1
|
Wei X, Fang X, Yu X, Li H, Guo Y, Qi Y, Sun C, Han D, Liu X, Li N, Hu H. Integrative analysis of single-cell embryo data reveals transcriptome signatures for the human pre-implantation inner cell mass. Dev Biol 2023; 502:39-49. [PMID: 37437860 DOI: 10.1016/j.ydbio.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
As the source of embryonic stem cells (ESCs), inner cell mass (ICM) can form all tissues of the embryo proper, however, its role in early human lineage specification remains controversial. Although a stepwise differentiation model has been proposed suggesting the existence of ICM as a distinct developmental stage, the underlying molecular mechanism remains unclear. In the present study, we perform an integrated analysis on the public human preimplantation embryonic single-cell transcriptomic data and apply a trajectory inference algorithm to measure the cell plasticity. In our results, ICM population can be clearly discriminated on the dimension-reduced graph and confirmed by compelling evidences, thus validating the two-step hypothesis of lineage commitment. According to the branch probabilities and differentiation potential, we determine the precise time points for two lineage segregations. Further analysis on gene expression dynamics and regulatory network indicates that transcription factors including GSC, PRDM1, and SPIC may underlie the decisions of ICM fate. In addition, new human ICM marker genes, such as EPHA4 and CCR8 are discovered and validated by immunofluorescence. Given the potential clinical applications of ESCs, our analysis provides a further understanding of human ICM cells and facilitates the exploration of more unique characteristics in early human development.
Collapse
Affiliation(s)
- Xinshu Wei
- School of Medicine, South China University of Technology, Guangzhou, China; Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xiang Fang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Xiu Yu
- School of Medicine, Jiaying University, Meizhou, 514015, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hong Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yuyang Guo
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yifei Qi
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Chuanbo Sun
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Xiaonan Liu
- Department of Assisted Reproductive Technology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China; Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Third Affiliatied Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Cheng T, Xing YY, Liu C, Li YF, Huang Y, Liu X, Zhang YJ, Zhao GQ, Dong Y, Fu XX, Tian YM, Shu LP, Megason SG, Xu PF. Nodal coordinates the anterior-posterior patterning of germ layers and induces head formation in zebrafish explants. Cell Rep 2023; 42:112351. [PMID: 37018074 DOI: 10.1016/j.celrep.2023.112351] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Much progress has been made toward generating analogs of early embryos, such as gastruloids and embryoids, in vitro. However, methods for how to fully mimic the cell movements of gastrulation and coordinate germ-layer patterning to induce head formation are still lacking. Here, we show that a regional Nodal gradient applied to zebrafish animal pole explant can generate a structure that recapitulates the key cell movements of gastrulation. Using single-cell transcriptome and in situ hybridization analysis, we assess the dynamics of the cell fates and patterning of this structure. The mesendoderm differentiates into the anterior endoderm, prechordal plate, notochord, and tailbud-like cells along an anterior-posterior axis, and an anterior-posterior-patterned head-like structure (HLS) progressively forms during late gastrulation. Among 105 immediate Nodal targets, 14 genes contain axis-induction ability, and 5 of them induce a complete or partial head structure when overexpressed in the ventral side of zebrafish embryos.
Collapse
Affiliation(s)
- Tao Cheng
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan-Yi Xing
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China
| | - Cong Liu
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun-Fei Li
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Huang
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiang Liu
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying-Jie Zhang
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guo-Qin Zhao
- Department of Immunology, Guizhou Medical University, Guiyang 550004, China
| | - Yang Dong
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin-Xin Fu
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi-Meng Tian
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li-Ping Shu
- Department of Immunology, Guizhou Medical University, Guiyang 550004, China
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | - Peng-Fei Xu
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Yan Y, Wang Q. BMP Signaling: Lighting up the Way for Embryonic Dorsoventral Patterning. Front Cell Dev Biol 2022; 9:799772. [PMID: 35036406 PMCID: PMC8753366 DOI: 10.3389/fcell.2021.799772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
One of the most significant events during early embryonic development is the establishment of a basic embryonic body plan, which is defined by anteroposterior, dorsoventral (DV), and left-right axes. It is well-known that the morphogen gradient created by BMP signaling activity is crucial for DV axis patterning across a diverse set of vertebrates. The regulation of BMP signaling during DV patterning has been strongly conserved across evolution. This is a remarkable regulatory and evolutionary feat, as the BMP gradient has been maintained despite the tremendous variation in embryonic size and shape across species. Interestingly, the embryonic DV axis exhibits robust stability, even in face of variations in BMP signaling. Multiple lines of genetic, molecular, and embryological evidence have suggested that numerous BMP signaling components and their attendant regulators act in concert to shape the developing DV axis. In this review, we summarize the current knowledge of the function and regulation of BMP signaling in DV patterning. Throughout, we focus specifically on popular model animals, such as Xenopus and zebrafish, highlighting the similarities and differences of the regulatory networks between species. We also review recent advances regarding the molecular nature of DV patterning, including the initiation of the DV axis, the formation of the BMP gradient, and the regulatory molecular mechanisms behind BMP signaling during the establishment of the DV axis. Collectively, this review will help clarify our current understanding of the molecular nature of DV axis formation.
Collapse
Affiliation(s)
- Yifang Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Jones WD, Mullins MC. Cell signaling pathways controlling an axis organizing center in the zebrafish. Curr Top Dev Biol 2022; 150:149-209. [DOI: 10.1016/bs.ctdb.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Umair Z, Kumar V, Goutam RS, Kumar S, Lee U, Kim J. Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos. Mol Cells 2021; 44:723-735. [PMID: 34711690 PMCID: PMC8560583 DOI: 10.14348/molcells.2021.0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.
Collapse
Affiliation(s)
- Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 21999, Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
6
|
Fuentes R, Tajer B, Kobayashi M, Pelliccia JL, Langdon Y, Abrams EW, Mullins MC. The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish. Curr Top Dev Biol 2020; 140:341-389. [PMID: 32591080 DOI: 10.1016/bs.ctdb.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Axis specification of the zebrafish embryo begins during oogenesis and relies on proper formation of well-defined cytoplasmic domains within the oocyte. Upon fertilization, maternally-regulated cytoplasmic flow and repositioning of dorsal determinants establish the coordinate system that will build the structure and developmental body plan of the embryo. Failure of specific genes that regulate the embryonic coordinate system leads to catastrophic loss of body structures. Here, we review the genetic principles of axis formation and discuss how maternal factors orchestrate axis patterning during zebrafish early embryogenesis. We focus on the molecular identity and functional contribution of genes controlling critical aspects of oogenesis, egg activation, blastula, and gastrula stages. We examine how polarized cytoplasmic domains form in the oocyte, which set off downstream events such as animal-vegetal polarity and germ line development. After gametes interact and form the zygote, cytoplasmic segregation drives the animal-directed reorganization of maternal determinants through calcium- and cell cycle-dependent signals. We also summarize how maternal genes control dorsoventral, anterior-posterior, mesendodermal, and left-right cell fate specification and how signaling pathways pattern these axes and tissues during early development to instruct the three-dimensional body plan. Advances in reverse genetics and phenotyping approaches in the zebrafish model are revealing positional patterning signatures at the single-cell level, thus enhancing our understanding of genotype-phenotype interactions in axis formation. Our emphasis is on the genetic interrogation of novel and specific maternal regulatory mechanisms of axis specification in the zebrafish.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jose L Pelliccia
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Elliott W Abrams
- Department of Biology, Purchase College, State University of New York, Harrison, NY, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
7
|
Jung J, Choi I, Ro H, Huh TL, Choe J, Rhee M. march5 Governs the Convergence and Extension Movement for Organization of the Telencephalon and Diencephalon in Zebrafish Embryos. Mol Cells 2020; 43:76-85. [PMID: 31910335 PMCID: PMC6999709 DOI: 10.14348/molcells.2019.0210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 11/27/2022] Open
Abstract
MARCH5 is a RING finger E3 ligase involved in mitochondrial integrity, cellular protein homeostasis, and the regulation of mitochondrial fusion and fission. To determine the function of MARCH5 during development, we assessed transcript expression in zebrafish embryos. We found that march5 transcripts were of maternal origin and evenly distributed at the 1-cell stage, except for the mid-blastula transition, with expression predominantly in the developing central nervous system at later stages of embryogenesis. Overexpression of march5 impaired convergent extension movement during gastrulation, resulting in reduced patterning along the dorsoventral axis and alterations in the ventral cell types. Overexpression and knockdown of march5 disrupted the organization of the developing telencephalon and diencephalon. Lastly, we found that the transcription of march5 was tightly regulated by the transcriptional regulators CHOP, C/EBPα, Staf, Znf143a, and Znf76. These results demonstrate the essential role of March5 in the development of zebrafish embryos.
Collapse
Affiliation(s)
- Jangham Jung
- Department of Life Science, BK21 Plus Program, Graduate School, Chungnam National University, Daejeon 34134,
Korea
| | - Issac Choi
- Department of Life Science, BK21 Plus Program, Graduate School, Chungnam National University, Daejeon 34134,
Korea
| | - Hyunju Ro
- Department of Life Science, BK21 Plus Program, Graduate School, Chungnam National University, Daejeon 34134,
Korea
| | - Tae-Lin Huh
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566,
Korea
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141,
Korea
| | - Myungchull Rhee
- Department of Life Science, BK21 Plus Program, Graduate School, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
8
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
9
|
Xu J, Zhang Q, Li X, Zhan S, Wang L, Chen D. The effects of copper oxide nanoparticles on dorsoventral patterning, convergent extension, and neural and cardiac development of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 188:130-137. [PMID: 28521150 DOI: 10.1016/j.aquatox.2017.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/21/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Currently, nanoparticles are widely used in biomedicine and industry. CuO nanoparticles (CuO-NPs) are versatile materials in our daily life and their toxicity has drawn extensive attention. In this study, we concentrate on the effect of CuO-NPs on early zebrafish development. The results reveal that CuO-NPs can induce abnormal phenotypes of a smaller head and eyes and delayed epiboly. The gene expression pattern shows that CuO-NPs spatially narrow the expression of dorsal genes chordin and goosecoid and alter the expression of dlx3, ntl and hgg which are related to the cell migration of gastrulation. The decreased expression of pax2 and pax6 involved in neural differentiation was accordant with the decreased sizes of neural structures. Cmlc2 expression suggests that CuO-NPs prevented looping of the heart tube during cardiogenesis. Furthermore, quantitative RT-PCR results suggest that the CuO-NPs could increase the canonical Wnt signaling pathway to narrow the expression of chordin and goosecoid in dorsoventral patterning as well as decrease the transcription of Wnt5 and Wnt11 to result in slower, less directed movements and an abnormal cell shape. These findings indicated the CuO-NPs exert developmental toxicity. The present study evaluates the ecological and developmental toxicity, providing warnings about the application of CuO-NPs.
Collapse
Affiliation(s)
- Jia Xu
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qiuping Zhang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xu Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sihui Zhan
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lifeng Wang
- Department of Biochemistry, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Dongyan Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
10
|
Tanaka S, Hosokawa H, Weinberg ES, Maegawa S. Chordin and dickkopf-1b are essential for the formation of head structures through activation of the FGF signaling pathway in zebrafish. Dev Biol 2017; 424:189-197. [PMID: 28259755 DOI: 10.1016/j.ydbio.2017.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/16/2017] [Accepted: 02/28/2017] [Indexed: 01/16/2023]
Abstract
The ability of the Spemann organizer to induce dorsal axis formation is dependent on downstream factors of the maternal Wnt/β-catenin signaling pathway. The fibroblast growth factor (FGF) signaling pathway has been identified as one of the downstream components of the maternal Wnt/β-catenin signaling pathway. The ability of the FGF signaling pathway to induce the formation of a dorsal axis with a complete head structure requires chordin (chd) expression; however, the molecular mechanisms involved in this developmental process, due to activation of FGF signaling, remain unclear. In this study, we showed that activation of the FGF signaling pathway induced the formation of complete head structures through the expression of chd and dickkopf-1b (dkk1b). Using the organizer-deficient maternal mutant, ichabod, we identified dkk1b as a novel downstream factor in the FGF signaling pathway. We also demonstrate that dkk1b expression is necessary, after activation of the FGF signaling pathway, to induce neuroectoderm patterning along the anteroposterior (AP) axis and for formation of complete head structures. Co-injection of chd and dkk1b mRNA resulted in the formation of a dorsal axis with a complete head structure in ichabod embryos, confirming the role of these factors in this developmental process. Unexpectedly, we found that chd induced dkk1b expression in ichabod embryos at the shield stage. However, chd failed to maintain dkk1b expression levels in cells of the shield and, subsequently, in the cells of the prechordal plate after mid-gastrula stage. In contrast, activation of the FGF signaling pathway maintained the dkk1b expression from the beginning of gastrulation to early somitogenesis. In conclusion, activation of the FGF signaling pathway induces the formation of a dorsal axis with a complete head structure through the expression of chd and subsequent maintenance of dkk1b expression levels.
Collapse
Affiliation(s)
- Shingo Tanaka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Hosokawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| | - Eric S Weinberg
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shingo Maegawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
11
|
Ulmer B, Tingler M, Kurz S, Maerker M, Andre P, Mönch D, Campione M, Deißler K, Lewandoski M, Thumberger T, Schweickert A, Fainsod A, Steinbeißer H, Blum M. A novel role of the organizer gene Goosecoid as an inhibitor of Wnt/PCP-mediated convergent extension in Xenopus and mouse. Sci Rep 2017; 7:43010. [PMID: 28220837 PMCID: PMC5318956 DOI: 10.1038/srep43010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/18/2017] [Indexed: 12/12/2022] Open
Abstract
Goosecoid (Gsc) expression marks the primary embryonic organizer in vertebrates and beyond. While functions have been assigned during later embryogenesis, the role of Gsc in the organizer has remained enigmatic. Using conditional gain-of-function approaches in Xenopus and mouse to maintain Gsc expression in the organizer and along the axial midline, neural tube closure defects (NTDs) arose and dorsal extension was compromised. Both phenotypes represent convergent extension (CE) defects, arising from impaired Wnt/planar cell polarity (PCP) signaling. Dvl2 recruitment to the cell membrane was inhibited by Gsc in Xenopus animal cap assays and key Wnt/PCP factors (RhoA, Vangl2, Prickle, Wnt11) rescued Gsc-mediated NTDs. Re-evaluation of endogenous Gsc functions in MO-mediated gene knockdown frog and knockout mouse embryos unearthed PCP/CE-related phenotypes as well, including cartilage defects in Xenopus and misalignment of inner ear hair cells in mouse. Our results assign a novel function to Gsc as an inhibitor of Wnt/PCP-mediated CE. We propose that in the organizer Gsc represses CE as well: Gsc-expressing prechordal cells, which leave the organizer first, migrate and do not undergo CE like the Gsc-negative notochordal cells, which subsequently emerge from the organizer. In this model, Gsc provides a switch between cell migration and CE, i.e. cell intercalation.
Collapse
Affiliation(s)
- Bärbel Ulmer
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Melanie Tingler
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Sabrina Kurz
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Markus Maerker
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Philipp Andre
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Dina Mönch
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Marina Campione
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Kirsten Deißler
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | - Axel Schweickert
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University, Jerusalem 9112102, Israel
| | - Herbert Steinbeißer
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Martin Blum
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|
12
|
Sako K, Pradhan SJ, Barone V, Inglés-Prieto Á, Müller P, Ruprecht V, Čapek D, Galande S, Janovjak H, Heisenberg CP. Optogenetic Control of Nodal Signaling Reveals a Temporal Pattern of Nodal Signaling Regulating Cell Fate Specification during Gastrulation. Cell Rep 2016; 16:866-77. [PMID: 27396324 DOI: 10.1016/j.celrep.2016.06.036] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/21/2016] [Accepted: 06/05/2016] [Indexed: 01/20/2023] Open
Abstract
During metazoan development, the temporal pattern of morphogen signaling is critical for organizing cell fates in space and time. Yet, tools for temporally controlling morphogen signaling within the embryo are still scarce. Here, we developed a photoactivatable Nodal receptor to determine how the temporal pattern of Nodal signaling affects cell fate specification during zebrafish gastrulation. By using this receptor to manipulate the duration of Nodal signaling in vivo by light, we show that extended Nodal signaling within the organizer promotes prechordal plate specification and suppresses endoderm differentiation. Endoderm differentiation is suppressed by extended Nodal signaling inducing expression of the transcriptional repressor goosecoid (gsc) in prechordal plate progenitors, which in turn restrains Nodal signaling from upregulating the endoderm differentiation gene sox17 within these cells. Thus, optogenetic manipulation of Nodal signaling identifies a critical role of Nodal signaling duration for organizer cell fate specification during gastrulation.
Collapse
Affiliation(s)
- Keisuke Sako
- Laboratory of Developmental Biology, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Saurabh J Pradhan
- Indian Institute of Science, Education and Research, Pune 411008, India
| | - Vanessa Barone
- Laboratory of Developmental Biology, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Álvaro Inglés-Prieto
- Laboratory of Synthetic Physiology, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Verena Ruprecht
- Laboratory of Developmental Biology, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Daniel Čapek
- Laboratory of Developmental Biology, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Sanjeev Galande
- Indian Institute of Science, Education and Research, Pune 411008, India
| | - Harald Janovjak
- Laboratory of Synthetic Physiology, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| | - Carl-Philipp Heisenberg
- Laboratory of Developmental Biology, Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
13
|
Langdon YG, Fuentes R, Zhang H, Abrams EW, Marlow FL, Mullins MC. Split top: a maternal cathepsin B that regulates dorsoventral patterning and morphogenesis. Development 2016; 143:1016-28. [PMID: 26893345 PMCID: PMC4813285 DOI: 10.1242/dev.128900] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/29/2016] [Indexed: 12/28/2022]
Abstract
The vertebrate embryonic dorsoventral axis is established and patterned by Wnt and bone morphogenetic protein (BMP) signaling pathways, respectively. Whereas Wnt signaling establishes the dorsal side of the embryo and induces the dorsal organizer, a BMP signaling gradient patterns tissues along the dorsoventral axis. Early Wnt signaling is provided maternally, whereas BMP ligand expression in the zebrafish is zygotic, but regulated by maternal factors. Concomitant with BMP activity patterning dorsoventral axial tissues, the embryo also undergoes dramatic morphogenetic processes, including the cell movements of gastrulation, epiboly and dorsal convergence. Although the zygotic regulation of these cell migration processes is increasingly understood, far less is known of the maternal regulators of these processes. Similarly, the maternal regulation of dorsoventral patterning, and in particular the maternal control of ventral tissue specification, is poorly understood. We identified split top, a recessive maternal-effect zebrafish mutant that disrupts embryonic patterning upstream of endogenous BMP signaling. Embryos from split top mutant females exhibit a dorsalized embryonic axis, which can be rescued by BMP misexpression or by derepressing endogenous BMP signaling. In addition to dorsoventral patterning defects, split top mutants display morphogenesis defects that are both BMP dependent and independent. These morphogenesis defects include incomplete dorsal convergence, delayed epiboly progression and an early lysis phenotype during gastrula stages. The latter two morphogenesis defects are associated with disruption of the actin and microtubule cytoskeleton within the yolk cell and defects in the outer enveloping cell layer, which are both known mediators of epiboly movements. Through chromosomal mapping and RNA sequencing analysis, we identified the lysosomal endopeptidase cathepsin Ba (ctsba) as the gene deficient in split top embryos. Our results identify a novel role for Ctsba in morphogenesis and expand our understanding of the maternal regulation of dorsoventral patterning.
Collapse
Affiliation(s)
- Yvette G Langdon
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA Millsaps College, Department of Biology, Jackson, MS 39210, USA
| | - Ricardo Fuentes
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Hong Zhang
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Elliott W Abrams
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Florence L Marlow
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Sun YW, Li FG, Chen J, Jiang XY, Zou SM. Two follistatin-like 1 homologs are differentially expressed in adult tissues and during embryogenesis in grass carp (Ctenopharyngodon idellus). Gen Comp Endocrinol 2015; 223:1-8. [PMID: 26439673 DOI: 10.1016/j.ygcen.2015.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/31/2015] [Accepted: 09/17/2015] [Indexed: 11/23/2022]
Abstract
Follistatin-like 1 (Fstl1) peptides play important roles in inhibiting myoblast proliferation and differentiation. Here, we characterized and examined the expression patterns of fstl1a and -b in grass carp (Ctenopharyngodon idellus). These genes encode 314 aa and 310 aa peptides, respectively, sharing a sequence identity of 83%. Except for the existence of the follistatin-N-terminal (FOLN) and Kazal-type 2 serine protease inhibitor (Kazal 2) domains, grass carp Fstl1a and -b do not share amino acid sequence similarity with Fst1 and -b. Both fstl1a and -b mRNAs were widely expressed in adult tissues. During embryogenesis, grass carp fstl1a and -b mRNA was detected in the presomitic mesoderm and somites at 12h post fertilization (hpf). At 24hpf, fstl1a mRNA was expressed in the hindbrain, somites, notochord and tailbud, while fstl1b mRNA was only detected in the tailbud. At 36hpf, fstl1a mRNA was detected in the hindbrain and notochord, and fstl1b was also expressed in the notochord. Furthermore, fstl1a and -b were downregulated in brain and liver tissue following injection with 10 or 50μg hGH, while fstl1b was significantly up-regulated in muscle tissue after 10μg hGH treatment. Both fstl1a and -b were significantly up-regulated at 2, 4 or 6days of nutrient restriction, and fstl1a was still highly expressed in the liver and muscle after 3days of refeeding, as was fstl1b in the brain and muscle. The expression of these genes returned to near control levels following 6days of refeeding. Our findings suggest that the two fstls play important but divergent roles in embryonic development and tissue growth regulation in grass carp.
Collapse
Affiliation(s)
- Yi-Wen Sun
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Fu-Gui Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Jie Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Xia-Yun Jiang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China.
| | - Shu-Ming Zou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China.
| |
Collapse
|
15
|
Tuazon FB, Mullins MC. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 2015; 42:118-33. [PMID: 26123688 PMCID: PMC4562868 DOI: 10.1016/j.semcdb.2015.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate body plan is established through the precise spatiotemporal coordination of morphogen signaling pathways that pattern the anteroposterior (AP) and dorsoventral (DV) axes. Patterning along the AP axis is directed by posteriorizing signals Wnt, fibroblast growth factor (FGF), Nodal, and retinoic acid (RA), while patterning along the DV axis is directed by bone morphogenetic proteins (BMP) ventralizing signals. This review addresses the current understanding of how Wnt, FGF, RA and BMP pattern distinct AP and DV cell fates during early development and how their signaling mechanisms are coordinated to concomitantly pattern AP and DV tissues.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States.
| |
Collapse
|
16
|
Kuo CL, Lam CM, Hewitt JE, Scotting PJ. Formation of the embryonic organizer is restricted by the competitive influences of Fgf signaling and the SoxB1 transcription factors. PLoS One 2013; 8:e57698. [PMID: 23469052 PMCID: PMC3585176 DOI: 10.1371/journal.pone.0057698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/23/2013] [Indexed: 11/18/2022] Open
Abstract
The organizer is one of the earliest structures to be established during vertebrate development and is crucial to subsequent patterning of the embryo. We have previously shown that the SoxB1 transcription factor, Sox3, plays a central role as a transcriptional repressor of zebrafish organizer gene expression. Recent data suggest that Fgf signaling has a positive influence on organizer formation, but its role remains to be fully elucidated. In order to better understand how Fgf signaling fits into the complex regulatory network that determines when and where the organizer forms, the relationship between the positive effects of Fgf signaling and the repressive effects of the SoxB1 factors must be resolved. This study demonstrates that both fgf3 and fgf8 are required for expression of the organizer genes, gsc and chd, and that SoxB1 factors (Sox3, and the zebrafish specific factors, Sox19a and Sox19b) can repress the expression of both fgf3 and fgf8. However, we also find that these SoxB1 factors inhibit the expression of gsc and chd independently of their repression of fgf expression. We show that ectopic expression of organizer genes induced solely by the inhibition of SoxB1 function is dependent upon the activation of fgf expression. These data allow us to describe a comprehensive signaling network in which the SoxB1 factors restrict organizer formation by inhibiting Fgf, Nodal and Wnt signaling, as well as independently repressing the targets of that signaling. The organizer therefore forms only where Nodal-induced Fgf signaling overlaps with Wnt signaling and the SoxB1 proteins are absent.
Collapse
Affiliation(s)
- Cheng-Liang Kuo
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, QMC, Nottingham, United Kingdom
| | - Chi Man Lam
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, QMC, Nottingham, United Kingdom
| | - Jane E. Hewitt
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, QMC, Nottingham, United Kingdom
| | - Paul J. Scotting
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, QMC, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Abstract
Vertebrate development begins with precise molecular, cellular, and morphogenetic controls to establish the basic body plan of the embryo. In zebrafish, these tightly regulated processes begin during oogenesis and proceed through gastrulation to establish and pattern the axes of the embryo. During oogenesis a maternal factor is localized to the vegetal pole of the oocyte that is a determinant of dorsal tissues. Following fertilization this vegetally localized dorsal determinant is asymmetrically translocated in the egg and initiates formation of the dorsoventral axis. Dorsoventral axis formation and patterning is then mediated by maternal and zygotic factors acting through Wnt, BMP (bone morphogenetic protein), Nodal, and FGF (fibroblast growth factor) signaling pathways, each of which is required to establish and/or pattern the dorsoventral axis. This review addresses recent advances in our understanding of the molecular factors and mechanisms that establish and pattern the dorsoventral axis of the zebrafish embryo, including establishment of the animal-vegetal axis as it relates to formation of the dorsoventral axis.
Collapse
Affiliation(s)
- Yvette G Langdon
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
18
|
Varga M, Maegawa S, Weinberg ES. Correct anteroposterior patterning of the zebrafish neurectoderm in the absence of the early dorsal organizer. BMC DEVELOPMENTAL BIOLOGY 2011; 11:26. [PMID: 21575247 PMCID: PMC3120780 DOI: 10.1186/1471-213x-11-26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/16/2011] [Indexed: 11/10/2022]
Abstract
Background The embryonic organizer (i.e., Spemann organizer) has a pivotal role in the establishment of the dorsoventral (DV) axis through the coordination of BMP signaling. However, as impaired organizer function also results in anterior and posterior truncations, it is of interest to determine if proper anteroposterior (AP) pattern can be obtained even in the absence of early organizer signaling. Results Using the ventralized, maternal effect ichabod (ich) mutant, and by inhibiting BMP signaling in ich embryos, we provide conclusive evidence that AP patterning is independent of the organizer in zebrafish, and is governed by TGFβ, FGF, and Wnt signals emanating from the germ-ring. The expression patterns of neurectodermal markers in embryos with impaired BMP signaling show that the directionality of such signals is oriented along the animal-vegetal axis, which is essentially concordant with the AP axis. In addition, we find that in embryos inhibited in both Wnt and BMP signaling, the AP pattern of such markers is unchanged from that of the normal untreated embryo. These embryos develop radially organized trunk and head tissues, with an outer neurectodermal layer containing diffusely positioned neuronal precursors. Such organization is reflective of the presumed eumetazoan ancestor and might provide clues for the evolution of centralization in the nervous system. Conclusions Using a zebrafish mutant deficient in the induction of the embryonic organizer, we demonstrate that the AP patterning of the neuroectoderm during gastrulation is independent of DV patterning. Our results provide further support for Nieuwkoop's "two step model" of embryonic induction. We also show that the zebrafish embryo can form a radial diffuse neural sheath in the absence of both BMP signaling and the early organizer.
Collapse
Affiliation(s)
- Máté Varga
- Department of Biology, University of Pennsylvania, Philadelphia, 19104, USA.
| | | | | |
Collapse
|
19
|
beta-catenin plays a central role in setting up the head organizer in hydra. Dev Biol 2010; 340:116-24. [PMID: 20045682 DOI: 10.1016/j.ydbio.2009.12.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/16/2009] [Accepted: 12/21/2009] [Indexed: 11/22/2022]
Abstract
In an adult hydra the head organizer, located in the hypostome, is constantly active in maintaining the structure of the animal in the context of its steady state tissue dynamics. Several Wnt genes, TCF, and elevated levels of beta-catenin are expressed in the hypostome as well as during the formation of a new organizer region in developing buds suggesting they play a role in the organizer. Transgenic hydra were generated in which a modified hydra beta-catenin gene driven by an actin promoter is continuously expressed at a high level throughout the animal. These animals formed heads and secondary axes in multiple locations along the body column. Transplantation experiments indicate they have a high and stable level of head organizer activity throughout the body columns. However, none of the Wnt genes are expressed in the body columns of these transgenic animals. Further, in alsterpaullone-treated animals, which results in a transient rise in head organizer activity throughout the body column, the time of expression of the Wnt genes is much shorter than the time of the elevated level of head inducing activity. These results for the first time provide direct functional evidence that beta-catenin plays a crucial role in the maintenance and activity of the head organizer and suggest that Wnt ligands may be required only for the initiation but not in maintenance of the organizer in Hydra.
Collapse
|