprogramming factors Dnmt1, Prc1, and Tet1. At E10.5, we experimentally validated anterior migrant-specific Lefty1/2 upregulation via whole-mount immunofluorescence staining for LEFTY1/2 proteins, suggesting that elevated autocrine Nodal signaling accompanies the late stages of PGC migration. Together, this positional and temporal atlas of mouse PGCs supports the idea that niche interactions along the migratory route elicit changes in proliferation, actin dynamics, pluripotency, and epigenetic reprogramming.
Collapse
Affiliation(s)
- Rebecca G Jaszczak
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Jay W Zussman
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Daniel E Wagner
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Diana J Laird
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| |
Collapse
|
2
|
Zhao X, Fan C, Qie T, Fu X, Chen X, Wang Y, Wu Y, Fu X, Shi K, Yan W, Yu H. Diaph1 knockout inhibits mouse primordial germ cell proliferation and affects gonadal development. Reprod Biol Endocrinol 2024; 22:82. [PMID: 39010074 PMCID: PMC11247884 DOI: 10.1186/s12958-024-01257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Exploring the molecular mechanisms of primordial germ cell (PGC) migration and the involvement of gonadal somatic cells in gonad development is valuable for comprehending the origins and potential treatments of reproductive-related diseases. METHODS Diaphanous related formin 1 (Diaph1, also known as mDia1) was screened by analyzing publicly available datasets (ATAC-seq, DNase-seq, and RNA-seq). Subsequently, the CRISPR-Cas9 technology was used to construct Diaph1 knockout mice to investigate the role of Diaph1 in gonad development. RESULTS Based on data from public databases, a differentially expressed gene Diaph1, was identified in the migration of mouse PGC. Additionally, the number of PGCs was significantly reduced in Diaph1 knockout mice compared to wild type mice, and the expression levels of genes related to proliferation (Dicer1, Mcm9), adhesion (E-cadherin, Cdh1), and migration (Cxcr4, Hmgcr, Dazl) were significantly decreased. Diaph1 knockout also inhibited Leydig cell proliferation and induced apoptosis in the testis, as well as granulosa cell apoptosis in the ovary. Moreover, the sperm count in the epididymal region and the count of ovarian follicles were significantly reduced in Diaph1 knockout mice, resulting in decreased fertility, concomitant with lowered levels of serum testosterone and estradiol. Further research found that in Diaph1 knockout mice, the key enzymes involved in testosterone synthesis (CYP11A1, 3β-HSD) were decreased in Leydig cells, and the estradiol-associated factor (FSH receptor, AMH) in granulosa cells were also downregulated. CONCLUSIONS Overall, our findings indicate that the knockout of Diaph1 can disrupt the expression of factors that regulate sex hormone production, leading to impaired secretion of sex hormones, ultimately resulting in damage to reproductive function. These results provide a new perspective on the molecular mechanisms underlying PGC migration and gonadal development, and offer valuable insights for further research on the causes, diagnosis, and treatment of related diseases.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Chunbiao Fan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Tongtong Qie
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Xinrui Fu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Xiaoshuang Chen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Yujia Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Yuan Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Xinyao Fu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Kesong Shi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Wenlong Yan
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, Guangdong Province, China.
| | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China.
| |
Collapse
|
3
|
Barton LJ, Roa-de la Cruz L, Lehmann R, Lin B. The journey of a generation: advances and promises in the study of primordial germ cell migration. Development 2024; 151:dev201102. [PMID: 38607588 PMCID: PMC11165723 DOI: 10.1242/dev.201102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The germline provides the genetic and non-genetic information that passes from one generation to the next. Given this important role in species propagation, egg and sperm precursors, called primordial germ cells (PGCs), are one of the first cell types specified during embryogenesis. In fact, PGCs form well before the bipotential somatic gonad is specified. This common feature of germline development necessitates that PGCs migrate through many tissues to reach the somatic gonad. During their journey, PGCs must respond to select environmental cues while ignoring others in a dynamically developing embryo. The complex multi-tissue, combinatorial nature of PGC migration is an excellent model for understanding how cells navigate complex environments in vivo. Here, we discuss recent findings on the migratory path, the somatic cells that shepherd PGCs, the guidance cues somatic cells provide, and the PGC response to these cues to reach the gonad and establish the germline pool for future generations. We end by discussing the fate of wayward PGCs that fail to reach the gonad in diverse species. Collectively, this field is poised to yield important insights into emerging reproductive technologies.
Collapse
Affiliation(s)
- Lacy J. Barton
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Lorena Roa-de la Cruz
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ruth Lehmann
- Whitehead Institute and Department of Biology, MIT, 455 Main Street, Cambridge, MA 02142, USA
| | - Benjamin Lin
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
4
|
Saani I, Raj N, Sood R, Ansari S, Mandviwala HA, Sanchez E, Boussios S. Clinical Challenges in the Management of Malignant Ovarian Germ Cell Tumours. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6089. [PMID: 37372675 DOI: 10.3390/ijerph20126089] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 06/29/2023]
Abstract
Nonepithelial ovarian cancers (NEOC) are a group of rare malignancies, including germ cell tumours (GCT) and sex cord-stromal tumours (SCST), along with small-cell carcinomas and sarcomas. GCTs represent 2-5% of ovarian cancers, with a yearly incidence of 4:100,000, and they usually affect young women and adolescents. Precursory germ cells of the ovary form the basis of GCT. They are histologically classified into primitive GCT, teratomas, and monodermal and somatic-type tumours associated with dermoid cysts. A primitive GCT can be either a yolk sac tumour (YST), dysgerminoma, or mixed germ cell neoplasm. Teratomas are either mature (benign) or immature (malignant). Given that malignant GCTs occur rarely compared to epithelial ovarian tumours (EOC), greater focus is required in their diagnosis and treatment. In this article, we review the epidemiology, clinical manifestations, diagnosis, and molecular biology, along with the management and therapeutic challenges.
Collapse
Affiliation(s)
- Iqra Saani
- Department of Medicine, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
| | - Nitish Raj
- Department of Radiology, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, UK
| | - Raja Sood
- Department of Clinical Medical Education, Epsom and St Helier University Hospitals NHS Trust, Epsom KT18 7EG, UK
| | - Shahbaz Ansari
- Department of Medicine, Glan Clwyd Hospital, NHS Wales, Denbighshire LL18 5UJ, UK
| | - Haider Abbas Mandviwala
- Department of Internal Medicine, School of Medicine, Faculty of Health Sciences, Ziauddin Medical University, Karachi 75000, Sindh, Pakistan
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
5
|
Burnham EL, Tomita T. Histogenesis of intracranial germ cell tumors: primordial germ cell vs. embryonic stem cell. Childs Nerv Syst 2023; 39:359-368. [PMID: 36595083 DOI: 10.1007/s00381-022-05808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Intracranial germ cell tumor (iGCT) is a rare disorder and often occurs during childhood and adolescence. iGCTs are frequently localized in pineal region and hypothalamic-neurohypophyseal axis (HNA). In spite of well-established clinical and pathological entity, histogenesis of iGCTs remains unsettled. Current theories of histogenesis of iGCTs include germ cell theory (from primordial germ cells (PGCs) of aberrant migration) and stem cell theory (transformed embryonic stem (ES) cells). In order to comprehend the histogenesis, we revisit the origin, migration, and fate of the human PGCs, and their transformation processes to iGCT. DISCUSSION In "germ cell theory," transformation of ectopic PGCs to iGCT is complex and involves multiple transcription factors. Germinoma is derived from ectopic PGCs and is considered a prototype of all GCTs. Non-germinomatous germ cell tumors (NGGCTs) develop from more differentiated counterparts of embryonic and extra-embryonic tissues. However, there is a distinct genomic/epigenomic landscape between germinoma and NGGCT. ES cells transformed from ectopic PGCs through molecular dysregulation or de-differentiation may become the source of iGCT. "Stem cell theory" is transformation of endogenous ES cells or primitive neural stem cell to iGCTs. It supports histological diversity of NGGCTs because of ES cell's pluripotency. However, neural stem cells are abundantly present along the subependymal zone; therefore, it does not explain why iGCTs almost exclusively occur in pineal and HNA locations. Also, the vast difference of methylation status between germinoma and NGGCT makes it difficult to theorize all iGCTs derive from the common cellular linage. CONCLUSION Transformation of PGCs to ES cells is the most logical mechanism for histogenesis of iGCT. However, its detail remains an enigma and needs further investigations.
Collapse
Affiliation(s)
- Emma L Burnham
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
6
|
Laronda MM. Factors within the Developing Embryo and Ovarian Microenvironment That Influence Primordial Germ Cell Fate. Sex Dev 2023; 17:134-144. [PMID: 36646055 PMCID: PMC10349905 DOI: 10.1159/000528209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/18/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Primordial germ cell (PGC) fate is dictated by the designation, taxis, and influence of the surrounding embryonic somatic cells. Whereas gonadal sex determination results from a balance of factors within the tissue microenvironment. SUMMARY Our understanding of mammalian ovary development is formed in large part from developmental time courses established using murine models. Genomic tools where genes implicated in the PGC designation or gonadal sex determination have been modulated through complete or conditional knockouts in vivo, and studies in in situ models with inhibitors or cultures that alter the native gonadal environment have pieced together the interplay of pioneering transcription factors, co-regulators and chromosomes critical for the progression of PGCs to oocytes. Tools such as pluripotent stem cell derivation, genomic modifications, and aggregate differentiation cultures have yielded some insight into the human condition. Additional understanding of sex determination, both gonadal and anatomical, may be inferred from phenotypes that arise from de novo or inherited gene variants in humans who have differences in sex development. KEY MESSAGES This review highlights major factors critical for PGC specification and migration, and in ovarian gonad specification by reviewing seminal murine models. These pathways are compared to what is known about the human condition from expression profiles of fetal gonadal tissue, use of human pluripotent stem cells, or disorders resulting from disease variants. Many of these pathways are challenging to decipher in human tissues. However, the impact of new single-cell technologies and whole-genome sequencing to reveal disease variants of idiopathic reproductive tract phenotypes will help elucidate the mechanisms involved in human ovary development.
Collapse
Affiliation(s)
- Monica M. Laronda
- Department of Endocrinology and Department of Pediatric Surgery, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, (IL,) USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, (IL,) USA
| |
Collapse
|
7
|
Roelen BAJ, Chuva de Sousa Lopes SM. Stay on the road: from germ cell specification to gonadal colonization in mammals. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210259. [PMID: 36252219 PMCID: PMC9574628 DOI: 10.1098/rstb.2021.0259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The founder cells of the gametes are primordial germ cells (PGCs). In mammals, PGCs are specified early during embryonic development, at the boundary between embryonic and extraembryonic tissue, long before their later residences, the gonads, have developed. Despite the differences in form and behaviour when differentiated into oocytes or sperm cells, in the period between specification and gonadal colonization, male and female PGCs are morphologically indistinct and largely regulated by similar mechanisms. Here, we compare different modes and mechanisms that lead to the formation of PGCs, putting in context protocols that are in place to differentiate both human and mouse pluripotent stem cells into PGC-like cells. In addition, we review important aspects of the migration of PGCs to the gonadal ridges, where they undergo further sex-specific differentiation. Defects in migration need to be effectively corrected, as misplaced PGCs can become tumorigenic. Concluding, a combination of in vivo studies and the development of adequate innovative in vitro models, ensuring both robustness and standardization, are providing us with the tools for a greater understanding of the first steps of gametogenesis and to develop disease models to study the origin of germ cell tumours. This article is part of the theme issue ‘Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom’.
Collapse
Affiliation(s)
- Bernard A J Roelen
- Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands.,Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Susana M Chuva de Sousa Lopes
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy.,Department of Anatomy and Embryology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
8
|
Fetal germ cell development in humans, a link with infertility. Semin Cell Dev Biol 2022; 131:58-65. [PMID: 35431137 DOI: 10.1016/j.semcdb.2022.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
Gametes are cells that have the unique ability to give rise to new individuals as well as transmit (epi)genetic information across generations. Generation of functionally competent gametes, oocytes and sperm cells, depends to some extent on several fundamental processes that occur during fetal development. Direct studies on human fetal germ cells remain hindered by ethical considerations and inaccessibility to human fetal material. Therefore, the majority of our current knowledge of germ cell development still comes from an invaluable body of research performed using different mammalian species. During the last decade, our understanding of human fetal germ cells has increased due to the successful use of human pluripotent stem cells to model aspects of human early gametogenesis and advancements on single-cell omics. Together, this has contributed to determine the cell types and associated molecular signatures in the developing human gonads. In this review, we will put in perspective the knowledge obtained from several mammalian models (mouse, monkey, pig). Moreover, we will discuss the main events during human fetal (female) early gametogenesis and how the dysregulation of this highly complex and lengthy process can link to infertility later in life.
Collapse
|
9
|
Cheng H, Shang D, Zhou R. Germline stem cells in human. Signal Transduct Target Ther 2022; 7:345. [PMID: 36184610 PMCID: PMC9527259 DOI: 10.1038/s41392-022-01197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The germline cells are essential for the propagation of human beings, thus essential for the survival of mankind. The germline stem cells, as a unique cell type, generate various states of germ stem cells and then differentiate into specialized cells, spermatozoa and ova, for producing offspring, while self-renew to generate more stem cells. Abnormal development of germline stem cells often causes severe diseases in humans, including infertility and cancer. Primordial germ cells (PGCs) first emerge during early embryonic development, migrate into the gentile ridge, and then join in the formation of gonads. In males, they differentiate into spermatogonial stem cells, which give rise to spermatozoa via meiosis from the onset of puberty, while in females, the female germline stem cells (FGSCs) retain stemness in the ovary and initiate meiosis to generate oocytes. Primordial germ cell-like cells (PGCLCs) can be induced in vitro from embryonic stem cells or induced pluripotent stem cells. In this review, we focus on current advances in these embryonic and adult germline stem cells, and the induced PGCLCs in humans, provide an overview of molecular mechanisms underlying the development and differentiation of the germline stem cells and outline their physiological functions, pathological implications, and clinical applications.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
10
|
A common deletion at BAK1 reduces enhancer activity and confers risk of intracranial germ cell tumors. Nat Commun 2022; 13:4478. [PMID: 35918310 PMCID: PMC9346128 DOI: 10.1038/s41467-022-32005-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/12/2022] [Indexed: 11/14/2022] Open
Abstract
Intracranial germ cell tumors (IGCTs) are rare brain neoplasms that mainly occur in children and adolescents with a particularly high incidence in East Asian populations. Here, we conduct a genome-wide association study (GWAS) of 133 patients with IGCTs and 762 controls of Japanese ancestry. A common 4-bp deletion polymorphism in an enhancer adjacent to BAK1 is significantly associated with the disease risk (rs3831846; P = 2.4 × 10−9, odds ratio = 2.46 [95% CI: 1.83–3.31], minor allele frequency = 0.43). Rs3831846 is in strong linkage disequilibrium with a testicular GCTs susceptibility variant rs210138. In-vitro reporter assays reveal rs3831846 to be a functional variant attenuating the enhancer activity, suggesting its contribution to IGCTs predisposition through altering BAK1 expression. Risk alleles of testicular GCTs derived from the European GWAS show significant positive correlations in the effect sizes with the Japanese IGCTs GWAS (P = 1.3 × 10−4, Spearman’s ρ = 0.48). These results suggest the shared genetic susceptibility of GCTs beyond ethnicity and primary sites. Intracranial germ cell tumors (IGCTs) are rare brain tumors mainly diagnosed in children and young adults. Here, the authors conduct a genome-wide association study for IGCTs, identify a risk locus at BAK1, and characterize its functional consequences.
Collapse
|
11
|
Abstract
Primordial germ cells (PGCs) form early in embryo development and are crucial precursors to functioning gamete cells. Considerable research has focussed on identifying the transcriptional characteristics and signalling pathway requirements that confer PGC specification and development, enabling the derivation of PGC-like cells (PGCLCs) in vitro using specific signalling cocktails. However, full maturation to germ cells still relies on co-culture with supporting cell types, implicating an additional requirement for cellular- and tissue-level regulation. Here, we discuss the experimental evidence that highlights the nature of intercellular interactions between PGCs and neighbouring cell populations during mouse PGC development. We posit that the role that tissue interactions play on PGCs is not limited solely to signalling-based induction but extends to coordination of development by robust regulation of the proportions and position of the cells and tissues within the embryo, which is crucial for functional germ cell maturation. Such tissue co-development provides a dynamic, contextual niche for PGC development. We argue that there is evidence for a clear role for inter-tissue dependence of mouse PGCs, with potential implications for generating mammalian PGCLCs in vitro.
Collapse
Affiliation(s)
- Christopher B Cooke
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.,Abcam Plc, Discovery Drive, Cambridge Biomedical Campus, Cambridge, CB2 0AX, UK.,The Francis Crick Institute, 1 Midland Road, Somers Town, London, NW1 1AT, UK
| | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, Somers Town, London, NW1 1AT, UK
| |
Collapse
|
12
|
Liu X, Wang H, Liu B, Qi Z, Li J, Xu B, Liu W, Xu Z, Deng Y. The Latest Research Progress of m 6A Modification and Its Writers, Erasers, Readers in Infertility: A Review. Front Cell Dev Biol 2021; 9:681238. [PMID: 34568313 PMCID: PMC8461070 DOI: 10.3389/fcell.2021.681238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023] Open
Abstract
Eukaryotic messenger mRNAs contain many RNA methyl chemical modifications, in which N6-methyladenosine (m6A) plays a very important role. The modification process of RNA methylation is a dynamic reversible regulatory process that is mainly catalyzed by "Writer" m6A methyltransferase, removed by "Eraser" m6A demethylase, and recognized by the m6A binding protein, thereby, linking m6A modification with other mRNA pathways. At various stages of the life cycle, m6A modification plays an extremely important role in regulating mRNA splicing, processing, translation, as well as degradation, and is associated with gametogenesis and fertility for both sexes. Normal gametogenesis is a basic guarantee of fertility. Infertility leads to trauma, affects harmony in the family and seriously affects the quality of life. We review the roles and mechanisms of RNA m6A methylation modification in infertility and provide a potential target for infertility treatment, which can be used for drug development.
Collapse
Affiliation(s)
- Xuda Liu
- Department of Public Health, China Medical University, Shenyang, China
| | - Haiying Wang
- Department of Public Health, China Medical University, Shenyang, China
| | - Bingchen Liu
- Department of Public Health, China Medical University, Shenyang, China
| | - Zhipeng Qi
- Department of Public Health, China Medical University, Shenyang, China
| | - Jiashuo Li
- Department of Public Health, China Medical University, Shenyang, China
| | - Bin Xu
- Department of Public Health, China Medical University, Shenyang, China
| | - Wei Liu
- Department of Public Health, China Medical University, Shenyang, China
| | - Zhaofa Xu
- Department of Public Health, China Medical University, Shenyang, China
| | - Yu Deng
- Department of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
13
|
Xiao P, Chen P, Lang X, An Q, Yang C, Chen S, Wang K, Chen N, Hao Y, Ding J, Li Z, Hu S, Xiao S. Ovarian germ cell tumor/mastocytosis with KIT mutation: A unique clinicopathological entity. Genes Chromosomes Cancer 2021; 61:50-54. [PMID: 34553465 DOI: 10.1002/gcc.23000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/10/2022] Open
Abstract
Most tumors are sporadic and originated from somatic mutations. Some rare germline mutations cause familial tumors, often involving multiple tissues or organs. Tumors from somatic mosaicism during embryonic development are extremely rare. We describe here a pediatric patient who developed both an ovarian germ cell tumor and systemic mastocytosis. Targeted DNA next-generation sequencing analysis revealed similar genomic changes including the same KIT D816V mutation in both tissues, suggesting a common progenitor cancer cell. The KIT mutated cells are likely from early embryonic development during germ cell migration. A literature search found additional eight similar cases. These diseases are characterized by pediatric-onset, all-female, neoplastic proliferation in both gonad and bone marrow, and a common oncogenic cause, that is, KIT mutation, constituting a clinically and genetically homogenous disease entity. Importantly, the association of germ cell tumors with hematopoietic neoplasms suggests that the primordial germ cells are the primitive hematopoietic stem cells, a much-debated and unsettled question.
Collapse
Affiliation(s)
- Peifang Xiao
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Ping Chen
- Suzhou Sano Precision Medicine Ltd, China
| | | | - Qi An
- Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, China
| | | | - Si Chen
- Suzhou Sano Precision Medicine Ltd, China
| | - Kai Wang
- Suzhou Sano Precision Medicine Ltd, China
| | - Nan Chen
- Suzhou Sano Precision Medicine Ltd, China
| | - Yang Hao
- Suzhou Sano Precision Medicine Ltd, China
| | | | - Zhiheng Li
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shaoyan Hu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Ben Maamar M, Nilsson EE, Skinner MK. Epigenetic transgenerational inheritance, gametogenesis and germline development†. Biol Reprod 2021; 105:570-592. [PMID: 33929020 PMCID: PMC8444706 DOI: 10.1093/biolre/ioab085] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
One of the most important developing cell types in any biological system is the gamete (sperm and egg). The transmission of phenotypes and optimally adapted physiology to subsequent generations is in large part controlled by gametogenesis. In contrast to genetics, the environment actively regulates epigenetics to impact the physiology and phenotype of cellular and biological systems. The integration of epigenetics and genetics is critical for all developmental biology systems at the cellular and organism level. The current review is focused on the role of epigenetics during gametogenesis for both the spermatogenesis system in the male and oogenesis system in the female. The developmental stages from the initial primordial germ cell through gametogenesis to the mature sperm and egg are presented. How environmental factors can influence the epigenetics of gametogenesis to impact the epigenetic transgenerational inheritance of phenotypic and physiological change in subsequent generations is reviewed.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
15
|
PI3K/PTEN/AKT Signaling Pathways in Germ Cell Development and Their Involvement in Germ Cell Tumors and Ovarian Dysfunctions. Int J Mol Sci 2021; 22:ijms22189838. [PMID: 34575999 PMCID: PMC8467417 DOI: 10.3390/ijms22189838] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/24/2022] Open
Abstract
Several studies indicate that the PI3K/PTEN/AKT signaling pathways are critical regulators of ovarian function including the formation of the germ cell precursors, termed primordial germ cells, and the follicular pool maintenance. This article reviews the current state of knowledge of the functional role of the PI3K/PTEN/AKT pathways during primordial germ cell development and the dynamics of the ovarian primordial follicle reserve and how dysregulation of these signaling pathways may contribute to the development of some types of germ cell tumors and ovarian dysfunctions.
Collapse
|
16
|
Overeem AW, Chang YW, Spruit J, Roelse CM, Chuva De Sousa Lopes SM. Ligand-Receptor Interactions Elucidate Sex-Specific Pathways in the Trajectory From Primordial Germ Cells to Gonia During Human Development. Front Cell Dev Biol 2021; 9:661243. [PMID: 34222234 PMCID: PMC8253161 DOI: 10.3389/fcell.2021.661243] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
The human germ cell lineage originates from primordial germ cells (PGCs), which are specified at approximately the third week of development. Our understanding of the signaling pathways that control this event has significantly increased in recent years and that has enabled the generation of PGC-like cells (PGCLCs) from pluripotent stem cells in vitro. However, the signaling pathways that drive the transition of PGCs into gonia (prospermatogonia in males or premeiotic oogonia in females) remain unclear, and we are presently unable to mimic this step in vitro in the absence of gonadal tissue. Therefore, we have analyzed single-cell transcriptomics data of human fetal gonads to map the molecular interactions during the sex-specific transition from PGCs to gonia. The CellPhoneDB algorithm was used to identify significant ligand–receptor interactions between germ cells and their sex-specific neighboring gonadal somatic cells, focusing on four major signaling pathways WNT, NOTCH, TGFβ/BMP, and receptor tyrosine kinases (RTK). Subsequently, the expression and intracellular localization of key effectors for these pathways were validated in human fetal gonads by immunostaining. This approach provided a systematic analysis of the signaling environment in developing human gonads and revealed sex-specific signaling pathways during human premeiotic germ cell development. This work serves as a foundation to understand the transition from PGCs to premeiotic oogonia or prospermatogonia and identifies sex-specific signaling pathways that are of interest in the step-by-step reconstitution of human gametogenesis in vitro.
Collapse
Affiliation(s)
- Arend W Overeem
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, Netherlands
| | - Yolanda W Chang
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, Netherlands
| | - Jeroen Spruit
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, Netherlands
| | - Celine M Roelse
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, Netherlands
| | - Susana M Chuva De Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, Netherlands.,Ghent-Fertility and Stem Cell Team (G-FAST), Department of Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
17
|
To Be or Not to Be a Germ Cell: The Extragonadal Germ Cell Tumor Paradigm. Int J Mol Sci 2021; 22:ijms22115982. [PMID: 34205983 PMCID: PMC8199495 DOI: 10.3390/ijms22115982] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
In the human embryo, the genetic program that orchestrates germ cell specification involves the activation of epigenetic and transcriptional mechanisms that make the germline a unique cell population continuously poised between germness and pluripotency. Germ cell tumors, neoplasias originating from fetal or neonatal germ cells, maintain such dichotomy and can adopt either pluripotent features (embryonal carcinomas) or germness features (seminomas) with a wide range of phenotypes in between these histotypes. Here, we review the basic concepts of cell specification, migration and gonadal colonization of human primordial germ cells (hPGCs) highlighting the analogies of transcriptional/epigenetic programs between these two cell types.
Collapse
|
18
|
Yang D, Yang X, Dai F, Wang Y, Yang Y, Hu M, Cheng Y. The Role of Bone Morphogenetic Protein 4 in Ovarian Function and Diseases. Reprod Sci 2021; 28:3316-3330. [PMID: 33966186 DOI: 10.1007/s43032-021-00600-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Bone morphogenetic proteins (BMPs) are the largest subfamily of the transforming growth factor-β (TGF-β) superfamily. BMP4 is a secreted protein that was originally identified due to its role in bone and cartilage development. Over the past decades, extensive literature has indicated that BMP4 and its receptors are widely expressed in the ovary. Dysregulation of BMP4 expression may play a vital role in follicular development, polycystic ovary syndrome (PCOS), and ovarian cancer. In this review, we summarized the expression pattern of BMP4 in the ovary, focused on the role of BMP4 in follicular development and steroidogenesis, and discussed the role of BMP4 in ovarian diseases such as polycystic ovary syndrome and ovarian cancer. Some studies have shown that the expression of BMP4 in the ovary is spatiotemporal and species specific, but the effects of BMP4 seem to be similar in follicular development of different species. In addition, BMP4 is involved in the development of hyperandrogenemia in PCOS and drug resistance in ovarian cancer, but further research is still needed to clarify the specific mechanisms.
Collapse
Affiliation(s)
- Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yang
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072, China.
| | - Min Hu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
19
|
Nandadasa S, O'Donnell A, Murao A, Yamaguchi Y, Midura RJ, Olson L, Apte SS. The versican-hyaluronan complex provides an essential extracellular matrix niche for Flk1 + hematoendothelial progenitors. Matrix Biol 2021; 97:40-57. [PMID: 33454424 DOI: 10.1016/j.matbio.2021.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Little is known about extracellular matrix (ECM) contributions to formation of the earliest cell lineages in the embryo. Here, we show that the proteoglycan versican and glycosaminoglycan hyaluronan are associated with emerging Flk1+ hematoendothelial progenitors at gastrulation. The mouse versican mutant Vcanhdf lacks yolk sac vasculature, with attenuated yolk sac hematopoiesis. CRISPR/Cas9-mediated Vcan inactivation in mouse embryonic stem cells reduced vascular endothelial and hematopoietic differentiation within embryoid bodies, which generated fewer blood colonies, and had an impaired angiogenic response to VEGF165. Hyaluronan was severely depleted in Vcanhdf embryos, with corresponding upregulation of the hyaluronan-depolymerase TMEM2. Conversely, hyaluronan-deficient mouse embryos also had vasculogenic suppression but with increased versican proteolysis. VEGF165 and Indian hedgehog, crucial vasculogenic factors, utilized the versican-hyaluronan matrix, specifically versican chondroitin sulfate chains, for binding. Versican-hyaluronan ECM is thus an obligate requirement for vasculogenesis and primitive hematopoiesis, providing a vasculogenic factor-enriching microniche for Flk1+ progenitors from their origin at gastrulation.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Anna O'Donnell
- Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Ayako Murao
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Yu Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Ronald J Midura
- Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Lorin Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Suneel S Apte
- Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States.
| |
Collapse
|
20
|
Nadella K, Faucz FR, Stratakis CA. c-KIT oncogene expression in PRKAR1A-mutant adrenal cortex. Endocr Relat Cancer 2020; 27:591-599. [PMID: 32738126 PMCID: PMC7484269 DOI: 10.1530/erc-20-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 11/08/2022]
Abstract
Protein kinase A (PKA) regulatory subunit type 1A (PRKAR1A) defects lead to primary pigmented nodular adrenocortical disease (PPNAD). The KIT protooncogene (c-KIT) is not known to be expressed in the normal adrenal cortex (AC). In this study, we investigated the expression of c-KIT and its ligand, stem cell factor (SCF), in PPNAD and other cortisol-producing tumors of the adrenal cortex. mRNA and protein expression, by qRT-PCR, immunohistochemistry (IHC) and immunoblotting (IB), respectively, were studied. We then tested c-KIT and SCF responses to PRKAR1A introduction and PKA stimulation in adrenocortical cell lines CAR47 and H295R, which were also treated with the KIT inhibitor, imatinib mesylate (IM). Mice xenografted with H295R cells were treated with IM. There was increased c-KIT mRNA expression in PPNAD; IHC showed KIT and SCF immunoreactivity within certain nodular areas in PPNAD. IB data was consistent with IHC and mRNA data. PRKAR1A-deficient CAR47 cells expressed c-KIT; this was enhanced by forskolin and lowered by PRKAR1A reintroduction. Knockdown of PKA's catalytic subunit (PRKACA) by siRNA reduced c-KIT levels. Treatment of the CAR47 cells with IM resulted in reduced cell viability, growth arrest, and apoptosis. Treatment with IM of mice xenografted with H295 cells inhibited further tumor growth. We conclude that c-KIT is expressed in PPNAD, an expression that appears to be dependent on PRKAR1A and/or PKA activity. In a human adrenocortical cell line and its xenografts in mice, c-KIT inhibition decreased growth, suggesting that c-KIT inhibitors may be a reasonable alternative therapy to be tested in PPNAD, when other treatments are not optimal.
Collapse
Affiliation(s)
- Kiran Nadella
- Section on Genetics & Endocrinology (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD20892, USA
| | - Fabio R. Faucz
- Section on Genetics & Endocrinology (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD20892, USA
- To whom all correspondence should be addressed: Fabio R. Faucz, PhD: SEGEN, NICHD, NIH - 9000 Rockville Pike, CRC, Bldg 10, Rm 1E-3216, Bethesda, MD 20892-1862, tel. 301-451-7177, fax 301-402-0574,
| | - Constantine A. Stratakis
- Section on Genetics & Endocrinology (SEGEN), Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD20892, USA
| |
Collapse
|
21
|
Lin B, Luo J, Lehmann R. Collectively stabilizing and orienting posterior migratory forces disperses cell clusters in vivo. Nat Commun 2020; 11:4477. [PMID: 32901019 PMCID: PMC7479147 DOI: 10.1038/s41467-020-18185-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Individual cells detach from cohesive ensembles during development and can inappropriately separate in disease. Although much is known about how cells separate from epithelia, it remains unclear how cells disperse from clusters lacking apical-basal polarity, a hallmark of advanced epithelial cancers. Here, using live imaging of the developmental migration program of Drosophila primordial germ cells (PGCs), we show that cluster dispersal is accomplished by stabilizing and orienting migratory forces. PGCs utilize a G protein coupled receptor (GPCR), Tre1, to guide front-back migratory polarity radially from the cluster toward the endoderm. Posteriorly positioned myosin-dependent contractile forces pull on cell-cell contacts until cells release. Tre1 mutant cells migrate randomly with transient enrichment of the force machinery but fail to separate, indicating a temporal contractile force threshold for detachment. E-cadherin is retained on the cell surface during cell separation and augmenting cell-cell adhesion does not impede detachment. Notably, coordinated migration improves cluster dispersal efficiency by stabilizing cell-cell interfaces and facilitating symmetric pulling. We demonstrate that guidance of inherent migratory forces is sufficient to disperse cell clusters under physiological settings and present a paradigm for how such events could occur across development and disease.
Collapse
Affiliation(s)
- B Lin
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| | - J Luo
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - R Lehmann
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
22
|
Idrees M, Oh SH, Muhammad T, El-Sheikh M, Song SH, Lee KL, Kong IK. Growth Factors, and Cytokines; Understanding the Role of Tyrosine Phosphatase SHP2 in Gametogenesis and Early Embryo Development. Cells 2020; 9:cells9081798. [PMID: 32751109 PMCID: PMC7465981 DOI: 10.3390/cells9081798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Growth factors and cytokines have vital roles in germ cell development, gamete maturation, and early embryo development. Cell surface receptors are present for growth factors and cytokines to integrate with and trigger protein signaling in the germ and embryo intracellular milieu. Src-homology-2-containing phosphotyrosine phosphatase (SHP2) is a ubiquitously expressed, multifunctional protein that plays a central role in the signaling pathways involved in growth factor receptors, cytokine receptors, integrins, and G protein-coupled receptors. Over recent decades, researchers have recapitulated the protein signaling networks that influence gamete progenitor specification as well as gamete differentiation and maturation. SHP2 plays an indispensable role in cellular growth, survival, proliferation, differentiation, and migration, as well as the basic events in gametogenesis and early embryo development. SHP2, a classic cytosolic protein and a key regulator of signal transduction, displays unconventional nuclear expression in the genital organs. Several observations provided shreds of evidence that this behavior is essential for fertility. The growth factor and cytokine-dependent roles of SHP2 and its nuclear/cytoplasmic presence during gamete maturation, early embryonic development and embryo implantation are fascinating and complex subjects. This review is intended to summarize the previous and recent knowledge about the SHP2 functions in gametogenesis and early embryo development.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
| | - Seon-Hwa Oh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
| | - Tahir Muhammad
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Marwa El-Sheikh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Seok-Hwan Song
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
| | - Kyeong-Lim Lee
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
23
|
Zuo Q, Jin J, Jin K, Zhou J, Sun C, Song J, Chen G, Zhang Y, Li B. P53 and H3K4me2 activate N6-methylated LncPGCAT-1 to regulate primordial germ cell formation via MAPK signaling. J Cell Physiol 2020; 235:9895-9909. [PMID: 32458486 DOI: 10.1002/jcp.29805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/11/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs (lncRNAs) participate in the formation of primordial germ cells (PGCs); however, the identity of the key lncRNAs and the molecular mechanisms responsible for the formation of PGCs remain unknown. Here, we identify a key candidate lncRNA (lncRNA PGC transcript-1, LncPGCAT-1) via RNA sequencing of embryonic stem cells, PGCs, and Spermatogonial stem cells (SSCs). Functional experiments confirmed that LncPGCAT-1 positively regulated the formation of PGCs by elevating the expression of Cvh and C-kit while downregulating the pluripotency(Nanog) in vitro and in vivo; PAS staining of genital ridges in vivo also showed that interference with LncPGCAT-1 can significantly reduce the number of PGCs in genital ridges, while overexpression of LncPGCAT-1 had the opposite result. The result of luciferase reporter assay combined with CHIP-qPCR showed that the expression of LncPGCAT-1 was promoted by the transcription factor P53 and high levels of H3K4me2. Mechanistically, the luciferase reporter assay confirmed that mitogen-activated protein kinase 1 (MAPK1) was the target gene of LncPGCAT-1 and gga-mir-1591. In the ceRNA system, high levels of N6 methylation of LncPGCAT-1 enhanced the adsorption capacity of LncPGCAT-1 for gga-mir-1591. Adsorption of gga-mir-1591 activated the MAPK1/ERK signaling cascade by relieving the gga-mir-1591-dependent inhibition of MAPK1 expression. Moreover, LncPGCAT-1 interacted with interleukin enhancer binding factor 3 (ILF3) to regulate the ubiquitination of P53 and phosphorylation of JNK. Interaction with ILF3 resulted in positive self-feedback regulation of LncPGCAT-1 and activation of JNK signaling, ultimately promoting PGC formation. Altogether, the study expands our knowledge of the function and molecular mechanisms of lncRNAs in PGC development.
Collapse
Affiliation(s)
- Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jing Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jing Zhou
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Changhua Sun
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
24
|
Kim Y, Lee J, Seppala M, Cobourne MT, Kim SH. Ptch2/Gas1 and Ptch1/Boc differentially regulate Hedgehog signalling in murine primordial germ cell migration. Nat Commun 2020; 11:1994. [PMID: 32332736 PMCID: PMC7181751 DOI: 10.1038/s41467-020-15897-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
Gas1 and Boc/Cdon act as co-receptors in the vertebrate Hedgehog signalling pathway, but the nature of their interaction with the primary Ptch1/2 receptors remains unclear. Here we demonstrate, using primordial germ cell migration in mouse as a developmental model, that specific hetero-complexes of Ptch2/Gas1 and Ptch1/Boc mediate the process of Smo de-repression with different kinetics, through distinct modes of Hedgehog ligand reception. Moreover, Ptch2-mediated Hedgehog signalling induces the phosphorylation of Creb and Src proteins in parallel to Gli induction, identifying a previously unknown Ptch2-specific signal pathway. We propose that although Ptch1 and Ptch2 functionally overlap in the sequestration of Smo, the spatiotemporal expression of Boc and Gas1 may determine the outcome of Hedgehog signalling through compartmentalisation and modulation of Smo-downstream signalling. Our study identifies the existence of a divergent Hedgehog signal pathway mediated by Ptch2 and provides a mechanism for differential interpretation of Hedgehog signalling in the germ cell niche. How co-receptors Gas1 and Boc interact with Ptch1/2 receptors and regulate Hh signalling is unclear. Here, the authors demonstrate that the spatiotemporal expression of Gas1 and Boc determines how Hh signalling affects the dynamic migration of murine primordial germ cells.
Collapse
Affiliation(s)
- Yeonjoo Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Jiyoung Lee
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Maisa Seppala
- Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences King's College London Floor 27, Guy's Hospital, London, SE1 9RT, UK
| | - Martyn T Cobourne
- Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences King's College London Floor 27, Guy's Hospital, London, SE1 9RT, UK
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK.
| |
Collapse
|
25
|
Mishra AK, Campanale JP, Mondo JA, Montell DJ. Cell interactions in collective cell migration. Development 2019; 146:146/23/dev172056. [PMID: 31806626 DOI: 10.1242/dev.172056] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Collective cell migration is the coordinated movement of a physically connected group of cells and is a prominent driver of development and metastasis. Interactions between cells within migrating collectives, and between migrating cells and other cells in the environment, play key roles in stimulating motility, steering and sometimes promoting cell survival. Similarly, diverse heterotypic interactions and collective behaviors likely contribute to tumor metastasis. Here, we describe a sampling of cells that migrate collectively in vivo, including well-established and newer examples. We focus on the under-appreciated property that many - perhaps most - collectively migrating cells move as cooperating groups of distinct cell types.
Collapse
Affiliation(s)
- Abhinava K Mishra
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Joseph P Campanale
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - James A Mondo
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
26
|
Mäkelä JA, Koskenniemi JJ, Virtanen HE, Toppari J. Testis Development. Endocr Rev 2019; 40:857-905. [PMID: 30590466 DOI: 10.1210/er.2018-00140] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022]
Abstract
Production of sperm and androgens is the main function of the testis. This depends on normal development of both testicular somatic cells and germ cells. A genetic program initiated from the Y chromosome gene sex-determining region Y (SRY) directs somatic cell specification to Sertoli cells that orchestrate further development. They first guide fetal germ cell differentiation toward spermatogenic destiny and then take care of the full service to spermatogenic cells during spermatogenesis. The number of Sertoli cells sets the limits of sperm production. Leydig cells secrete androgens that determine masculine development. Testis development does not depend on germ cells; that is, testicular somatic cells also develop in the absence of germ cells, and the testis can produce testosterone normally to induce full masculinization in these men. In contrast, spermatogenic cell development is totally dependent on somatic cells. We herein review germ cell differentiation from primordial germ cells to spermatogonia and development of the supporting somatic cells. Testicular descent to scrota is necessary for normal spermatogenesis, and cryptorchidism is the most common male birth defect. This is a mild form of a disorder of sex differentiation. Multiple genetic reasons for more severe forms of disorders of sex differentiation have been revealed during the last decades, and these are described along with the description of molecular regulation of testis development.
Collapse
Affiliation(s)
- Juho-Antti Mäkelä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jaakko J Koskenniemi
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| |
Collapse
|
27
|
Kanamori M, Oikawa K, Tanemura K, Hara K. Mammalian germ cell migration during development, growth, and homeostasis. Reprod Med Biol 2019; 18:247-255. [PMID: 31312103 PMCID: PMC6613016 DOI: 10.1002/rmb2.12283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Germ cells represent one of the typical cell types that moves over a long period of time and large distance within the animal body. To continue its life cycle, germ cells must migrate to spatially distinct locations for proper development. Defects in such migration processes can result in infertility. Thus, for more than a century, the principles of germ cell migration have been a focus of interest in the field of reproductive biology. METHODS Based on published reports (mainly from rodents), investigations of germ cell migration before releasing from the body, including primordial germ cells (PGCs), gonocytes, spermatogonia, and immature spermatozoon, were summarized. MAIN FINDINGS Germ cells migrate with various patterns, with each migration step regulated by distinct mechanisms. During development, PGCs actively and passively migrate from the extraembryonic region toward genital ridges through the hindgut epithelium. After sex determination, male germline cells migrate heterogeneously in a developmental stage-dependent manner within the testis. CONCLUSION During migration, there are multiple gates that disallow germ cells from re-entering the proper developmental pathway after wandering off the original migration path. The presence of gates may ensure the robustness of germ cell development during development, growth, and homeostasis.
Collapse
Affiliation(s)
- Mizuho Kanamori
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Kenta Oikawa
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| |
Collapse
|
28
|
Huss DJ, Saias S, Hamamah S, Singh JM, Wang J, Dave M, Kim J, Eberwine J, Lansford R. Avian Primordial Germ Cells Contribute to and Interact With the Extracellular Matrix During Early Migration. Front Cell Dev Biol 2019; 7:35. [PMID: 30984757 PMCID: PMC6447691 DOI: 10.3389/fcell.2019.00035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/26/2019] [Indexed: 01/10/2023] Open
Abstract
During early avian development, primordial germ cells (PGC) are highly migratory, moving from the central area pellucida of the blastoderm to the anterior extra-embryonic germinal crescent. The PGCs soon move into the forming blood vessels by intravasation and travel in the circulatory system to the genital ridges where they participate in the organogenesis of the gonads. This complex cellular migration takes place in close association with a nascent extracellular matrix that matures in a precise spatio-temporal pattern. We first compiled a list of quail matrisome genes by bioinformatic screening of human matrisome orthologs. Next, we used single cell RNA-seq analysis (scRNAseq) to determine that PGCs express numerous ECM and ECM-associated genes in early embryos. The expression of select ECM transcripts and proteins in PGCs were verified by fluorescent in situ hybridization (FISH) and immunofluorescence (IF). Live imaging of transgenic quail embryos injected with fluorescent antibodies against fibronectin and laminin, showed that germinal crescent PGCs display rapid shape changes and morphological properties such as blebbing and filopodia while surrounded by, or in close contact with, an ECM fibril meshwork that is itself in constant motion. Injection of anti-β1 integrin CSAT antibodies resulted in a reduction of mature fibronectin and laminin fibril meshwork in the germinal crescent at HH4-5 but did not alter the active motility of the PGCs or their ability to populate the germinal crescent. These results suggest that integrin β1 receptors are important, but not required, for PGCs to successfully migrate during embryonic development, but instead play a vital role in ECM fibrillogenesis and assembly.
Collapse
Affiliation(s)
- David J. Huss
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
- Translational Imaging Center, University of Southern California, Los Angeles, CA, United States
| | - Sasha Saias
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Sevag Hamamah
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Jennifer M. Singh
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Jinhui Wang
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Mohit Dave
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Junhyong Kim
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA, United States
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - James Eberwine
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, United States
- Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Rusty Lansford
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
- Translational Imaging Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
29
|
Larose H, Shami AN, Abbott H, Manske G, Lei L, Hammoud SS. Gametogenesis: A journey from inception to conception. Curr Top Dev Biol 2019; 132:257-310. [PMID: 30797511 PMCID: PMC7133493 DOI: 10.1016/bs.ctdb.2018.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gametogenesis, the process of forming mature germ cells, is an integral part of both an individual's and a species' health and well-being. This chapter focuses on critical male and female genetic and epigenetic processes underlying normal gamete formation through their differentiation to fertilization. Finally, we explore how knowledge gained from this field has contributed to progress in areas with great clinical promise, such as in vitro gametogenesis.
Collapse
Affiliation(s)
- Hailey Larose
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Haley Abbott
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gabriel Manske
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lei Lei
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States.
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
30
|
Hen G, Sela-Donenfeld D. "A narrow bridge home": The dorsal mesentery in primordial germ cell migration. Semin Cell Dev Biol 2018; 92:97-104. [PMID: 30153479 DOI: 10.1016/j.semcdb.2018.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023]
Abstract
Specification of primordial germ cells (PGCs) in all vertebrates takes place in extragonadal sites. This requires migration of PGCs through embryonic tissues towards the genital ridges by both passive and active types of migration. Commonly, colonization in the genital ridges follows migration of the PGCs along the thin tissue of the dorsal mesentery. Here we review the anatomy of the dorsal mesentery, the role it plays in migration of PGCs, and the interactions of PGCs with different cell types, extracellular matrix and signaling pathways that are all essential for attraction and orientation of PGCs along the dorsal mesentery towards the gonad anlage.
Collapse
Affiliation(s)
- Gideon Hen
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
31
|
Wear HM, Eriksson A, Yao HHC, Watanabe KH. Cell-based computational model of early ovarian development in mice. Biol Reprod 2018; 97:365-377. [PMID: 29088396 DOI: 10.1093/biolre/iox089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/09/2017] [Indexed: 11/13/2022] Open
Abstract
Despite its importance to reproduction, certain mechanisms of early ovarian development remain a mystery. To improve our understanding, we constructed the first cell-based computational model of ovarian development in mice that is divided into two phases: Phase I spans embryonic day 5.5 (E5.5) to E12.5; and Phase II spans E12.5 to postnatal day 2. We used the model to investigate four mechanisms: in Phase I, (i) whether primordial germ cells (PGCs) undergo mitosis during migration; and (ii) if the mechanism for secretion of KIT ligand from the hindgut resembles inductive cell-cell signaling or is secreted in a static manner; and in Phase II, (iii) that changes in cellular adhesion produce germ cell nest breakdown; and (iv) whether localization of primordial follicles in the cortex of the ovary is due to proliferation of granulosa cells. We found that the combination of the first three hypotheses produced results that aligned with experimental images and PGC abundance data. Results from the fourth hypothesis did not match experimental images, which suggests that more detailed processes are involved in follicle localization. Phase I and Phase II of the model reproduce experimentally observed cell counts and morphology well. A sensitivity analysis identified contact energies, mitotic rates, KIT chemotaxis strength, and diffusion rate in Phase I and oocyte death rate in Phase II as parameters with the greatest impact on model predictions. The results demonstrate that the computational model can be used to understand unknown mechanisms, generate new hypotheses, and serve as an educational tool.
Collapse
Affiliation(s)
- Hannah M Wear
- Institute of Environmental Health, Oregon Health & Science University, Portland, OR, USA
| | - Annika Eriksson
- Division of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University Portland, OR, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Karen H Watanabe
- Institute of Environmental Health, Oregon Health & Science University, Portland, OR, USA.,School of Public Health, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
32
|
Review: Ontology and endocrinology of the reproductive system of bulls from fetus to maturity. Animal 2018; 12:s19-s26. [PMID: 29551096 DOI: 10.1017/s1751731118000460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This review focuses on current understanding of prenatal, prepubertal and post-pubertal development of the male reproductive system of cattle. The critical developmental events occur during the first 3 to 4 months of gestation and the first ~6 to 9 months after birth. The Wilms Tumor-1 and SRY proteins play critical roles in early development and differentiation of the fetal testis, which in turn drives gestational development of the entire male reproductive system. The hypothalamic-pituitary-gonadal axis matures earlier in the bovine fetus than other domestic species with descent of the testes into the scrotum occurring around the 4th month of gestation. An array of congenital abnormalities affecting the reproductive system of bulls has been reported and most are considered to be heritable, although the mode of inheritance in most cases has not been fully defined. Early postnatal detection of most of these abnormalities is problematic as clinical signs are generally not expressed until after puberty. Development of genomic markers for these abnormalities would enable early culling of affected calves in seedstock herds. The postnatal early sustained increase in lutenising hormone secretion cues the rapid growth of the testes in the bull calf leading to the onset of puberty. There is good evidence that both genetic and environmental factors, in particular postnatal nutrition, control or influence development and maturation of the reproductive system. For example, in Bos taurus genotypes which have had sustained genetic selection pressure applied for fertility, and where young bulls are managed on a moderate to high plane of nutrition puberty typically occurs at 8 to 12 months of age. However, in many Bos indicus genotypes where there has been little selection pressure for fertility and where young bulls are reared on a low plane of nutrition, puberty typically occurs between 15 to 17 months. Our understanding of the control and expression of sexual behavior in bulls is limited, particularly in B. indicus genotypes.
Collapse
|
33
|
Nettersheim D, Jostes S, Schneider S, Schorle H. Elucidating human male germ cell development by studying germ cell cancer. Reproduction 2017; 152:R101-13. [PMID: 27512122 DOI: 10.1530/rep-16-0114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022]
Abstract
Human germ cell development is regulated in a spatio-temporal manner by complex regulatory networks. Here, we summarize results obtained in germ cell tumors and respective cell lines and try to pinpoint similarities to normal germ cell development. This comparison allows speculating about the critical and error-prone mechanisms, which when disturbed, lead to the development of germ cell tumors. Short after specification, primordial germ cells express markers of pluripotency, which, in humans, persists up to the stage of fetal/infantile spermatogonia. Aside from the rare spermatocytic tumors, virtually all seminomas and embryonal carcinomas express markers of pluripotency and show signs of pluripotency or totipotency. Therefore, it appears that proper handling of the pluripotency program appears to be the most critical step in germ cell development in terms of tumor biology. Furthermore, data from mice reveal that germline cells display an epigenetic signature, which is highly similar to pluripotent cells. This signature (poised histone code, DNA hypomethylation) is required for the rapid induction of toti- and pluripotency upon fertilization. We propose that adult spermatogonial cells, when exposed to endocrine disruptors or epigenetic active substances, are prone to reinitiate the pluripotency program, giving rise to a germ cell tumor. The fact that pluripotent cells can be derived from adult murine and human testicular cells further corroborates this idea.
Collapse
Affiliation(s)
- Daniel Nettersheim
- Department of Developmental PathologyInstitute of Pathology, University of Bonn Medical School, Bonn, Germany
| | - Sina Jostes
- Department of Developmental PathologyInstitute of Pathology, University of Bonn Medical School, Bonn, Germany
| | - Simon Schneider
- Department of Developmental PathologyInstitute of Pathology, University of Bonn Medical School, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental PathologyInstitute of Pathology, University of Bonn Medical School, Bonn, Germany
| |
Collapse
|
34
|
Relevance of iPSC-derived human PGC-like cells at the surface of embryoid bodies to prechemotaxis migrating PGCs. Proc Natl Acad Sci U S A 2017; 114:E9913-E9922. [PMID: 29087313 PMCID: PMC5699045 DOI: 10.1073/pnas.1707779114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human primordial germ cell-like cells (hPGCLCs) generated from pluripotent stem cells in vitro hold promise, with broad applications for studies of human germline cells. We show that hPGCLCs generated using several distinct protocols are transcriptomally comparable and that primed pluripotency human iPSCs gain competence to generate hPGCLCs after only 72 hours of reprogramming toward ERK-independent state-naïve pluripotency. hPGCLCs were localized in the outermost surface layer of embryoid bodies and strongly expressed CXCR4. Live cell imaging showed active migratory activity of hPGCLCs, and their exposure to the CXCR4 ligand CXCL12/SDF-1 induced enriched expression of promigratory genes and antiapoptotic genes. These results support the resemblance of hPGCLCs to prechemotaxis human embryonic primordial germ cells migrating in the midline region of embryos. Pluripotent stem cell-derived human primordial germ cell-like cells (hPGCLCs) provide important opportunities to study primordial germ cells (PGCs). We robustly produced CD38+ hPGCLCs [∼43% of FACS-sorted embryoid body (EB) cells] from primed-state induced pluripotent stem cells (iPSCs) after a 72-hour transient incubation in the four chemical inhibitors (4i)-naïve reprogramming medium and showed transcriptional consistency of our hPGCLCs with hPGCLCs generated in previous studies using various and distinct protocols. Both CD38+ hPGCLCs and CD38− EB cells significantly expressed PRDM1 and TFAP2C, although PRDM1 mRNA in CD38− cells lacked the 3′-UTR harboring miRNA binding sites regulating mRNA stability. Genes up-regulated in hPGCLCs were enriched for cell migration genes, and their promoters were enriched for the binding motifs of TFAP2 (which was identified in promoters of T, NANOS3, and SOX17) and the RREB-1 cell adhesion regulator. In EBs, hPGCLCs were identified exclusively in the outermost surface monolayer as dispersed cells or cell aggregates with strong and specific expression of POU5F1/OCT4 protein. Time-lapse live cell imaging revealed active migration of hPGCLCs on Matrigel. Whereas all hPGCLCs strongly expressed the CXCR4 chemotaxis receptor, its ligand CXCL12/SDF1 was not significantly expressed in the whole EBs. Exposure of hPGCLCs to CXCL12/SDF1 induced cell migration genes and antiapoptosis genes. Thus, our study shows that transcriptionally consistent hPGCLCs can be readily produced from hiPSCs after transition of their pluripotency from the primed state using various methods and that hPGCLCs resemble the early-stage PGCs randomly migrating in the midline region of human embryos before initiation of the CXCL12/SDF1-guided chemotaxis.
Collapse
|
35
|
Ibtisham F, Wu J, Xiao M, An L, Banker Z, Nawab A, Zhao Y, Li G. Progress and future prospect of in vitro spermatogenesis. Oncotarget 2017; 8:66709-66727. [PMID: 29029549 PMCID: PMC5630449 DOI: 10.18632/oncotarget.19640] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022] Open
Abstract
Infertility has become a major health issue in the world. It affects the social life of couples and of all infertility cases; approximately 40–50% is due to “male factor” infertility. Male infertility could be due to genetic factors, environment or due to gonadotoxic treatment. Developments in reproductive biotechnology have made it possible to rescue fertility and uphold biological fatherhood. In vitro production of haploid male germ cell is a powerful tool, not only for the treatment of infertility including oligozoospermic or azoospermic patient, but also for the fertility preservation in pre-pubertal boys whose gonadal function is threatened by gonadotoxic therapies. Genomic editing of in-vitro cultured germ cells could also potentially cure flaws in spermatogenesis due to genomic mutation. Furthermore, this ex-vivo maturation technique with genomic editing may be used to prevent paternal transmission of genomic diseases. Here, we summarize the historical progress of in vitro spermatogenesis research by using organ and cell culture techniques and the future clinical application of in vitro spermatogenesis.
Collapse
Affiliation(s)
- Fahar Ibtisham
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jiang Wu
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Mei Xiao
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Lilong An
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zachary Banker
- Foreign Language College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Aamir Nawab
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yi Zhao
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Guanghui Li
- Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
36
|
A pilgrim's progress: Seeking meaning in primordial germ cell migration. Stem Cell Res 2017; 24:181-187. [PMID: 28754603 DOI: 10.1016/j.scr.2017.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/08/2017] [Accepted: 07/15/2017] [Indexed: 01/08/2023] Open
Abstract
Comparative studies of primordial germ cell (PGC) development across organisms in many phyla reveal surprising diversity in the route of migration, timing and underlying molecular mechanisms, suggesting that the process of migration itself is conserved. However, beyond the perfunctory transport of cellular precursors to their later arising home of the gonads, does PGC migration serve a function? Here we propose that the process of migration plays an additional role in quality control, by eliminating PGCs incapable of completing migration as well as through mechanisms that favor PGCs capable of responding appropriately to migration cues. Focusing on PGCs in mice, we explore evidence for a selective capacity of migration, considering the tandem regulation of proliferation and migration, cell-intrinsic and extrinsic control, the potential for tumors derived from failed PGC migrants, the potential mechanisms by which migratory PGCs vary in their cellular behaviors, and corresponding effects on development. We discuss the implications of a selective role of PGC migration for in vitro gametogenesis.
Collapse
|
37
|
Wang C, Zhou B, Xia G. Mechanisms controlling germline cyst breakdown and primordial follicle formation. Cell Mol Life Sci 2017; 74:2547-2566. [PMID: 28197668 PMCID: PMC11107689 DOI: 10.1007/s00018-017-2480-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 12/11/2022]
Abstract
In fetal females, oogonia proliferate immediately after sex determination. The progress of mitosis in oogonia proceeds so rapidly that the incompletely divided cytoplasm of the sister cells forms cysts. The oogonia will then initiate meiosis and arrest at the diplotene stage of meiosis I, becoming oocytes. Within each germline cyst, oocytes with Balbiani bodies will survive after cyst breakdown (CBD). After CBD, each oocyte is enclosed by pre-granulosa cells to form a primordial follicle (PF). Notably, the PF pool formed perinatally will be the sole lifelong oocyte source of a female. Thus, elucidating the mechanisms of CBD and PF formation is not only meaningful for solving mysteries related to ovarian development but also contributes to the preservation of reproduction. However, the mechanisms that regulate these phenomena are largely unknown. This review summarizes the progress of cellular and molecular research on these processes in mice and humans.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Bo Zhou
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
38
|
Quaynor SD, Bosley ME, Duckworth CG, Porter KR, Kim SH, Kim HG, Chorich LP, Sullivan ME, Choi JH, Cameron RS, Layman LC. Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Mol Cell Endocrinol 2016; 437:86-96. [PMID: 27502037 DOI: 10.1016/j.mce.2016.08.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 11/15/2022]
Abstract
The genetic basis is unknown for ∼60% of normosmic hypogonadotropic hypogonadism (nHH)/Kallmann syndrome (KS). DNAs from (17 male and 31 female) nHH/KS patients were analyzed by targeted next generation sequencing (NGS) of 261 genes involved in hypothalamic, pituitary, and/or olfactory pathways, or suggested by chromosome rearrangements. Selected variants were subjected to Sanger DNA sequencing, the gold standard. The frequency of Sanger-confirmed variants was determined using the ExAC database. Variants were classified as likely pathogenic (frameshift, nonsense, and splice site) or predicted pathogenic (nonsynonymous missense). Two novel FGFR1 mutations were identified, as were 18 new candidate genes including: AMN1, CCKBR, CRY1, CXCR4, FGF13, GAP43, GLI3, JAG1, NOS1, MASTL, NOTCH1, NRP2, PALM2, PDE3A, PLEKHA5, RD3, and TRAPPC9, and TSPAN11. Digenic and trigenic variants were found in 8/48 (16.7%) and 1/48 (2.1%) patients, respectively. NGS with confirmation by Sanger sequencing resulted in the identification of new causative FGFR1 gene mutations and suggested 18 new candidate genes in nHH/KS.
Collapse
Affiliation(s)
- Samuel D Quaynor
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, United States; University of Chicago, Department of Neurology, Chicago, IL, United States
| | - Maggie E Bosley
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Christina G Duckworth
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kelsey R Porter
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Soo-Hyun Kim
- Molecular Cell Sciences Research Centre, St. George's Medical School, University of London, London, UK
| | - Hyung-Goo Kim
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Lynn P Chorich
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Megan E Sullivan
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jeong-Hyeon Choi
- Department of Biostatistics and Epidemiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Richard S Cameron
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States; Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States.
| |
Collapse
|
39
|
Yzaguirre AD, Speck NA. Insights into blood cell formation from hemogenic endothelium in lesser-known anatomic sites. Dev Dyn 2016; 245:1011-28. [PMID: 27389484 DOI: 10.1002/dvdy.24430] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/24/2016] [Accepted: 07/04/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Hematopoietic stem and progenitor cells (HSPCs) are generated de novo in the embryo in a process termed the endothelial to hematopoietic transition (EHT). EHT is most extensively studied in the yolk sac and dorsal aorta. Recently new sites of hematopoiesis have been described, including the heart, somites, head, and venous plexus of the yolk sac. RESULTS We examined sites of HSPC formation in well-studied and in less well-known sites by mapping the expression of the key EHT factor Runx1 along with several other markers by means of confocal microscopy. We identified sites of HSPC formation in the head, heart and somites. We also identified sites of HSPC formation in both the arterial and venous plexuses of the yolk sac, and show that progenitors with lymphoid potential are enriched in hematopoietic clusters in close proximity to arteries. Furthermore, we demonstrate that many of the cells in hematopoietic clusters resemble monocytes or granulocytes based on nuclear shape. CONCLUSIONS We identified sites of HSPC formation in the head, heart, and somites, confirming that embryonic hematopoiesis is less spatially restricted than previously thought. Furthermore, we show that HSPCs in the yolk sac with lymphoid potential are located in closer proximity to arteries than to veins. Developmental Dynamics 245:1011-1028, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amanda D Yzaguirre
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nancy A Speck
- Abramson Family Cancer Research Institute, Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
40
|
Barton LJ, LeBlanc MG, Lehmann R. Finding their way: themes in germ cell migration. Curr Opin Cell Biol 2016; 42:128-137. [PMID: 27484857 DOI: 10.1016/j.ceb.2016.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/15/2016] [Accepted: 07/08/2016] [Indexed: 11/26/2022]
Abstract
Embryonic germ cell migration is a vital component of the germline lifecycle. The translocation of germ cells from the place of origin to the developing somatic gonad involves several processes including passive movements with underlying tissues, transepithelial migration, cell adhesion dynamics, the establishment of environmental guidance cues and the ability to sustain directed migration. How germ cells accomplish these feats in established model organisms will be discussed in this review, with a focus on recent discoveries and themes conserved across species.
Collapse
Affiliation(s)
- Lacy J Barton
- HHMI and Skirball Institute at NYU School of Medicine, 540 First Avenue, New York, NY 10016, United States
| | - Michelle G LeBlanc
- HHMI and Skirball Institute at NYU School of Medicine, 540 First Avenue, New York, NY 10016, United States
| | - Ruth Lehmann
- HHMI and Skirball Institute at NYU School of Medicine, 540 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
41
|
Msx1 and Msx2 function together in the regulation of primordial germ cell migration in the mouse. Dev Biol 2016; 417:11-24. [PMID: 27435625 PMCID: PMC5407493 DOI: 10.1016/j.ydbio.2016.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 11/23/2022]
Abstract
Primordial germ cells (PGCs) are a highly migratory cell population that gives rise to eggs and sperm. Much is known about PGC specification, but less about the processes that control PGC migration. In this study, we document a deficiency in PGC development in embryos carrying global homozygous null mutations in Msx1 and Msx2, both immediate downstream effectors of Bmp signaling pathway. We show that Msx1−/−;Msx2−/− mutant embryos have defects in PGC migration as well as a reduced number of PGCs. These phenotypes are also evident in a Mesp1-Cre-mediated mesoderm-specific mutant line of Msx1 and Msx2. Since PGCs are not marked in Mesp1-lineage tracing, our results suggest that Msx1 and Msx2 function cell non-autonomously in directing PGC migration. Consistent with this hypothesis, we noted an upregulation of fibronectin, well known as a mediator of cell migration, in tissues through which PGCs migrate. We also noted a reduction in the expression of Wnt5a and an increase in the expression in Bmp4 in such tissues in Msx1−/−;Msx2−/− mutants, both known effectors of PGC development.
Collapse
|
42
|
Cantú AV, Altshuler-Keylin S, Laird DJ. Discrete somatic niches coordinate proliferation and migration of primordial germ cells via Wnt signaling. J Cell Biol 2016; 214:215-29. [PMID: 27402951 PMCID: PMC4949447 DOI: 10.1083/jcb.201511061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 06/15/2016] [Indexed: 01/02/2023] Open
Abstract
Inheritance depends on the expansion of a small number of primordial germ cells (PGCs) in the early embryo. Proliferation of mammalian PGCs is concurrent with their movement through changing microenvironments; however, mechanisms coordinating these conflicting processes remain unclear. Here, we find that PGC proliferation varies by location rather than embryonic age. Ror2 and Wnt5a mutants with mislocalized PGCs corroborate the microenvironmental regulation of the cell cycle, except in the hindgut, where Wnt5a is highly expressed. Molecular and genetic evidence suggests that Wnt5a acts via Ror2 to suppress β-catenin-dependent Wnt signaling in PGCs and limit their proliferation in specific locations, which we validate by overactivating β-catenin in PGCs. Our results suggest that the balance between expansion and movement of migratory PGCs is fine-tuned in different niches by the opposing β-catenin-dependent and Ror2-mediated pathways through Wnt5a This could serve as a selective mechanism to favor early and efficient migrators with clonal dominance in the ensuing germ cell pool while penalizing stragglers.
Collapse
Affiliation(s)
- Andrea V Cantú
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94043
| | - Svetlana Altshuler-Keylin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94043
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94043
| |
Collapse
|
43
|
Wear HM, McPike MJ, Watanabe KH. From primordial germ cells to primordial follicles: a review and visual representation of early ovarian development in mice. J Ovarian Res 2016; 9:36. [PMID: 27329176 PMCID: PMC4915180 DOI: 10.1186/s13048-016-0246-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/13/2016] [Indexed: 01/08/2023] Open
Abstract
Background Normal development of reproductive organs is crucial for successful reproduction. In mice the early ovarian developmental process occurs during the embryonic and postnatal period and is regulated through a series of molecular signaling events. Early ovarian development in mice is a seventeen-day process that begins with the rise of six primordial germ cells on embryonic day five (E5) and ends with the formation of primordial follicles on postnatal day two (P2). Results We reviewed the current literature and created a visual representation of early ovarian development that depicts the important molecular events and associated phenotypic outcomes based on primary data. The visual representation shows the timeline of key signaling interactions and regulation of protein expression in different cells involved in ovarian development. The major developmental events were divided into five phases: 1) origin of germ cells and maintenance of pluripotency; 2) primordial germ cell migration; 3) sex differentiation; 4) formation of germ cell nests; and 5) germ cell nest breakdown and primordial follicle formation. Conclusions This review and visual representation provide a summary of the current scientific understanding of the key regulation and signaling during ovarian development and highlights areas needing further study. The visual representation can be used as an educational resource to link molecular events with phenotypic outcomes; serves as a tool to generate new hypotheses and predictions of adverse reproductive outcomes due to perturbations at the molecular and cellular levels; and provides a comprehendible foundation for computational model development and hypothesis testing.
Collapse
Affiliation(s)
- Hannah M Wear
- Institute of Environmental Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd. Mail code HRC3, Portland, OR, 97239, USA
| | - Matthew J McPike
- Institute of Environmental Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd. Mail code HRC3, Portland, OR, 97239, USA
| | - Karen H Watanabe
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd. Mail code GH230, Portland, OR, 97239, USA.
| |
Collapse
|
44
|
Sanchez A, Amatruda JF. Zebrafish Germ Cell Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:479-94. [PMID: 27165367 DOI: 10.1007/978-3-319-30654-4_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Germ cell tumors (GCTs) are malignant cancers that arise from embryonic precursors known as Primordial Germ Cells. GCTs occur in neonates, children, adolescents and young adults and can occur in the testis, the ovary or extragonadal sites. Because GCTs arise from pluripotent cells, the tumors can exhibit a wide range of different histologies. Current cisplatin-based combination therapies cures most patients, however at the cost of significant toxicity to normal tissues. While GWAS studies and genomic analysis of human GCTs have uncovered somatic mutations and loci that might confer tumor susceptibility, little is still known about the exact mechanisms that drive tumor development, and animal models that faithfully recapitulate all the different GCT subtypes are lacking. Here, we summarize current understanding of germline development in humans and zebrafish, describe the biology of human germ cell tumors, and discuss progress and prospects for zebrafish GCT models that may contribute to better understanding of human GCTs.
Collapse
Affiliation(s)
- Angelica Sanchez
- Departments of Pediatrics and Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - James F Amatruda
- Departments of Pediatrics, Molecular Biology and Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
45
|
Miyahara D, Oishi I, Makino R, Kurumisawa N, Nakaya R, Ono T, Kagami H, Tagami T. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2. J Reprod Dev 2015; 62:143-9. [PMID: 26727404 PMCID: PMC4848571 DOI: 10.1262/jrd.2015-128] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An in vitro culture system of chicken primordial germ cells (PGCs) has been recently
developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present
study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro
proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that
stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL).
Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2),
and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate
of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on
chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of
chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However,
the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2
would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to
recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs
by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%.
The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining
germline competency in vitro in cooperation with FGF2.
Collapse
Affiliation(s)
- Daichi Miyahara
- Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Whyte J, Glover JD, Woodcock M, Brzeszczynska J, Taylor L, Sherman A, Kaiser P, McGrew MJ. FGF, Insulin, and SMAD Signaling Cooperate for Avian Primordial Germ Cell Self-Renewal. Stem Cell Reports 2015; 5:1171-1182. [PMID: 26677769 PMCID: PMC4682126 DOI: 10.1016/j.stemcr.2015.10.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 11/18/2022] Open
Abstract
Precise self-renewal of the germ cell lineage is fundamental to fertility and reproductive success. The early precursors for the germ lineage, primordial germ cells (PGCs), survive and proliferate in several embryonic locations during their migration to the embryonic gonad. By elucidating the active signaling pathways in migratory PGCs in vivo, we were able to create culture conditions that recapitulate this embryonic germ cell environment. In defined medium conditions without feeder cells, the growth factors FGF2, insulin, and Activin A, signaling through their cognate-signaling pathways, were sufficient for self-renewal of germline-competent PGCs. Forced expression of constitutively active MEK1, AKT, and SMAD3 proteins could replace their respective upstream growth factors. Unexpectedly, we found that BMP4 could replace Activin A in non-clonal growth conditions. These defined medium conditions identify the key molecular pathways required for PGC self-renewal and will facilitate efforts in biobanking of chicken genetic resources and genome editing. Avian primordial germ cell self-renewal is dependent on FGF2, insulin, and Activin A molecules BMP4 can replace Activin A in non-clonal growth conditions Defined culture medium conditions will facilitate studies of germ cell self-renewal in other vertebrate species
Collapse
Affiliation(s)
- Jemima Whyte
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - James D Glover
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Mark Woodcock
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Joanna Brzeszczynska
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Lorna Taylor
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Adrian Sherman
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Pete Kaiser
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Michael J McGrew
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK.
| |
Collapse
|
47
|
Kassmer SH, Rodriguez D, Langenbacher AD, Bui C, De Tomaso AW. Migration of germline progenitor cells is directed by sphingosine-1-phosphate signalling in a basal chordate. Nat Commun 2015; 6:8565. [PMID: 26456232 PMCID: PMC4606877 DOI: 10.1038/ncomms9565] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 09/04/2015] [Indexed: 01/28/2023] Open
Abstract
The colonial ascidian Botryllus schlosseri continuously regenerates entire bodies in an asexual budding process. The germ line of the newly developing bodies is derived from migrating germ cell precursors, but the signals governing this homing process are unknown. Here we show that germ cell precursors can be prospectively isolated based on expression of aldehyde dehydrogenase and integrin alpha-6, and that these cells express germ cell markers such as vasa, pumilio and piwi, as well as sphingosine-1-phosphate receptor. In vitro, sphingosine-1-phosphate (S1P) stimulates migration of germ cells, which depends on integrin alpha-6 activity. In vivo, S1P signalling is essential for homing of germ cells to newly developing bodies. S1P is generated by sphingosine kinase in the developing germ cell niche and degraded by lipid phosphate phosphatase in somatic tissues. These results demonstrate a previously unknown role of the S1P signalling pathway in germ cell migration in the ascidian Botryllus schlosseri. The regulation of germ cell migration in the colonial ascidian Botryllus schlosseri is poorly understood. In this chordate, Kassmer et al. identify sphingosine-1-phosphate as regulating germ cell migration in vitro and homing of cells to newly developing bodies in live organisms.
Collapse
Affiliation(s)
- Susannah H Kassmer
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | - Delany Rodriguez
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA
| | - Adam D Langenbacher
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | - Connor Bui
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | - Anthony W De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
48
|
Abstract
Leukemia inhibitory factor (LIF) is a member of the interleukin-6 (IL-6) cytokine family. All members of this family activate signal transducer and activator of transcription 3 (STAT3), a transcription factor that influences stem and progenitor cell identity, proliferation and cytoprotection. The role of LIF in development was first identified when LIF was demonstrated to support the propagation of mouse embryonic stem cells. Subsequent studies of mice deficient for components of the LIF pathway have revealed important roles for LIF signaling during development and homeostasis. Here and in the accompanying poster, we provide a broad overview of JAK-STAT signaling during development, with a specific focus on LIF-mediated JAK-STAT3 activation.
Collapse
Affiliation(s)
- Kento Onishi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9 Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5 The Donnelly Centre, University of Toronto, 160 College St., Toronto, Ontario, Canada M5S 3E1 McEwen Centre for Regenerative Medicine, University Health Network, 101 College St., Toronto, Ontario, Canada M5G 1L7
| |
Collapse
|
49
|
Mansouri V, Salehi M, Nourozian M, Fadaei F, Farahani RM, Piryaei A, Delbari A. The ability of mouse nuclear transfer embryonic stem cells to differentiate into primordial germ cells. Genet Mol Biol 2015; 38:220-6. [PMID: 26273226 PMCID: PMC4530652 DOI: 10.1590/s1415-475738138120140213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/30/2014] [Indexed: 11/21/2022] Open
Abstract
Nuclear transfer embryonic stem cells (ntESCs) show stem cell characteristics such as pluripotency but cause no immunological disorders. Although ntESCs are able to differentiate into somatic cells, the ability of ntESCs to differentiate into primordial germ cells (PGCs) has not been examined. In this work, we examined the capacity of mouse ntESCs to differentiate into PGCs in vitro. ntESCs aggregated to form embryoid bodies (EB) in EB culture medium supplemented with bone morphogenetic protein 4(BMP4) as the differentiation factor. The expression level of specific PGC genes was compared at days 4 and 8 using real time PCR. Flow cytometry and immunocytochemical staining were used to detect Mvh as a specific PGC marker. ntESCs expressed particular genes related to different stages of PGC development. Flow cytometry and immunocytochemical staining confirmed the presence of Mvh protein in a small number of cells. There were significant differences between cells that differentiated into PGCs in the group treated with Bmp4 compared to non-treated cells. These findings indicate that ntESCs can differentiate into putative PGCs. Improvement of ntESC differentiation into PGCs may be a reliable means of producing mature germ cells.
Collapse
Affiliation(s)
- Vahid Mansouri
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ; Department of Biotechnology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Nourozian
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mastery Farahani
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Delbari
- Department of Anatomical Sciences, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
50
|
Campolo F, Gori M, Favaro R, Nicolis S, Pellegrini M, Botti F, Rossi P, Jannini EA, Dolci S. Essential role of Sox2 for the establishment and maintenance of the germ cell line. Stem Cells 2014; 31:1408-21. [PMID: 23553930 DOI: 10.1002/stem.1392] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/28/2013] [Accepted: 02/13/2013] [Indexed: 01/04/2023]
Abstract
Sox2 is a pluripotency-conferring gene expressed in primordial germ cells (PGCs) and postnatal oocytes, but the role it plays during germ cell development and early embryogenesis is unknown. Since Sox2 ablation causes early embryonic lethality shortly after blastocyst implantation, we generated mice bearing Sox2-conditional deletion in germ cells at different stages of their development through the Cre/loxP recombination system. Embryos lacking Sox2 in PGCs show a dramatic decrease of germ cell numbers at the time of their specification. At later stages, we found that Sox2 is strictly required for PGC proliferation. On the contrary, Sox2 deletion in meiotic oocytes does not impair postnatal oogenesis and early embryogenesis, indicating that it is not essential for oocyte maturation or for zygotic development. We also show that Sox2 regulates Kit expression in PGCs and binds to discrete transcriptional regulatory sequences of this gene, which is known to be important for PGCs survival and proliferation. Sox2 also stimulates the expression of Zfp148, which is required for normal development of fetal germ cells, and Rif1, a potential regulator of PGC pluripotency.
Collapse
Affiliation(s)
- Federica Campolo
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Torvergata, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|