1
|
Zeng B, Knapp EM, Skaritanov E, Oramas R, Sun J. ETS transcription factors regulate precise matrix metalloproteinase expression and follicle rupture in Drosophila. Development 2024; 151:dev202276. [PMID: 38345299 PMCID: PMC10946439 DOI: 10.1242/dev.202276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Drosophila matrix metalloproteinase 2 (MMP2) is specifically expressed in posterior follicle cells of stage-14 egg chambers (mature follicles) and is crucial for the breakdown of the follicular wall during ovulation, a process that is highly conserved from flies to mammals. The factors that regulate spatiotemporal expression of MMP2 in follicle cells remain unknown. Here, we demonstrate crucial roles for the ETS-family transcriptional activator Pointed (Pnt) and its endogenous repressor Yan in the regulation of MMP2 expression. We found that Pnt is expressed in posterior follicle cells and overlaps with MMP2 expression in mature follicles. Genetic analysis demonstrated that pnt is both required and sufficient for MMP2 expression in follicle cells. In addition, Yan was temporally upregulated in stage-13 follicle cells to fine-tune Pnt activity and MMP2 expression. Furthermore, we identified a 1.1 kb core enhancer that is responsible for the spatiotemporal expression of MMP2 and contains multiple pnt/yan binding motifs. Mutation of pnt/yan binding sites significantly impaired the Mmp2 enhancer activity. Our data reveal a mechanism of transcriptional regulation of Mmp2 expression in Drosophila ovulation, which could be conserved in other biological systems.
Collapse
Affiliation(s)
- Baosheng Zeng
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Elizabeth M. Knapp
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Ekaterina Skaritanov
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Rebecca Oramas
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Jianjun Sun
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
2
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
3
|
Marmion RA, Simpkins AG, Barrett LA, Denberg DW, Zusman S, Schottenfeld-Roames J, Schüpbach T, Shvartsman SY. Stochastic phenotypes in RAS-dependent developmental diseases. Curr Biol 2023; 33:807-816.e4. [PMID: 36706752 PMCID: PMC10026697 DOI: 10.1016/j.cub.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
Germline mutations upregulating RAS signaling are associated with multiple developmental disorders. A hallmark of these conditions is that the same mutation may present vastly different phenotypes in different individuals, even in monozygotic twins. Here, we demonstrate how the origins of such largely unexplained phenotypic variations may be dissected using highly controlled studies in Drosophila that have been gene edited to carry activating variants of MEK, a core enzyme in the RAS pathway. This allowed us to measure the small but consistent increase in signaling output of such alleles in vivo. The fraction of mutation carriers reaching adulthood was strongly reduced, but most surviving animals had normal RAS-dependent structures. We rationalize these results using a stochastic signaling model and support it by quantifying cell fate specification errors in bilaterally symmetric larval trachea, a RAS-dependent structure that allows us to isolate the effects of mutations from potential contributions of genetic modifiers and environmental differences. We propose that the small increase in signaling output shifts the distribution of phenotypes into a regime, where stochastic variation causes defects in some individuals, but not in others. Our findings shed light on phenotypic heterogeneity of developmental disorders caused by deregulated RAS signaling and offer a framework for investigating causal effects of other pathogenic alleles and mild mutations in general.
Collapse
Affiliation(s)
- Robert A Marmion
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Alison G Simpkins
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Lena A Barrett
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - David W Denberg
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Susan Zusman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | | | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Flatiron Institute, Simons Foundation, New York, NY 10010, USA.
| |
Collapse
|
4
|
Herman MA, Aiello BR, DeLong JD, Garcia-Ruiz H, González AL, Hwang W, McBeth C, Stojković EA, Trakselis MA, Yakoby N. A Unifying Framework for Understanding Biological Structures and Functions Across Levels of Biological Organization. Integr Comp Biol 2022; 61:2038-2047. [PMID: 34302339 PMCID: PMC8990247 DOI: 10.1093/icb/icab167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
The relationship between structure and function is a major constituent of the rules of life. Structures and functions occur across all levels of biological organization. Current efforts to integrate conceptual frameworks and approaches to address new and old questions promise to allow a more holistic and robust understanding of how different biological functions are achieved across levels of biological organization. Here, we provide unifying and generalizable definitions of both structure and function that can be applied across all levels of biological organization. However, we find differences in the nature of structures at the organismal level and below as compared to above the level of the organism. We term these intrinsic and emergent structures, respectively. Intrinsic structures are directly under selection, contributing to the overall performance (fitness) of the individual organism. Emergent structures involve interactions among aggregations of organisms and are not directly under selection. Given this distinction, we argue that while the functions of many intrinsic structures remain unknown, functions of emergent structures are the result of the aggregate of processes of individual organisms. We then provide a detailed and unified framework of the structure-function relationship for intrinsic structures to explore how their unknown functions can be defined. We provide examples of how these scalable definitions applied to intrinsic structures provide a framework to address questions on structure-function relationships that can be approached simultaneously from all subdisciplines of biology. We propose that this will produce a more holistic and robust understanding of how different biological functions are achieved across levels of biological organization.
Collapse
Affiliation(s)
- M A Herman
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA
| | - B R Aiello
- Schools of Physics and Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - J D DeLong
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0118, USA
| | - H Garcia-Ruiz
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - A L González
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08103, USA
| | - W Hwang
- Departments of Biomedical Engineering, Materials Science and Engineering, and Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
| | - C McBeth
- Fraunhofer USA CMI and Boston University, Boston, MA 02215, USA
| | - E A Stojković
- Department of Biology, Northeastern Illinois University, Chicago, IL 60641, USA
| | - M A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, USA
| | - N Yakoby
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08103, USA
| |
Collapse
|
5
|
Stevens CA, Revaitis NT, Caur R, Yakoby N. The ETS-transcription factor Pointed is sufficient to regulate the posterior fate of the follicular epithelium. Development 2020; 147:dev.189787. [PMID: 33028611 DOI: 10.1242/dev.189787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/29/2020] [Indexed: 11/20/2022]
Abstract
The Janus-kinase/signal transducer and activator of transcription (JAK/STAT) pathway regulates the anterior posterior axis of the Drosophila follicle cells. In the anterior, it activates the bone morphogenetic protein (BMP) signaling pathway through expression of the BMP ligand decapentaplegic (dpp). In the posterior, JAK/STAT works with the epidermal growth factor receptor (EGFR) pathway to express the T-box transcription factor midline (mid). Although MID is necessary for establishing the posterior fate of the egg chamber, we show that it is not sufficient to determine a posterior fate. The ETS-transcription factor pointed (pnt) is expressed in an overlapping domain to mid in the follicle cells. This study shows that pnt is upstream of mid and that it is sufficient to induce a posterior fate in the anterior end, which is characterized by the induction of mid, the prevention of the stretched cells formation and the abrogation of border cell migration. We demonstrate that the anterior BMP signaling is abolished by PNT through dpp repression. However, ectopic DPP cannot rescue the anterior fate formation, suggesting additional targets of PNT participate in the posterior fate determination.
Collapse
Affiliation(s)
- Cody A Stevens
- Center for Computational and Integrative Biology, Rutgers, The State University of NJ, Camden, NJ 08102, USA
| | - Nicole T Revaitis
- Center for Computational and Integrative Biology, Rutgers, The State University of NJ, Camden, NJ 08102, USA
| | - Rumkan Caur
- Department of Biology, Rutgers, The State University of NJ, Camden, NJ 08102, USA
| | - Nir Yakoby
- Center for Computational and Integrative Biology, Rutgers, The State University of NJ, Camden, NJ 08102, USA .,Department of Biology, Rutgers, The State University of NJ, Camden, NJ 08102, USA
| |
Collapse
|
6
|
Revaitis NT, Niepielko MG, Marmion RA, Klein EA, Piccoli B, Yakoby N. Quantitative analyses of EGFR localization and trafficking dynamics in the follicular epithelium. Development 2020; 147:dev183210. [PMID: 32680934 PMCID: PMC7438018 DOI: 10.1242/dev.183210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
Abstract
To bridge the gap between qualitative and quantitative analyses of the epidermal growth factor receptor (EGFR) in tissues, we generated an sfGFP-tagged EGF receptor (EGFR-sfGFP) in Drosophila The homozygous fly appears similar to wild type with EGFR expression and activation patterns that are consistent with previous reports in the ovary, early embryo, and imaginal discs. Using ELISA, we quantified an average of 1100, 6200 and 2500 receptors per follicle cell (FC) at stages 8/9, 10 and ≥11 of oogenesis, respectively. Interestingly, the spatial localization of the EGFR to the apical side of the FCs at early stages depended on the TGFα-like ligand Gurken. At later stages, EGFR localized to basolateral positions of the FCs. Finally, we followed the endosomal localization of EGFR in the FCs. The EGFR colocalized with the late endosome, but no significant colocalization of the receptor was found with the early endosome. The EGFR-sfGFP fly is an exciting new resource for studying cellular localization and regulation of EGFR in tissues.
Collapse
Affiliation(s)
- Nicole T Revaitis
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Matthew G Niepielko
- New Jersey Center for Science, Technology & Mathematics, Kean University, Union, NJ 07083, USA
| | - Robert A Marmion
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Eric A Klein
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Benedetto Piccoli
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
- Department of Mathematical Sciences, Rutgers, The State University of New Jersey, Camden, NJ 08102, USA
| | - Nir Yakoby
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| |
Collapse
|
7
|
Merkle JA, Wittes J, Schüpbach T. Signaling between somatic follicle cells and the germline patterns the egg and embryo of Drosophila. Curr Top Dev Biol 2019; 140:55-86. [PMID: 32591083 DOI: 10.1016/bs.ctdb.2019.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In Drosophila, specification of the embryonic body axes requires signaling between the germline and the somatic follicle cells. These signaling events are necessary to properly localize embryonic patterning determinants in the egg or eggshell during oogenesis. There are three maternal patterning systems that specify the anterior-posterior axis, and one that establishes the dorsal-ventral axis. We will first review oogenesis, focusing on the establishment of the oocyte and nurse cells and patterning of the follicle cells into different subpopulations. We then describe how two coordinated signaling events between the oocyte and follicle cells establish polarity of the oocyte and localize the anterior determinant bicoid, the posterior determinant oskar, and Gurken/epidermal growth factor (EGF), which breaks symmetry to initiate dorsal-ventral axis establishment. Next, we review how dorsal-ventral asymmetry of the follicle cells is transmitted to the embryo. This process also involves Gurken-EGF receptor (EGFR) signaling between the oocyte and follicle cells, leading to ventrally-restricted expression of the sulfotransferase Pipe. These events promote the ventral processing of Spaetzle, a ligand for Toll, which ultimately sets up the embryonic dorsal-ventral axis. We then describe the activation of the terminal patterning system by specialized polar follicle cells. Finally, we present open questions regarding soma-germline signaling during Drosophila oogenesis required for cell identity and embryonic axis formation.
Collapse
Affiliation(s)
- Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Julia Wittes
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
8
|
Jörg DJ, Caygill EE, Hakes AE, Contreras EG, Brand AH, Simons BD. The proneural wave in the Drosophila optic lobe is driven by an excitable reaction-diffusion mechanism. eLife 2019; 8:e40919. [PMID: 30794154 PMCID: PMC6386523 DOI: 10.7554/elife.40919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
In living organisms, self-organised waves of signalling activity propagate spatiotemporal information within tissues. During the development of the largest component of the visual processing centre of the Drosophila brain, a travelling wave of proneural gene expression initiates neurogenesis in the larval optic lobe primordium and drives the sequential transition of neuroepithelial cells into neuroblasts. Here, we propose that this 'proneural wave' is driven by an excitable reaction-diffusion system involving epidermal growth factor receptor (EGFR) signalling interacting with the proneural gene l'sc. Within this framework, a propagating transition zone emerges from molecular feedback and diffusion. Ectopic activation of EGFR signalling in clones within the neuroepithelium demonstrates that a transition wave can be excited anywhere in the tissue by inducing signalling activity, consistent with a key prediction of the model. Our model illuminates the physical and molecular underpinnings of proneural wave progression and suggests a generic mechanism for regulating the sequential differentiation of tissues.
Collapse
Affiliation(s)
- David J Jörg
- Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
- The Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Elizabeth E Caygill
- The Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Anna E Hakes
- The Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Esteban G Contreras
- The Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Andrea H Brand
- The Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Benjamin D Simons
- Cavendish Laboratory, Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
- The Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUnited Kingdom
- The Wellcome Trust/Medical Research Council Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
9
|
Vivekanand P. Lessons from Drosophila Pointed, an ETS family transcription factor and key nuclear effector of the RTK signaling pathway. Genesis 2018; 56:e23257. [PMID: 30318758 DOI: 10.1002/dvg.23257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 11/05/2022]
Abstract
The ETS family of transcription factors are evolutionarily conserved throughout the metazoan lineage and are critical for regulating cellular processes such as proliferation, differentiation, apoptosis, angiogenesis, and migration. All members have an ETS DNA binding domain, while a subset also has a protein-protein interaction domain called the SAM domain. Pointed (Pnt), an ETS transcriptional activator functions downstream of the receptor tyrosine kinase (RTK) signaling pathway to regulate diverse processes during the development of Drosophila. This review highlights the indispensable role that Pnt plays in regulating normal development and how continued investigation into its function and regulation will provide key mechanistic insight into understanding why the de-regulation of its vertebrate orthologs, ETS1 and ETS2 results in cancer.
Collapse
|
10
|
Abstract
A common path to the formation of complex 3D structures starts with an epithelial sheet that is patterned by inductive cues that control the spatiotemporal activities of transcription factors. These activities are then interpreted by the cis-regulatory regions of the genes involved in cell differentiation and tissue morphogenesis. Although this general strategy has been documented in multiple developmental contexts, the range of experimental models in which each of the steps can be examined in detail and evaluated in its effect on the final structure remains very limited. Studies of the Drosophila eggshell patterning provide unique insights into the multiscale mechanisms that connect gene regulation and 3D epithelial morphogenesis. Here we review the current understanding of this system, emphasizing how the recent identification of cis-regulatory regions of genes within the eggshell patterning network enables mechanistic analysis of its spatiotemporal dynamics and evolutionary diversification. It appears that cis-regulatory changes can account for only some aspects of the morphological diversity of Drosophila eggshells, such as the prominent differences in the number of the respiratory dorsal appendages. Other changes, such as the appearance of the respiratory eggshell ridges, are caused by changes in the spatial distribution of inductive signals. Both types of mechanisms are at play in this rapidly evolving system, which provides an excellent model of developmental patterning and morphogenesis.
Collapse
|
11
|
O'Hanlon KN, Dam RA, Archambeault SL, Berg CA. Two Drosophilids exhibit distinct EGF pathway patterns in oogenesis. Dev Genes Evol 2018; 228:31-48. [PMID: 29264645 PMCID: PMC5805658 DOI: 10.1007/s00427-017-0601-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
Deciphering the evolution of morphological structures is a remaining challenge in the field of developmental biology. The respiratory structures of insect eggshells, called the dorsal appendages, provide an outstanding system for exploring these processes since considerable information is known about their patterning and morphogenesis in Drosophila melanogaster and dorsal appendage number and morphology vary widely across Drosophilid species. We investigated the patterning differences that might facilitate morphogenetic differences between D. melanogaster, which produces two oar-like structures first by wrapping and then elongating the tubes via cell intercalation and cell crawling, and Scaptodrosophila lebanonensis, which produces a variable number of appendages simply by cell intercalation and crawling. Analyses of BMP pathway components thickveins and P-Mad demonstrate that anterior patterning is conserved between these species. In contrast, EGF signaling exhibits significant differences. Transcripts for the ligand encoded by gurken localize similarly in the two species, but this morphogen creates a single dorsolateral primordium in S. lebanonensis as defined by activated MAP kinase and the downstream marker broad. Expression patterns of pointed, argos, and Capicua, early steps in the EGF pathway, exhibit a heterochronic shift in S. lebanonensis relative to those seen in D. melanogaster. We demonstrate that the S. lebanonensis Gurken homolog is active in D. melanogaster but is insufficient to alter downstream patterning responses, indicating that Gurken-EGF receptor interactions do not distinguish the two species' patterning. Altogether, these results differentiate EGF signaling patterns between species and shed light on how changes to the regulation of patterning genes may contribute to different tube-forming mechanisms.
Collapse
Affiliation(s)
- Kenley N O'Hanlon
- Department of Genome Sciences, University of Washington, 3720 15th AVE NE, Seattle, WA, 98195-5065, USA
| | - Rachel A Dam
- Molecular and Cellular Biology Program, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195-7275, USA
| | - Sophie L Archambeault
- Molecular and Cellular Biology Program, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195-7275, USA
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Celeste A Berg
- Department of Genome Sciences, University of Washington, 3720 15th AVE NE, Seattle, WA, 98195-5065, USA.
- Molecular and Cellular Biology Program, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195-7275, USA.
| |
Collapse
|
12
|
Osterfield M, Berg CA, Shvartsman SY. Epithelial Patterning, Morphogenesis, and Evolution: Drosophila Eggshell as a Model. Dev Cell 2017; 41:337-348. [PMID: 28535370 DOI: 10.1016/j.devcel.2017.02.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 02/06/2017] [Accepted: 02/24/2017] [Indexed: 11/30/2022]
Abstract
Understanding the mechanisms driving tissue and organ formation requires knowledge across scales. How do signaling pathways specify distinct tissue types? How does the patterning system control morphogenesis? How do these processes evolve? The Drosophila egg chamber, where EGF and BMP signaling intersect to specify unique cell types that construct epithelial tubes for specialized eggshell structures, has provided a tractable system to ask these questions. Work there has elucidated connections between scales of development, including across evolutionary scales, and fostered the development of quantitative modeling tools. These tools and general principles can be applied to the understanding of other developmental processes across organisms.
Collapse
Affiliation(s)
- Miriam Osterfield
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Celeste A Berg
- Molecular and Cellular Biology Program and Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
13
|
Simple Expression Domains Are Regulated by Discrete CRMs During Drosophila Oogenesis. G3-GENES GENOMES GENETICS 2017. [PMID: 28634244 PMCID: PMC5555475 DOI: 10.1534/g3.117.043810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Eggshell patterning has been extensively studied in Drosophila melanogaster. However, the cis-regulatory modules (CRMs), which control spatiotemporal expression of these patterns, are vastly unexplored. The FlyLight collection contains >7000 intergenic and intronic DNA fragments that, if containing CRMs, can drive the transcription factor GAL4. We cross-listed the 84 genes known to be expressed during D. melanogaster oogenesis with the ∼1200 listed genes of the FlyLight collection, and found 22 common genes that are represented by 281 FlyLight fly lines. Of these lines, 54 show expression patterns during oogenesis when crossed to an UAS-GFP reporter. Of the 54 lines, 16 recapitulate the full or partial pattern of the associated gene pattern. Interestingly, while the average DNA fragment size is ∼3 kb in length, the vast majority of fragments show one type of spatiotemporal pattern in oogenesis. Mapping the distribution of all 54 lines, we found a significant enrichment of CRMs in the first intron of the associated genes’ model. In addition, we demonstrate the use of different anteriorly active FlyLight lines as tools to disrupt eggshell patterning in a targeted manner. Our screen provides further evidence that complex gene patterns are assembled combinatorially by different CRMs controlling the expression of genes in simple domains.
Collapse
|
14
|
Duhart JC, Parsons TT, Raftery LA. The repertoire of epithelial morphogenesis on display: Progressive elaboration of Drosophila egg structure. Mech Dev 2017; 148:18-39. [PMID: 28433748 DOI: 10.1016/j.mod.2017.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 12/26/2022]
Abstract
Epithelial structures are foundational for tissue organization in all metazoans. Sheets of epithelial cells form lateral adhesive junctions and acquire apico-basal polarity perpendicular to the surface of the sheet. Genetic analyses in the insect model, Drosophila melanogaster, have greatly advanced our understanding of how epithelial organization is established, and how it is modulated during tissue morphogenesis. Major insights into collective cell migrations have come from analyses of morphogenetic movements within the adult follicular epithelium that cooperates with female germ cells to build a mature egg. Epithelial follicle cells progress through tightly choreographed phases of proliferation, patterning, reorganization and migrations, before they differentiate to form the elaborate structures of the eggshell. Distinct structural domains are organized by differential adhesion, within which lateral junctions are remodeled to further shape the organized epithelia. During collective cell migrations, adhesive interactions mediate supracellular organization of planar polarized macromolecules, and facilitate crawling over the basement membrane or traction against adjacent cell surfaces. Comparative studies with other insects are revealing the diversification of morphogenetic movements for elaboration of epithelial structures. This review surveys the repertoire of follicle cell morphogenesis, to highlight the coordination of epithelial plasticity with progressive differentiation of a secretory epithelium. Technological advances will keep this tissue at the leading edge for interrogating the precise spatiotemporal regulation of normal epithelial reorganization events, and provide a framework for understanding pathological tissue dysplasia.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States
| | - Travis T Parsons
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States.
| |
Collapse
|
15
|
Forés M, Papagianni A, Rodríguez-Muñoz L, Jiménez G. Using CRISPR-Cas9 to Study ERK Signaling in Drosophila. Methods Mol Biol 2017; 1487:353-365. [PMID: 27924580 DOI: 10.1007/978-1-4939-6424-6_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Genome engineering using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated nuclease 9 (Cas9) technology is revolutionizing biomedical research. CRISPR-Cas9 enables precise editing of genes in a wide variety of cells and organisms, thereby accelerating molecular studies via targeted mutagenesis, epitope tagging, and other custom genetic modifications. Here, we illustrate the CRISPR-Cas9 methodology by focusing on Capicua (Cic), a nuclear transcriptional repressor directly phosphorylated and inactivated by ERK/MAPK. Specifically, we use CRISPR-Cas9 for targeting an ERK docking site of Drosophila Cic, thus generating ERK-insensitive mutants of this important signaling sensor.
Collapse
Affiliation(s)
- Marta Forés
- Institut de Biologia Molecular de Barcelon-CSIC, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Aikaterini Papagianni
- Institut de Biologia Molecular de Barcelon-CSIC, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Laura Rodríguez-Muñoz
- Institut de Biologia Molecular de Barcelon-CSIC, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Gerardo Jiménez
- Institut de Biologia Molecular de Barcelon-CSIC, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028, Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
16
|
Nguyen LK, Kholodenko BN. Feedback regulation in cell signalling: Lessons for cancer therapeutics. Semin Cell Dev Biol 2016; 50:85-94. [DOI: 10.1016/j.semcdb.2015.09.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023]
|
17
|
Brigaud I, Duteyrat JL, Chlasta J, Le Bail S, Couderc JL, Grammont M. Transforming Growth Factor β/activin signalling induces epithelial cell flattening during Drosophila oogenesis. Biol Open 2015; 4:345-54. [PMID: 25681395 PMCID: PMC4359740 DOI: 10.1242/bio.201410785] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although the regulation of epithelial morphogenesis is essential for the formation of tissues and organs in multicellular organisms, little is known about how signalling pathways control cell shape changes in space and time. In the Drosophila ovarian epithelium, the transition from a cuboidal to a squamous shape is accompanied by a wave of cell flattening and by the ordered remodelling of E-cadherin-based adherens junctions. We show that activation of the TGFβ pathway is crucial to determine the timing, the degree and the dynamic of cell flattening. Within these cells, TGFβ signalling controls cell-autonomously the formation of Actin filament and the localisation of activated Myosin II, indicating that internal forces are generated and used to remodel AJ and to promote cytoskeleton rearrangement. Our results also reveal that TGFβ signalling controls Notch activity and that its functions are partly executed through Notch. Thus, we demonstrate that the cells that undergo the cuboidal-to-squamous transition produce active cell-shaping mechanisms, rather than passively flattening in response to a global force generated by the growth of the underlying cells. Thus, our work on TGFβ signalling provides new insights into the mechanisms through which signal transduction cascades orchestrate cell shape changes to generate proper organ structure.
Collapse
Affiliation(s)
- Isabelle Brigaud
- Université Lyon 1, Lyon and Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Villeurbanne, France
| | - Jean-Luc Duteyrat
- Université Lyon 1, Lyon and Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Villeurbanne, France
| | - Julien Chlasta
- Université Lyon 1, Lyon and Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Villeurbanne, France Laboratoire Joliot Curie, CNRS, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Sandrine Le Bail
- CNRS 6293, Clermont University, Inserm U1103, UMR GReD, UFR Médecine, Clermont-Ferrand F-63001, France
| | - Jean-Louis Couderc
- CNRS 6293, Clermont University, Inserm U1103, UMR GReD, UFR Médecine, Clermont-Ferrand F-63001, France
| | - Muriel Grammont
- Université Lyon 1, Lyon and Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Villeurbanne, France Laboratoire Joliot Curie, CNRS, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
18
|
Niepielko MG, Yakoby N. Evolutionary changes in TGFα distribution underlie morphological diversity in eggshells from Drosophila species. Development 2015; 141:4710-5. [PMID: 25468939 DOI: 10.1242/dev.111898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila eggshells display remarkable morphological diversity among species; however, the molecular origin of this structural diversification is mostly unknown. Here, we analyzed the dorsal ridge (DR), a lumen-like structure along the dorsal side of eggshells, from numerous Drosophila species. This structure varies in length and width across species, and is absent from D. melanogaster eggshells. We associated DR formation with distinct spatiotemporal changes in epidermal growth factor receptor (EGFR) activation, which acts as a key receptor in eggshell patterning. We show that changes in the distribution of the TGFα-like ligand Gurken (GRK), a crucial ligand for axis formation, underlies EGFR activation and DR formation in D. willistoni. Furthermore, we demonstrate that GRK from D. willistoni rescues a grk-null D. melanogaster fly and, remarkably, it is also sufficient to generate a DR-like structure on its eggshell.
Collapse
Affiliation(s)
- Matthew G Niepielko
- Department of Biology and Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Nir Yakoby
- Department of Biology and Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| |
Collapse
|
19
|
Fauré A, Vreede BMI, Sucena É, Chaouiya C. A discrete model of Drosophila eggshell patterning reveals cell-autonomous and juxtacrine effects. PLoS Comput Biol 2014; 10:e1003527. [PMID: 24675973 PMCID: PMC3967936 DOI: 10.1371/journal.pcbi.1003527] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 01/22/2014] [Indexed: 11/19/2022] Open
Abstract
The Drosophila eggshell constitutes a remarkable system for the study of epithelial patterning, both experimentally and through computational modeling. Dorsal eggshell appendages arise from specific regions in the anterior follicular epithelium that covers the oocyte: two groups of cells expressing broad (roof cells) bordered by rhomboid expressing cells (floor cells). Despite the large number of genes known to participate in defining these domains and the important modeling efforts put into this developmental system, key patterning events still lack a proper mechanistic understanding and/or genetic basis, and the literature appears to conflict on some crucial points. We tackle these issues with an original, discrete framework that considers single-cell models that are integrated to construct epithelial models. We first build a phenomenological model that reproduces wild type follicular epithelial patterns, confirming EGF and BMP signaling input as sufficient to establish the major features of this patterning system within the anterior domain. Importantly, this simple model predicts an instructive juxtacrine signal linking the roof and floor domains. To explore this prediction, we define a mechanistic model that integrates the combined effects of cellular genetic networks, cell communication and network adjustment through developmental events. Moreover, we focus on the anterior competence region, and postulate that early BMP signaling participates with early EGF signaling in its specification. This model accurately simulates wild type pattern formation and is able to reproduce, with unprecedented level of precision and completeness, various published gain-of-function and loss-of-function experiments, including perturbations of the BMP pathway previously seen as conflicting results. The result is a coherent model built upon rules that may be generalized to other epithelia and developmental systems.
Collapse
Affiliation(s)
- Adrien Fauré
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Yamaguchi University, Faculty of Science, Yoshida, Yamaguchi City, Yamaguchi, Japan
| | | | - Élio Sucena
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Universidade de Lisboa, Faculdade de Ciências, Departamento de Biologia Animal, Campo Grande, Lisboa, Portugal
| | | |
Collapse
|
20
|
Boisclair Lachance JF, Peláez N, Cassidy JJ, Webber JL, Rebay I, Carthew RW. A comparative study of Pointed and Yan expression reveals new complexity to the transcriptional networks downstream of receptor tyrosine kinase signaling. Dev Biol 2013; 385:263-78. [PMID: 24240101 DOI: 10.1016/j.ydbio.2013.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/05/2013] [Indexed: 11/29/2022]
Abstract
The biochemical regulatory network downstream of receptor tyrosine kinase (RTK) signaling is controlled by two opposing ETS family members: the transcriptional activator Pointed (Pnt) and the transcriptional repressor Yan. A bistable switch model has been invoked to explain how pathway activation can drive differentiation by shifting the system from a high-Yan/low-Pnt activity state to a low-Yan/high-Pnt activity state. Although the model explains yan and pnt loss-of-function phenotypes in several different cell types, how Yan and Pointed protein expression dynamics contribute to these and other developmental transitions remains poorly understood. Toward this goal we have used a functional GFP-tagged Pnt transgene (Pnt-GFP) to perform a comparative study of Yan and Pnt protein expression throughout Drosophila development. Consistent with the prevailing model of the Pnt-Yan network, we found numerous instances where Pnt-GFP and Yan adopt a mutually exclusive pattern of expression. However we also observed many examples of co-expression. While some co-expression occurred in cells where RTK signaling is presumed low, other co-expression occurred in cells with high RTK signaling. The instances of co-expressed Yan and Pnt-GFP in tissues with high RTK signaling cannot be explained by the current model, and thus they provide important contexts for future investigation of how context-specific differences in RTK signaling, network topology, or responsiveness to other signaling inputs, affect the transcriptional response.
Collapse
Affiliation(s)
- Jean-François Boisclair Lachance
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Nicolás Peláez
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Justin J Cassidy
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jemma L Webber
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
21
|
Sieglitz F, Matzat T, Yuva-Aydemir Y, Neuert H, Altenhein B, Klambt C. Antagonistic Feedback Loops Involving Rau and Sprouty in the Drosophila Eye Control Neuronal and Glial Differentiation. Sci Signal 2013; 6:ra96. [DOI: 10.1126/scisignal.2004651] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Dynamic model for the coordination of two enhancers of broad by EGFR signaling. Proc Natl Acad Sci U S A 2013; 110:17939-44. [PMID: 24127599 DOI: 10.1073/pnas.1304753110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although it is widely appreciated that a typical developmental control gene is regulated by multiple enhancers, coordination of enhancer activities remains poorly understood. We propose a mechanism for such coordination in Drosophila oogenesis, when the expression of the transcription factor Broad (BR) evolves from a uniform to a two-domain pattern that prefigures the formation of two respiratory eggshell appendages. This change reflects sequential activities of two enhancers of the br gene, early and late, both of which are controlled by the epidermal growth factor receptor (EGFR) pathway. The late enhancer controls br in the appendage-producing cells, but the function of the early enhancer remained unclear. We found that the early enhancer is essential for the activity of the late enhancer and induction of eggshell appendages. This requirement can be explained by a mechanism whereby the BR protein produced by the early enhancer protects the late enhancer from EGFR-dependent repression. We illustrate this complex mechanism using a computational model that correctly predicts the wild-type dynamics of BR expression and its response to genetic perturbations.
Collapse
|
23
|
Response to the dorsal anterior gradient of EGFR signaling in Drosophila oogenesis is prepatterned by earlier posterior EGFR activation. Cell Rep 2013; 4:791-802. [PMID: 23972992 DOI: 10.1016/j.celrep.2013.07.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/21/2013] [Accepted: 07/26/2013] [Indexed: 11/22/2022] Open
Abstract
Spatially restricted epidermal growth factor receptor (EGFR) activity plays a central role in patterning the follicular epithelium of the Drosophila ovary. In midoogenesis, localized EGFR activation is achieved by the graded dorsal anterior localization of its ligand, Gurken. Graded EGFR activity determines multiple dorsal anterior fates along the dorsal-ventral axis but cannot explain the sharp posterior limit of this domain. Here, we show that posterior follicle cells express the T-box transcription factors Midline and H15, which render cells unable to adopt a dorsal anterior fate in response to EGFR activation. The posterior expression of Midline and H15 is itself induced in early oogenesis by posteriorly localized EGFR signaling, defining a feedback loop in which early induction of Mid and H15 confers a molecular memory that fundamentally alters the outcome of later EGFR signaling. Spatial regulation of the EGFR pathway thus occurs both through localization of the ligand and through localized regulation of the cellular response.
Collapse
|
24
|
Vreede BM, Lynch JA, Roth S, Sucena E. Co-option of a coordinate system defined by the EGFr and Dpp pathways in the evolution of a morphological novelty. EvoDevo 2013; 4:7. [PMID: 23448685 PMCID: PMC3621409 DOI: 10.1186/2041-9139-4-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/06/2012] [Indexed: 12/01/2022] Open
Abstract
Background Morphological innovation is an elusive and fascinating concept in evolutionary biology. A novel structure may open up an array of possibilities for adaptation, and thus is fundamental to the evolution of complex multicellular life. We use the respiratory appendages on the dorsal-anterior side of the Drosophila eggshell as a model system for morphological novelty. To study the co-option of genetic pathways in the evolution of this novelty we have compared oogenesis and eggshell patterning in Drosophila melanogaster with Ceratitis capitata, a dipteran whose eggs do not bear dorsal appendages. Results During the final stages of oogenesis, the appendages are formed by specific groups of cells in the follicular epithelium of the egg chamber. These cells are defined via signaling activity of the Dpp and EGFr pathways, and we find that both pathways are active in C. capitata oogenesis. The transcription factor gene mirror is expressed downstream of EGFr activation in a dorsolateral domain in the D. melanogaster egg chamber, but could not be detected during C. capitata oogenesis. In D. melanogaster, mirror regulates the expression of two important genes: broad, which defines the appendage primordia, and pipe, involved in embryonic dorsoventral polarity. In C. capitata, broad remains expressed ubiquitously throughout the follicular epithelium, and is not restricted to the appendage primordia. Interestingly pipe expression did not differ between the two species. Conclusions Our analysis identifies both broad and mirror as important nodes that have been redeployed in the Drosophila egg chamber patterning network in the evolution of a morphologically novel feature. Further, our results show how pre-existing signals can provide an epithelium with a spatial coordinate system, which can be co-opted for novel patterns.
Collapse
Affiliation(s)
- Barbara Mi Vreede
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, Portugal.
| | | | | | | |
Collapse
|
25
|
Marmion RA, Jevtic M, Springhorn A, Pyrowolakis G, Yakoby N. The Drosophila BMPRII, wishful thinking, is required for eggshell patterning. Dev Biol 2012; 375:45-53. [PMID: 23274688 DOI: 10.1016/j.ydbio.2012.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/13/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
The Drosophila eggshell is an elaborate structure that is derived from a monolayer of follicular epithelium surrounding the developing oocyte within the female ovary. The bone morphogenetic protein (BMP) signaling pathway is essential for controlling the patterning and morphogenesis of the eggshell. During oogenesis, the roles of patterning and morphogenesis by the BMP type I receptor thickveins (tkv) have been studied extensively. However, signaling through this pathway requires both type I and II receptors, and the latter has yet to be established in oogenesis. We focus on wishful thinking (wit), the Drosophila homolog to the mammalian BMP type II receptor, BMPRII. We found that wit is expressed dynamically in the FCs of D. melanogaster in an evolutionary conserved pattern. The expression patterns are highly correlated with the dynamics of the BMP signaling, which is consistent with our finding that wit is a target of BMP signaling. Furthermore, we established that WIT is necessary for BMP signaling, and loss of WIT is associated with cell autonomous loss of BMP responses. Of importance, we demonstrated that perturbations in WIT led to changes in eggshell morphologies in domains that are patterned by BMP signaling. Previous studies have shown a role for WIT in BMP signaling during neurogenesis; however, our results reveal a role for WIT in epithelial cells' development.
Collapse
Affiliation(s)
- Robert A Marmion
- Department of Biology and Center for Computational and Integrative Biology, Rutgers, The State University of NJ, Camden, NJ, USA
| | | | | | | | | |
Collapse
|
26
|
Simakov DSA, Cheung LS, Pismen LM, Shvartsman SY. EGFR-dependent network interactions that pattern Drosophila eggshell appendages. Development 2012; 139:2814-20. [PMID: 22782725 DOI: 10.1242/dev.077669] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Similar to other organisms, Drosophila uses its Epidermal Growth Factor Receptor (EGFR) multiple times throughout development. One crucial EGFR-dependent event is patterning of the follicular epithelium during oogenesis. In addition to providing inductive cues necessary for body axes specification, patterning of the follicle cells initiates the formation of two respiratory eggshell appendages. Each appendage is derived from a primordium comprising a patch of cells expressing broad (br) and an adjacent stripe of cells expressing rhomboid (rho). Several mechanisms of eggshell patterning have been proposed in the past, but none of them can explain the highly coordinated expression of br and rho. To address some of the outstanding issues in this system, we synthesized the existing information into a revised mathematical model of follicle cell patterning. Based on the computational model analysis, we propose that dorsal appendage primordia are established by sequential action of feed-forward loops and juxtacrine signals activated by the gradient of EGFR signaling. The model describes pattern formation in a large number of mutants and points to several unanswered questions related to the dynamic interaction of the EGFR and Notch pathways.
Collapse
Affiliation(s)
- David S A Simakov
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Israel
| | | | | | | |
Collapse
|
27
|
Abstract
The development of multicellular organisms relies on a small set of construction techniques-assembly, sculpting, and folding-that are spatially and temporally regulated in a combinatorial manner to produce the diversity of tissues within the body. These basic processes are well conserved across tissue types and species at the level of both genes and mechanisms. Here we review the signaling, patterning, and biomechanical transformations that occur in two well-studied model systems of epithelial folding to illustrate both the complexity and modularity of tissue development. In particular, we discuss the possibility of a spatial code specifying morphogenesis. To decipher this code, engineers and scientists need to establish quantitative experimental systems and to develop models that address mechanisms at multiple levels of organization, from gene sequence to tissue biomechanics. In turn, quantitative models of embryogenesis can inspire novel methods for creating synthetic organs and treating degenerative tissue diseases.
Collapse
Affiliation(s)
- Jeremiah J Zartman
- Department of Chemical Engineering, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA.
| | | |
Collapse
|
28
|
Omelina ES, Baricheva EM. Main components of gene network controlling development of dorsal appendages of egg chorion in Drosophila melanogaster. Russ J Dev Biol 2012. [DOI: 10.1134/s106236041203006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Transcriptional interpretation of the EGF receptor signaling gradient. Proc Natl Acad Sci U S A 2012; 109:1572-7. [PMID: 22307613 DOI: 10.1073/pnas.1115190109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) controls a wide range of developmental events, from body axes specification in insects to cardiac development in humans. During Drosophila oogenesis, a gradient of EGFR activation patterns the follicular epithelium. Multiple transcriptional targets of EGFR in this tissue have been identified, but their regulatory elements are essentially unknown. We report the regulatory elements of broad (br) and pipe (pip), two important targets of EGFR signaling in Drosophila oogenesis. br is expressed in a complex pattern that prefigures the formation of respiratory eggshell appendages. We found that this pattern is generated by dynamic activities of two regulatory elements, which display different responses to Pointed, Capicua, and Mirror, transcription factors involved in the EGFR-mediated gene expression. One of these elements is active in a pattern similar to pip, a gene repressed by EGFR and essential for establishing the dorsoventral polarity of the embryo. We demonstrate that this similarity of expression depends on a common sequence motif that binds Mirror in vitro and is essential for transcriptional repression in vivo.
Collapse
|
30
|
Technau M, Knispel M, Roth S. Molecular mechanisms of EGF signaling-dependent regulation of pipe, a gene crucial for dorsoventral axis formation in Drosophila. Dev Genes Evol 2011; 222:1-17. [PMID: 22198544 PMCID: PMC3291829 DOI: 10.1007/s00427-011-0384-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/29/2011] [Indexed: 01/28/2023]
Abstract
During Drosophila oogenesis the expression of the sulfotransferase Pipe in ventral follicle cells is crucial for dorsoventral axis formation. Pipe modifies proteins that are incorporated in the ventral eggshell and activate Toll signaling which in turn initiates embryonic dorsoventral patterning. Ventral pipe expression is the result of an oocyte-derived EGF signal which down-regulates pipe in dorsal follicle cells. The analysis of mutant follicle cell clones reveals that none of the transcription factors known to act downstream of EGF signaling in Drosophila is required or sufficient for pipe regulation. However, the pipe cis-regulatory region harbors a 31-bp element which is essential for pipe repression, and ovarian extracts contain a protein that binds this element. Thus, EGF signaling does not act by down-regulating an activator of pipe as previously suggested but rather by activating a repressor. Surprisingly, this repressor acts independent of the common co-repressors Groucho or CtBP.
Collapse
Affiliation(s)
- Martin Technau
- Institute for Developmental Biology, Biocenter, University of Cologne, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | | | | |
Collapse
|
31
|
Cheung LS, Schüpbach T, Shvartsman SY. Pattern formation by receptor tyrosine kinases: analysis of the Gurken gradient in Drosophila oogenesis. Curr Opin Genet Dev 2011; 21:719-25. [PMID: 21862318 DOI: 10.1016/j.gde.2011.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/21/2011] [Indexed: 12/11/2022]
Abstract
Spatial patterns of cell differentiation in developing tissues can be controlled by receptor tyrosine kinase (RTK) signaling gradients, which may form when locally secreted ligands activate uniformly expressed receptors. Graded activation of RTKs can span multiple cell diameters, giving rise to spatiotemporal patterns of signaling through the Extracellular Signal Regulated/Mitogen Activated Protein Kinase (ERK/MAPK), which connects receptor activation to multiple aspects of tissue morphogenesis. This general mechanism has been identified in numerous developmental contexts, from body axis specification in insects to patterning of the mammalian neocortex. We review recent quantitative studies of this mechanism in Drosophila oogenesis, an established genetic model of signaling through the Epidermal Growth Factor Receptor (EGFR), a highly conserved RTK.
Collapse
Affiliation(s)
- Lily S Cheung
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, NJ J08544, USA
| | | | | |
Collapse
|
32
|
Zartman JJ, Cheung LS, Niepielko MG, Bonini C, Haley B, Yakoby N, Shvartsman SY. Pattern formation by a moving morphogen source. Phys Biol 2011; 8:045003. [PMID: 21750363 DOI: 10.1088/1478-3975/8/4/045003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During Drosophila melanogaster oogenesis, the follicular epithelium that envelops the germline cyst gives rise to an elaborate eggshell, which houses the future embryo and mediates its interaction with the environment. A prominent feature of the eggshell is a pair of dorsal appendages, which are needed for embryo respiration. Morphogenesis of this structure depends on broad, a zinc-finger transcription factor, regulated by the EGFR pathway. While much has been learned about the mechanisms of broad regulation by EGFR, current understanding of processes that shape the spatial pattern of broad expression is incomplete. We propose that this pattern is defined by two different phases of EGFR activation: an early, posterior-to-anterior gradient of EGFR signaling sets the posterior boundary of broad expression, while the anterior boundary is set by a later phase of EGFR signaling, distributed in a dorsoventral gradient. This model can explain the wild-type pattern of broad in D. melanogaster, predicts how this pattern responds to genetic perturbations, and provides insight into the mechanisms driving diversification of eggshell patterning. The proposed model of the broad expression pattern can be used as a starting point for the quantitative analysis of a large number of gene expression patterns in Drosophila oogenesis.
Collapse
Affiliation(s)
- Jeremiah J Zartman
- Department of Chemical and Biological Engineering, Lewis Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Washington Road, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
The effects of weak genetic perturbations on the transcriptome of the wing imaginal disc and its association with wing shape in Drosophila melanogaster. Genetics 2011; 187:1171-84. [PMID: 21288875 DOI: 10.1534/genetics.110.125922] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A major objective of genomics is to elucidate the mapping between genotypic and phenotypic space as a step toward understanding how small changes in gene function can lead to elaborate phenotypic changes. One approach that has been utilized is to examine overall patterns of covariation between phenotypic variables of interest, such as morphology, physiology, and behavior, and underlying aspects of gene activity, in particular transcript abundance on a genome-wide scale. Numerous studies have demonstrated that such patterns of covariation occur, although these are often between samples with large numbers of unknown genetic differences (different strains or even species) or perturbations of large effect (sexual dimorphism or strong loss-of-function mutations) that may represent physiological changes outside of the normal experiences of the organism. We used weak mutational perturbations in genes affecting wing development in Drosophila melanogaster that influence wing shape relative to a co-isogenic wild type. We profiled transcription of 1150 genes expressed during wing development in 27 heterozygous mutants, as well as their co-isogenic wild type and one additional wild-type strain. Despite finding clear evidence of expression differences between mutants and wild type, transcriptional profiles did not covary strongly with shape, suggesting that information from transcriptional profiling may not generally be predictive of final phenotype. We discuss these results in the light of possible attractor states of gene expression and how this would affect interpretation of covariation between transcriptional profiles and other phenotypes.
Collapse
|
34
|
Boyle MJ, French RL, Cosand KA, Dorman JB, Kiehart DP, Berg CA. Division of labor: subsets of dorsal-appendage-forming cells control the shape of the entire tube. Dev Biol 2010; 346:68-79. [PMID: 20659448 DOI: 10.1016/j.ydbio.2010.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/30/2010] [Accepted: 07/16/2010] [Indexed: 11/19/2022]
Abstract
The function of an organ relies on its form, which in turn depends on the individual shapes of the cells that create it and the interactions between them. Despite remarkable progress in the field of developmental biology, how cells collaborate to make a tissue remains an unsolved mystery. To investigate the mechanisms that determine organ structure, we are studying the cells that form the dorsal appendages (DAs) of the Drosophila melanogaster eggshell. These cells consist of two differentially patterned subtypes: roof cells, which form the outward-facing roof of the lumen, and floor cells, which dive underneath the roof cells to seal off the floor of the tube. In this paper, we present three lines of evidence that reveal a further stratification of the DA-forming epithelium. Laser ablation of only a few cells in the anterior of the region causes a disproportionately severe shortening of the appendage. Genetic alteration through the twin peaks allele of tramtrack69 (ttk(twk)), a female-sterile mutation that leads to severely shortened DAs, causes no such shortening when removed from a majority of the DA-forming cells, but rather, produces short appendages only when removed from cells in the very anterior of the tube-forming tissue. Additionally we show that heterotrimeric G-protein function is required for DA morphogenesis. Like TTK69, Gbeta 13F is not required in all DA-forming follicle cells but only in the floor and leading roof cells. The different phenotypes that result from removal of Gbeta 13F from each region demonstrate a striking division of function between different DA-forming cells. Gbeta mutant floor cells are unable to control the width of the appendage while Gbeta mutant leading roof cells fail to direct the elongation of the appendage and the convergent-extension of the roof-cell population.
Collapse
Affiliation(s)
- Michael J Boyle
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA
| | | | | | | | | | | |
Collapse
|