1
|
Wei H, Weaver YM, Weaver BP. Xeroderma pigmentosum protein XPD controls caspase-mediated stress responses. Nat Commun 2024; 15:9344. [PMID: 39472562 PMCID: PMC11522282 DOI: 10.1038/s41467-024-53755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Caspases regulate and execute a spectrum of functions including cell deaths, non-apoptotic developmental functions, and stress responses. Despite these disparate roles, the same core cell-death machinery is required to enzymatically activate caspase proteolytic activities. Thus, it remains enigmatic how distinct caspase functions are differentially regulated. In this study, we show that Xeroderma pigmentosum protein XPD has a conserved function in activating the expression of stress-responsive caspases in C. elegans and human cells without triggering cell death. Using C. elegans, we show XPD-1-dependent activation of CED-3 caspase promotes survival upon genotoxic UV irradiation and inversely suppresses responses to non-genotoxic insults such as ER and osmotic stressors. Unlike the TFDP ortholog DPL-1 which is required for developmental apoptosis in C. elegans, XPD-1 only activates stress-responsive functions of caspase. This tradeoff balancing responses to genotoxic and non-genotoxic stress may explain the seemingly contradictory nature of caspase-mediated stress resilience versus sensitivity under different stressors.
Collapse
Affiliation(s)
- Hai Wei
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yi M Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin P Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Sun X, Wang M, Leng X, Zhang K, Liu G, Fang J. Characterization of the regulation mechanism of grapevine microRNA172 family members during flower development. BMC PLANT BIOLOGY 2020; 20:409. [PMID: 32883203 PMCID: PMC7650276 DOI: 10.1186/s12870-020-02627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Grapevine (Vitis vinifera L.), which has important nutritional values and health benefits, is one of the most economically important fruit crops cultivated worldwide. Several studies showed a large number of microRNAs (VvmiRNAs) involved in the modulation of grape growth and development, and many VvmiRNA families have multiple members. However, the way by which various members from the same miRNA family work is unclear, particularly in grapes. RESULTS In this study, an important conserved VvmiR172 family (VvmiR172s) and their targets were set as a good example for elucidating the interaction degree, mechanism, and spatio-temporal traits of diverse members from the same miRNA family. miR-RACE and Stem-loop RT-PCR were used to identify the spatio-temporal expressions of various members of VvmiR172s; together with RLM-RACE, PPM-RACE, Western blot, transgenic technologies, their interaction degree, and regulation mechanism were further validated. The expression of VvmiR172c was significantly higher than that of VvmiR172a, b, and d and showed a positive correlation with the abundance of VvAP2 cleavage products. These findings indicated that VvmiR172c might be one of the main action factors of the VvmiR172 family in flower development. The ability of VvmiR172c to cleave target genes differed due to divergence in complementary degree with VvAP2 and expression levels of various members. In VvmiR172 transgenic lines, we observed that 35S::VvmiR172c resulted in the earliest and abundant flowering, indicating the strong function of VvmiR172c. In contrast, the non-significant phenotypic changes were detected in the VvAP2 transgenic lines. The qRT-PCR and Western bolt results demonstrated that VvmiR172c plays a major role in targeting VvAP2. CONCLUSIONS VvmiR172 up-regulated the expression of NtFT and decreased the expression of NtFLC. The up/down regulation of VvmiR172c was the most pronounced. The functions of four VvmiR172 members in grape differed, and miR172c had the strongest regulation on AP2.
Collapse
Affiliation(s)
- Xin Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengqi Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangpeng Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kekun Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gengsen Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Jinggui Fang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
3
|
Abstract
Glycosylation is a sophisticated informational system that controls specific biological functions at the cellular and organismal level. Dysregulation of glycosylation may underlie some of the most complex and common diseases of the modern era. In the past 5 years, microRNAs have come to the forefront as a critical regulator of the glycome. Herein, we review the current literature on miRNA regulation of glycosylation and how this work may point to a new way to identify the biological importance of glycosylation enzymes.
Collapse
Affiliation(s)
- Chu T Thu
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Lara K Mahal
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
4
|
Ni WJ, Leng XM. Down-regulated miR-495 can target programmed cell death 10 in ankylosing spondylitis. Mol Med 2020; 26:50. [PMID: 32450789 PMCID: PMC7249445 DOI: 10.1186/s10020-020-00157-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNAs (miRNAs) play crucial roles in regulating eukaryotic gene expression. Recent studies indicated that aberrantly expressed miRNAs are involved in the pathogenesis of ankylosing spondylitis (AS). Indeed, hsa-miR-495-3p (miR-495) has been reported as an anti-oncogene in different cancers. However, the role of miR-495 in AS is still unknown. Methods In this study, quantitative real-time polymerase chain reaction (PCR) was used to detect the expression of miR-495 in the peripheral blood mononuclear cells (PBMCs), whole blood, and serum of patients with AS. Bisulfite-specific PCR sequencing and methylated DNA immunoprecipitation were used to detect the methylation in the promoter region of miR-495. To determine the influence of miR-495 expression on the target gene, programmed cell death 10 (PDCD10), dual luciferase reporter assays together with an adenoviral vector containing the miR-495 locus were used. Receiver operating characteristic (ROC) curves were used to evaluate the efficacy of miR-495 as a diagnostic biomarker of AS. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and western blotting were used to explore the potential role of miR-495 in AS pathogenesis and the mechanism by which it facilitates AS pathogenesis. Results miR-495 is down-regulated and the promoter region of miR-495 is highly methylated in AS. The expression of miR-495 is negatively associated with PDCD10 expression in both patients with AS and healthy controls. Further experiments showed that PDCD10 can be targeted by miR-495. The ROC curves of miR-495 suggested that it is a very specific and sensitive biomarker for AS diagnosis. Bioinformatics analysis and signal pathway studies indicated that miR-495 can down-regulate β-catenin and transforming growth factor-β1. Conclusions Our studies indicated that down-regulation of miR-495 can be used as a potential molecular marker for the diagnosis and treatment of AS, thus providing new insights into the role of miRNAs in AS pathology.
Collapse
Affiliation(s)
- Wen-Juan Ni
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.,The First Affiliated Hospital of XinXiang Medical University, 453100, WeiHui, Henan, People's Republic of China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China. .,The First Affiliated Hospital of XinXiang Medical University, 453100, WeiHui, Henan, People's Republic of China.
| |
Collapse
|
5
|
Cox D, Reilly B, Warnock ND, Dyer S, Sturrock M, Cortada L, Coyne D, Maule AG, Dalzell JJ. Transcriptional signatures of invasiveness in Meloidogyne incognita populations from sub-Saharan Africa. Int J Parasitol 2019; 49:837-841. [PMID: 31525369 DOI: 10.1016/j.ijpara.2019.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 11/24/2022]
Abstract
Meloidogyne incognita is an economically important plant parasitic nematode. Here we demonstrate substantial variation in the invasiveness of four M. incognita populations relative to tomato. Infective (J2) stage transcriptomes reveal significant variation in the expression of protein-coding and non-coding RNAs between populations. We identify 33 gene expression markers that correlate with invasiveness, and which map to genes with predicted roles in host finding and invasion, including neuropeptides, ion channels, G Protein-Coupled Receptors, cell wall-degrading enzymes and microRNAs. These data demonstrate a surprising diversity in microRNA complements between populations, and identify gene expression markers for invasiveness of M. incognita, to our knowledge for the first time.
Collapse
Affiliation(s)
- Deborah Cox
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Brian Reilly
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Neil D Warnock
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Steven Dyer
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Matthew Sturrock
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Laura Cortada
- International Institute of Tropical Agriculture, Kenya
| | - Danny Coyne
- International Institute of Tropical Agriculture, Kenya
| | - Aaron G Maule
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Johnathan J Dalzell
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom.
| |
Collapse
|
6
|
Recent Molecular Genetic Explorations of Caenorhabditis elegans MicroRNAs. Genetics 2018; 209:651-673. [PMID: 29967059 PMCID: PMC6028246 DOI: 10.1534/genetics.118.300291] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are small, noncoding RNAs that regulate gene expression at the post-transcriptional level in essentially all aspects of Caenorhabditis elegans biology. More than 140 genes that encode microRNAs in C. elegans regulate development, behavior, metabolism, and responses to physiological and environmental changes. Genetic analysis of C. elegans microRNA genes continues to enhance our fundamental understanding of how microRNAs are integrated into broader gene regulatory networks to control diverse biological processes, including growth, cell division, cell fate determination, behavior, longevity, and stress responses. As many of these microRNA sequences and the related processing machinery are conserved over nearly a billion years of animal phylogeny, the assignment of their functions via worm genetics may inform the functions of their orthologs in other animals, including humans. In vivo investigations are especially important for microRNAs because in silico extrapolation of their functions using mRNA target prediction programs can easily assign microRNAs to incorrect genetic pathways. At this mezzanine level of microRNA bioinformatic sophistication, genetic analysis continues to be the gold standard for pathway assignments.
Collapse
|
7
|
Qi B, Kniazeva M, Han M. A vitamin-B2-sensing mechanism that regulates gut protease activity to impact animal's food behavior and growth. eLife 2017; 6:e26243. [PMID: 28569665 PMCID: PMC5478268 DOI: 10.7554/elife.26243] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/30/2017] [Indexed: 01/22/2023] Open
Abstract
To survive challenging environments, animals acquired the ability to evaluate food quality in the intestine and respond to nutrient deficiencies with changes in food-response behavior, metabolism and development. However, the regulatory mechanisms underlying intestinal sensing of specific nutrients, especially micronutrients such as vitamins, and the connections to downstream physiological responses in animals remain underexplored. We have established a system to analyze the intestinal response to vitamin B2 (VB2) deficiency in Caenorhabditis elegans, and demonstrated that VB2 level critically impacts food uptake and foraging behavior by regulating specific protease gene expression and intestinal protease activity. We show that this impact is mediated by TORC1 signaling through reading the FAD-dependent ATP level. Thus, our study in live animals uncovers a VB2-sensing/response pathway that regulates food-uptake, a mechanism by which a common signaling pathway translates a specific nutrient signal into physiological activities, and the importance of gut microbiota in supplying micronutrients to animals.
Collapse
Affiliation(s)
- Bin Qi
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Marina Kniazeva
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Min Han
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
8
|
Scarpato M, Angelini C, Cocca E, Pallotta MM, Morescalchi MA, Capriglione T. Short interspersed DNA elements and miRNAs: a novel hidden gene regulation layer in zebrafish? Chromosome Res 2016; 23:533-44. [PMID: 26363800 DOI: 10.1007/s10577-015-9484-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, we investigated by in silico analysis the possible correlation between microRNAs (miRNAs) and Anamnia V-SINEs (a superfamily of short interspersed nuclear elements), which belong to those retroposon families that have been preserved in vertebrate genomes for millions of years and are actively transcribed because they are embedded in the 3' untranslated region (UTR) of several genes. We report the results of the analysis of the genomic distribution of these mobile elements in zebrafish (Danio rerio) and discuss their involvement in generating miRNA gene loci. The computational study showed that the genes predicted to bear V-SINEs can be targeted by miRNAs with a very high hybridization E-value. Gene ontology analysis indicates that these genes are mainly involved in metabolic, membrane, and cytoplasmic signaling pathways. Nearly all the miRNAs that were predicted to target the V-SINEs of these genes, i.e., miR-338, miR-9, miR-181, miR-724, miR-735, and miR-204, have been validated in similar regulatory roles in mammals. The large number of genes bearing a V-SINE involved in metabolic and cellular processes suggests that V-SINEs may play a role in modulating cell responses to different stimuli and in preserving the metabolic balance during cell proliferation and differentiation. Although they need experimental validation, these preliminary results suggest that in the genome of D. rerio, as in other TE families in vertebrates, the preservation of V-SINE retroposons may also have been favored by their putative role in gene network modulation.
Collapse
Affiliation(s)
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo "M. Picone", CNR, via P. Castellino, 80131, Napoli, Italy
| | - Ennio Cocca
- IBBR-CNR, via P. Castellino, 80131, Napoli, Italy
| | - Maria M Pallotta
- Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy
| | - Maria A Morescalchi
- Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy
| | - Teresa Capriglione
- Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy.
| |
Collapse
|
9
|
Steinkraus BR, Toegel M, Fulga TA. Tiny giants of gene regulation: experimental strategies for microRNA functional studies. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:311-62. [PMID: 26950183 PMCID: PMC4949569 DOI: 10.1002/wdev.223] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/19/2015] [Accepted: 11/28/2015] [Indexed: 12/11/2022]
Abstract
The discovery over two decades ago of short regulatory microRNAs (miRNAs) has led to the inception of a vast biomedical research field dedicated to understanding these powerful orchestrators of gene expression. Here we aim to provide a comprehensive overview of the methods and techniques underpinning the experimental pipeline employed for exploratory miRNA studies in animals. Some of the greatest challenges in this field have been uncovering the identity of miRNA-target interactions and deciphering their significance with regard to particular physiological or pathological processes. These endeavors relied almost exclusively on the development of powerful research tools encompassing novel bioinformatics pipelines, high-throughput target identification platforms, and functional target validation methodologies. Thus, in an unparalleled manner, the biomedical technology revolution unceasingly enhanced and refined our ability to dissect miRNA regulatory networks and understand their roles in vivo in the context of cells and organisms. Recurring motifs of target recognition have led to the creation of a large number of multifactorial bioinformatics analysis platforms, which have proved instrumental in guiding experimental miRNA studies. Subsequently, the need for discovery of miRNA-target binding events in vivo drove the emergence of a slew of high-throughput multiplex strategies, which now provide a viable prospect for elucidating genome-wide miRNA-target binding maps in a variety of cell types and tissues. Finally, deciphering the functional relevance of miRNA post-transcriptional gene silencing under physiological conditions, prompted the evolution of a host of technologies enabling systemic manipulation of miRNA homeostasis as well as high-precision interference with their direct, endogenous targets. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Bruno R Steinkraus
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Markus Toegel
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tudor A Fulga
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Ma G, Luo Y, Zhu H, Luo Y, Korhonen PK, Young ND, Gasser RB, Zhou R. MicroRNAs of Toxocara canis and their predicted functional roles. Parasit Vectors 2016; 9:229. [PMID: 27108220 PMCID: PMC4842261 DOI: 10.1186/s13071-016-1508-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/12/2016] [Indexed: 12/21/2022] Open
Abstract
Background Toxocara canis is the causative agent of toxocariasis of humans and other animals. This parasitic nematode (roundworm) has a complex life cycle, in which substantial developmental changes and switches occur. As small non-coding RNAs (sRNAs) are key regulators of gene expression in a wide range of organisms, we explored these RNAs in T. canis to provide a basis for future studies of its developmental biology as well as host interactions and disease at the molecular level. Methods We conducted high-throughput RNA sequencing and bioinformatic analyses to define sRNAs in individual male and female adults of T. canis. Results Apart from snRNA and snoRNA, 560 and 619 microRNAs (miRNAs), including 5 and 2 novel miRNAs, were identified in male and female worms, respectively, without piRNAs being detected in either sex. An analysis of transcriptional profiles showed that, of 564 miRNAs predicted as being differentially transcribed between male and female individuals of T. canis, 218 miRNAs were transcribed exclusively in male and 277 in female worms. Functional enrichment analysis predicted that both male and female miRNAs were mainly involved in regulating embryonic morphogenesis, hemidesmosome assembly and genetic information processing. The miRNAs differentially transcribed between the sexes were predicted to be associated with sex determination, embryonic morphogenesis and nematode larval development. The roles of miRNAs were predicted based on gene ontology (GO) and KEGG pathway annotations. The miRNAs Tc-miR-2305 and Tc-miR-6090 are proposed to have roles in reproduction, embryo development and larval development, and Tc-let-7-5p, Tc-miR-34 and Tc-miR-100 appear to be involved in host-parasite interactions. Together with published information from previous studies, some miRNAs (such as Tc-miR-2861, Tc-miR-2881 and Tc-miR-5126) are predicted to represent drug targets and/or associated with drug resistance. Conclusions This is the first exploration of miRNAs in T. canis, which could provide a basis for fundamental investigations of the developmental biology of the parasite, parasite-host interactions and toxocariasis as well as applied areas, such as the diagnosis of infection/disease, drug target discovery and drug resistance detection. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1508-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangxu Ma
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, Chongqing, 402460, The People's Republic of China.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yongfang Luo
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, Chongqing, 402460, The People's Republic of China
| | - Honghong Zhu
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, Chongqing, 402460, The People's Republic of China
| | - Yongli Luo
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, Chongqing, 402460, The People's Republic of China
| | - Pasi K Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Rongqiong Zhou
- Department of Veterinary Medicine, Rongchang Campus of Southwest University, Chongqing, 402460, The People's Republic of China.
| |
Collapse
|
11
|
Zhang H, Artiles KL, Fire AZ. Functional relevance of "seed" and "non-seed" sequences in microRNA-mediated promotion of C. elegans developmental progression. RNA (NEW YORK, N.Y.) 2015; 21:1980-1992. [PMID: 26385508 PMCID: PMC4604436 DOI: 10.1261/rna.053793.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 08/05/2015] [Indexed: 06/05/2023]
Abstract
The founding heterochronic microRNAs, lin-4 and let-7, together with their validated targets and well-characterized phenotypes in C. elegans, offer an opportunity to test functionality of microRNAs in a developmental context. In this study, we defined sequence requirements at the microRNA level for these two microRNAs, evaluating lin-4 and let-7 mutant microRNAs for their ability to support temporal development under conditions where the wild-type lin-4 and let-7 gene products are absent. For lin-4, we found a strong requirement for seed sequences, with function drastically affected by several central mutations in the seed sequence, while rescue was retained by a set of mutations peripheral to the seed. let-7 rescuing activity was retained to a surprising degree by a variety of central seed mutations, while several non-seed mutant effects support potential noncanonical contributions to let-7 function. Taken together, this work illustrates both the functional partnership between seed and non-seed sequences in mediating C. elegans temporal development and a diversity among microRNA effectors in the contributions of seed and non-seed regions to activity.
Collapse
Affiliation(s)
- Huibin Zhang
- Stanford University School of Medicine, Stanford, California 94305, USA
| | - Karen L Artiles
- Stanford University School of Medicine, Stanford, California 94305, USA
| | - Andrew Z Fire
- Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
12
|
Twists and turns—How we stepped into and had fun in the “boring” lipid field. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1073-83. [DOI: 10.1007/s11427-015-4949-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/28/2015] [Indexed: 11/25/2022]
|
13
|
Leng X, Fang J, Pervaiz T, Li Y, Wang X, Liu D, Zhu X, Fang J. Characterization of Expression Patterns of Grapevine MicroRNA Family Members using MicroRNA Rapid Amplification of Complementary DNA Ends. THE PLANT GENOME 2015; 8:eplantgenome2014.10.0069. [PMID: 33228326 DOI: 10.3835/plantgenome2014.10.0069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/11/2015] [Indexed: 06/11/2023]
Abstract
Grapevine (Vitis vinifera L.), with important nutritional values and health benefits, is one of the most economically fruit crop worldwide. In the present study, real-time quantitative polymerase chain reaction (qRT-PCR) and microRNA rapid amplification of cDNA ends (miR-RACE) techniques were used to characterize the expression and diversification patterns of various grapevine microRNAs (Vv-miRNAs) and their family members in grapevine. Based on our results, eight different grapevine miRNAs (miR159, miR164, miR167, miR172, miR319, miR393, miR396, and miR398) and their family members were expressed in different tissues at various developmental stages. The qRT-PCR results showed that the expression levels of Vv-miRNAs during grapevine development were dynamic. Furthermore, based on miR-RACE analysis and polymerase chain reaction (PCR) product sequencing results, different members within the same miRNA family were also expressed at different levels. Comparing the spatiotemporal expression levels of different members in the same miRNA family indicated that some miRNA families might have a key miRNA member that played the prominent role in regulation of their subsequent common target genes. In conclusion, our results showed that miR-RACE is a powerful technique to analyze the expression patterns of different members in the same miRNA family in terms of reverse-transcription (RT) efficiency and specificity. The findings of the expression diversification among Vv-miRNA family members and the existence of some Vv-miRNAs playing the key role could add to our understanding about the regulatory role of miRNAs in grapevine.
Collapse
Affiliation(s)
- Xiangpeng Leng
- College of Horticulture, Nanjing Agricultural Univ., Tongwei Rd. 6, Nanjing, 210095, P.R. China
| | - Jinxiang Fang
- Chinese Medicine Hospital in Linyi City, Jiefang Rd. 211, Linyi, 276003, P.R. China
| | - Tariq Pervaiz
- College of Horticulture, Nanjing Agricultural Univ., Tongwei Rd. 6, Nanjing, 210095, P.R. China
| | - Yu Li
- College of Horticulture, Nanjing Agricultural Univ., Tongwei Rd. 6, Nanjing, 210095, P.R. China
| | - Xiaomin Wang
- Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences, P.O. Box1435, No.1 Qianhu Houcun, Zhongshanmen Wai, Nanjing, 210014, P.R. China
| | - Dan Liu
- College of Horticulture, Nanjing Agricultural Univ., Tongwei Rd. 6, Nanjing, 210095, P.R. China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural Univ., Tongwei Rd. 6, Nanjing, 210095, P.R. China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural Univ., Tongwei Rd. 6, Nanjing, 210095, P.R. China
| |
Collapse
|
14
|
Hsu PK, Xu B, Mukai J, Karayiorgou M, Gogos JA. The BDNF Val66Met variant affects gene expression through miR-146b. Neurobiol Dis 2015; 77:228-37. [PMID: 25771167 PMCID: PMC5579022 DOI: 10.1016/j.nbd.2015.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 01/07/2023] Open
Abstract
Variation in gene expression is an important mechanism underlying susceptibility to complex disease and traits. Single nucleotide polymorphisms (SNPs) account for a substantial portion of the total detected genetic variation in gene expression but how exactly variants acting in trans modulate gene expression and disease susceptibility remains largely unknown. The BDNF Val66Met SNP has been associated with a number of psychiatric disorders such as depression, anxiety disorders, schizophrenia and related traits. Using global microRNA expression profiling in hippocampus of humanized BDNF Val66Met knock-in mice we showed that this variant results in dysregulation of at least one microRNA, which in turn affects downstream target genes. Specifically, we show that reduced levels of miR-146b (mir146b), lead to increased Per1 and Npas4 mRNA levels and increased Irak1 protein levels in vitro and are associated with similar changes in the hippocampus of hBDNF(Met/Met) mice. Our findings highlight trans effects of common variants on microRNA-mediated gene expression as an integral part of the genetic architecture of complex disorders and traits.
Collapse
Affiliation(s)
- Pei-Ken Hsu
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Bin Xu
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Jun Mukai
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | | | - Joseph A Gogos
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA; Department of Neuroscience, Columbia University, New York, NY, USA.
| |
Collapse
|
15
|
Weaver BP, Zabinsky R, Weaver YM, Lee ES, Xue D, Han M. CED-3 caspase acts with miRNAs to regulate non-apoptotic gene expression dynamics for robust development in C. elegans. eLife 2014; 3:e04265. [PMID: 25432023 PMCID: PMC4279084 DOI: 10.7554/elife.04265] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/26/2014] [Indexed: 12/29/2022] Open
Abstract
Genetic redundancy and pleiotropism have limited the discovery of functions associated with miRNAs and other regulatory mechanisms. To overcome this, we performed an enhancer screen for developmental defects caused by compromising both global miRISC function and individual genes in Caenorhabditis elegans. Among 126 interactors with miRNAs, we surprisingly found the CED-3 caspase that has only been well studied for its role in promoting apoptosis, mostly through protein activation. We provide evidence for a non-apoptotic function of CED-3 caspase that regulates multiple developmental events through proteolytic inactivation. Specifically, LIN-14, LIN-28, and DISL-2 proteins are known miRNA targets, key regulators of developmental timing, and/or stem cell pluripotency factors involved in miRNA processing. We show CED-3 cleaves these proteins in vitro. We also show CED-3 down-regulates LIN-28 in vivo, possibly rendering it more susceptible to proteasomal degradation. This mechanism may critically contribute to the robustness of gene expression dynamics governing proper developmental control. DOI:http://dx.doi.org/10.7554/eLife.04265.001 For an organism to develop from a single cell into a collection of many different, specialized cells, different genes must be switched on or off at particular times. However, some of these genes involved in development are ‘redundant’ and carry out the same or similar tasks. This acts like a backup system, so if one of the genes is unable to complete a task, the others can compensate and the organism will still develop correctly. To produce a protein from a gene, the DNA sequence that makes up the gene is used as a template to create another molecule called messenger RNA. Genes can also be ‘silenced’—prevented from making proteins—by small molecules called microRNAs, which bind to messenger RNA molecules and mark them for destruction. MicroRNA molecules therefore play an important role in controlling development. However, as many microRNA molecules often work together, and as many genes are redundant, it can be difficult to discover the effects of specific microRNAs. It is also difficult to discover whether any other mechanisms work alongside the microRNAs to control development. Weaver, Zabinsky et al. used mutant forms of the nematode worm Caenorhabditis elegans, in which microRNA gene regulation did not work correctly, to investigate the mechanisms that work alongside microRNAs to control development. Genes in these worms were silenced; those silenced genes that caused additional developmental defects were considered likely to work ‘redundantly’ in the same role as a microRNA molecule. This revealed over one hundred genes that were previously unknown to work with microRNA molecules. Weaver, Zabinsky et al. focused on one of these genes, called ced-3. The CED-3 protein produced from this gene is known to execute programmed cell death, a carefully controlled process also known as apoptosis, but was not known to have other developmental functions. However, the worms with mutant forms of the ced-3 gene already have problems performing apoptosis but are otherwise relatively normal, so Weaver, Zabinsky et al. reasoned that the CED-3 protein must also have another role in development. Further investigation revealed that ced-3 mutations most severely disrupt development when they are combined with mutations in one particular family of microRNAs. These microRNAs are particularly important for controlling both when cells specialize into a particular type of cell, and the timing of when certain stages of development happen. Experiments using purified proteins showed that CED-3 breaks down three proteins that are produced from genes controlled by this family of microRNA molecules, and one of these proteins was also broken down by CED-3 in experiments with mutant worms. Weaver, Zabinsky et al. therefore propose that CED-3 is part of a semi-redundant system that ensures the proteins are produced at the right level and at the right time even if the microRNAs insufficiently regulate them. This finding demonstrated both a specific role and specific targets for the CED-3 protein during development, entirely distinct from its role in apoptosis. Although Weaver, Zabinsky et al. have identified a large number of genes that work alongside microRNAs to control development, these are only the genes that cause obvious developmental defects in healthy worms. Further experiments using similar techniques performed on worms under stress may reveal yet more such genes. DOI:http://dx.doi.org/10.7554/eLife.04265.002
Collapse
Affiliation(s)
- Benjamin P Weaver
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Rebecca Zabinsky
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Yi M Weaver
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Eui Seung Lee
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Ding Xue
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Min Han
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
16
|
Lima SA, Pasquinelli AE. Identification of miRNAs and their targets in C. elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:431-50. [PMID: 25201113 DOI: 10.1007/978-1-4939-1221-6_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that direct posttranscriptional regulation of specific target genes. Since their discovery in Caenorhabditis elegans, they have been associated with the control of virtually all biological processes and are known to play major roles in development and cellular homeostasis. Yet the biological roles of most miRNAs remain to be fully known. Furthermore, the precise rules by which miRNAs recognize their targets and mediate gene silencing are still unclear. Systematic identification of miRNAs and of the RNAs they regulate is essential to close these knowledge gaps. Studies in C. elegans have been instrumental not only in the discovery phase of miRNA biology but also in the elucidation of mechanisms regulating miRNA expression, target recognition and regulation. This chapter highlights some of the main challenges still present in the field, while introducing the major studies and methods used to find miRNAs and their targets in the worm.
Collapse
Affiliation(s)
- Sarah Azoubel Lima
- Division of Biology, University of California, San Diego, La Jolla, CA, 92093-0349, USA
| | | |
Collapse
|
17
|
Poole CB, Gu W, Kumar S, Jin J, Davis PJ, Bauche D, McReynolds LA. Diversity and expression of microRNAs in the filarial parasite, Brugia malayi. PLoS One 2014; 9:e96498. [PMID: 24824352 PMCID: PMC4019659 DOI: 10.1371/journal.pone.0096498] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/08/2014] [Indexed: 11/18/2022] Open
Abstract
Human filarial parasites infect an estimated 120 million people in 80 countries worldwide causing blindness and the gross disfigurement of limbs and genitals. An understanding of RNA-mediated regulatory pathways in these parasites may open new avenues for treatment. Toward this goal, small RNAs from Brugia malayi adult females, males and microfilariae were cloned for deep-sequencing. From ∼30 million sequencing reads, 145 miRNAs were identified in the B. malayi genome. Some microRNAs were validated using the p19 RNA binding protein and qPCR. B. malayi miRNAs segregate into 99 families each defined by a unique seed sequence. Sixty-one of the miRNA families are highly conserved with homologues in arthropods, vertebrates and helminths. Of those miRNAs not highly conserved, homologues of 20 B. malayi miRNA families were found in vertebrates. Nine B. malayi miRNA families appear to be filarial-specific as orthologues were not found in other organisms. The miR-2 family is the largest in B. malayi with 11 members. Analysis of the sequences shows that six members result from a recent expansion of the family. Library comparisons found that 1/3 of the B. malayi miRNAs are differentially expressed. For example, miR-71 is 5–7X more highly expressed in microfilariae than adults. Studies suggest that in C.elegans, miR-71 may enhance longevity by targeting the DAF-2 pathway. Characterization of B. malayi miRNAs and their targets will enhance our understanding of their regulatory pathways in filariads and aid in the search for novel therapeutics.
Collapse
Affiliation(s)
- Catherine B. Poole
- Division of RNA Biology, New England Biolabs, Ipswich, Massachusetts, United States of America
- Division of Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Weifeng Gu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sanjay Kumar
- Division of Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Jingmin Jin
- Division of RNA Biology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Paul J. Davis
- Division of Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - David Bauche
- Division of RNA Biology, New England Biolabs, Ipswich, Massachusetts, United States of America
- Cancer Research Center of Lyon, Lyon, France
| | - Larry A. McReynolds
- Division of RNA Biology, New England Biolabs, Ipswich, Massachusetts, United States of America
- Division of Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Liu C, Rennie WA, Mallick B, Kanoria S, Long D, Wolenc A, Carmack CS, Ding Y. MicroRNA binding sites in C. elegans 3' UTRs. RNA Biol 2014; 11:693-701. [PMID: 24827614 DOI: 10.4161/rna.28868] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression. Since the discovery of lin-4, the founding member of the miRNA family, over 360 miRNAs have been identified for Caenorhabditis elegans (C. elegans). Prediction and validation of targets are essential for elucidation of regulatory functions of these miRNAs. For C. elegans, crosslinking immunoprecipitation (CLIP) has been successfully performed for the identification of target mRNA sequences bound by Argonaute protein ALG-1. In addition, reliable annotation of the 3' untranslated regions (3' UTRs) as well as developmental stage-specific expression profiles for both miRNAs and 3' UTR isoforms are available. By utilizing these data, we developed statistical models and bioinformatics tools for both transcriptome-scale and developmental stage-specific predictions of miRNA binding sites in C. elegans 3' UTRs. In performance evaluation via cross validation on the ALG-1 CLIP data, the models were found to offer major improvements over established algorithms for predicting both seed sites and seedless sites. In particular, our top-ranked predictions have a substantially higher true positive rate, suggesting a much higher likelihood of positive experimental validation. A gene ontology analysis of stage-specific predictions suggests that miRNAs are involved in dynamic regulation of biological functions during C. elegans development. In particular, miRNAs preferentially target genes related to development, cell cycle, trafficking, and cell signaling processes. A database for both transcriptome-scale and stage-specific predictions and software for implementing the prediction models are available through the Sfold web server at http://sfold.wadsworth.org.
Collapse
Affiliation(s)
- Chaochun Liu
- Wadsworth Center; New York State Department of Health; Center for Medical Science; Albany, NY USA
| | - William A Rennie
- Wadsworth Center; New York State Department of Health; Center for Medical Science; Albany, NY USA
| | - Bibekanand Mallick
- Wadsworth Center; New York State Department of Health; Center for Medical Science; Albany, NY USA
| | - Shaveta Kanoria
- Wadsworth Center; New York State Department of Health; Center for Medical Science; Albany, NY USA
| | - Dang Long
- Wadsworth Center; New York State Department of Health; Center for Medical Science; Albany, NY USA
| | - Adam Wolenc
- Wadsworth Center; New York State Department of Health; Center for Medical Science; Albany, NY USA
| | - C Steven Carmack
- Wadsworth Center; New York State Department of Health; Center for Medical Science; Albany, NY USA
| | - Ye Ding
- Wadsworth Center; New York State Department of Health; Center for Medical Science; Albany, NY USA
| |
Collapse
|
19
|
microRNAs of parasitic helminths - Identification, characterization and potential as drug targets. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:85-94. [PMID: 25057458 PMCID: PMC4095049 DOI: 10.1016/j.ijpddr.2014.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 01/14/2023]
Abstract
Importance of microRNAs in helminth post-transcriptional gene regulation is reviewed. Increasing helminth miRNA data are available from deep sequencing. Some miRNAs are helminth-specific, many are novel to each species. miRNAs may regulate parasite and host gene expression. Uptake of miRNA inhibitors and mimics is feasible for functional analysis.
microRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation. They were first identified in the free-living nematode Caenorhabditis elegans, where the miRNAs lin-4 and let-7 were shown to be essential for regulating correct developmental progression. The sequence of let-7 was subsequently found to be conserved in higher organisms and changes in expression of let-7, as well as other miRNAs, are associated with certain cancers, indicating important regulatory roles. Some miRNAs have been shown to have essential functions, but the roles of many are currently unknown. With the increasing availability of genome sequence data, miRNAs have now been identified from a number of parasitic helminths, by deep sequencing of small RNA libraries and bioinformatic approaches. While some miRNAs are widely conserved in a range of organisms, others are helminth-specific and many are novel to each species. Here we review the potential roles of miRNAs in regulating helminth development, in interacting with the host environment and in development of drug resistance. Use of fluorescently-labeled small RNAs demonstrates uptake by parasites, at least in vitro. Therefore delivery of miRNA inhibitors or mimics has potential to alter miRNA activity, providing a useful tool for probing the roles of miRNAs and suggesting novel routes to therapeutics for parasite control.
Collapse
|
20
|
Kasper BT, Koppolu S, Mahal LK. Insights into miRNA regulation of the human glycome. Biochem Biophys Res Commun 2014; 445:774-9. [PMID: 24463102 PMCID: PMC4015186 DOI: 10.1016/j.bbrc.2014.01.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 01/10/2014] [Indexed: 12/22/2022]
Abstract
Glycosylation is an intricate process requiring the coordinated action of multiple proteins, including glycosyltransferases, glycosidases, sugar nucleotide transporters and trafficking proteins. Work by several groups points to a role for microRNA (miRNA) in controlling the levels of specific glycosyltransferases involved in cancer, neural migration and osteoblast formation. Recent work in our laboratory suggests that miRNA are a principal regulator of the glycome, translating genomic information into the glycocode through tuning of enzyme levels. Herein we overlay predicted miRNA regulation of glycosylation related genes (glycogenes) onto maps of the common N-linked and O-linked glycan biosynthetic pathways to identify key regulatory nodes of the glycome. Our analysis provides insights into glycan regulation and suggests that at the regulatory level, glycogenes are non-redundant.
Collapse
Affiliation(s)
- Brian T Kasper
- Biomedical Research Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New York, NY 10003, United States
| | - Sujeethraj Koppolu
- Biomedical Research Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New York, NY 10003, United States
| | - Lara K Mahal
- Biomedical Research Institute, Department of Chemistry, New York University, 100 Washington Square East, Room 1001, New York, NY 10003, United States.
| |
Collapse
|
21
|
Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode. Proc Natl Acad Sci U S A 2014; 111:4338-43. [PMID: 24591635 DOI: 10.1073/pnas.1321524111] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell surface glycans form a critical interface with the biological milieu, informing diverse processes from the inflammatory cascade to cellular migration. Assembly of discrete carbohydrate structures requires the coordinated activity of a repertoire of proteins, including glycosyltransferases and glycosidases. Little is known about the regulatory networks controlling this complex biosynthetic process. Recent work points to a role for microRNA (miRNA) in the regulation of specific glycan biosynthetic enzymes. Herein we take a unique systems-based approach to identify connections between miRNA and the glycome. By using our glycomic analysis platform, lectin microarrays, we identify glycosylation signatures in the NCI-60 cell panel that point to the glycome as a direct output of genomic information flow. Integrating our glycomic dataset with miRNA data, we map miRNA regulators onto genes in glycan biosynthetic pathways (glycogenes) that generate the observed glycan structures. We validate three of these predicted miRNA/glycogene regulatory networks: high mannose, fucose, and terminal β-GalNAc, identifying miRNA regulation that would not have been observed by traditional bioinformatic methods. Overall, our work reveals critical nodes in the global glycosylation network accessible to miRNA regulation, providing a bridge between miRNA-mediated control of cell phenotype and the glycome.
Collapse
|
22
|
Than M, Han M. Functional analysis of the miRNA-mRNA interaction network in C. elegans. WORM 2013; 2:e26894. [PMID: 24744982 DOI: 10.4161/worm.26894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/15/2013] [Accepted: 10/21/2013] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) are conserved small non-coding RNAs that typically regulate gene expression by binding to the 3' untranslated region (UTR) of mRNAs. Developmental functions of miRNAs have been extensively studied, but additional roles in various cellular processes remain to be understood. The investigation of the biological importance of individual miRNA-target interactions and the miRNA-target interaction network as a whole has been an exciting and challenging field of study. Here we briefly discuss the contributions our lab has made to our understanding of the physiological impact of this miRNA-network in C. elegans, in the context of recent studies in this advancing field. These studies have advanced our knowledge of the role of miRNAs in ensuring a robust cellular response to different physiological conditions. We briefly outline the genetic, biochemical, and computational strategies utilized to understand miRNA functions and discuss our recent study of the miRNA-interaction network in neurons and potential directions for future studies.
Collapse
Affiliation(s)
- Minh Than
- Howard Hughes Medical Institute; University of Colorado at Boulder; Boulder, CO USA ; Yale University School of Medicine; New Haven, CT USA
| | - Min Han
- Howard Hughes Medical Institute; University of Colorado at Boulder; Boulder, CO USA
| |
Collapse
|
23
|
Teruel R, Martínez-Martínez I, Guerrero JA, González-Conejero R, de la Morena-Barrio ME, Salloum-Asfar S, Arroyo AB, Águila S, García-Barberá N, Miñano A, Vicente V, Corral J, Martínez C. Control of post-translational modifications in antithrombin during murine post-natal development by miR-200a. J Biomed Sci 2013; 20:29. [PMID: 23678987 PMCID: PMC3674942 DOI: 10.1186/1423-0127-20-29] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/08/2013] [Indexed: 11/10/2022] Open
Abstract
Background Developmental haemostatic studies may help identifying new elements involved in the control of key haemostatic proteins like antithrombin, the most relevant endogenous anticoagulant. Results In this study, we showed a significant reduction of sialic acid content in neonatal antithrombin compared with adult antithrombin in mice. mRNA levels of St3gal3 and St3gal4, two sialyltransferases potentially involved in antithrombin sialylation, were 85% lower in neonates in comparison with adults. In silico analysis of miRNAs overexpressed in neonates revealed that mir-200a might target these sialyltransferases. Moreover, in vitro studies in murine primary hepatocytes sustain this potential control. Conclusions These data suggest that in addition to the direct protein regulation, microRNAs may also modulate qualitative traits of selected proteins by an indirect control of post-translational processes.
Collapse
Affiliation(s)
- Raúl Teruel
- Centro Regional de Hemodonación, University of Murcia, IMIB, Spain, C/Ronda de Garay S/N, 30003, Murcia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gan HH, Gunsalus KC. Tertiary structure-based analysis of microRNA-target interactions. RNA (NEW YORK, N.Y.) 2013; 19:539-51. [PMID: 23417009 PMCID: PMC3677264 DOI: 10.1261/rna.035691.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Current computational analysis of microRNA interactions is based largely on primary and secondary structure analysis. Computationally efficient tertiary structure-based methods are needed to enable more realistic modeling of the molecular interactions underlying miRNA-mediated translational repression. We incorporate algorithms for predicting duplex RNA structures, ionic strength effects, duplex entropy and free energy, and docking of duplex-Argonaute protein complexes into a pipeline to model and predict miRNA-target duplex binding energies. To ensure modeling accuracy and computational efficiency, we use an all-atom description of RNA and a continuum description of ionic interactions using the Poisson-Boltzmann equation. Our method predicts the conformations of two constructs of Caenorhabditis elegans let-7 miRNA-target duplexes to an accuracy of ∼3.8 Å root mean square distance of their NMR structures. We also show that the computed duplex formation enthalpies, entropies, and free energies for eight miRNA-target duplexes agree with titration calorimetry data. Analysis of duplex-Argonaute docking shows that structural distortions arising from single-base-pair mismatches in the seed region influence the activity of the complex by destabilizing both duplex hybridization and its association with Argonaute. Collectively, these results demonstrate that tertiary structure-based modeling of miRNA interactions can reveal structural mechanisms not accessible with current secondary structure-based methods.
Collapse
Affiliation(s)
- Hin Hark Gan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, USA
- Corresponding authorsE-mail E-mail
| | - Kristin C. Gunsalus
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, USA
- New York University, Abu Dhabi, United Arab Emirates
- Corresponding authorsE-mail E-mail
| |
Collapse
|
25
|
Guo Q, Tao YL, Chu D. Characterization and comparative profiling of miRNAs in invasive Bemisia tabaci (Gennadius) B and Q. PLoS One 2013; 8:e59884. [PMID: 23527280 PMCID: PMC3603954 DOI: 10.1371/journal.pone.0059884] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/19/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small, conserved, non-coding RNAs that post-transcriptionally regulate gene expression. Bemisia tabaci (Gennadius) B and Q are two invasive and dominant whiteflies, and B. tabaci Q has been displacing B in China. Differences in biological traits (fecundity, host range, resistance to insecticides, etc.) as affected by miRNAs might be involved in the displacement. In this study, we performed high-throughput sequencing to identify miRNAs in B. tabaci B and Q. RESULTS We identified 170 conserved miRNAs and 15 novel candidates, and found significant differences in the expression of miRNAs between B. tabaci B and Q. CONCLUSION Expression levels of miRNAs differ in B. tabaci B vs. Q. Additional research is needed to determine whether these differences are related to differences in the biology of B. tabaci B and Q, and whether these differences help explain why B. tabaci Q is displacing B in China.
Collapse
Affiliation(s)
- Qiang Guo
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yun-Li Tao
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Dong Chu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong Province, China
- * E-mail:
| |
Collapse
|
26
|
Ye RS, Xi QY, Qi Q, Cheng X, Chen T, Li H, Kallon S, Shu G, Wang SB, Jiang QY, Zhang YL. Differentially expressed miRNAs after GnRH treatment and their potential roles in FSH regulation in porcine anterior pituitary cell. PLoS One 2013; 8:e57156. [PMID: 23451171 PMCID: PMC3579806 DOI: 10.1371/journal.pone.0057156] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/18/2013] [Indexed: 12/11/2022] Open
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) is a major regulator of follicle-stimulating hormone (FSH) secretion in gonadotrope cell in the anterior pituitary gland. microRNAs (miRNAs) are small RNA molecules that control gene expression by imperfect binding to the 3′-untranslated region (3′-UTR) of mRNA at the post-transcriptional level. It has been proven that miRNAs play an important role in hormone response and/or regulation. However, little is known about miRNAs in the regulation of FSH secretion. In this study, primary anterior pituitary cells were treated with 100 nM GnRH. The supernatant of pituitary cell was collected for FSH determination by enzyme-linked immunosorbent assay (ELISA) at 3 hours and 6 hours post GnRH treatment respectively. Results revealed that GnRH significantly promoted FSH secretion at 3 h and 6 h post-treatment by 1.40-fold and 1.80-fold, respectively. FSHβ mRNA at 6 h post GnRH treatment significantly increased by 1.60-fold. At 6 hours, cells were collected for miRNA expression profile analysis using MiRCURY LNA Array and quantitative PCR (qPCR). Consequently, 21 up-regulated and 10 down-regulated miRNAs were identified, and qPCR verification of 10 randomly selected miRNAs showed a strong correlation with microarray results. Chromosome location analysis indicated that 8 miRNAs were mapped to chromosome 12 and 4 miRNAs to chromosome X. Target and pathway analysis showed that some miRNAs may be associated with GnRH regulation pathways. In addition, In-depth analysis indicated that 10 up-regulated and 3 down-regulated miRNAs probably target FSHβ mRNA 3′-UTR directly, including miR-361-3p, a highly conserved X-linked miRNA. Most importantly, functional experimental results showed that miR-361-3p was involved in FSH secretion regulation, and up-regulated miR-361-3p expression inhibited FSH secretion, while down-regulated miR-361-3p expression promoted FSH secretion in pig pituitary cell model. These differentially expressed miRNAs resolved in this study provide the first guide for post-transcriptional regulation of pituitary gonadotrope FSH secretion in pig, as well as in other mammals.
Collapse
Affiliation(s)
- Rui-Song Ye
- Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qian-Yun Xi
- Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qien Qi
- Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiao Cheng
- Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongyi Li
- Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- School of Life Sciences, Longyan University, Longyan, China
| | - Sanpha Kallon
- Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gang Shu
- Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Song-Bo Wang
- Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qing-Yan Jiang
- Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yong-Liang Zhang
- Guandong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- * E-mail:
| |
Collapse
|
27
|
Xu B, Hsu PK, Stark KL, Karayiorgou M, Gogos JA. Derepression of a neuronal inhibitor due to miRNA dysregulation in a schizophrenia-related microdeletion. Cell 2013; 152:262-75. [PMID: 23332760 PMCID: PMC3556818 DOI: 10.1016/j.cell.2012.11.052] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 08/23/2012] [Accepted: 11/26/2012] [Indexed: 02/04/2023]
Abstract
22q11.2 microdeletions result in specific cognitive deficits and schizophrenia. Analysis of Df(16)A(+/-) mice, which model this microdeletion, revealed abnormalities in the formation of neuronal dendrites and spines, as well as altered brain microRNAs. Here, we show a drastic reduction of miR-185, which resides within the 22q11.2 locus, to levels more than expected by a hemizygous deletion, and we demonstrate that this reduction alters dendritic and spine development. miR-185 represses, through an evolutionarily conserved target site, a previously unknown inhibitor of these processes that resides in the Golgi apparatus and shows higher prenatal brain expression. Sustained derepression of this inhibitor after birth represents the most robust transcriptional disturbance in the brains of Df(16)A(+/-) mice and results in structural alterations in the hippocampus. Reduction of miR-185 also has milder age- and region-specific effects on the expression of some Golgi-related genes. Our findings illuminate the contribution of microRNAs in psychiatric disorders and cognitive dysfunction.
Collapse
Affiliation(s)
- Bin Xu
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
28
|
Systematic analysis of tissue-restricted miRISCs reveals a broad role for microRNAs in suppressing basal activity of the C. elegans pathogen response. Mol Cell 2012; 46:530-41. [PMID: 22503424 DOI: 10.1016/j.molcel.2012.03.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/28/2011] [Accepted: 03/09/2012] [Indexed: 12/19/2022]
Abstract
Gene regulation by microRNAs (miRNAs) under specific physiological conditions often involves complex interactions between multiple miRNAs and a large number of their targets, as well as coordination with other regulatory mechanisms, limiting the effectiveness of classical genetic methods to identify miRNA functions. We took a systematic approach to analyze the miRNA-induced silencing complex (miRISC) in individual tissues of C. elegans and found that mRNAs encoded by pathogen-responsive genes were dramatically overrepresented in the intestinal miRISC, and that multiple miRNAs accumulated in the intestinal miRISCs upon infection. Inactivation of the miRISC or ablation of miRNAs from multiple families resulted in overexpression of several pathogen-responsive genes under basal conditions and, surprisingly, enhanced worm survival on pathogenic Pseudomonas aeruginosa. These results indicate that much of the miRNA activity in the gut is dedicated to attenuating the activity of the pathogen-response system, uncovering a complex physiological function of the miRNA network.
Collapse
|
29
|
Jovanovic M, Reiter L, Clark A, Weiss M, Picotti P, Rehrauer H, Frei A, Neukomm LJ, Kaufman E, Wollscheid B, Simard MJ, Miska EA, Aebersold R, Gerber AP, Hengartner MO. RIP-chip-SRM--a new combinatorial large-scale approach identifies a set of translationally regulated bantam/miR-58 targets in C. elegans. Genome Res 2012; 22:1360-71. [PMID: 22454234 PMCID: PMC3396376 DOI: 10.1101/gr.133330.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that negatively regulate gene expression. As miRNAs are involved in a wide range of biological processes and diseases, much effort has been invested in identifying their mRNA targets. Here, we present a novel combinatorial approach, RIP-chip-SRM (RNA-binding protein immunopurification + microarray + targeted protein quantification via selected reaction monitoring), to identify de novo high-confidence miRNA targets in the nematode Caenorhabditis elegans. We used differential RIP-chip analysis of miRNA-induced silencing complexes from wild-type and miRNA mutant animals, followed by quantitative targeted proteomics via selected reaction monitoring to identify and validate mRNA targets of the C. elegans bantam homolog miR-58. Comparison of total mRNA and protein abundance changes in mir-58 mutant and wild-type animals indicated that the direct bantam/miR-58 targets identified here are mainly regulated at the level of protein abundance, not mRNA stability.
Collapse
Affiliation(s)
- Marko Jovanovic
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
In the nematode Caenorhabditis elegans, microRNA (miRNA) regulation of development was first observed in the striking abnormalities of lin-4 and let-7 loss of function mutants. However, after these first two miRNA mutant phenotypes were described, progress on the identification of miRNA functions in worms slowed considerably. Recent advances reveal new functions for miRNAs in embryonic and larval development as well as in the regulation of lifespan and stress response. Results from a combination of computational, biochemical, and genetic approaches have deepened our understanding of miRNA regulation of target mRNAs and support the hypothesis that miRNAs have an important role in ensuring the robustness of developmental and physiological pathways.
Collapse
Affiliation(s)
- Allison L Abbott
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA.
| |
Collapse
|
31
|
|
32
|
microRNAs play critical roles in the survival and recovery of Caenorhabditis elegans from starvation-induced L1 diapause. Proc Natl Acad Sci U S A 2011; 108:17997-8002. [PMID: 22011579 DOI: 10.1073/pnas.1105982108] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Environmental stresses and nutrition availability critically affect animal development. Numerous animal species across multiple phyla enter developmental arrest for long-term survival in unfavorable environments and resume development upon stress removal. Here we show that compromising overall microRNA (miRNA) functions or mutating certain individual miRNAs impairs the long-term survival of nematodes during starvation-induced L1 diapause. We provide evidence that miRNA miR-71 is not required for the animals' entry into L1 diapause, but plays a critical role in long-term survival by repressing the expression of insulin receptor/PI3K pathway genes and genes acting downstream or in parallel to the pathway. Furthermore, miR-71 plays a prominent role in developmental recovery from L1 diapause partly through repressing the expression of certain heterochronic genes. The presented results indicate that interactions between multiple miRNAs and likely a large number of their mRNA targets in multiple pathways regulate the response to starvation-induced L1 diapause.
Collapse
|
33
|
Galgano A, Gerber AP. RNA-binding protein immunopurification-microarray (RIP-Chip) analysis to profile localized RNAs. Methods Mol Biol 2011; 714:369-385. [PMID: 21431753 DOI: 10.1007/978-1-61779-005-8_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Post-transcriptional gene regulation is largely mediated by RNA-binding proteins (RBPs) that modulate mRNA expression at multiple levels, from RNA processing to translation, localization, and degradation. Thereby, the genome-wide identification of mRNAs regulated by RBPs is crucial to uncover post--transcriptional gene regulatory networks. In this chapter, we provide a detailed protocol for one of the techniques that has been developed to systematically examine RNA targets for RBPs. This technique involves the purification of endogenously formed RBP-mRNA complexes with specific antibodies from cellular extracts, followed by the identification of associated RNAs using DNA microarrays. Such RNA-binding protein immunopurification-microarray profiling, also called RIP-Chip, has also been applied to identify mRNAs that are transported to distinct subcellular compartments by RNP-motor complexes. The application and further development of this method could provide global insights into the subcellular architecture of the RBP-RNA network, and how it is restructured upon changing environmental conditions, during development, and possibly in disease.
Collapse
Affiliation(s)
- Alessia Galgano
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
34
|
Small RNA discovery and characterisation in eukaryotes using high-throughput approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 722:239-54. [PMID: 21915794 DOI: 10.1007/978-1-4614-0332-6_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA silencing is a mechanism of genetic regulation that is mediated by short noncoding RNAs, or small RNAs (sRNAs). Regulatory interactions are established based on nucleotide sequence complementarity between the sRNAs and their targets. The development of new high-throughput sequencing technologies has accelerated the discovery of sRNAs in a variety of plants and animals. The use of these and other high-throughput technologies, such as microarrays, to measure RNA and protein concentrations of gene products potentially regulated by sRNAs has also been important for their functional characterisation. mRNAs targeted by sRNAs can produce new sRNAs or the protein encoded by the target mRNA can regulate other mRNAs. In either case the targeting sRNAs are parts of complex RNA networks therefore identifying and characterising sRNAs contribute to better understanding of RNA networks. In this chapter we will review RNA silencing, the different types of sRNAs that mediate it and the computational methods that have been developed to use high-throughput technologies in the study of sRNAs and their targets.
Collapse
|
35
|
Shah AA, Meese E, Blin N. Profiling of regulatory microRNA transcriptomes in various biological processes: a review. J Appl Genet 2010; 51:501-7. [DOI: 10.1007/bf03208880] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Takeda H, Charlier C, Farnir F, Georges M. Demonstrating polymorphic miRNA-mediated gene regulation in vivo: application to the g+6223G->A mutation of Texel sheep. RNA (NEW YORK, N.Y.) 2010; 16:1854-1863. [PMID: 20679369 PMCID: PMC2924544 DOI: 10.1261/rna.2131110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 06/10/2010] [Indexed: 05/29/2023]
Abstract
We herein describe the development of a biochemical method to evaluate the effect of single nucleotide polymorphisms (SNPs) in target genes on their regulation by microRNAs in vivo. The method is based on the detection of allelic imbalance in RNAs coimmunoprecipitated with AGO proteins from tissues of heterozygous individuals. We characterize the performances of our approach using a model system in a cell culture, and then apply it successfully to prove that the 3'UTR g+6223G-->A mutation operates by promoting RISC-dependent down-regulation of myostatin (MSTN) in skeletal muscle of Texel sheep.
Collapse
Affiliation(s)
- Haruko Takeda
- Unit of Animal Genomics, GIGA Research Center, Faculty of Veterinary Medicine, University of Liège, 4000-Liège, Belgium
| | | | | | | |
Collapse
|
37
|
Li J, Xia W, Huang B, Chen L, Su X, Li S, Wang F, Ding H, Shao N. A strategy to rapidly identify the functional targets of microRNAs by combining bioinformatics and mRNA cytoplasmic/nucleic ratios in culture cells. FEBS Lett 2010; 584:3198-202. [PMID: 20547158 DOI: 10.1016/j.febslet.2010.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/07/2010] [Accepted: 06/07/2010] [Indexed: 01/01/2023]
Abstract
MicroRNAs are approximately 22nt non-coding RNAs that are present in a broad range of multicellular organisms. MicroRNAs play important roles in many biological or pathological processes by regulating the expression of their target genes. The fast and accurate identification of miRNA targets is a bottleneck in the clarification of the function of miRNAs. Here, we established a rapid and accurate strategy to identify miRNA functional target genes by combination of bioinformatic prediction with Cytoplasmic/Nuclear (C/N) ratios of mRNAs. The strategy comprises three steps: bioinformatic prediction, determination of mRNA C/N ratios, and confirmation by Western blotting, and might be suitable to most miRNAs. Our method will make a significant contribution to the study of the biological functions of miRNAs.
Collapse
Affiliation(s)
- Jie Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Devaney E, Winter AD, Britton C. microRNAs: a role in drug resistance in parasitic nematodes? Trends Parasitol 2010; 26:428-33. [PMID: 20541972 PMCID: PMC2930248 DOI: 10.1016/j.pt.2010.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 12/19/2022]
Abstract
Drug resistance in parasitic nematodes is an increasing problem worldwide, with resistance reported to all three commonly used classes of anthelmintics. Most studies to date have sought to correlate the resistant phenotype with genotypic changes in putative target molecules. Although this approach has identified mutations in several relevant genes, resistance might result from a complex interaction of different factors. Here we propose an alternative mechanism underlying the development of drug resistance based on functional differences in microRNA activity in resistant parasites. microRNAs play an important role in resistance to chemotherapeutic agents in many tumour cells and here we discuss whether they might also be involved in anthelmintic resistance in parasitic nematodes.
Collapse
Affiliation(s)
- Eileen Devaney
- Parasitology Group, Division of Veterinary Infection and Immunity, Institute for Comparative Medicine, School of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK.
| | | | | |
Collapse
|
39
|
Hammell M. Computational methods to identify miRNA targets. Semin Cell Dev Biol 2010; 21:738-44. [PMID: 20079866 DOI: 10.1016/j.semcdb.2010.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are short RNA molecules that regulate the post-transcriptional expression of their target genes. This regulation may take the form of stable translational or degradation of the target transcript, although the mechanisms governing the outcome of miRNA-mediated regulation remain largely unknown. While it is becoming clear that miRNAs are core components of gene regulatory networks, elucidating precise roles for each miRNA within these networks will require an accurate means of identifying target genes and assessing the impact of miRNAs on individual targets. Numerous computational methods for predicting targets are currently available. These methods vary widely in their emphasis, accuracy, and ease of use for researchers. This review will focus on a comparison of the available computational methods in animals, with an emphasis on approaches that are informed by experimental analysis of microRNA:target complexes.
Collapse
Affiliation(s)
- Molly Hammell
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Biotech II, Suite 306, Worcester, MA 01605, USA.
| |
Collapse
|
40
|
Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY, Pasquinelli AE, Yeo GW. Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol 2010; 17:173-9. [PMID: 20062054 DOI: 10.1038/nsmb.1745] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 11/23/2009] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression by guiding Argonaute proteins to specific target mRNA sequences. Identification of bona fide miRNA target sites in animals is challenging because of uncertainties regarding the base-pairing requirements between miRNA and target as well as the location of functional binding sites within mRNAs. Here we present the results of a comprehensive strategy aimed at isolating endogenous mRNA target sequences bound by the Argonaute protein ALG-1 in C. elegans. Using cross-linking and ALG-1 immunoprecipitation coupled with high-throughput sequencing (CLIP-seq), we identified extensive ALG-1 interactions with specific 3' untranslated region (UTR) and coding exon sequences and discovered features that distinguish miRNA complex binding sites in 3' UTRs from those in other genic regions. Furthermore, our analyses revealed a striking enrichment of Argonaute binding sites in genes important for miRNA function, suggesting an autoregulatory role that may confer robustness to the miRNA pathway.
Collapse
Affiliation(s)
- Dimitrios G Zisoulis
- Department of Biology, Stem Cell Program, University of California, San Diego, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|