1
|
Di Michele F, Chillón I, Feil R. Imprinted Long Non-Coding RNAs in Mammalian Development and Disease. Int J Mol Sci 2023; 24:13647. [PMID: 37686455 PMCID: PMC10487962 DOI: 10.3390/ijms241713647] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Imprinted genes play diverse roles in mammalian development, homeostasis, and disease. Most imprinted chromosomal domains express one or more long non-coding RNAs (lncRNAs). Several of these lncRNAs are strictly nuclear and their mono-allelic expression controls in cis the expression of protein-coding genes, often developmentally regulated. Some imprinted lncRNAs act in trans as well, controlling target gene expression elsewhere in the genome. The regulation of imprinted gene expression-including that of imprinted lncRNAs-is susceptible to stochastic and environmentally triggered epigenetic changes in the early embryo. These aberrant changes persist during subsequent development and have long-term phenotypic consequences. This review focuses on the expression and the cis- and trans-regulatory roles of imprinted lncRNAs and describes human disease syndromes associated with their perturbed expression.
Collapse
Affiliation(s)
- Flavio Di Michele
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| | - Isabel Chillón
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
2
|
Trotman JB, Braceros AK, Bischoff SR, Murvin MM, Boyson SP, Cherney RE, Eberhard QE, Abrash EW, Cowley DO, Calabrese JM. Ectopically expressed Airn lncRNA deposits Polycomb with a potency that rivals Xist. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539960. [PMID: 37214824 PMCID: PMC10197632 DOI: 10.1101/2023.05.09.539960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report that when expressed at similar levels from an isogenic locus, the Airn lncRNA induces Polycomb deposition with a potency that rivals Xist . However, when subject to the same degree of promoter activation, Xist is more abundant and more potent than Airn . Our data definitively demonstrate that the Airn lncRNA is functional and suggest that Xist achieved extreme potency in part by evolving mechanisms to promote its own abundance.
Collapse
|
3
|
Wang X, Asgenbaatar N, Shen Y, Yi M, Zhao B, Ren H, Davshilt T, Ulaangerel T, Wang M, Burenbaatar A, Tian S, Li B, Dugarjav M, Bou G. Lower expression of the equine maternally imprinted gene IGF2R is related to the slow proliferation of hinny embryonic fibroblast in vitro. Mol Biol Rep 2023; 50:185-192. [PMID: 36319787 DOI: 10.1007/s11033-022-07937-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/08/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Proliferation of embryonic fibroblasts under the same cell culture conditions, hinny embryonic fibroblasts (HiEFs) was slower than horse embryonic fibroblast (HEFs), donkey embryonic fibroblasts (DEFs) and mule embryonic fibroblasts (MuEFs). The imprinted genes IGF2 and IGF2R are important for cell proliferation. Therefore, we investigated whether the slower proliferation of HiEFs is related to an aberrant gene expression of IGF2 or its receptors or genes influencing the expression of the IGF2 system. METHODS AND RESULTS Real-time polymerase chain reaction, immunofluorescence and cell starving experiment in HEFs, DEFs, MuEFs and HiEFs revealed that the slower proliferation of HiEF in vitro was related to its lower expression of IGF2R (P < 0.001). Moreover, quantification of allele-specific expression and bisulfate assay confirmed that in both MuEFs and HiEFs, IGF2R had normal maternal imprinting, implying that the imprint aberrant was not involved in the lower IGF2R expression in HiEFs. CONCLUSIONS The reduction of IGF2R expression in HiEFs is associated with its slower proliferation in vitro.
Collapse
Affiliation(s)
- Xisheng Wang
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Nairag Asgenbaatar
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Yingchao Shen
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Minna Yi
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Bilig Zhao
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Hong Ren
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Toli Davshilt
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Tseweendolmaa Ulaangerel
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Min Wang
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Als Burenbaatar
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Shuyue Tian
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Bei Li
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Manglai Dugarjav
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China.
| | - Gerelchimeg Bou
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, 010018, Hohhot, China.
| |
Collapse
|
4
|
Exploring chromatin structural roles of non-coding RNAs at imprinted domains. Biochem Soc Trans 2021; 49:1867-1879. [PMID: 34338292 PMCID: PMC8421051 DOI: 10.1042/bst20210758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Different classes of non-coding RNA (ncRNA) influence the organization of chromatin. Imprinted gene domains constitute a paradigm for exploring functional long ncRNAs (lncRNAs). Almost all express an lncRNA in a parent-of-origin dependent manner. The mono-allelic expression of these lncRNAs represses close by and distant protein-coding genes, through diverse mechanisms. Some control genes on other chromosomes as well. Interestingly, several imprinted chromosomal domains show a developmentally regulated, chromatin-based mechanism of imprinting with apparent similarities to X-chromosome inactivation. At these domains, the mono-allelic lncRNAs show a relatively stable, focal accumulation in cis. This facilitates the recruitment of Polycomb repressive complexes, lysine methyltranferases and other nuclear proteins — in part through direct RNA–protein interactions. Recent chromosome conformation capture and microscopy studies indicate that the focal aggregation of lncRNA and interacting proteins could play an architectural role as well, and correlates with close positioning of target genes. Higher-order chromatin structure is strongly influenced by CTCF/cohesin complexes, whose allelic association patterns and actions may be influenced by lncRNAs as well. Here, we review the gene-repressive roles of imprinted non-coding RNAs, particularly of lncRNAs, and discuss emerging links with chromatin architecture.
Collapse
|
5
|
Ramírez-Colmenero A, Oktaba K, Fernandez-Valverde SL. Evolution of Genome-Organizing Long Non-coding RNAs in Metazoans. Front Genet 2020; 11:589697. [PMID: 33329735 PMCID: PMC7734150 DOI: 10.3389/fgene.2020.589697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have important regulatory functions across eukarya. It is now clear that many of these functions are related to gene expression regulation through their capacity to recruit epigenetic modifiers and establish chromatin interactions. Several lncRNAs have been recently shown to participate in modulating chromatin within the spatial organization of the genome in the three-dimensional space of the nucleus. The identification of lncRNA candidates is challenging, as it is their functional characterization. Conservation signatures of lncRNAs are different from those of protein-coding genes, making identifying lncRNAs under selection a difficult task, and the homology between lncRNAs may not be readily apparent. Here, we review the evidence for these higher-order genome organization functions of lncRNAs in animals and the evolutionary signatures they display.
Collapse
Affiliation(s)
- América Ramírez-Colmenero
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Katarzyna Oktaba
- Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| | - Selene L Fernandez-Valverde
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, México
| |
Collapse
|
6
|
Kühnel T, Heinz HSB, Utz N, Božić T, Horsthemke B, Steenpass L. A human somatic cell culture system for modelling gene silencing by transcriptional interference. Heliyon 2020; 6:e03261. [PMID: 32021933 PMCID: PMC6994850 DOI: 10.1016/j.heliyon.2020.e03261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 11/30/2022] Open
Abstract
Transcriptional interference and transcription through regulatory elements (transcriptional read-through) are implicated in gene silencing and the establishment of DNA methylation. Transcriptional read-through is needed to seed DNA methylation at imprinted genes in the germ line and can lead to aberrant gene silencing by DNA methylation in human disease. To enable the study of parameters and factors influencing transcriptional interference and transcriptional read-through at human promoters, we established a somatic cell culture system. At two promoters of imprinted genes (UBE3A and SNRPN) and two promoters shown to be silenced by aberrant transcriptional read-through in human disease (MSH2 and HBA2) we tested, if transcriptional read-through is sufficient for gene repression and the acquisition of DNA methylation. Induction of transcriptional read-through from the doxycycline-inducible CMV promoter resulted in consistent repression of all downstream promoters, independent of promoter type and orientation. Repression was dependent on ongoing transcription, since withdrawal of induction resulted in reactivation. DNA methylation was not acquired at any of the promoters. Overexpression of DNMT3A and DNMT3L, factors needed for DNA methylation establishment in oocytes, was still not sufficient for the induction of DNA methylation. This indicates that induction of DNA methylation has more complex requirements than transcriptional read-through and the presence of de novo DNA methyltransferases.
Collapse
Affiliation(s)
- Theresa Kühnel
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Helena Sophie Barbara Heinz
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Nadja Utz
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
- Present address: Institute of Neuropathology, Justus Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Tanja Božić
- Helmholtz Institute for Biomedical Engineering, Division of Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Laura Steenpass
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
- Corresponding author.
| |
Collapse
|
7
|
Hughes J, Surakhy M, Can S, Ducker M, Davies N, Szele F, Bühnemann C, Carter E, Trikin R, Crump MP, Frago S, Hassan AB. Maternal transmission of an Igf2r domain 11: IGF2 binding mutant allele (Igf2r I1565A) results in partial lethality, overgrowth and intestinal adenoma progression. Sci Rep 2019; 9:11388. [PMID: 31388182 PMCID: PMC6684648 DOI: 10.1038/s41598-019-47827-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/19/2019] [Indexed: 11/25/2022] Open
Abstract
The cation-independent mannose 6-phosphate/insulin-like growth factor-2 receptor (M6P/IGF2R or IGF2R) traffics IGF2 and M6P ligands between pre-lysosomal and extra-cellular compartments. Specific IGF2 and M6P high-affinity binding occurs via domain-11 and domains-3-5-9, respectively. Mammalian maternal Igf2r allele expression exceeds the paternal allele due to imprinting (silencing). Igf2r null-allele maternal transmission results in placenta and heart over-growth and perinatal lethality (>90%) due to raised extra-cellular IGF2 secondary to impaired ligand clearance. It remains unknown if the phenotype is due to either ligand alone, or to both ligands. Here, we evaluate Igf2r specific loss-of-function of the domain-11 IGF2 binding site by replacing isoleucine with alanine in the CD loop (exon 34, I1565A), a mutation also detected in cancers. Igf2rI1565A/+p maternal transmission (heterozygote), resulted in placental and embryonic over-growth with reduced neonatal lethality (<60%), and long-term survival. The perinatal mortality (>80%) observed in homozygotes (Igf2rI1565A/I1565A) suggested that wild-type paternal allele expression attenuates the heterozygote phenotype. To evaluate Igf2r tumour suppressor function, we utilised intestinal adenoma models known to be Igf2 dependent. Bi-allelic Igf2r expression suppressed intestinal adenoma (ApcMin). Igf2rI1565A/+p in a conditional model (Lgr5-Cre, Apcloxp/loxp) resulted in worse survival and increased adenoma proliferation. Growth, survival and intestinal adenoma appear dependent on IGF2R-domain-11 IGF2 binding.
Collapse
Affiliation(s)
- Jennifer Hughes
- Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, OX1 3RE, Oxford, United Kingdom
| | - Mirvat Surakhy
- Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, OX1 3RE, Oxford, United Kingdom
| | - Sermet Can
- Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, OX1 3RE, Oxford, United Kingdom
| | - Martin Ducker
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Nick Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Francis Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Claudia Bühnemann
- Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, OX1 3RE, Oxford, United Kingdom
| | - Emma Carter
- Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, OX1 3RE, Oxford, United Kingdom
| | - Roman Trikin
- Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, OX1 3RE, Oxford, United Kingdom
| | - Matthew P Crump
- Department of Organic and Biological Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Susana Frago
- Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, OX1 3RE, Oxford, United Kingdom
| | - A Bassim Hassan
- Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, South Parks Road, OX1 3RE, Oxford, United Kingdom.
| |
Collapse
|
8
|
Schertzer MD, Thulson E, Braceros KCA, Lee DM, Hinkle ER, Murphy RM, Kim SO, Vitucci ECM, Calabrese JM. A piggyBac-based toolkit for inducible genome editing in mammalian cells. RNA (NEW YORK, N.Y.) 2019; 25:1047-1058. [PMID: 31101683 PMCID: PMC6633203 DOI: 10.1261/rna.068932.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 05/15/2019] [Indexed: 05/30/2023]
Abstract
We describe the development and application of a novel series of vectors that facilitate CRISPR-Cas9-mediated genome editing in mammalian cells, which we call CRISPR-Bac. CRISPR-Bac leverages the piggyBac transposon to randomly insert CRISPR-Cas9 components into mammalian genomes. In CRISPR-Bac, a single piggyBac cargo vector containing a doxycycline-inducible Cas9 or catalytically dead Cas9 (dCas9) variant and a gene conferring resistance to Hygromycin B is cotransfected with a plasmid expressing the piggyBac transposase. A second cargo vector, expressing a single-guide RNA (sgRNA) of interest, the reverse-tetracycline TransActivator (rtTA), and a gene conferring resistance to G418, is also cotransfected. Subsequent selection on Hygromycin B and G418 generates polyclonal cell populations that stably express Cas9, rtTA, and the sgRNA(s) of interest. We show that CRISPR-Bac can be used to knock down proteins of interest, to create targeted genetic deletions with high efficiency, and to activate or repress transcription of protein-coding genes and an imprinted long noncoding RNA. The ratio of sgRNA-to-Cas9-to-transposase can be adjusted in transfections to alter the average number of cargo insertions into the genome. sgRNAs targeting multiple genes can be inserted in a single transfection. CRISPR-Bac is a versatile platform for genome editing that simplifies the generation of mammalian cells that stably express the CRISPR-Cas9 machinery.
Collapse
Affiliation(s)
- Megan D Schertzer
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Eliza Thulson
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Keean C A Braceros
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - David M Lee
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Emma R Hinkle
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Ryan M Murphy
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Susan O Kim
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Eva C M Vitucci
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- U.S. Environmental Protection Agency, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
9
|
Dirks RAM, van Mierlo G, Kerstens HHD, Bernardo AS, Kobolák J, Bock I, Maruotti J, Pedersen RA, Dinnyés A, Huynen MA, Jouneau A, Marks H. Allele-specific RNA-seq expression profiling of imprinted genes in mouse isogenic pluripotent states. Epigenetics Chromatin 2019; 12:14. [PMID: 30767785 PMCID: PMC6376749 DOI: 10.1186/s13072-019-0259-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic imprinting, resulting in parent-of-origin specific gene expression, plays a critical role in mammalian development. Here, we apply allele-specific RNA-seq on isogenic B6D2F1 mice to assay imprinted genes in tissues from early embryonic tissues between E3.5 and E7.25 and in pluripotent cell lines to evaluate maintenance of imprinted gene expression. For the cell lines, we include embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) derived from fertilized embryos and from embryos obtained after nuclear transfer (NT) or parthenogenetic activation (PGA). RESULTS As homozygous genomic regions of PGA-derived cells are not compatible with allele-specific RNA-seq, we developed an RNA-seq-based genotyping strategy allowing identification of informative heterozygous regions. Global analysis shows that proper imprinted gene expression as observed in embryonic tissues is largely lost in the ESC lines included in this study, which mainly consisted of female ESCs. Differentiation of ESC lines to embryoid bodies or NPCs does not restore monoallelic expression of imprinted genes, neither did reprogramming of the serum-cultured ESCs to the pluripotent ground state by the use of 2 kinase inhibitors. Fertilized EpiSC and EpiSC-NT lines largely maintain imprinted gene expression, as did EpiSC-PGA lines that show known paternally expressed genes being silent and known maternally expressed genes consistently showing doubled expression. Notably, two EpiSC-NT lines show aberrant silencing of Rian and Meg3, two critically imprinted genes in mouse iPSCs. With respect to female EpiSC, most of the lines displayed completely skewed X inactivation suggesting a (near) clonal origin. CONCLUSIONS Altogether, our analysis provides a comprehensive overview of imprinted gene expression in pluripotency and provides a benchmark to allow identification of cell lines that faithfully maintain imprinted gene expression and therefore retain full developmental potential.
Collapse
Affiliation(s)
- René A M Dirks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6500 HB, Nijmegen, The Netherlands
| | - Guido van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6500 HB, Nijmegen, The Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA, Nijmegen, The Netherlands
| | - Hindrik H D Kerstens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6500 HB, Nijmegen, The Netherlands
| | - Andreia S Bernardo
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust- Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK.,Mill Hill Laboratory, The Ridgeway, The Francis Crick Institute, London, NW7 1AA, UK
| | | | | | - Julien Maruotti
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France.,Phenocell SAS, Evry, France
| | - Roger A Pedersen
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust- Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary.,Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, Hungary
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, 6525 GA, Nijmegen, The Netherlands
| | - Alice Jouneau
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
When Long Noncoding RNAs Meet Genome Editing in Pluripotent Stem Cells. Stem Cells Int 2017; 2017:3250624. [PMID: 29333164 PMCID: PMC5733163 DOI: 10.1155/2017/3250624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022] Open
Abstract
Most of the human genome can be transcribed into RNAs, but only a minority of these regions produce protein-coding mRNAs whereas the remaining regions are transcribed into noncoding RNAs. Long noncoding RNAs (lncRNAs) were known for their influential regulatory roles in multiple biological processes such as imprinting, dosage compensation, transcriptional regulation, and splicing. The physiological functions of protein-coding genes have been extensively characterized through genome editing in pluripotent stem cells (PSCs) in the past 30 years; however, the study of lncRNAs with genome editing technologies only came into attentions in recent years. Here, we summarize recent advancements in dissecting the roles of lncRNAs with genome editing technologies in PSCs and highlight potential genome editing tools useful for examining the functions of lncRNAs in PSCs.
Collapse
|
11
|
Bouschet T, Dubois E, Reynès C, Kota SK, Rialle S, Maupetit-Méhouas S, Pezet M, Le Digarcher A, Nidelet S, Demolombe V, Cavelier P, Meusnier C, Maurizy C, Sabatier R, Feil R, Arnaud P, Journot L, Varrault A. In Vitro Corticogenesis from Embryonic Stem Cells Recapitulates the In Vivo Epigenetic Control of Imprinted Gene Expression. Cereb Cortex 2017; 27:2418-2433. [PMID: 27095822 DOI: 10.1093/cercor/bhw102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In vitro corticogenesis from embryonic stem cells (ESCs) is an attractive model of cortical development and a promising tool for cortical therapy. It is unknown to which extent epigenetic mechanisms crucial for cortex development and function, such as parental genomic imprinting, are recapitulated by in vitro corticogenesis. Here, using genome-wide transcriptomic and methylation analyses on hybrid mouse tissues and cells, we find a high concordance of imprinting status between in vivo and ESC-derived cortices. Notably, in vitro corticogenesis strictly reproduced the in vivo parent-of-origin-dependent expression of 41 imprinted genes (IGs), including Mest and Cdkn1c known to control corticogenesis. Parent-of-origin-dependent DNA methylation was also conserved at 14 of 18 imprinted differentially methylated regions. The least concordant imprinted locus was Gpr1-Zdbf2, where the aberrant bi-allelic expression of Zdbf2 and Adam23 was concomitant with a gain of methylation on the maternal allele in vitro. Combined, our data argue for a broad conservation of the epigenetic mechanisms at imprinted loci in cortical cells derived from ESCs. We propose that in vitro corticogenesis helps to define the still poorly understood mechanisms that regulate imprinting in the brain and the roles of IGs in cortical development.
Collapse
Affiliation(s)
- Tristan Bouschet
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Emeric Dubois
- Montpellier GenomiX, BioCampus Montpellier, CNRS UMS3426, INSERM US009, Université de Montpellier, Montpellier, France
| | - Christelle Reynès
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Satya K Kota
- Institute of Molecular Genetics (IGMM), CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Stéphanie Rialle
- Montpellier GenomiX, BioCampus Montpellier, CNRS UMS3426, INSERM US009, Université de Montpellier, Montpellier, France
| | - Stéphanie Maupetit-Méhouas
- GReD (Genetics, Reproduction and Development), CNRS UMR6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Mikael Pezet
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Anne Le Digarcher
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Sabine Nidelet
- Montpellier GenomiX, BioCampus Montpellier, CNRS UMS3426, INSERM US009, Université de Montpellier, Montpellier, France
| | - Vincent Demolombe
- Montpellier GenomiX, BioCampus Montpellier, CNRS UMS3426, INSERM US009, Université de Montpellier, Montpellier, France
| | - Patricia Cavelier
- Institute of Molecular Genetics (IGMM), CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Céline Meusnier
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Chloé Maurizy
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France.,Institute of Molecular Genetics (IGMM), CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Robert Sabatier
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Philippe Arnaud
- GReD (Genetics, Reproduction and Development), CNRS UMR6293, INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Laurent Journot
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France.,Montpellier GenomiX, BioCampus Montpellier, CNRS UMS3426, INSERM US009, Université de Montpellier, Montpellier, France
| | - Annie Varrault
- Institut de Génomique Fonctionnelle (IGF), CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| |
Collapse
|
12
|
Long noncoding RNAs in cell differentiation and pluripotency. Cell Tissue Res 2016; 366:509-521. [PMID: 27365087 DOI: 10.1007/s00441-016-2451-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/31/2016] [Indexed: 01/20/2023]
Abstract
Long noncoding RNAs (lncRNAs) were once regarded as nonfunctional by-products of transcription but their effects are now gradually being elucidated. Evidence suggests that lncRNAs play crucial roles in cell biology, especially in regulating gene expression. However, because of the diversity and complexity of their regulatory mechanisms, our knowledge of the function of lncRNAs represents only the tip of the iceberg. Recent studies have shown that lncRNAs are capable of regulating cell differentiation and pluripotency. Thus, we consider it to be an appropriate time to review the progress in understanding the role of lncRNAs in these two biological processes. In this review, the biological characteristics and regulatory mechanisms of lncRNAs at the chromatin remodeling level, transcriptional level and post-transcriptional level are described and recent advances in our comprehension of the role of lncRNAs in cell differentiation and pluripotency are discussed.
Collapse
|
13
|
Hu Y, Rosa GJM, Gianola D. Incorporating parent-of-origin effects in whole-genome prediction of complex traits. Genet Sel Evol 2016; 48:34. [PMID: 27091137 PMCID: PMC4834899 DOI: 10.1186/s12711-016-0213-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 04/04/2016] [Indexed: 12/24/2022] Open
Abstract
Background Parent-of-origin effects are due to differential contributions of paternal and maternal lineages to offspring phenotypes. Such effects include, for example, maternal effects in several species. However, epigenetically induced parent-of-origin effects have recently attracted attention due to their potential impact on variation of complex traits. Given that prediction of genetic merit or phenotypic performance is of interest in the study of complex traits, it is relevant to consider parent-of-origin effects in such predictions. We built a whole-genome prediction model that incorporates parent-of-origin effects by considering parental allele substitution effects of single nucleotide polymorphisms and gametic relationships derived from a pedigree (the POE model). We used this model to predict body mass index in a mouse population, a trait that is presumably affected by parent-of-origin effects, and also compared the prediction performance to that of a standard additive model that ignores parent-of-origin effects (the ADD model). We also used simulated data to assess the predictive performance of the POE model under various circumstances, in which parent-of-origin effects were generated by mimicking an imprinting mechanism. Results The POE model did not predict better than the ADD model in the real data analysis, probably due to overfitting, since the POE model had far more parameters than the ADD model. However, when applied to simulated data, the POE model outperformed the ADD model when the contribution of parent-of-origin effects to phenotypic variation increased. The superiority of the POE model over the ADD model was up to 8 % on predictive correlation and 5 % on predictive mean squared error. Conclusions The simulation and the negative result obtained in the real data analysis indicated that, in order to gain benefit from the POE model in terms of prediction, a sizable contribution of parent-of-origin effects to variation is needed and such variation must be captured by the genetic markers fitted. Recent studies, however, suggest that most parent-of-origin effects stem from epigenetic regulation but not from a change in DNA sequence. Therefore, integrating epigenetic information with genetic markers may help to account for parent-of-origin effects in whole-genome prediction.
Collapse
Affiliation(s)
- Yaodong Hu
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA.
| | - Guilherme J M Rosa
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Daniel Gianola
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA.,Department of Dairy Science, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI, 53706, USA
| |
Collapse
|
14
|
Differential regulation of genomic imprinting by TET proteins in embryonic stem cells. Stem Cell Res 2015; 15:435-43. [PMID: 26397890 DOI: 10.1016/j.scr.2015.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/13/2022] Open
Abstract
TET proteins have been found to play an important role in active demethylation at CpG sites in mammals. There are some reports implicating their functions in removal of DNA methylation imprint at the imprinted regions in the germline. However, it is not well established whether TET proteins can also be involved in demethylation of DNA methylation imprint in embryonic stem (ES) cells. Here we report that loss of TET proteins caused a significant increase in DNA methylation at the Igf2-H19 imprinted region in ES cells. We also observed a variable increase in DNA methylation at the Peg1 imprinted region in the ES clones devoid of TET proteins, in particular in the differentiated ES cells. By contrast, we did not observe a significant increase of DNA methylation imprint at the Peg3, Snrpn and Dlk1-Dio3 imprinted regions in ES cells lacking TET proteins. Interestingly, loss of TET proteins did not result in a significant increase of DNA methylation imprint at the Igf2-H19 and Peg1 imprinted regions in the embryoid bodies (EB). Therefore, TET proteins seem to be differentially involved in maintaining DNA methylation imprint at a subset of imprinted regions in ES cells and EBs.
Collapse
|
15
|
Kulinski TM, Casari MRT, Guenzl PM, Wenzel D, Andergassen D, Hladik A, Datlinger P, Farlik M, Theussl HC, Penninger JM, Knapp S, Bock C, Barlow DP, Hudson QJ. Imprinted expression in cystic embryoid bodies shows an embryonic and not an extra-embryonic pattern. Dev Biol 2015; 402:291-305. [PMID: 25912690 PMCID: PMC4454777 DOI: 10.1016/j.ydbio.2015.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 04/08/2015] [Accepted: 04/16/2015] [Indexed: 12/24/2022]
Abstract
A large subset of mammalian imprinted genes show extra-embryonic lineage (EXEL) specific imprinted expression that is restricted to placental trophectoderm lineages and to visceral yolk sac endoderm (ysE). Isolated ysE provides a homogenous in vivo model of a mid-gestation extra-embryonic tissue to examine the mechanism of EXEL-specific imprinted gene silencing, but an in vitro model of ysE to facilitate more rapid and cost-effective experiments is not available. Reports indicate that ES cells differentiated into cystic embryoid bodies (EBs) contain ysE, so here we investigate if cystic EBs model ysE imprinted expression. The imprinted expression pattern of cystic EBs is shown to resemble fetal liver and not ysE. To investigate the reason for this we characterized the methylome and transcriptome of cystic EBs in comparison to fetal liver and ysE, by whole genome bisulphite sequencing and RNA-seq. Cystic EBs show a fetal liver pattern of global hypermethylation and low expression of repeats, while ysE shows global hypomethylation and high expression of IAPEz retroviral repeats, as reported for placenta. Transcriptome analysis confirmed that cystic EBs are more similar to fetal liver than ysE and express markers of early embryonic endoderm. Genome-wide analysis shows that ysE shares epigenetic and repeat expression features with placenta. Contrary to previous reports, we show that cystic EBs do not contain ysE, but are more similar to the embryonic endoderm of fetal liver. This explains why cystic EBs reproduce the imprinted expression seen in the embryo but not that seen in the ysE.
Collapse
Affiliation(s)
- Tomasz M Kulinski
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - M Rita T Casari
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - Philipp M Guenzl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - Daniel Wenzel
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, 1030 Vienna, Austria.
| | - Daniel Andergassen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - Anastasiya Hladik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria; Department of Medicine 1, Laboratory of Infection Biology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - H-Christian Theussl
- IMP/IMBA Transgenic Service, Institute of Molecular Pathology (IMP), Dr. Bohr Gasse 7, 1030 Vienna, Austria.
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, 1030 Vienna, Austria.
| | - Sylvia Knapp
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria; Department of Medicine 1, Laboratory of Infection Biology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - Denise P Barlow
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| | - Quanah J Hudson
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria.
| |
Collapse
|
16
|
O'Doherty AM, MacHugh DE, Spillane C, Magee DA. Genomic imprinting effects on complex traits in domesticated animal species. Front Genet 2015; 6:156. [PMID: 25964798 PMCID: PMC4408863 DOI: 10.3389/fgene.2015.00156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/06/2015] [Indexed: 11/13/2022] Open
Abstract
Monoallelically expressed genes that exert their phenotypic effect in a parent-of-origin specific manner are considered to be subject to genomic imprinting, the most well understood form of epigenetic regulation of gene expression in mammals. The observed differences in allele specific gene expression for imprinted genes are not attributable to differences in DNA sequence information, but to specific chemical modifications of DNA and chromatin proteins. Since the discovery of genomic imprinting some three decades ago, over 100 imprinted mammalian genes have been identified and considerable advances have been made in uncovering the molecular mechanisms regulating imprinted gene expression. While most genomic imprinting studies have focused on mouse models and human biomedical disorders, recent work has highlighted the contributions of imprinted genes to complex trait variation in domestic livestock species. Consequently, greater understanding of genomic imprinting and its effect on agriculturally important traits is predicted to have major implications for the future of animal breeding and husbandry. In this review, we discuss genomic imprinting in mammals with particular emphasis on domestic livestock species and consider how this information can be used in animal breeding research and genetic improvement programs.
Collapse
Affiliation(s)
- Alan M O'Doherty
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Ireland
| | - David E MacHugh
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Ireland ; Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield Ireland
| | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant and AgriBiosciences Research Centre, School of Natural Sciences, National University of Ireland Galway, Galway Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield Ireland ; Department of Animal Science, University of Connecticut, Storrs, CT USA
| |
Collapse
|
17
|
Marcho C, Bevilacqua A, Tremblay KD, Mager J. Tissue-specific regulation of Igf2r/Airn imprinting during gastrulation. Epigenetics Chromatin 2015; 8:10. [PMID: 25918552 PMCID: PMC4410455 DOI: 10.1186/s13072-015-0003-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Appropriate epigenetic regulation of gene expression during lineage allocation and tissue differentiation is required for normal development. One example is genomic imprinting, which is defined as parent-of-origin mono-allelic gene expression. Imprinting is established largely due to epigenetic differences arriving in the zygote from sperm and egg haploid genomes. In the mouse, there are approximately 150 known imprinted genes, many of which occur in imprinted gene clusters that are regulated together. One imprinted cluster includes the maternally expressed Igf2r, Slc22a2, and Slc22a3 genes and the paternally expressed long non-coding RNA (lncRNA) Airn. Although it is known that Igf2r and Airn are reciprocally imprinted, the timing of imprinted expression and accompanying epigenetic changes have not been well characterized in vivo. RESULTS Here we show lineage- and temporal-specific regulation of DNA methylation and histone modifications at the Igf2r/Airn locus correlating with differential establishment of imprinted expression during gastrulation. Our results show that Igf2r is expressed from both alleles in the E6.5 epiblast. After gastrulation commences, the locus becomes imprinted in the embryonic lineage with the lncRNA Airn expressed from the paternal allele and Igf2r restricted to maternal allele expression. We document differentially enriched allele-specific histone modifications in extraembryonic and embryonic tissues. We also document for the first time allele-specific spreading of DNA methylation during gastrulation concurrent with establishment of imprinted expression of Igf2r. Importantly, we show that imprinted expression does not change in the extraembryonic lineage even though maternal DMR2 methylation spreading does occur, suggesting distinct mechanisms at play in embryonic and extraembryonic lineages. CONCLUSIONS These results indicate that similar to preimplantation, gastrulation represents a window of dynamic lineage-specific epigenetic regulation in vivo.
Collapse
Affiliation(s)
- Chelsea Marcho
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, ISB 427M, 661 N. Pleasant Street, Amherst, MA 01003 USA
| | - Ariana Bevilacqua
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, ISB 427M, 661 N. Pleasant Street, Amherst, MA 01003 USA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, ISB 427M, 661 N. Pleasant Street, Amherst, MA 01003 USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, ISB 427M, 661 N. Pleasant Street, Amherst, MA 01003 USA
| |
Collapse
|
18
|
Mehta S, Williamson CM, Ball S, Tibbit C, Beechey C, Fray M, Peters J. Transcription driven somatic DNA methylation within the imprinted Gnas cluster. PLoS One 2015; 10:e0117378. [PMID: 25659103 PMCID: PMC4319783 DOI: 10.1371/journal.pone.0117378] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/25/2014] [Indexed: 12/14/2022] Open
Abstract
Differential marking of genes in female and male gametes by DNA methylation is essential to genomic imprinting. In female gametes transcription traversing differentially methylated regions (DMRs) is a common requirement for de novo methylation at DMRs. At the imprinted Gnas cluster oocyte specific transcription of a protein-coding transcript, Nesp, is needed for methylation of two DMRs intragenic to Nesp, namely the Nespas-Gnasxl DMR and the Exon1A DMR, thereby enabling expression of the Gnas transcript and repression of the Gnasxl transcript. On the paternal allele, Nesp is repressed, the germline DMRs are unmethylated, Gnas is repressed and Gnasxl is expressed. Using mutant mouse models, we show that on the paternal allele, ectopic transcription of Nesp traversing the intragenic Exon1A DMR (which regulates Gnas expression) results in de novo methylation of the Exon1A DMR and de-repression of Gnas just as on the maternal allele. However, unlike the maternal allele, methylation on the mutant paternal allele occurs post-fertilisation, i.e. in somatic cells. This, to our knowledge is the first example of transcript/transcription driven DNA methylation of an intragenic CpG island, in somatic tissues, suggesting that transcription driven de novo methylation is not restricted to the germline in the mouse. Additionally, Gnasxl is repressed on a paternal chromosome on which Nesp is ectopically expressed. Thus, a paternally inherited Gnas cluster showing ectopic expression of Nesp is “maternalised” in terms of Gnasxl and Gnas expression. We show that these mice have a phenotype similar to mutants with two expressed doses of Gnas and none of Gnasxl.
Collapse
Affiliation(s)
- Stuti Mehta
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, United Kingdom
- * E-mail:
| | - Christine M. Williamson
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, United Kingdom
| | - Simon Ball
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, United Kingdom
| | - Charlotte Tibbit
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, United Kingdom
| | - Colin Beechey
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, United Kingdom
| | - Martin Fray
- Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, United Kingdom
| | - Jo Peters
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, United Kingdom
| |
Collapse
|
19
|
Abstract
Genomic imprinting affects a subset of genes in mammals and results in a monoallelic, parental-specific expression pattern. Most of these genes are located in clusters that are regulated through the use of insulators or long noncoding RNAs (lncRNAs). To distinguish the parental alleles, imprinted genes are epigenetically marked in gametes at imprinting control elements through the use of DNA methylation at the very least. Imprinted gene expression is subsequently conferred through lncRNAs, histone modifications, insulators, and higher-order chromatin structure. Such imprints are maintained after fertilization through these mechanisms despite extensive reprogramming of the mammalian genome. Genomic imprinting is an excellent model for understanding mammalian epigenetic regulation.
Collapse
Affiliation(s)
- Denise P Barlow
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, CeMM, 1090 Vienna, Austria
| | | |
Collapse
|
20
|
Chen Y, Chen Q, McEachin RC, Cavalcoli JD, Yu X. H2A.B facilitates transcription elongation at methylated CpG loci. Genome Res 2014; 24:570-9. [PMID: 24402521 PMCID: PMC3975057 DOI: 10.1101/gr.156877.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
H2A.B is a unique histone H2A variant that only exists in mammals. Here we found that H2A.B is ubiquitously expressed in major organs. Genome-wide analysis of H2A.B in mouse ES cells shows that H2A.B is associated with methylated DNA in gene body regions. Moreover, H2A.B-enriched gene loci are actively transcribed. One typical example is that H2A.B is enriched in a set of differentially methylated regions at imprinted loci and facilitates transcription elongation. These results suggest that H2A.B positively regulates transcription elongation by overcoming DNA methylation in the transcribed region. It provides a novel mechanism by which transcription is regulated at DNA hypermethylated regions.
Collapse
Affiliation(s)
- Yibin Chen
- Division of Molecular Medicine and Genetics, Department of Internal Medicine
| | | | | | | | | |
Collapse
|
21
|
Steenpass L, Kanber D, Hiber M, Buiting K, Horsthemke B, Lohmann D. Human PPP1R26P1 functions as cis-repressive element in mouse Rb1. PLoS One 2013; 8:e74159. [PMID: 24019952 PMCID: PMC3760807 DOI: 10.1371/journal.pone.0074159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 07/26/2013] [Indexed: 01/26/2023] Open
Abstract
The human retinoblastoma gene (RB1) is imprinted; the mouse Rb1 gene is not. Imprinted expression of RB1 is due to differential methylation of a CpG island (CpG85), which is located in the pseudogene PPP1R26P1 in intron 2 of RB1. CpG85 serves as promoter for an alternative RB1 transcript, which is expressed from the unmethylated paternal allele only and is thought to suppress expression of the full-length RB1 transcript in cis. PPP1R26P1 contains another CpG island (CpG42), which is biallelically methylated. To determine the influence of PPP1R26P1 on RB1 expression, we generated an in vitro murine embryonic stem cell model by introducing human PPP1R26P1 into mouse Rb1. Next generation bisulfite sequencing of CpG85 and CpG42 revealed differences in their susceptibility to DNA methylation, gaining methylation at a median level of 4% and 18%, respectively. We showed binding of RNA polymerase II at and transcription from the unmethylated CpG85 in PPP1R26P1 and observed reduced expression of full-length Rb1 from the targeted allele. Our results identify human PPP1R26P1 as a cis-repressive element and support a connection between retrotransposition of PPP1R26P1 into human RB1 and the reduced expression of RB1 on the paternal allele.
Collapse
Affiliation(s)
- Laura Steenpass
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Deniz Kanber
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Michaela Hiber
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Dietmar Lohmann
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
22
|
Cruickshanks HA, Vafadar-Isfahani N, Dunican DS, Lee A, Sproul D, Lund JN, Meehan RR, Tufarelli C. Expression of a large LINE-1-driven antisense RNA is linked to epigenetic silencing of the metastasis suppressor gene TFPI-2 in cancer. Nucleic Acids Res 2013; 41:6857-69. [PMID: 23703216 PMCID: PMC3737543 DOI: 10.1093/nar/gkt438] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/29/2013] [Accepted: 04/29/2013] [Indexed: 12/18/2022] Open
Abstract
LINE-1 retrotransposons are abundant repetitive elements of viral origin, which in normal cells are kept quiescent through epigenetic mechanisms. Activation of LINE-1 occurs frequently in cancer and can enable LINE-1 mobilization but also has retrotransposition-independent consequences. We previously reported that in cancer, aberrantly active LINE-1 promoters can drive transcription of flanking unique sequences giving rise to LINE-1 chimeric transcripts (LCTs). Here, we show that one such LCT, LCT13, is a large transcript (>300 kb) running antisense to the metastasis-suppressor gene TFPI-2. We have modelled antisense RNA expression at TFPI-2 in transgenic mouse embryonic stem (ES) cells and demonstrate that antisense RNA induces silencing and deposition of repressive histone modifications implying a causal link. Consistent with this, LCT13 expression in breast and colon cancer cell lines is associated with silencing and repressive chromatin at TFPI-2. Furthermore, we detected LCT13 transcripts in 56% of colorectal tumours exhibiting reduced TFPI-2 expression. Our findings implicate activation of LINE-1 elements in subsequent epigenetic remodelling of surrounding genes, thus hinting a novel retrotransposition-independent role for LINE-1 elements in malignancy.
Collapse
Affiliation(s)
- Hazel A. Cruickshanks
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Natasha Vafadar-Isfahani
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Donncha S. Dunican
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Andy Lee
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Duncan Sproul
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Jonathan N. Lund
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Richard R. Meehan
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| | - Cristina Tufarelli
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Clinical Sciences, University of Nottingham, Centre for Biomedical Sciences, Nottingham NG7 2RD, UK, School of Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK, Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK and Centre for Genetics and Genomics, University of Nottingham, Queens Medical Centre, Nottingham NG7 2RD, UK
| |
Collapse
|
23
|
Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. Gene regulation by the act of long non-coding RNA transcription. BMC Biol 2013; 11:59. [PMID: 23721193 PMCID: PMC3668284 DOI: 10.1186/1741-7007-11-59] [Citation(s) in RCA: 549] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 05/15/2013] [Indexed: 12/20/2022] Open
Abstract
Long non-protein-coding RNAs (lncRNAs) are proposed to be the largest transcript class in the mouse and human transcriptomes. Two important questions are whether all lncRNAs are functional and how they could exert a function. Several lncRNAs have been shown to function through their product, but this is not the only possible mode of action. In this review we focus on a role for the process of lncRNA transcription, independent of the lncRNA product, in regulating protein-coding-gene activity in cis. We discuss examples where lncRNA transcription leads to gene silencing or activation, and describe strategies to determine if the lncRNA product or its transcription causes the regulatory effect.
Collapse
Affiliation(s)
- Aleksandra E Kornienko
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25,3, 1090, Vienna, Austria
| | | | | | | |
Collapse
|
24
|
Santoro F, Mayer D, Klement RM, Warczok KE, Stukalov A, Barlow DP, Pauler FM. Imprinted Igf2r silencing depends on continuous Airn lncRNA expression and is not restricted to a developmental window. Development 2013; 140:1184-95. [PMID: 23444351 DOI: 10.1242/dev.088849] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The imprinted Airn macro long non-coding (lnc) RNA is an established example of a cis-silencing lncRNA. Airn expression is necessary to initiate paternal-specific silencing of the Igf2r gene, which is followed by gain of a somatic DNA methylation imprint on the silent Igf2r promoter. However, the developmental requirements for Airn initiation of Igf2r silencing and the role of Airn or DNA methylation in maintaining stable Igf2r repression have not been investigated. Here, we use inducible systems to control Airn expression during mouse embryonic stem cell (ESC) differentiation. By turning Airn expression off during ESC differentiation, we show that continuous Airn expression is needed to maintain Igf2r silencing, but only until the paternal Igf2r promoter is methylated. By conditionally turning Airn expression on, we show that Airn initiation of Igf2r silencing is not limited to one developmental 'window of opportunity' and can be maintained in the absence of DNA methylation. Together, this study shows that Airn expression is both necessary and sufficient to silence Igf2r throughout ESC differentiation and that the somatic methylation imprint, although not required to initiate or maintain silencing, adds a secondary layer of repressive epigenetic information.
Collapse
Affiliation(s)
- Federica Santoro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
25
|
Lee JT, Bartolomei MS. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 2013; 152:1308-23. [PMID: 23498939 DOI: 10.1016/j.cell.2013.02.016] [Citation(s) in RCA: 503] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Indexed: 12/22/2022]
Abstract
X chromosome inactivation and genomic imprinting are classic epigenetic processes that cause disease when not appropriately regulated in mammals. Whereas X chromosome inactivation evolved to solve the problem of gene dosage, the purpose of genomic imprinting remains controversial. Nevertheless, the two phenomena are united by allelic control of large gene clusters, such that only one copy of a gene is expressed in every cell. Allelic regulation poses significant challenges because it requires coordinated long-range control in cis and stable propagation over time. Long noncoding RNAs have emerged as a common theme, and their contributions to diseases of imprinting and the X chromosome have become apparent. Here, we review recent advances in basic biology, the connections to disease, and preview potential therapeutic strategies for future development.
Collapse
Affiliation(s)
- Jeannie T Lee
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
26
|
Bebbere D, Bauersachs S, Fürst RW, Reichenbach HD, Reichenbach M, Medugorac I, Ulbrich SE, Wolf E, Ledda S, Hiendleder S. Tissue-specific and minor inter-individual variation in imprinting of IGF2R is a common feature of Bos taurus Concepti and not correlated with fetal weight. PLoS One 2013; 8:e59564. [PMID: 23593146 PMCID: PMC3620161 DOI: 10.1371/journal.pone.0059564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 02/19/2013] [Indexed: 11/18/2022] Open
Abstract
The insulin-like growth factor 2 receptor (IGF2R) is essential for prenatal growth regulation and shows gene dosage effects on fetal weight that can be affected by in-vitro embryo culture. Imprinted maternal expression of murine Igf2r is well documented for all fetal tissues excluding brain, but polymorphic imprinting and biallelic expression were reported for IGF2R in human. These differences have been attributed to evolutionary changes correlated with specific reproductive strategies. However, data from species suitable for testing this hypothesis are lacking. The domestic cow (Bos taurus) carries a single conceptus with a similar gestation length as human. We identified 12 heterozygous concepti informative for imprinting studies among 68 Bos taurus fetuses at Day 80 of gestation (28% term) and found predominantly maternal IGF2R expression in all fetal tissues but brain, which escapes imprinting. Inter-individual variation in allelic expression bias, i.e. expression of the repressed paternal allele relative to the maternal allele, ranged from 4.6−8.9% in heart, 4.3−10.2% in kidney, 6.1−11.2% in liver, 4.6−15.8% in lung and 3.2−12.2% in skeletal muscle. Allelic bias for mesodermal tissues (heart, skeletal muscle) differed significantly (P<0.05) from endodermal tissues (liver, lung). The placenta showed partial imprinting with allelic bias of 22.9−34.7% and differed significantly (P<0.001) from all other tissues. Four informative fetuses were generated by in-vitro fertilization (IVF) with embryo culture and two individuals displayed fetal overgrowth. However, there was no evidence for changes in imprinting or DNA methylation after IVF, or correlations between allelic bias and fetal weight. In conclusion, imprinting of Bos taurus IGF2R is similar to mouse except in placenta, which could indicate an effect of reproductive strategy. Common minor inter-individual variation in allelic bias and absence of imprinting abnormalities in IVF fetuses suggest changes in IGF2R expression in overgrown fetuses could be modulated through other mechanisms than changes in imprinting.
Collapse
Affiliation(s)
- Daniela Bebbere
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University, Munich, Germany
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Stefan Bauersachs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Rainer W. Fürst
- Physiology Weihenstephan, Technische Universität München, Freising, Germany
| | | | - Myriam Reichenbach
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Ivica Medugorac
- Chair of Animal Genetics and Husbandry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Susanne E. Ulbrich
- Physiology Weihenstephan, Technische Universität München, Freising, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Stefan Hiendleder
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University, Munich, Germany
- JS Davies Non-Mendelian Genetics Group, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, Australia
- Research Centre for Reproductive Health, Robinson Institute, The University of Adelaide, Roseworthy Campus, Roseworthy, Australia
- * E-mail:
| |
Collapse
|
27
|
Maternal transmission of a humanised Igf2r allele results in an Igf2 dependent hypomorphic and non-viable growth phenotype. PLoS One 2013; 8:e57270. [PMID: 23468951 PMCID: PMC3585325 DOI: 10.1371/journal.pone.0057270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 01/21/2013] [Indexed: 01/07/2023] Open
Abstract
The cation independent mannose 6-phosphate/insulin-like growth factor 2 receptor (IGF2R) functions in the transportation and regulation of insulin-like growth factor 2 (IGF2) and mannose 6-phosphate modified proteins. The relative and specific titration of IGF2 by high affinity binding of IGF2R represents a mechanism that supports the parental conflict theory of genomic imprinting. Imprinting of Igf2 (paternal allele expressed) and Igf2r (maternal allele expressed) arose to regulate the relative supply of both proteins. Experiments in the mouse have established that loss of the maternal allele of Igf2r results in disproportionate growth and peri-natal lethality. In order to systematically investigate the consequences of loss of function and of hypomorphic alleles of Igf2r on growth functions, we introduced a conditional human IGF2R exon 3–48 cDNA into the intron 2 region of murine Igf2r. Here we show that the knock-in construct resulted in over-growth when the humanised Igf2r allele was maternally transmitted, a phenotype that was rescued by either paternal transmission of the humanised allele, expression of a wild-type paternal allele or loss of function of Igf2. We also show that expression of IGF2R protein was reduced to less than 50% overall in tissues previously known to be Igf2 growth dependent. This occurred despite the detection of mouse derived peptides, suggesting that trans-splicing of the knock-in human cDNA with the endogenous maternal mouse Igf2r allele. The phenotype following maternal transmission of the humanised allele resulted in overgrowth of the embryo, heart and placenta with partial peri-natal lethality, suggesting that further generation of hypomorphic Igf2r alleles are likely to be at the borderline of maintaining Igf2 dependent viability.
Collapse
|
28
|
Expression of antisense of insulin-like growth factor-2 receptor RNA non-coding (AIRN) during early gestation in cattle. Anim Reprod Sci 2013; 138:64-73. [PMID: 23473694 DOI: 10.1016/j.anireprosci.2013.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/02/2013] [Accepted: 01/28/2013] [Indexed: 11/23/2022]
Abstract
The insulin-like growth factor type 2 receptor (IGF2R) regulates fetal growth by removing IGF2 from circulation. In mice, expression of the Igf2r gene is only imprinted after implantation and is associated with expression of the antisense non-coding (nc)RNA, Airn. The objectives of this study were, first, to determine if bovine AIRN was expressed during developmentally important stages of gestation, and second, to determine if expression of bAIRN was affected by method of embryo production. Control reactions confirmed that sequence verified bAIRN PCR amplicons resulted from RNA within the sample and not from genomic DNA contamination. IGF2R mRNA was expressed in all fetal liver samples at Days 35-55 and 70 of gestation as well as in 8 of 9 Day 15 conceptuses, 10 of 10 Day 18 conceptuses, and in all day 7 blastocyst pools. bAIRN was expressed in all samples of fetal liver at Days 35-55 and 70 of gestation. The proportion of conceptuses that expressed bAIRN increased from 1 of 9 at Day 15 of gestation to 8 of 10 at Day 18 of gestation. No bAIRN was expressed in any blastocyst pools. The relative level of bAIRN was greater (P<0.05) in fetal liver from embryos produced in vivo compared to that from embryos produced in vitro. In summary bAIRN was not expressed in blastocyst-stage embryos, was expressed in an increasing proportion of embryos around the time of maternal recognition of pregnancy and was expressed following implantation. Furthermore, relative levels of bAIRN in bovine fetal liver can be altered by method of embryo production.
Collapse
|
29
|
Abstract
Genomic imprinting is an epigenetic phenomenon in which either the paternal or the maternal allele of imprinted genes is expressed in somatic cells. It is unique to eutherian mammals, marsupials, and flowering plants. It is absolutely required for normal mammalian development. Dysregulation of genomic imprinting can cause a variety of human diseases. About 150 imprinted genes have been identified so far in mammals and many of them are clustered such that they are coregulated by a cis-acting imprinting control region, called the ICR. One hallmark of the ICR is that it contains a germ line-derived differentially methylated region that is methylated on the paternal chromosome or on the maternal chromosome. The DNA methylation imprint is reset in the germ line and differential methylation at an ICR is restored upon fertilization. The DNA methylation imprint is resistant to a genome-wide demethylation process in early embryos and is stably maintained in postimplantation embryos. Maintenance of the DNA methylation imprint is dependent on two distinct maternal effect genes (Zfp57 and PGC7/Stella). In germ cells, around midgestation, the DNA methylation imprint is erased and undergoes another round of the DNA methylation imprint cycle that includes erasure, resetting, restoration, and maintenance of differential DNA methylation.
Collapse
Affiliation(s)
- Xiajun Li
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, USA.
| |
Collapse
|
30
|
Latos PA, Pauler FM, Koerner MV, Şenergin HB, Hudson QJ, Stocsits RR, Allhoff W, Stricker SH, Klement RM, Warczok KE, Aumayr K, Pasierbek P, Barlow DP. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 2012; 338:1469-72. [PMID: 23239737 DOI: 10.1126/science.1228110] [Citation(s) in RCA: 369] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mammalian imprinted genes often cluster with long noncoding (lnc) RNAs. Three lncRNAs that induce parental-specific silencing show hallmarks indicating that their transcription is more important than their product. To test whether Airn transcription or product silences the Igf2r gene, we shortened the endogenous lncRNA to different lengths. The results excluded a role for spliced and unspliced Airn lncRNA products and for Airn nuclear size and location in silencing Igf2r. Instead, silencing only required Airn transcriptional overlap of the Igf2r promoter, which interferes with RNA polymerase II recruitment in the absence of repressive chromatin. Such a repressor function for lncRNA transcriptional overlap reveals a gene silencing mechanism that may be widespread in the mammalian genome, given the abundance of lncRNA transcripts.
Collapse
Affiliation(s)
- Paulina A Latos
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Differentiation-driven nucleolar association of the mouse imprinted Kcnq1 locus. G3-GENES GENOMES GENETICS 2012; 2:1521-8. [PMID: 23275875 PMCID: PMC3516474 DOI: 10.1534/g3.112.004226] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/22/2012] [Indexed: 12/16/2022]
Abstract
The organization of the genome within the mammalian nucleus is nonrandom, with physiologic processes often concentrated in specific three-dimensional domains. This organization may be functionally related to gene regulation and, as such, may play a role in normal development and human disease processes. However, the mechanisms that participate in nuclear organization are poorly understood. Here, we present data characterizing localization of the imprinted Kcnq1 alleles. We show that nucleolar association of the paternal allele (1) is stimulated during the differentiation of trophoblast stem cells, (ii) is dependent upon the Kcnq1ot1 noncoding RNA, (3) does not require polycomb repressive complex 2, and (4) is not sufficient to preclude transcription of imprinted genes. Although nucleolar positioning has been proposed as a mechanism to related to gene silencing, we find that silencing and perinucleolar localization through the Kcnq1ot1 noncoding RNA are separable events.
Collapse
|
32
|
Golding MC. Generation of trophoblast stem cells. Methods Mol Biol 2012; 925:49-59. [PMID: 22907489 DOI: 10.1007/978-1-62703-011-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The isolation and culture of both embryonic and extraembryonic stem cells provide an enormous opportunity to study the molecular processes that establish and maintain lineage-specific, monoallelic patterns of gene expression. This chapter describes the isolation an culture of trophectoderm stem cells from mouse blastocyst stage embryos. Using this powerful in vitro system, scientists can now begin to tease apart the epigenetic processes that result in placental patterns of imprinted gene expression and begin to better understand the role these genes play in development and disease.
Collapse
Affiliation(s)
- Michael C Golding
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
33
|
Pauler FM, Barlow DP, Hudson QJ. Mechanisms of long range silencing by imprinted macro non-coding RNAs. Curr Opin Genet Dev 2012; 22:283-9. [PMID: 22386265 PMCID: PMC3387373 DOI: 10.1016/j.gde.2012.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 12/21/2022]
Abstract
Non-coding (nc) RNA silencing of imprinted genes in extra-embryonic tissues provides a good model for understanding an underexamined aspect of gene regulation by macro or long ncRNAs, that is their action as long-range cis-silencers. Numerous long intergenic ncRNAs (lincRNAs) have been recently discovered that are thought to regulate gene expression, some of which have been associated with disease. The few shown to regulate protein-coding genes are suggested to act by targeting repressive or active chromatin marks. Correlative evidence also indicates that imprinted macro ncRNAs cause long-range cis-silencing in placenta by targeting repressive histone modifications to imprinted promoters. It is timely, however, to consider alternative explanations consistent with the published data, whereby transcription alone could cause gene silencing at a distance.
Collapse
Affiliation(s)
- Florian M Pauler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH-BT 25.3, 1090 Vienna, Austria
| | | | | |
Collapse
|
34
|
Koerner MV, Pauler FM, Hudson QJ, Santoro F, Sawicka A, Guenzl PM, Stricker SH, Schichl YM, Latos PA, Klement RM, Warczok KE, Wojciechowski J, Seiser C, Kralovics R, Barlow DP. A downstream CpG island controls transcript initiation and elongation and the methylation state of the imprinted Airn macro ncRNA promoter. PLoS Genet 2012; 8:e1002540. [PMID: 22396659 PMCID: PMC3291542 DOI: 10.1371/journal.pgen.1002540] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 12/29/2011] [Indexed: 11/18/2022] Open
Abstract
A CpG island (CGI) lies at the 5' end of the Airn macro non-protein-coding (nc) RNA that represses the flanking Igf2r promoter in cis on paternally inherited chromosomes. In addition to being modified on maternally inherited chromosomes by a DNA methylation imprint, the Airn CGI shows two unusual organization features: its position immediately downstream of the Airn promoter and transcription start site and a series of tandem direct repeats (TDRs) occupying its second half. The physical separation of the Airn promoter from the CGI provides a model to investigate if the CGI plays distinct transcriptional and epigenetic roles. We used homologous recombination to generate embryonic stem cells carrying deletions at the endogenous locus of the entire CGI or just the TDRs. The deleted Airn alleles were analyzed by using an ES cell imprinting model that recapitulates the onset of Igf2r imprinted expression in embryonic development or by using knock-out mice. The results show that the CGI is required for efficient Airn initiation and to maintain the unmethylated state of the Airn promoter, which are both necessary for Igf2r repression on the paternal chromosome. The TDRs occupying the second half of the CGI play a minor role in Airn transcriptional elongation or processivity, but are essential for methylation on the maternal Airn promoter that is necessary for Igf2r to be expressed from this chromosome. Together the data indicate the existence of a class of regulatory CGIs in the mammalian genome that act downstream of the promoter and transcription start.
Collapse
Affiliation(s)
- Martha V. Koerner
- CeMM–Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florian M. Pauler
- CeMM–Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Quanah J. Hudson
- CeMM–Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Federica Santoro
- CeMM–Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna Sawicka
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Philipp M. Guenzl
- CeMM–Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan H. Stricker
- CeMM–Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Yvonne M. Schichl
- CeMM–Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Paulina A. Latos
- CeMM–Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ruth M. Klement
- CeMM–Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katarzyna E. Warczok
- CeMM–Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jacek Wojciechowski
- IMP/IMBA Transgenic Service, Research Institute of Molecular Pathology, Vienna, Austria
| | - Christian Seiser
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Robert Kralovics
- CeMM–Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Denise P. Barlow
- CeMM–Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- * E-mail:
| |
Collapse
|
35
|
R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 2012; 45:814-25. [PMID: 22387027 DOI: 10.1016/j.molcel.2012.01.017] [Citation(s) in RCA: 588] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/08/2011] [Accepted: 01/10/2012] [Indexed: 12/31/2022]
Abstract
CpG islands (CGIs) function as promoters for approximately 60% of human genes. Most of these elements remain protected from CpG methylation, a prevalent epigenetic modification associated with transcriptional silencing. Here, we report that methylation-resistant CGI promoters are characterized by significant strand asymmetry in the distribution of guanines and cytosines (GC skew) immediately downstream from their transcription start sites. Using innovative genomics methodologies, we show that transcription through regions of GC skew leads to the formation of long R loop structures. Furthermore, we show that GC skew and R loop formation potential is correlated with and predictive of the unmethylated state of CGIs. Finally, we provide evidence that R loop formation protects from DNMT3B1, the primary de novo DNA methyltransferase in early development. Altogether, these results suggest that protection from DNA methylation is a built-in characteristic of the DNA sequence of CGI promoters that is revealed by the cotranscriptional formation of R loop structures.
Collapse
|
36
|
Affiliation(s)
- Denise P. Barlow
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria;
| |
Collapse
|
37
|
Kohama C, Kato H, Numata K, Hirose M, Takemasa T, Ogura A, Kiyosawa H. ES cell differentiation system recapitulates the establishment of imprinted gene expression in a cell-type-specific manner. Hum Mol Genet 2011; 21:1391-401. [PMID: 22156770 DOI: 10.1093/hmg/ddr577] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting is a phenomenon whereby monoallelic gene expression occurs in a parent-of-origin-specific manner. A subset of imprinted genes acquires a tissue-specific imprinted status during the course of tissue development, and this process can be analyzed by means of an in vitro differentiation system utilizing embryonic stem (ES) cells. In neurons, the gene Ube3a is expressed from the maternal allele only, and a paternally expressed non-coding, antisense RNA has been implicated in the imprinting process in mice and humans. Here, to study the genomic imprinting mechanism, we established F1 hybrid ES cells derived from two sub-species of Mus musculus and established an in vitro neuronal differentiation system in which neuron-specific imprinting of Ube3a was recapitulated. With this system, we revealed that the switch from biallelic expression to maternal, monoallelic expression of Ube3a occurs late in neuronal development, during the neurite outgrowth period, and that the expression of endogenous antisense transcript from the Ube3a locus is up-regulated several hundred-fold during the same period. Our results suggest that evaluation of the quality of ES cells by studying their differentiation in vitro should include evaluation of epigenetic aspects, such as a comparison with the genomic imprinting status found in tissues in vivo, in addition to the evaluation of differentiation gene markers and morphology. Our F1 hybrid ES cells and in vitro differentiation system will allow researchers to investigate complex end-points such as neuron-specific genomic imprinting, and our F1 hybrid ES cells are a useful resource for other tissue-specific genomic imprinting and epigenetic analyses.
Collapse
Affiliation(s)
- Chihiro Kohama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Zuo X, Sheng J, Lau HT, McDonald CM, Andrade M, Cullen DE, Bell FT, Iacovino M, Kyba M, Xu G, Li X. Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain. J Biol Chem 2011; 287:2107-18. [PMID: 22144682 DOI: 10.1074/jbc.m111.322644] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Previously, we discovered that ZFP57 is a maternal-zygotic effect gene, and it maintains DNA methylation genomic imprint at multiple imprinted regions in mouse embryos. Despite these findings, it remains elusive how DNA methyltransferases are targeted to the imprinting control regions to initiate and maintain DNA methylation imprint. To gain insights into these essential processes in genomic imprinting, we examined how ZFP57 maintains genomic DNA methylation imprint in mouse embryonic stem (ES) cells. Here we demonstrate that the loss of ZFP57 in mouse ES cells led to a complete loss of genomic DNA methylation imprint at multiple imprinted regions, similar to its role in mouse embryos. However, reintroduction of ZFP57 into Zfp57-null ES cells did not result in reacquisition of DNA methylation imprint, suggesting that the memory for genomic imprinting had been lost or altered in Zfp57-null ES cells in culture. Interestingly, ZFP57 and DNA methyltransferases could form complexes in the presence of KAP1/TRIM28/TIF1β when co-expressed in COS cells. We also found that the wild-type exogenous ZFP57 but not the mutant ZFP57 lacking the KRAB box that interacts with its co-factor KAP1/TRIM28/TIF1β could substitute for the endogenous ZFP57 in maintaining the DNA methylation imprint in ES cells. These results suggest that ZFP57 may recruit DNA methyltransferases to its target regions to maintain DNA methylation imprint, and this interaction is likely facilitated by KAP1/TRIM28/TIF1β.
Collapse
Affiliation(s)
- Xiaopan Zuo
- Black Family Stem Cell Institute, Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Huang R, Jaritz M, Guenzl P, Vlatkovic I, Sommer A, Tamir IM, Marks H, Klampfl T, Kralovics R, Stunnenberg HG, Barlow DP, Pauler FM. An RNA-Seq strategy to detect the complete coding and non-coding transcriptome including full-length imprinted macro ncRNAs. PLoS One 2011; 6:e27288. [PMID: 22102886 PMCID: PMC3213133 DOI: 10.1371/journal.pone.0027288] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/13/2011] [Indexed: 11/18/2022] Open
Abstract
Imprinted macro non-protein-coding (nc) RNAs are cis-repressor transcripts that silence multiple genes in at least three imprinted gene clusters in the mouse genome. Similar macro or long ncRNAs are abundant in the mammalian genome. Here we present the full coding and non-coding transcriptome of two mouse tissues: differentiated ES cells and fetal head using an optimized RNA-Seq strategy. The data produced is highly reproducible in different sequencing locations and is able to detect the full length of imprinted macro ncRNAs such as Airn and Kcnq1ot1, whose length ranges between 80–118 kb. Transcripts show a more uniform read coverage when RNA is fragmented with RNA hydrolysis compared with cDNA fragmentation by shearing. Irrespective of the fragmentation method, all coding and non-coding transcripts longer than 8 kb show a gradual loss of sequencing tags towards the 3′ end. Comparisons to published RNA-Seq datasets show that the strategy presented here is more efficient in detecting known functional imprinted macro ncRNAs and also indicate that standardization of RNA preparation protocols would increase the comparability of the transcriptome between different RNA-Seq datasets.
Collapse
Affiliation(s)
- Ru Huang
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Markus Jaritz
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Philipp Guenzl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Irena Vlatkovic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andreas Sommer
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Ido M. Tamir
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Nijmegen Center for Molecular Life Sciences (NCMLS), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Thorsten Klampfl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Robert Kralovics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Faculty of Science, Nijmegen Center for Molecular Life Sciences (NCMLS), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Denise P. Barlow
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- * E-mail: (DPB); (FMP)
| | - Florian M. Pauler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- * E-mail: (DPB); (FMP)
| |
Collapse
|
40
|
Saxena A, Carninci P. Long non-coding RNA modifies chromatin: epigenetic silencing by long non-coding RNAs. Bioessays 2011; 33:830-9. [PMID: 21915889 PMCID: PMC3258546 DOI: 10.1002/bies.201100084] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 12/16/2022]
Abstract
Common themes are emerging in the molecular mechanisms of long non-coding RNA-mediated gene repression. Long non-coding RNAs (lncRNAs) participate in targeted gene silencing through chromatin remodelling, nuclear reorganisation, formation of a silencing domain and precise control over the entry of genes into silent compartments. The similarities suggest that these are fundamental processes of transcription regulation governed by lncRNAs. These findings have paved the way for analogous investigations on other lncRNAs and chromatin remodelling enzymes. Here we discuss these common mechanisms and provide our view on other molecules that warrant similar investigations. We also present our concepts on the possible mechanisms that may facilitate the exit of genes from the silencing domains and their potential therapeutic applications. Finally, we point to future areas of research and put forward our recommendations for improvements in resources and applications of existing technologies towards targeted outcomes in this active area of research.
Collapse
Affiliation(s)
- Alka Saxena
- Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro Cho, Tsurumi Ku, Yokohama, Kanagawa 230-0045, Japan
| | | |
Collapse
|
41
|
Radford EJ, Ferrón SR, Ferguson-Smith AC. Genomic imprinting as an adaptative model of developmental plasticity. FEBS Lett 2011; 585:2059-66. [PMID: 21672541 DOI: 10.1016/j.febslet.2011.05.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/29/2011] [Accepted: 05/30/2011] [Indexed: 01/14/2023]
Abstract
Developmental plasticity can be defined as the ability of one genotype to produce a range of phenotypes in response to environmental conditions. Such plasticity can be manifest at the level of individual cells, an organ, or a whole organism. Imprinted genes are a group of approximately 100 genes with functionally monoallelic, parental-origin specific expression. As imprinted genes are critical for prenatal growth and metabolic axis development and function, modulation of imprinted gene dosage has been proposed to play a key role in the plastic development of the unborn foetus in response to environmental conditions. Evidence is accumulating that imprinted dosage may also be involved in controlling the plastic potential of individual cells or stem cell populations. Imprinted gene dosage can be modulated through canonical, transcription factor mediated mechanisms, or through the relaxation of imprinting itself, reactivating the normally silent allele.
Collapse
Affiliation(s)
- Elizabeth J Radford
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
42
|
John RM, Lefebvre L. Developmental regulation of somatic imprints. Differentiation 2011; 81:270-80. [DOI: 10.1016/j.diff.2011.01.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/16/2010] [Accepted: 01/11/2011] [Indexed: 12/21/2022]
|
43
|
An extended domain of Kcnq1ot1 silencing revealed by an imprinted fluorescent reporter. Mol Cell Biol 2011; 31:2827-37. [PMID: 21576366 DOI: 10.1128/mcb.01435-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distal region of mouse chromosome 7 contains two imprinted domains separated by a relatively gene-poor interval. We have previously described a transgenic mouse line called Tel7KI, which contains a green fluorescent protein (GFP) reporter inserted 2.6 kb upstream of the Ins2 gene at the proximal end of this interval. The GFP reporter from Tel7KI is imprinted and maternally expressed in postimplantation embryos. Here, we present evidence that the distal imprinting center, KvDMR1 (IC2), is responsible for the paternal silencing of Tel7KI. First, we show that Tel7KI is silenced when the noncoding RNA Kcnq1ot1 is biallelically expressed due to absence of maternal DNA methylation at IC2. Second, we use an embryonic stem (ES) cell differentiation assay to examine the effect of an IC2 deletion in cis to Tel7KI and show that it impairs the ability of the paternal transmission Tel7KI ES cells to silence GFP. These results suggested that Kcnq1ot1 silencing extends nearly 300 kb further than previously reported and led us to examine other transcripts between IC1 and IC2. We found that splice variants of Th and Ins2 are imprinted, maternally expressed, and regulated by IC2, showing that the silencing domain uncovered by our transgenic line also affects endogenous transcripts.
Collapse
|
44
|
Santoro F, Barlow DP. Developmental control of imprinted expression by macro non-coding RNAs. Semin Cell Dev Biol 2011; 22:328-35. [PMID: 21333747 DOI: 10.1016/j.semcdb.2011.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 02/11/2011] [Indexed: 01/22/2023]
Abstract
Genomic imprinting is a developmentally regulated epigenetic phenomenon. The majority of imprinted genes only show parent-of-origin specific expression in a subset of tissues or at defined developmental stages. In some cases, imprinted expression is controlled by an imprinted macro non-coding RNA (ncRNA) whose expression pattern and repressive activity does not necessarily correlate with that of the genes whose imprinted expression it controls. This suggests that developmentally regulated factors other than the macro ncRNA are involved in establishing or maintaining imprinted expression. Here, we review how macro ncRNAs control imprinted expression during development and differentiation and consider how this impacts on target choice in epigenetic therapy.
Collapse
Affiliation(s)
- Federica Santoro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH-BT25.3, 1090 Vienna, Austria
| | | |
Collapse
|
45
|
Noguer-Dance M, Abu-Amero S, Al-Khtib M, Lefèvre A, Coullin P, Moore GE, Cavaillé J. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet 2010; 19:3566-82. [PMID: 20610438 DOI: 10.1093/hmg/ddq272] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Imprinted genes play crucial roles in mammalian development and disruption of their expression is associated with many human disorders including tumourigenesis; yet, the actual number of imprinted genes in the human genome remains a matter of debate. Here, we report on the unexpected finding that the chromosome 19 microRNA cluster (C19MC), the largest human microRNA gene cluster discovered so far, is regulated by genomic imprinting with only the paternally inherited allele being expressed in the placenta. DNA methylation profiling identified a differentially methylated region (C19MC-DMR1) that overlaps an upstream CpG-rich promoter region associated with short tandem repeats. It displays a maternal-specific methylation imprint acquired in oocytes and generates a complex population of large, compartimentalized non-coding RNA (ncRNA) species retained in close proximity to the C19MC transcription site. This occurs adjacent to, but not within, a poorly characterized nuclear Alu-rich domain. Interestingly, C19MC maps near another imprinted gene, the maternally expressed ZNF331 gene, and therefore may define a novel, previously unrecognized large imprinted primate-specific chromosomal domain. Altogether, our study adds C19MC to the growing list of imprinted repeated small RNA gene clusters and further strengthens the potential involvement of small ncRNAs in the function and/or the evolution of imprinted gene networks.
Collapse
Affiliation(s)
- Marie Noguer-Dance
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Koerner MV, Barlow DP. Genomic imprinting-an epigenetic gene-regulatory model. Curr Opin Genet Dev 2010; 20:164-70. [PMID: 20153958 PMCID: PMC2860637 DOI: 10.1016/j.gde.2010.01.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/15/2010] [Accepted: 01/24/2010] [Indexed: 11/24/2022]
Abstract
Epigenetic mechanisms (Box 1) are considered to play major gene-regulatory roles in development, differentiation and disease. However, the relative importance of epigenetics in defining the mammalian transcriptome in normal and disease states is unknown. The mammalian genome contains only a few model systems where epigenetic gene regulation has been shown to play a major role in transcriptional control. These model systems are important not only to investigate the biological function of known epigenetic modifications but also to identify new and unexpected epigenetic mechanisms in the mammalian genome. Here we review recent progress in understanding how epigenetic mechanisms control imprinted gene expression.
Collapse
Affiliation(s)
- Martha V Koerner
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna Biocenter, Austria
| | | |
Collapse
|
47
|
Genomic imprinting mechanisms in embryonic and extraembryonic mouse tissues. Heredity (Edinb) 2010; 105:45-56. [PMID: 20234385 DOI: 10.1038/hdy.2010.23] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Imprinted genes in mice and humans mainly occur in clusters that are associated with differential DNA methylation of an imprint control element (ICE) and at least one nonprotein-coding RNA (ncRNA). Imprinted gene silencing is achieved by parental-specific insulator activity of the unmethylated ICE mediated by CTCF (CCCTC-binding factor) binding, or by ncRNA expression from a promoter in the unmethylated ICE. In many imprinted clusters, some genes, particularly those located furthest away from the ICE, show imprinted expression only in extraembryonic tissues. Recent research indicates that genes showing imprinted expression only in extraembryonic tissues may be regulated by different epigenetic mechanisms compared with genes showing imprinted expression in extraembryonic tissues and in embryonic/adult tissues. The study of extraembryonic imprinted expression, thus, has the potential to illuminate novel epigenetic strategies, but is complicated by the need to collect tissue from early stages of mouse development, when extraembryonic tissues may be contaminated by maternal cells or be present in limited amounts. Research in this area would be advanced by the development of an in vitro model system in which genetic experiments could be conducted in less time and at a lower cost than with mouse models. Here, we summarize what is known about the mechanisms regulating imprinted expression in mouse extraembryonic tissues and explore the possibilities for developing an in vitro model.
Collapse
|
48
|
Abstract
Development from separate parental germ cells through fertilization and proceeding to a fully functioning adult animal occurs through an intricate program of transcriptional and chromatin changes. Epigenetic alterations such as DNA methylation are an important part of this process. This review looks at the role of DNA methylation in early embryonic development, as well as how this epigenetic mark affects stem cell differentiation and tissue-specific gene expression in somatic cells.
Collapse
Affiliation(s)
- Theresa M Geiman
- Laboratory of Cancer Prevention, National Cancer Institute-Frederick, SAIC-Frederick, MD 21702, USA.
| | | |
Collapse
|
49
|
Farin CE, Farmer WT, Farin PW. Pregnancy recognition and abnormal offspring syndrome in cattle. Reprod Fertil Dev 2010; 22:75-87. [DOI: 10.1071/rd09217] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Development of the post-hatching conceptus in ruminants involves a period of morphological expansion that is driven by complex interactions between the conceptus and its intrauterine environment. As a result of these interactions, endometrial physiology is altered, leading to establishment of the pregnancy and continued development of the placenta. Disruption of normal fetal and placental development can occur when embryos are exposed to manipulations in vitro or when inappropriate endocrine sequencing occurs in vivo during the pre- and peri-implantation periods. The present review addresses the development of the post-hatching bovine conceptus, its interactions with the maternal system and changes in development that can occur as a result of in vivo and in vitro manipulations of the bovine embryo.
Collapse
|
50
|
Abstract
Genomic imprinting refers to an epigenetic mark that distinguishes parental alleles and results in a monoallelic, parental-specific expression pattern in mammals. Few phenomena in nature depend more on epigenetic mechanisms while at the same time evading them. The alleles of imprinted genes are marked epigenetically at discrete elements termed imprinting control regions (ICRs) with their parental origin in gametes through the use of DNA methylation, at the very least. Imprinted gene expression is subsequently maintained using noncoding RNAs, histone modifications, insulators, and higher-order chromatin structure. Avoidance is manifest when imprinted genes evade the genome-wide reprogramming that occurs after fertilization and remain marked with their parental origin. This review summarizes what is known about the establishment and maintenance of imprinting marks and discusses the mechanisms of imprinting in clusters. Additionally, the evolution of imprinted gene clusters is described. While considerable information regarding epigenetic control of imprinting has been obtained recently, much remains to be learned.
Collapse
Affiliation(s)
- Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|