1
|
Lai YW, Miyares RL, Liu LY, Chu SY, Lee T, Yu HH. Hormone-controlled changes in the differentiation state of post-mitotic neurons. Curr Biol 2022; 32:2341-2348.e3. [PMID: 35508173 DOI: 10.1016/j.cub.2022.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
While we think of neurons as having a fixed identity, many show spectacular plasticity.1-10 Metamorphosis drives massive changes in the fly brain;11,12 neurons that persist into adulthood often change in response to the steroid hormone ecdysone.13,14 Besides driving remodeling,11-14 ecdysone signaling can also alter the differentiation status of neurons.7,15 The three sequentially born subtypes of mushroom body (MB) Kenyon cells (γ, followed by α'/β', and finally α/β)16 serve as a model of temporal fating.17-21 γ neurons are also used as a model of remodeling during metamorphosis. As γ neurons are the only functional Kenyon cells in the larval brain, they serve the function of all three adult subtypes. Correspondingly, larval γ neurons have a similar morphology to α'/β' and α/β neurons-their axons project dorsally and medially. During metamorphosis, γ neurons remodel to form a single medial projection. Both temporal fate changes and defects in remodeling therefore alter γ-neuron morphology in similar ways. Mamo, a broad-complex, tramtrack, and bric-à-brac/poxvirus and zinc finger (BTB/POZ) transcription factor critical for temporal specification of α'/β' neurons,18,19 was recently described as essential for γ remodeling.22 In a previous study, we noticed a change in the number of adult Kenyon cells expressing γ-specific markers when mamo was manipulated.18 These data implied a role for Mamo in γ-neuron fate specification, yet mamo is not expressed in γ neurons until pupariation,18,22 well past γ specification. This indicates that mamo has a later role in ensuring that γ neurons express the correct Kenyon cell subtype-specific genes in the adult brain.
Collapse
Affiliation(s)
- Yen-Wei Lai
- Institute of Cellular and Organismic Biology, Academia Sinica, Academia Road, Taipei 11529, Taiwan; Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Roosevelt Road, Taipei 10617, Taiwan
| | - Rosa L Miyares
- Howard Hughes Medical Institute, Janelia Research Campus, Helix Drive, Ashburn, VA 20147, USA
| | - Ling-Yu Liu
- Howard Hughes Medical Institute, Janelia Research Campus, Helix Drive, Ashburn, VA 20147, USA
| | - Sao-Yu Chu
- Institute of Cellular and Organismic Biology, Academia Sinica, Academia Road, Taipei 11529, Taiwan
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, Helix Drive, Ashburn, VA 20147, USA.
| | - Hung-Hsiang Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Academia Road, Taipei 11529, Taiwan.
| |
Collapse
|
2
|
Boudreau-Pinsonneault C, Cayouette M. Cell reprogramming: Nature does it too. Curr Biol 2021; 31:R1434-R1437. [PMID: 34752770 DOI: 10.1016/j.cub.2021.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell reprogramming is generally considered an artificially induced event. Excitingly, a new study shows that post-mitotic cell reprogramming occurs naturally in the developing fish retina, uncovering a mechanism involved in the generation of cell diversity.
Collapse
Affiliation(s)
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Montreal Clinical Research Institute (IRCM), Montreal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.
| |
Collapse
|
3
|
Engerer P, Petridou E, Williams PR, Suzuki SC, Yoshimatsu T, Portugues R, Misgeld T, Godinho L. Notch-mediated re-specification of neuronal identity during central nervous system development. Curr Biol 2021; 31:4870-4878.e5. [PMID: 34534440 DOI: 10.1016/j.cub.2021.08.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 06/27/2021] [Accepted: 08/18/2021] [Indexed: 11/27/2022]
Abstract
Neuronal identity has long been thought of as immutable, so that once a cell acquires a specific fate, it is maintained for life.1 Studies using the overexpression of potent transcription factors to experimentally reprogram neuronal fate in the mouse neocortex2,3 and retina4,5 have challenged this notion by revealing that post-mitotic neurons can switch their identity. Whether fate reprogramming is part of normal development in the central nervous system (CNS) is unclear. While there are some reports of physiological cell fate reprogramming in invertebrates,6,7 and in the vertebrate peripheral nervous system,8 endogenous fate reprogramming in the vertebrate CNS has not been documented. Here, we demonstrate spontaneous fate re-specification in an interneuron lineage in the zebrafish retina. We show that the visual system homeobox 1 (vsx1)-expressing lineage, which has been associated exclusively with excitatory bipolar cell (BC) interneurons,9-12 also generates inhibitory amacrine cells (ACs). We identify a role for Notch signaling in conferring plasticity to nascent vsx1 BCs, allowing suitable transcription factor programs to re-specify them to an AC fate. Overstimulating Notch signaling enhances this physiological phenotype so that both daughters of a vsx1 progenitor differentiate into ACs and partially differentiated vsx1 BCs can be converted into ACs. Furthermore, this physiological re-specification can be mimicked to allow experimental induction of an entirely distinct fate, that of retinal projection neurons, from the vsx1 lineage. Our observations reveal unanticipated plasticity of cell fate during retinal development.
Collapse
Affiliation(s)
- Peter Engerer
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - Eleni Petridou
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilian University of Munich, Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Philip R Williams
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - Sachihiro C Suzuki
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Takeshi Yoshimatsu
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Ruben Portugues
- Institute of Neuroscience, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany.
| |
Collapse
|
4
|
James DM, Davidson EA, Yanes J, Moshiree B, Dallman JE. The Gut-Brain-Microbiome Axis and Its Link to Autism: Emerging Insights and the Potential of Zebrafish Models. Front Cell Dev Biol 2021; 9:662916. [PMID: 33937265 PMCID: PMC8081961 DOI: 10.3389/fcell.2021.662916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Research involving autism spectrum disorder (ASD) most frequently focuses on its key diagnostic criteria: restricted interests and repetitive behaviors, altered sensory perception, and communication impairments. These core criteria, however, are often accompanied by numerous comorbidities, many of which result in severe negative impacts on quality of life, including seizures, epilepsy, sleep disturbance, hypotonia, and GI distress. While ASD is a clinically heterogeneous disorder, gastrointestinal (GI) distress is among the most prevalent co-occurring symptom complex, manifesting in upward of 70% of all individuals with ASD. Consistent with this high prevalence, over a dozen family foundations that represent genetically distinct, molecularly defined forms of ASD have identified GI symptoms as an understudied area with significant negative impacts on quality of life for both individuals and their caregivers. Moreover, GI symptoms are also correlated with more pronounced irritability, social withdrawal, stereotypy, hyperactivity, and sleep disturbances, suggesting that they may exacerbate the defining behavioral symptoms of ASD. Despite these facts (and to the detriment of the community), GI distress remains largely unaddressed by ASD research and is frequently regarded as a symptomatic outcome rather than a potential contributory factor to the behavioral symptoms. Allowing for examination of both ASD's impact on the central nervous system (CNS) as well as its impact on the GI tract and the associated microbiome, the zebrafish has recently emerged as a powerful tool to study ASD. This is in no small part due to the advantages zebrafish present as a model system: their precocious development, their small transparent larval form, and their parallels with humans in genetics and physiology. While ASD research centered on the CNS has leveraged these advantages, there has been a critical lack of GI-centric ASD research in zebrafish models, making a holistic view of the gut-brain-microbiome axis incomplete. Similarly, high-throughput ASD drug screens have recently been developed but primarily focus on CNS and behavioral impacts while potential GI impacts have not been investigated. In this review, we aim to explore the great promise of the zebrafish model for elucidating the roles of the gut-brain-microbiome axis in ASD.
Collapse
Affiliation(s)
- David M. James
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | | | - Julio Yanes
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Baharak Moshiree
- Department of Gastroenterology and Hepatology, Atrium Health, Charlotte, NC, United States
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
5
|
Ennerfelt H, Voithofer G, Tibbo M, Miller D, Warfield R, Allen S, Kennett Clark J. Disruption of peripheral nerve development in a zebrafish model of hyperglycemia. J Neurophysiol 2019; 122:862-871. [DOI: 10.1152/jn.00318.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diabetes mellitus-induced hyperglycemia is associated with a number of pathologies such as retinopathy, nephropathy, delayed wound healing, and diabetic peripheral neuropathy (DPN). Approximately 50% of patients with diabetes mellitus will develop DPN, which is characterized by disrupted sensory and/or motor functioning, with treatment limited to pain management. Zebrafish ( Danio rerio) are an emerging animal model used to study a number of metabolic disorders, including diabetes. Diabetic retinopathy, nephropathy, and delayed wound healing have all been demonstrated in zebrafish. Recently, our laboratory has demonstrated that following the ablation of the insulin-producing β-cells of the pancreas (and subsequent hyperglycemia), the peripheral nerves begin to show signs of dysregulation. In this study, we take a different approach, taking advantage of the transdermal absorption abilities of zebrafish larvae to extend the period of hyperglycemia. Following 5 days of 60 mM d-glucose treatment, we observed motor axon defasciculation, disturbances in perineurial glia sheath formation, decreased myelination of motor axons, and sensory neuron mislocalization. This study extends our understanding of the structural changes of the peripheral nerve following induction of hyperglycemia and does so in an animal model capable of potential DPN drug discovery in the future. NEW & NOTEWORTHY Zebrafish are emerging as a robust model system for the study of diabetic complications such as retinopathy, nephropathy, and impaired wound healing. We present a novel model of diabetic peripheral neuropathy in zebrafish in which the integrity of the peripheral nerve is dysregulated following the induction of hyperglycemia. By using this model, future studies can focus on elucidating the underlying molecular mechanisms currently unknown.
Collapse
Affiliation(s)
- Hannah Ennerfelt
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland
- Department of Psychology, Salisbury University, Salisbury, Maryland
| | - Gabrielle Voithofer
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland
- Department of Psychology, Salisbury University, Salisbury, Maryland
| | - Morgan Tibbo
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland
- Department of Psychology, Salisbury University, Salisbury, Maryland
| | - Derrick Miller
- Department of Chemistry, Salisbury University, Salisbury, Maryland
| | - Rebecca Warfield
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland
- Department of Psychology, Salisbury University, Salisbury, Maryland
| | - Samantha Allen
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland
| | | |
Collapse
|
6
|
Rocker A, Howell J, Voithofer G, Clark JK. Acute effects of hyperglycemia on the peripheral nervous system in zebrafish (Danio rerio) following nitroreductase-mediated β-cell ablation. Am J Physiol Regul Integr Comp Physiol 2019; 316:R395-R405. [DOI: 10.1152/ajpregu.00258.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is estimated to affect 50% of diabetic patients. Although DPN is highly prevalent, molecular mechanisms remain unknown and treatment is limited to pain relief and glycemic control. We provide a novel model of acute DPN in zebrafish ( Danio rerio) larvae. Beginning 5 days postfertilization (dpf), zebrafish expressing nitroreductase in their pancreatic β-cells were treated with metronidazole (MTZ) for 48 h and checked for β-cell ablation 7 dpf. In experimental design, this was meant to serve as proof of concept that β-cell ablation and hyperglycemia are possible at this time point, but we were surprised to find changes in both sensory and motor nerve components. Compared with controls, neurod+ sensory neurons were often observed outside the dorsal root ganglia in MTZ-treated fish. Fewer motor nerves were properly ensheathed by nkx2.2a+ perineurial cells, and tight junctions were disrupted along the motor nerve in MTZ-treated fish compared with controls. Not surprisingly, the motor axons of the MTZ-treated group were defasciculated compared with the control group, myelination was attenuated, and there was a subtle difference in Schwann cell number between the MTZ-treated and control group. All structural changes occurred in the absence of behavioral changes in the larvae at this time point, suggesting that peripheral nerves are influenced by acute hyperglycemia before becoming symptomatic. Moving forward, this novel animal model of DPN will allow us to access the molecular mechanisms associated with the acute changes in the hyperglycemic peripheral nervous system, which may help direct therapeutic approaches.
Collapse
Affiliation(s)
- Amanda Rocker
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland
| | - Julia Howell
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland
| | - Gabrielle Voithofer
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland
| | | |
Collapse
|
7
|
Eijkenboom I, Sopacua M, Otten AB, Gerrits MM, Hoeijmakers JG, Waxman SG, Lombardi R, Lauria G, Merkies IS, Smeets HJ, Faber CG, Vanoevelen JM. Expression of pathogenic SCN9A mutations in the zebrafish: A model to study small-fiber neuropathy. Exp Neurol 2019; 311:257-264. [DOI: 10.1016/j.expneurol.2018.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 01/19/2023]
|
8
|
Hernandez-Muñoz I, Figuerola E, Sanchez-Molina S, Rodriguez E, Fernández-Mariño AI, Pardo-Pastor C, Bahamonde MI, Fernández-Fernández JM, García-Domínguez DJ, Hontecillas-Prieto L, Lavarino C, Carcaboso AM, de Torres C, Tirado OM, de Alava E, Mora J. RING1B contributes to Ewing sarcoma development by repressing the NaV1.6 sodium channel and the NF-κB pathway, independently of the fusion oncoprotein. Oncotarget 2018; 7:46283-46300. [PMID: 27317769 PMCID: PMC5216798 DOI: 10.18632/oncotarget.10092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/28/2016] [Indexed: 11/25/2022] Open
Abstract
Ewing sarcoma (ES) is an aggressive tumor defined by EWSR1 gene fusions that behave as an oncogene. Here we demonstrate that RING1B is highly expressed in primary ES tumors, and its expression is independent of the fusion oncogene. RING1B-depleted ES cells display an expression profile enriched in genes functionally involved in hematological development but RING1B depletion does not induce cellular differentiation. In ES cells, RING1B directly binds the SCN8A sodium channel promoter and its depletion results in enhanced Nav1.6 expression and function. The signaling pathway most significantly modulated by RING1B is NF-κB. RING1B depletion results in enhanced p105/p50 expression, which sensitizes ES cells to apoptosis by FGFR/SHP2/STAT3 blockade. Reduced NaV1.6 function protects ES cells from apoptotic cell death by maintaining low NF-κB levels. Our findings identify RING1B as a trait of the cell-of-origin and provide a potential targetable vulnerability.
Collapse
Affiliation(s)
| | - Elisabeth Figuerola
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Sara Sanchez-Molina
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Eva Rodriguez
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Ana Isabel Fernández-Mariño
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003-Barcelona, Spain.,Present Affiliation: Department of Neuroscience and Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison-53705, USA
| | - Carlos Pardo-Pastor
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003-Barcelona, Spain
| | - María Isabel Bahamonde
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003-Barcelona, Spain
| | - José M Fernández-Fernández
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003-Barcelona, Spain
| | - Daniel J García-Domínguez
- Department of Pediatric Hematology and Oncology, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013-Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Department of Pediatric Hematology and Oncology, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013-Seville, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Angel M Carcaboso
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Carmen de Torres
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Oscar M Tirado
- Sarcoma Research Group, Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908-Barcelona, Spain
| | - Enrique de Alava
- Department of Pediatric Hematology and Oncology, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013-Seville, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| |
Collapse
|
9
|
Moreno RL, Ribera AB. Spinal neurons require Islet1 for subtype-specific differentiation of electrical excitability. Neural Dev 2014; 9:19. [PMID: 25149090 PMCID: PMC4153448 DOI: 10.1186/1749-8104-9-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 07/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the spinal cord, stereotypic patterns of transcription factor expression uniquely identify neuronal subtypes. These transcription factors function combinatorially to regulate gene expression. Consequently, a single transcription factor may regulate divergent development programs by participation in different combinatorial codes. One such factor, the LIM-homeodomain transcription factor Islet1, is expressed in the vertebrate spinal cord. In mouse, chick and zebrafish, motor and sensory neurons require Islet1 for specification of biochemical and morphological signatures. Little is known, however, about the role that Islet1 might play for development of electrical membrane properties in vertebrates. Here we test for a role of Islet1 in differentiation of excitable membrane properties of zebrafish spinal neurons. RESULTS We focus our studies on the role of Islet1 in two populations of early born zebrafish spinal neurons: ventral caudal primary motor neurons (CaPs) and dorsal sensory Rohon-Beard cells (RBs). We take advantage of transgenic lines that express green fluorescent protein (GFP) to identify CaPs, RBs and several classes of interneurons for electrophysiological study. Upon knock-down of Islet1, cells occupying CaP-like and RB-like positions continue to express GFP. With respect to voltage-dependent currents, CaP-like and RB-like neurons have novel repertoires that distinguish them from control CaPs and RBs, and, in some respects, resemble those of neighboring interneurons. The action potentials fired by CaP-like and RB-like neurons also have significantly different properties compared to those elicited from control CaPs and RBs. CONCLUSIONS Overall, our findings suggest that, for both ventral motor and dorsal sensory neurons, Islet1 directs differentiation programs that ultimately specify electrical membrane as well as morphological properties that act together to sculpt neuron identity.
Collapse
Affiliation(s)
- Rosa L Moreno
- Department of Physiology, University of Colorado Anschutz Medical Campus, RC-1 North, 7403A, Mailstop 8307, 12800 E 19th Ave,, 80045 Aurora, CO, USA.
| | | |
Collapse
|
10
|
Malmquist SJ, Abramsson A, McGraw HF, Linbo TH, Raible DW. Modulation of dorsal root ganglion development by ErbB signaling and the scaffold protein Sorbs3. Development 2013; 140:3986-96. [PMID: 24004948 DOI: 10.1242/dev.084640] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The multipotent cells of the vertebrate neural crest (NC) arise at the dorsal aspect of the neural tube, then migrate throughout the developing embryo and differentiate into diverse cell types, including the sensory neurons and glia of the dorsal root ganglia (DRG). As multiple cell types are derived from this lineage, it is ideal for examining mechanisms of fate restriction during development. We have isolated a mutant, ouchless, that specifically fails to develop DRG neurons, although other NC derivatives develop normally. This mutation affects the expression of Sorbs3, a scaffold protein known to interact with proteins involved in focal adhesions and several signaling pathways. ouchless mutants share some phenotypic similarities with mutants in ErbB receptors, EGFR homologs that are implicated in diverse developmental processes and associated with several cancers; and ouchless interacts genetically with an allele of erbb3 in DRG neurogenesis. However, the defect in ouchless DRG neurogenesis is distinct from ErbB loss of function in that it is not associated with a loss of glia. Both ouchless and neurogenin1 heterozygous fish are sensitized to the effects of ErbB chemical inhibitors, which block the development of DRG in a dose-dependent manner. Inhibitors of MEK show similar effects on DRG neurogenesis. We propose a model in which Sorbs3 helps to integrate ErbB signals to promote DRG neurogenesis through the activation of MAPK and upregulation of neurogenin1.
Collapse
Affiliation(s)
- Sarah J Malmquist
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
11
|
Cattenoz PB, Giangrande A. Lineage specification in the fly nervous system and evolutionary implications. Cell Cycle 2013; 12:2753-9. [PMID: 23966161 DOI: 10.4161/cc.25918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Over the last decades, it has become clear that glia are multifunctional and plastic cells endowed with key regulatory roles. They control the response to developmental and/or pathological signals, thereby affecting neural proliferation, remodeling, survival, and regeneration. It is, therefore, important to understand the biology of these cells and the molecular mechanisms controlling their development/activity. The fly community has made major breakthroughs by characterizing the bases of gliogenesis and function. Here we describe the regulation and the role of the fly glial determinant. Then, we discuss the impact of the determinant in cell plasticity and differentiation. Finally, we address the conservation of this pathway across evolution.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; IGBMC/CNRS/INSERM/UDS; Strasbourg, France
| | | |
Collapse
|
12
|
Malafoglia V, Bryant B, Raffaeli W, Giordano A, Bellipanni G. The zebrafish as a model for nociception studies. J Cell Physiol 2013; 228:1956-66. [DOI: 10.1002/jcp.24379] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 12/18/2022]
Affiliation(s)
| | - Bruce Bryant
- Monell Chemical Senses Center; Philadelphia, Pennsylvania
| | - William Raffaeli
- Institute for Research on Pain; ISAL-Foundation; Torre Pedrera (RN); Italy
| | | | | |
Collapse
|
13
|
Veverytsa L, Allan DW. Subtype-specific neuronal remodeling during Drosophila metamorphosis. Fly (Austin) 2013; 7:78-86. [PMID: 23579264 DOI: 10.4161/fly.23969] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During metamorphosis in holometabolous insects, the nervous system undergoes dramatic remodeling as it transitions from its larval to its adult form. Many neurons are generated through post-embryonic neurogenesis to have adult-specific roles, but perhaps more striking is the dramatic remodeling that occurs to transition neurons from functioning in the larval to the adult nervous system. These neurons exhibit a remarkable degree of plasticity during this transition; many subsets undergo programmed cell death, others remodel their axonal and dendritic arbors extensively, whereas others undergo trans-differentiation to alter their terminal differentiation gene expression profiles. Yet other neurons appear to be developmentally frozen in an immature state throughout larval life, to be awakened at metamorphosis by a process we term temporally-tuned differentiation. These multiple forms of remodeling arise from subtype-specific responses to a single metamorphic trigger, ecdysone. Here, we discuss recent progress in Drosophila melanogaster that is shedding light on how subtype-specific programs of neuronal remodeling are generated during metamorphosis.
Collapse
Affiliation(s)
- Lyubov Veverytsa
- Department of Cellular and Physiological Sciences, Life Sciences Centre, Health Sciences Mall, University of British Columbia, Vancouver, BC Canada
| | | |
Collapse
|
14
|
Won YJ, Ono F, Ikeda SR. Characterization of Na+ and Ca2+ channels in zebrafish dorsal root ganglion neurons. PLoS One 2012; 7:e42602. [PMID: 22880050 PMCID: PMC3411820 DOI: 10.1371/journal.pone.0042602] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/10/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Dorsal root ganglia (DRG) somata from rodents have provided an excellent model system to study ion channel properties and modulation using electrophysiological investigation. As in other vertebrates, zebrafish (Danio rerio) DRG are organized segmentally and possess peripheral axons that bifurcate into each body segment. However, the electrical properties of zebrafish DRG sensory neurons, as compared with their mammalian counterparts, are relatively unexplored because a preparation suitable for electrophysiological studies has not been available. METHODOLOGY/PRINCIPAL FINDINGS We show enzymatically dissociated DRG neurons from juvenile zebrafish expressing Isl2b-promoter driven EGFP were easily identified with fluorescence microscopy and amenable to conventional whole-cell patch-clamp studies. Two kinetically distinct TTX-sensitive Na(+) currents (rapidly- and slowly-inactivating) were discovered. Rapidly-inactivating I(Na) were preferentially expressed in relatively large neurons, while slowly-inactivating I(Na) was more prevalent in smaller DRG neurons. RT-PCR analysis suggests zscn1aa/ab, zscn8aa/ab, zscn4ab and zscn5Laa are possible candidates for these I(Na) components. Voltage-gated Ca(2+) currents (I(Ca)) were primarily (87%) comprised of a high-voltage activated component arising from ω-conotoxin GVIA-sensitive Ca(V)2.2 (N-type) Ca(2+) channels. A few DRG neurons (8%) displayed a miniscule low-voltage-activated component. I(Ca) in zebrafish DRG neurons were modulated by neurotransmitters via either voltage-dependent or -independent G-protein signaling pathway with large cell-to-cell response variability. CONCLUSIONS/SIGNIFICANCE Our present results indicate that, as in higher vertebrates, zebrafish DRG neurons are heterogeneous being composed of functionally distinct subpopulations that may correlate with different sensory modalities. These findings provide the first comparison of zebrafish and rodent DRG neuron electrical properties and thus provide a basis for future studies.
Collapse
Affiliation(s)
- Yu-Jin Won
- Section on Transmitter Signaling, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fumihito Ono
- Section on Model Synaptic Systems, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen R. Ikeda
- Section on Transmitter Signaling, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
15
|
Flici H, Erkosar B, Komonyi O, Karatas OF, Laneve P, Giangrande A. Gcm/Glide-dependent conversion into glia depends on neural stem cell age, but not on division, triggering a chromatin signature that is conserved in vertebrate glia. Development 2011; 138:4167-78. [PMID: 21852399 DOI: 10.1242/dev.070391] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurons and glia differentiate from multipotent precursors called neural stem cells (NSCs), upon the activation of specific transcription factors. In vitro, it has been shown that NSCs display very plastic features; however, one of the major challenges is to understand the bases of lineage restriction and NSC plasticity in vivo, at the cellular level. We show here that overexpression of the Gcm transcription factor, which controls the glial versus neuronal fate choice, fully and efficiently converts Drosophila NSCs towards the glial fate via an intermediate state. Gcm acts in a dose-dependent and autonomous manner by concomitantly repressing the endogenous program and inducing the glial program in the NSC. Most NSCs divide several times to build the embryonic nervous system and eventually enter quiescence: strikingly, the gliogenic potential of Gcm decreases with time and quiescent NSCs are resistant to fate conversion. Together with the fact that Gcm is able to convert mutant NSCs that cannot divide, this indicates that plasticity depends on temporal cues rather than on the mitotic potential. Finally, NSC plasticity involves specific chromatin modifications. The endogenous glial cells, as well as those induced by Gcm overexpression display low levels of histone 3 lysine 9 acetylation (H3K9ac) and Drosophila CREB-binding protein (dCBP) Histone Acetyl-Transferase (HAT). Moreover, we show that dCBP targets the H3K9 residue and that high levels of dCBP HAT disrupt gliogenesis. Thus, glial differentiation needs low levels of histone acetylation, a feature shared by vertebrate glia, calling for an epigenetic pathway conserved in evolution.
Collapse
Affiliation(s)
- Hakima Flici
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC/CNRS/INSERM/UDS, BP 10142, 67404 ILLKIRCH, CU de Strasbourg, France
| | | | | | | | | | | |
Collapse
|
16
|
Rieger S, Wang F, Sagasti A. Time-lapse imaging of neural development: zebrafish lead the way into the fourth dimension. Genesis 2011; 49:534-45. [PMID: 21305690 DOI: 10.1002/dvg.20729] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 01/01/2023]
Abstract
Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults.
Collapse
Affiliation(s)
- Sandra Rieger
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California, USA
| | | | | |
Collapse
|
17
|
Brain-derived neurotrophic factor mediates non-cell-autonomous regulation of sensory neuron position and identity. J Neurosci 2010; 30:14513-21. [PMID: 20980609 DOI: 10.1523/jneurosci.4025-10.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During development, neurons migrate considerable distances to reside in locations that enable their individual functional roles. Whereas migration mechanisms have been extensively studied, much less is known about how neurons remain in their ideal locations. We sought to identify factors that maintain the position of postmigratory dorsal root ganglion neurons, neural crest derivatives for which migration and final position play an important developmental role. We found that an early developing population of sensory neurons maintains the position of later born dorsal root ganglia neurons in an activity-dependent manner. Further, inhibiting or increasing the function of brain-derived neurotrophic factor induces or prevents, respectively, migration of dorsal root ganglia neurons out of the ganglion to locations where they acquire a new identity. Overall, the results demonstrate that neurotrophins mediate non-cell-autonomous maintenance of position and thereby the identity of differentiated neurons.
Collapse
|