1
|
Zhao B, Gao Y, Ma Q, Wang X, Zhu JK, Li W, Wang B, Yuan F. Global dynamics and cytokinin participation of salt gland development trajectory in recretohalophyte Limonium bicolor. PLANT PHYSIOLOGY 2024; 195:2094-2110. [PMID: 38588029 DOI: 10.1093/plphys/kiae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024]
Abstract
Salt gland is an epidermal Na+ secretory structure that enhances salt resistance in the recretohalophyte sea lavender (Limonium bicolor). To elucidate the salt gland development trajectory and related molecular mechanisms, we performed single-cell RNA sequencing of L. bicolor protoplasts from young leaves at salt gland initiation and differentiation stages. Dimensionality reduction analyses defined 19 transcriptionally distinct cell clusters, which were assigned into 4 broad populations-promeristem, epidermis, mesophyll, and vascular tissue-verified by in situ hybridization. Cytokinin was further proposed to participate in salt gland development by the expression patterns of related genes and cytological evidence. By comparison analyses of Single-cell RNA sequencing with exogenous application of 6-benzylaminopurine, we delineated 5 salt gland development-associated subclusters and defined salt gland-specific differentiation trajectories from Subclusters 8, 4, and 6 to Subcluster 3 and 1. Additionally, we validated the participation of TRIPTYCHON and the interacting protein Lb7G34824 in salt gland development, which regulated the expression of cytokinin metabolism and signaling-related genes such as GLABROUS INFLORESCENCE STEMS 2 to maintain cytokinin homeostasis during salt gland development. Our results generated a gene expression map of young leaves at single-cell resolution for the comprehensive investigation of salt gland determinants and cytokinin participation that helps elucidate cell fate determination during epidermis formation and evolution in recretohalophytes.
Collapse
Affiliation(s)
- Boqing Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yaru Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Qiuyu Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China
| |
Collapse
|
2
|
Zheng H, Yu MY, Han Y, Tai B, Ni SF, Ji RF, Pu CJ, Chen K, Li FQ, Xiao H, Shen Y, Zhou XT, Huang LQ. Comparative Transcriptomics and Metabolites Analysis of Two Closely Related Euphorbia Species Reveal Environmental Adaptation Mechanism and Active Ingredients Difference. FRONTIERS IN PLANT SCIENCE 2022; 13:905275. [PMID: 35712557 PMCID: PMC9194899 DOI: 10.3389/fpls.2022.905275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Roots of Euphorbia fischeriana and Euphorbia ebracteolata are recorded as the source plant of traditional Chinese medicine "Langdu," containing active ingredients with anticancer and anti-AIDS activity. However, the two species have specific patterns in the graphic distribution. Compared with E. ehracteolata, E. fischeriana distributes in higher latitude and lower temperature areas and might have experienced cold stress adaptation. To reveal the molecular mechanism of environmental adaptation, RNA-seq was performed toward the roots, stems, and leaves of E. fischeriana and E. ehracteolata. A total of 6,830 pairs of putative orthologs between the two species were identified. Estimations of non-synonymous or synonymous substitution rate ratios for these orthologs indicated that 533 of the pairs may be under positive selection (Ka/Ks > 0.5). Functional enrichment analysis revealed that significant proportions of the orthologs were in the TCA cycle, fructose and mannose metabolism, starch and sucrose metabolism, fatty acid biosynthesis, and terpenoid biosynthesis providing insights into how the two closely related Euphorbia species adapted differentially to extreme environments. Consistent with the transcriptome, a higher content of soluble sugars and proline was obtained in E. fischeriana, reflecting the adaptation of plants to different environments. Additionally, 5 primary or secondary metabolites were screened as the biomarkers to distinguish the two species. Determination of 4 diterpenoids was established and performed, showing jolkinolide B as a representative component in E. fischeriana, whereas ingenol endemic to E. ebracteolate. To better study population genetics, EST-SSR markers were generated and tested in 9 species of Euphorbia. A total of 33 of the 68 pairs were screened out for producing clear fragments in at least four species, which will furthermore facilitate the studies on the genetic improvement and phylogenetics of this rapidly adapting taxon. In this study, transcriptome and metabolome analyses revealed the evolution of genes related to cold stress tolerance, biosynthesis of TCA cycle, soluble sugars, fatty acids, and amino acids, consistent with the molecular strategy that genotypes adapting to environment. The key active ingredients of the two species were quantitatively analyzed to reveal the difference in pharmacodynamic substance basis and molecular mechanism, providing insights into rational crude drug use.
Collapse
Affiliation(s)
- Han Zheng
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mu-Yao Yu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Han
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Badalahu Tai
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Mongolian Medicine College, Inner Mongolia Minzu University, Tongliao, China
| | - Sheng-Fa Ni
- Anhui University of Science and Technology, Huainan Xinhua Hospital, Huainan, China
| | - Rui-Feng Ji
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun-Juan Pu
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kang Chen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fu-Quan Li
- Hulunbeier Mongolian Medical Hospital, Hulunbeier, China
| | - Hua Xiao
- Hulunbeier Mongolian Medical Hospital, Hulunbeier, China
| | - Ye Shen
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiu-Teng Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu-Qi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Chun JI, Kim SM, Kim H, Cho JY, Kwon HW, Kim JI, Seo JK, Jung C, Kang JH. SlHair2 Regulates the Initiation and Elongation of Type I Trichomes on Tomato Leaves and Stems. PLANT & CELL PHYSIOLOGY 2021; 62:1446-1459. [PMID: 34155514 DOI: 10.1093/pcp/pcab090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Trichomes are hair-like structures that are essential for abiotic and biotic stress responses. Tomato Hair (H), encoding a C2H2 zinc finger protein, was found to regulate the multicellular trichomes on stems. Here, we characterized Solyc10g078990 (hereafter Hair2, H2), its closest homolog, to examine whether it was involved in trichome development. The H2 gene was highly expressed in the leaves, and its protein contained a single C2H2 domain and was localized to the nucleus. The number and length of type I trichomes on the leaves and stems of knock-out h2 plants were reduced when compared to the wild-type, while overexpression increased their number and length. An auto-activation test with various truncated forms of H2 using yeast two-hybrid (Y2H) suggested that H2 acts as a transcriptional regulator or co-activator and that its N-terminal region is important for auto-activation. Y2H and pull-down analyses showed that H2 interacts with Woolly (Wo), which regulates the development of type I trichomes in tomato. Luciferase complementation imaging assays confirmed that they had direct interactions, implying that H2 and Wo function together to regulate the development of trichomes. These results suggest that H2 has a role in the initiation and elongation of type I trichomes in tomato.
Collapse
Affiliation(s)
- Jae-In Chun
- Department of Agriculture, Forestry and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Seong-Min Kim
- Department of Agriculture, Forestry and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Heejin Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Gyeongbuk, Republic of Korea
| | - Jae-Yong Cho
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyun-Woo Kwon
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jang-Kyun Seo
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Choonkyun Jung
- Department of Agriculture, Forestry and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Jin-Ho Kang
- Department of Agriculture, Forestry and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| |
Collapse
|
4
|
Majda M, Kozlova L, Banasiak A, Derba-Maceluch M, Iashchishyn IA, Morozova-Roche LA, Smith RS, Gorshkova T, Mellerowicz EJ. Elongation of wood fibers combines features of diffuse and tip growth. THE NEW PHYTOLOGIST 2021; 232:673-691. [PMID: 33993523 DOI: 10.1111/nph.17468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Xylem fibers are highly elongated cells that are key constituents of wood, play major physiological roles in plants, comprise an important terrestrial carbon reservoir, and thus have enormous ecological and economic importance. As they develop, from fusiform initials, their bodies remain the same length while their tips elongate and intrude into intercellular spaces. To elucidate mechanisms of tip elongation, we studied the cell wall along the length of isolated, elongating aspen xylem fibers and used computer simulations to predict the forces driving the intercellular space formation required for their growth. We found pectin matrix epitopes (JIM5, LM7) concentrated at the tips where cellulose microfibrils have transverse orientation, and xyloglucan epitopes (CCRC-M89, CCRC-M58) in fiber bodies where microfibrils are disordered. These features are accompanied by changes in cell wall thickness, indicating that while the cell wall elongates strictly at the tips, it is deposited all over fibers. Computer modeling revealed that the intercellular space formation needed for intrusive growth may only require targeted release of cell adhesion, which allows turgor pressure in neighboring fiber cells to 'round' the cells creating spaces. These characteristics show that xylem fibers' elongation involves a distinct mechanism that combines features of both diffuse and tip growth.
Collapse
Affiliation(s)
- Mateusz Majda
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Liudmila Kozlova
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre, Russian Academy of Sciences, Kazan, 420111, Russia
| | - Alicja Banasiak
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
- Department of Plant Developmental Biology, Institute of Experimental Biology, University of Wrocław, Kanonia 6/8, Wrocław, 50-328, Poland
| | - Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Igor A Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-901 87, Sweden
| | | | - Richard S Smith
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre, Russian Academy of Sciences, Kazan, 420111, Russia
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| |
Collapse
|
5
|
Shao C, Cai F, Zhang J, Zhang Y, Bao Z, Bao M. A Class II TCP Transcription Factor PaTCP4 from Platanus acerifolia Regulates Trichome Formation in Arabidopsis. DNA Cell Biol 2021; 40:1235-1250. [PMID: 34558965 DOI: 10.1089/dna.2021.0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
London plane tree is widely grown as a landscaping and street tree, but the release of its trichomes creates a serious air-borne pollution problem. Identifying the key genes that regulate the development of trichomes is, therefore, an important tool for the molecular breeding of Platanus acerifolia. In this study, a sequence homologous with the Arabidopsis Class II TCP subfamily was identified from London plane, and named PaTCP4. The expression of PaTCP4 was detected in various organs of London plane trees, significantly in the trichomes. Overexpression of PaTCP4 in Arabidopsis reduced the trichome density on the first pair of true leaves, and atypical 5-branched trichomes were also detected on those leaves. The expression of endogenous AtCPC and AtTCL2 was significantly increased in PaTCP4 transgenic lines, and was associated with a decrease in the expression of endogenous AtGL2. Furthermore, the expression of endogenous AtGL3 was significantly increased. In addition, the protein product of PaTCP4 was shown to directly activate AtCPC, AtTCL2, AtGL3, AtGIS, PaGIS, and PaGL3 in yeast one-hybrid assays and in the dual-luciferase reporter system. Taken together, these results identify a role for PaTCP4 in trichome initiation and branching in Arabidopsis. Thus, PaTCP4 represents a strong candidate gene for regulating the development of trichomes in London plane trees.
Collapse
Affiliation(s)
- Changsheng Shao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fangfang Cai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China.,Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhiru Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Mahapatra K, Roy S. SOG1 transcription factor promotes the onset of endoreduplication under salinity stress in Arabidopsis. Sci Rep 2021; 11:11659. [PMID: 34079040 PMCID: PMC8172935 DOI: 10.1038/s41598-021-91293-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/20/2021] [Indexed: 01/24/2023] Open
Abstract
As like in mammalian system, the DNA damage responsive cell cycle checkpoint functions play crucial role for maintenance of genome stability in plants through repairing of damages in DNA and induction of programmed cell death or endoreduplication by extensive regulation of progression of cell cycle. ATM and ATR (ATAXIA-TELANGIECTASIA-MUTATED and -RAD3-RELATED) function as sensor kinases and play key role in the transmission of DNA damage signals to the downstream components of cell cycle regulatory network. The plant-specific NAC domain family transcription factor SOG1 (SUPPRESSOR OF GAMMA RESPONSE 1) plays crucial role in transducing signals from both ATM and ATR in presence of double strand breaks (DSBs) in the genome and found to play crucial role in the regulation of key genes involved in cell cycle progression, DNA damage repair, endoreduplication and programmed cell death. Here we report that Arabidopsis exposed to high salinity shows generation of oxidative stress induced DSBs along with the concomitant induction of endoreduplication, displaying increased cell size and DNA ploidy level without any change in chromosome number. These responses were significantly prominent in SOG1 overexpression line than wild-type Arabidopsis, while sog1 mutant lines showed much compromised induction of endoreduplication under salinity stress. We have found that both ATM-SOG1 and ATR-SOG1 pathways are involved in the salinity mediated induction of endoreduplication. SOG1was found to promote G2-M phase arrest in Arabidopsis under salinity stress by downregulating the expression of the key cell cycle regulators, including CDKB1;1, CDKB2;1, and CYCB1;1, while upregulating the expression of WEE1 kinase, CCS52A and E2Fa, which act as important regulators for induction of endoreduplication. Our results suggest that Arabidopsis undergoes endoreduplicative cycle in response to salinity induced DSBs, showcasing an adaptive response in plants under salinity stress.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713 104, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713 104, India.
| |
Collapse
|
7
|
Guo M, Zhang Z, Cheng Y, Li S, Shao P, Yu Q, Wang J, Xu G, Zhang X, Liu J, Hou L, Liu H, Zhao X. Comparative population genomics dissects the genetic basis of seven domestication traits in jujube. HORTICULTURE RESEARCH 2020; 7:89. [PMID: 32528701 PMCID: PMC7261808 DOI: 10.1038/s41438-020-0312-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 05/20/2023]
Abstract
Jujube (Ziziphus jujuba Mill.) is an important perennial fruit tree with a range of interesting horticultural traits. It was domesticated from wild jujube (Ziziphus acidojujuba), but the genomic variation dynamics and genetic changes underlying its horticultural traits during domestication are poorly understood. Here, we report a comprehensive genome variation map based on the resequencing of 350 accessions, including wild, semi-wild and cultivated jujube plants, at a >15× depth. Using the combination of a genome-wide association study (GWAS) and selective sweep analysis, we identified several candidate genes potentially involved in regulating seven domestication traits in jujube. For fruit shape and kernel shape, we integrated the GWAS approach with transcriptome profiling data, expression analysis and the transgenic validation of a candidate gene to identify a causal gene, ZjFS3, which encodes an ethylene-responsive transcription factor. Similarly, we identified a candidate gene for bearing-shoot length and the number of leaves per bearing shoot and two candidate genes for the seed-setting rate using GWAS. In the selective sweep analysis, we also discovered several putative genes for the presence of prickles on bearing shoots and the postharvest shelf life of fleshy fruits. This study outlines the genetic basis of jujube domestication and evolution and provides a rich genomic resource for mining other horticulturally important genes in jujube.
Collapse
Affiliation(s)
- Mingxin Guo
- College of Life Sciences, Luoyang Normal University, Luoyang, 471934 China
- Jujube Research Center, Luoyang Normal University, Luoyang, 471934 China
| | - Zhongren Zhang
- Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Yanwei Cheng
- College of Life Sciences, Luoyang Normal University, Luoyang, 471934 China
| | - Sunan Li
- College of Life Sciences, Luoyang Normal University, Luoyang, 471934 China
| | - Peiyin Shao
- College of Life Sciences, Luoyang Normal University, Luoyang, 471934 China
| | - Qiang Yu
- College of Life Sciences, Luoyang Normal University, Luoyang, 471934 China
| | - Junjie Wang
- College of Life Sciences, Luoyang Normal University, Luoyang, 471934 China
| | - Gan Xu
- College of Life Sciences, Luoyang Normal University, Luoyang, 471934 China
| | - Xiaotian Zhang
- College of Life Sciences, Luoyang Normal University, Luoyang, 471934 China
| | - Jiajia Liu
- College of Life Sciences, Luoyang Normal University, Luoyang, 471934 China
| | - Linlin Hou
- College of Life Sciences, Luoyang Normal University, Luoyang, 471934 China
| | - Hanxiao Liu
- College of Life Sciences, Luoyang Normal University, Luoyang, 471934 China
| | - Xusheng Zhao
- College of Life Sciences, Luoyang Normal University, Luoyang, 471934 China
- Jujube Research Center, Luoyang Normal University, Luoyang, 471934 China
| |
Collapse
|
8
|
Cavé-Radet A, Rabhi M, Gouttefangeas F, El Amrani A. Do Specialized Cells Play a Major Role in Organic Xenobiotic Detoxification in Higher Plants? FRONTIERS IN PLANT SCIENCE 2020; 11:1037. [PMID: 32733524 PMCID: PMC7363956 DOI: 10.3389/fpls.2020.01037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/24/2020] [Indexed: 05/18/2023]
Abstract
In the present work, we used a double cell screening approach based on phenanthrene (phe) epifluorescence histochemical localization and oxygen radical detection to generate new data about how some specialized cells are involved in tolerance to organic xenobiotics. Thereby, we bring new insights about phe [a common Polycyclic Aromatic Hydrocarbon (PAH)] cell specific detoxification, in two contrasting plant lineages thriving in different ecosystems. Our data suggest that in higher plants, detoxification may occur in specialized cells such as trichomes and pavement cells in Arabidopsis, and in the basal cells of salt glands in Spartina species. Such features were supported by a survey from the literature, and complementary data correlating the size of basal salt gland cells and tolerance abilities to PAHs previously reported between Spartina species. Furthermore, we conducted functional validation in two independent Arabidopsis trichomeless glabrous T-DNA mutant lines (GLABRA1 mutants). These mutants showed a sensitive phenotype under phe-induced stress in comparison with their background ecotypes without the mutation, indicating that trichomes are key structures involved in the detoxification of organic xenobiotics. Interestingly, trichomes and pavement cells are known to endoreduplicate, and we discussed the putative advantages given by endopolyploidy in xenobiotic detoxification abilities. The same feature concerning basal salt gland cells in Spartina has been raised. This similarity with detoxification in the endopolyploid liver cells of the animal system is included.
Collapse
Affiliation(s)
- Armand Cavé-Radet
- Université de Rennes 1, CNRS/OSUR-UMR 6553, Ecosystèmes-Biodiversité-Evolution, Rennes, France
- *Correspondence: Armand Cavé-Radet, ; Mokded Rabhi, ; Abdelhak El Amrani,
| | - Mokded Rabhi
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Qassim, Saudi Arabia
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
- *Correspondence: Armand Cavé-Radet, ; Mokded Rabhi, ; Abdelhak El Amrani,
| | - Francis Gouttefangeas
- Université de Rennes 1, ScanMAT - Synthèse, Caractérisation et ANalyse de la MATière, Rennes, France
| | - Abdelhak El Amrani
- Université de Rennes 1, CNRS/OSUR-UMR 6553, Ecosystèmes-Biodiversité-Evolution, Rennes, France
- *Correspondence: Armand Cavé-Radet, ; Mokded Rabhi, ; Abdelhak El Amrani,
| |
Collapse
|
9
|
Wei Z, Cheng Y, Zhou C, Li D, Gao X, Zhang S, Chen M. Genome-Wide Identification of Direct Targets of the TTG1-bHLH-MYB Complex in Regulating Trichome Formation and Flavonoid Accumulation in Arabidopsis Thaliana. Int J Mol Sci 2019; 20:ijms20205014. [PMID: 31658678 PMCID: PMC6829465 DOI: 10.3390/ijms20205014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
Extensive studies have shown that the MBW complex consisting of three kinds of regulatory proteins, MYB and basic helix–loop–helix (bHLH) transcription factors and a WD40 repeat protein, TRANSPARENT TESTA GLABRA1 (TTG1), acts in concert to promote trichome formation and flavonoid accumulation in Arabidopsis thaliana. TTG1 functions as an essential activator in these two biological processes. However, direct downstream targets of the TTG1-dependent MBW complex have not yet been obtained in the two biological processes at the genome-wide level in A. thaliana. In the present study, we found, through RNA sequencing and quantitative real-time PCR analysis, that a great number of regulatory and structural genes involved in both trichome formation and flavonoid accumulation are significantly downregulated in the young shoots and expanding true leaves of ttg1-13 plants. Post-translational activation of a TTG1-glucocorticoid receptor fusion protein and chromatin immunoprecipitation assays demonstrated that these downregulated genes are directly or indirectly targeted by the TTG1-dependent MBW complex in vivo during trichome formation and flavonoid accumulation. These findings further extend our understanding of the role of TTG1-dependent MBW complex in the regulation of trichome formation and flavonoid accumulation in A. thaliana.
Collapse
Affiliation(s)
- Zelou Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yalong Cheng
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Qinling National Forest Ecosystem Research Station, Huoditang, Ningshan 711600, Shaanxi, China.
| | - Chenchen Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Dong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xin Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China.
- Qinling National Forest Ecosystem Research Station, Huoditang, Ningshan 711600, Shaanxi, China.
| | - Mingxun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
10
|
Fambrini M, Pugliesi C. The Dynamic Genetic-Hormonal Regulatory Network Controlling the Trichome Development in Leaves. PLANTS (BASEL, SWITZERLAND) 2019; 8:E253. [PMID: 31357744 PMCID: PMC6724107 DOI: 10.3390/plants8080253] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
Abstract
Plant trichomes are outgrowths developed from an epidermal pavement cells of leaves and other organs. Trichomes (also called 'hairs') play well-recognized roles in defense against insect herbivores, forming a physical barrier that obstructs insect movement and mediating chemical defenses. In addition, trichomes can act as a mechanosensory switch, transducing mechanical stimuli (e.g., insect movement) into physiological signals, helping the plant to respond to insect attacks. Hairs can also modulate plant responses to abiotic stresses, such as water loss, an excess of light and temperature, and reflect light to protect plants against UV radiation. The structure of trichomes is species-specific and this trait is generally related to their function. These outgrowths are easily analyzed and their origin represents an outstanding subject to study epidermal cell fate and patterning in plant organs. In leaves, the developmental control of the trichomatous complement has highlighted a regulatory network based on four fundamental elements: (i) genes that activate and/or modify the normal cell cycle of epidermal pavement cells (i.e., endoreduplication cycles); (ii) transcription factors that create an activator/repressor complex with a central role in determining cell fate, initiation, and differentiation of an epidermal cell in trichomes; (iii) evidence that underlines the interplay of the aforesaid complex with different classes of phytohormones; (iv) epigenetic mechanisms involved in trichome development. Here, we reviewed the role of genes in the development of trichomes, as well as the interaction between genes and hormones. Furthermore, we reported basic studies about the regulation of the cell cycle and the complexity of trichomes. Finally, this review focused on the epigenetic factors involved in the initiation and development of hairs, mainly on leaves.
Collapse
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
| |
Collapse
|
11
|
Li J, Kim T, Szymanski DB. Multi-scale regulation of cell branching: Modeling morphogenesis. Dev Biol 2018; 451:40-52. [PMID: 30529250 DOI: 10.1016/j.ydbio.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/05/2023]
Abstract
Plant growth and development are driven by extended phases of irreversible cell expansion generating cells that increase in volume from 10- to 100-fold. Some specialized cell types define cortical sites that reinitiate polarized growth and generate branched cell morphology. This structural specialization of individual cells has a major importance for plant adaptation to diverse environments and practical importance in agricultural contexts. The patterns of cell shape are defined by highly integrated cytoskeletal and cell wall systems. Microtubules and actin filaments locally define the material properties of a tough outer cell wall to generate complex shapes. Forward genetics, powerful live cell imaging experiments, and computational modeling have provided insights into understanding of mechanisms of cell shape control. In particular, finite element modeling of the cell wall provides a new way to discover which cell wall heterogeneities generate complex cell shapes, and how cell shape and cell wall stress can feedback on the cytoskeleton to maintain growth patterns. This review focuses on cytoskeleton-dependent cell wall patterning during cell branching, and how combinations of multi-scale imaging experiments and computational modeling are being used to unravel systems-level control of morphogenesis.
Collapse
Affiliation(s)
- Jing Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Daniel B Szymanski
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, United States; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, United States; Department of Agronomy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
12
|
Kotak J, Saisana M, Gegas V, Pechlivani N, Kaldis A, Papoutsoglou P, Makris A, Burns J, Kendig AL, Sheikh M, Kuschner CE, Whitney G, Caiola H, Doonan JH, Vlachonasios KE, McCain ER, Hark AT. The histone acetyltransferase GCN5 and the transcriptional coactivator ADA2b affect leaf development and trichome morphogenesis in Arabidopsis. PLANTA 2018; 248:613-628. [PMID: 29846775 DOI: 10.1007/s00425-018-2923-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
The histone acetyltransferase GCN5 and associated transcriptional coactivator ADA2b are required to couple endoreduplication and trichome branching. Mutation of ADA2b also disrupts the relationship between ploidy and leaf cell size. Dynamic chromatin structure has been established as a general mechanism by which gene function is temporally and spatially regulated, but specific chromatin modifier function is less well understood. To address this question, we have investigated the role of the histone acetyltransferase GCN5 and the associated coactivator ADA2b in developmental events in Arabidopsis thaliana. Arabidopsis plants with T-DNA insertions in GCN5 (also known as HAG1) or ADA2b (also known as PROPORZ1) display pleiotropic phenotypes including dwarfism and floral defects affecting fertility. We undertook a detailed characterization of gcn5 and ada2b phenotypic effects in rosette leaves and trichomes to establish a role for epigenetic control in these developmental processes. ADA2b and GCN5 play specific roles in leaf tissue, affecting cell growth and division in rosette leaves often in complex and even opposite directions. Leaves of gcn5 plants display overall reduced ploidy levels, while ada2b-1 leaves show increased ploidy. Endoreduplication leading to increased ploidy is also known to contribute to normal trichome morphogenesis. We demonstrate that gcn5 and ada2b mutants display alterations in the number and patterning of trichome branches, with ada2b-1 and gcn5-1 trichomes being significantly less branched, while gcn5-6 trichomes show increased branching. Elongation of the trichome stalk and branches also vary in different mutant backgrounds, with stalk length having an inverse relationship with branch number. Taken together, our data indicate that, in Arabidopsis, leaves and trichomes ADA2b and GCN5 are required to couple nuclear content with cell growth and morphogenesis.
Collapse
Affiliation(s)
- Jenna Kotak
- Biology Department, Muhlenberg College, Allentown, PA, USA
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, RI, USA
| | - Marina Saisana
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasilis Gegas
- National Plant Phenomics Centre, Aberystwyth University, Aberystwyth, UK
- Limagrain UK Ltd, Joseph Nickerson Research Centre, Rothwell, Market Rasen, Lincolnshire, UK
| | - Nikoletta Pechlivani
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Kaldis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Papoutsoglou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Makris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Julia Burns
- Biology Department, Muhlenberg College, Allentown, PA, USA
| | | | - Minnah Sheikh
- Biology Department, Muhlenberg College, Allentown, PA, USA
| | | | | | - Hanna Caiola
- Biology Department, Muhlenberg College, Allentown, PA, USA
| | - John H Doonan
- National Plant Phenomics Centre, Aberystwyth University, Aberystwyth, UK
| | | | | | - Amy T Hark
- Biology Department, Muhlenberg College, Allentown, PA, USA.
| |
Collapse
|
13
|
Barkla BJ, Rhodes T, Tran KNT, Wijesinghege C, Larkin JC, Dassanayake M. Making Epidermal Bladder Cells Bigger: Developmental- and Salinity-Induced Endopolyploidy in a Model Halophyte. PLANT PHYSIOLOGY 2018; 177:615-632. [PMID: 29724770 PMCID: PMC6001328 DOI: 10.1104/pp.18.00033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/21/2018] [Indexed: 05/29/2023]
Abstract
Endopolyploidy occurs when DNA replication takes place without subsequent mitotic nuclear division, resulting in cell-specific ploidy levels within tissues. In plants, endopolyploidy plays an important role in sustaining growth and development, but only a few studies have demonstrated a role in abiotic stress response. In this study, we investigated the function of ploidy level and nuclear and cell size in leaf expansion throughout development and tracked cell type-specific ploidy in the halophyte Mesembryanthemum crystallinum In addition to developmental endopolyploidy, we examined the effects of salinity stress on ploidy level. We focused specifically on epidermal bladder cells (EBC), which are modified balloon-like trichomes, due to their large size and role in salt accumulation. Our results demonstrate that ploidy increases as the leaves expand in a similar manner for each leaf type, and ploidy levels up to 512C were recorded for nuclei in EBC of leaves of adult plants. Salt treatment led to a significant increase in ploidy levels in the EBC, and these cells showed spatially related differences in their ploidy and nuclear and cell size depending on the positions on the leaf and stem surface. Transcriptome analysis highlighted salinity-induced changes in genes involved in DNA replication, cell cycle, endoreduplication, and trichome development in EBC. The increase in cell size and ploidy observed in M. crystallinum under salinity stress may contribute to salt tolerance by increasing the storage capacity for sodium sequestration brought about by higher metabolic activity driving rapid cell enlargement in the leaf tissue and EBC.
Collapse
Affiliation(s)
- Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales 2480, Australia
| | - Timothy Rhodes
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales 2480, Australia
| | - Kieu-Nga T Tran
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Chathura Wijesinghege
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - John C Larkin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|
14
|
Xi A, Yang X, Deng M, Chen Y, Shao J, Zhao J, An L. Isolation and identification of two new alleles of STICHEL in Arabidopsis. Biochem Biophys Res Commun 2018; 499:605-610. [DOI: 10.1016/j.bbrc.2018.03.197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 11/26/2022]
|
15
|
Vadde BVL, Challa KR, Nath U. The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:259-269. [PMID: 29165850 DOI: 10.1111/tpj.13772] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 05/06/2023]
Abstract
Trichomes are the first cell type to be differentiated during the morphogenesis of leaf epidermis and serve as an ideal model to study cellular differentiation. Many genes involved in the patterning and differentiation of trichome cells have been studied over the past decades, and the majority of these genes encode transcription factors that specifically regulate epidermal cell development. However, the upstream regulators of these genes that link early leaf morphogenesis with cell type differentiation are less studied. The TCP proteins are the plant-specific transcription factors involved in regulating diverse aspects of plant development including lateral organ morphogenesis by modulating cell proliferation and differentiation. Here, we show that the miR319-regulated class II TCP proteins, notably TCP4, suppress trichome branching in Arabidopsis leaves and inflorescence stem by direct transcriptional activation of GLABROUS INFLORESCENCE STEMS (GIS), a known negative regulator of trichome branching. The trichome branch number is increased in plants with reduced TCP activity and decreased in the gain-of-function lines of TCP4. Biochemical analyses show that TCP4 binds to the upstream regulatory region of GIS and activates its expression. Detailed genetic analyses show that GIS and TCP4 work in same pathway and GIS function is required for TCP4-mediated regulation of trichome differentiation. Taken together, these results identify a role for the class II TCP genes in trichome differentiation, thus providing a connection between organ morphogenesis and cellular differentiation.
Collapse
Affiliation(s)
| | - Krishna Reddy Challa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560 012, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
16
|
Li C, Fu Y, Sun R, Wang Y, Wang Q. Single-Locus and Multi-Locus Genome-Wide Association Studies in the Genetic Dissection of Fiber Quality Traits in Upland Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1083. [PMID: 30177935 PMCID: PMC6109694 DOI: 10.3389/fpls.2018.01083] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/04/2018] [Indexed: 05/04/2023]
Abstract
A major breeding target in Upland cotton (Gossypium hirsutum L.) is to improve the fiber quality. To address this issue, 169 diverse accessions, genotyped by 53,848 high-quality single-nucleotide polymorphisms (SNPs) and phenotyped in four environments, were used to conduct genome-wide association studies (GWASs) for fiber quality traits using three single-locus and three multi-locus models. As a result, 342 quantitative trait nucleotides (QTNs) controlling fiber quality traits were detected. Of the 342 QTNs, 84 were simultaneously detected in at least two environments or by at least two models, which include 29 for fiber length, 22 for fiber strength, 11 for fiber micronaire, 12 for fiber uniformity, and 10 for fiber elongation. Meanwhile, nine QTNs with 10% greater sizes (R2) were simultaneously detected in at least two environments and between single- and multi-locus models, which include TM80185 (D13) for fiber length, TM1386 (A1) and TM14462 (A6) for fiber strength, TM18616 (A7), TM54735 (D3), and TM79518 (D12) for fiber micronaire, TM77489 (D12) and TM81448 (D13) for fiber uniformity, and TM47772 (D1) for fiber elongation. This indicates the possibility of marker-assisted selection in future breeding programs. Among 455 genes within the linkage disequilibrium regions of the nine QTNs, 113 are potential candidate genes and four are promising candidate genes. These findings reveal the genetic control underlying fiber quality traits and provide insights into possible genetic improvements in Upland cotton fiber quality.
Collapse
Affiliation(s)
- Chengqi Li
- Collaborative Innovation Center of Modern Biological Breeding, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yuanzhi Fu
- Collaborative Innovation Center of Modern Biological Breeding, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Runrun Sun
- Collaborative Innovation Center of Modern Biological Breeding, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yuanyuan Wang
- Collaborative Innovation Center of Modern Biological Breeding, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Qinglian Wang
- Collaborative Innovation Center of Modern Biological Breeding, School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
17
|
Clade-specific positive selection on a developmental gene: BRANCHLESS TRICHOME and the evolution of stellate trichomes in Physaria (Brassicaceae). Mol Phylogenet Evol 2016; 100:31-40. [PMID: 27015897 DOI: 10.1016/j.ympev.2016.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 01/07/2023]
Abstract
Positive selection is known to drive the evolution of genes involved in evolutionary arms races, but what role does it play in the evolution of genes involved in developmental processes? We used the single-celled epidermal trichomes of Brassicaceae as a model to uncover the molecular evolutionary processes that contributed to the transition from dendritic trichomes, as seen in most species of Brassicaceae, to the distinctive stellate trichomes of the genus Physaria. We explored the role of positive selection on the evolution of BRANCHLESS TRICHOME (BLT), a candidate gene for changes in trichome branching pattern. Maximum likelihood models of codon evolution point to a shift in selective pressure affecting the evolution of BLT across the entire Physaria clade, and we found strong evidence that positive selection has acted on a subset of Physaria BLT codons. Almost all of the 10 codon sites with the highest probability of having evolved under positive selection are clustered in a predicted coiled-coil domain, pointing to changes in protein-protein interactions. Thus, our findings suggest that selection acted on BLT to modify its interactions with other proteins. The fact that positive selection occurred throughout the radiation of Physaria could reflect selection to stabilize development in response to an abrupt switch from the dendritic form to the stellate form, divergent selection for diversification of the stellate form, or both. These results point to the need for evolutionary developmental studies of BLT and its interacting proteins in Physaria.
Collapse
|
18
|
Breuer C, Braidwood L, Sugimoto K. Endocycling in the path of plant development. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:78-85. [PMID: 24507498 DOI: 10.1016/j.pbi.2013.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 05/29/2023]
Abstract
Genome duplication is a widespread phenomenon in many eukaryotes. In plants numeric changes of chromosome sets have tremendous impact on growth performance and yields, hence, are of high importance for agriculture. In contrast to polyploidisation in which the genome is duplicated throughout the entire organism and stably inherited by the offspring, endopolyploidy relies on endocycles in which cells multiply the genome in specific tissues and cell types. During the endocycle cells repeatedly replicate their DNA but skip mitosis, leading to genome duplication after each round. Endocycles are common in multicellular eukaryotes and are often involved in the regulation of cell and organ growth. In plants, changes in cellular ploidy have also been associated with other developmental processes as well as physiological interactions with the surrounding environment. Thus, endocycles play pivotal roles throughout the life cycle of many plant species.
Collapse
Affiliation(s)
- Christian Breuer
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Luke Braidwood
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
19
|
Wang G, Feng H, Sun J, Du X. Induction of cotton ovule culture fibre branching by co-expression of cotton BTL, cotton SIM, and Arabidopsis STI genes. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4157-68. [PMID: 23966592 PMCID: PMC3808306 DOI: 10.1093/jxb/ert222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The highly elongated single-celled cotton fibre consists of lint and fuzz, similar to the Arabidopsis trichome. Endoreduplication is an important determinant in Arabidopsis trichome initiation and morphogenesis. Fibre development is also controlled by functional homologues of Arabidopsis trichome patterning genes, although fibre cells do not have a branched shape like trichomes. The identification and characterization of the homologues of 10 key Arabidopsis trichome branching genes in Gossypium arboreum are reported here. Nuclear ploidy of fibres was determined, and gene function in cotton callus and fibre cells was investigated. The results revealed that the nuclear DNA content was constant in fuzz, whereas a limited and reversible change occurred in lint after initiation. Gossypeum arboreum branchless trichomes (GaBLT) was not transcribed in fibres. The homologue of STICHEL (STI), which is essential for trichome branching, was a pseudogene in Gossypium. Targeted expression of GaBLT, Arabidopsis STI, and the cytokinesis-repressing GaSIAMESE in G. hirsutum fibre cells cultured in vitro resulted in branching. The findings suggest that the distinctive developmental mechanism of cotton fibres does not depend on endoreduplication. This important component may be a relic function that can be activated in fibre cells.
Collapse
Affiliation(s)
| | | | | | - Xiongming Du
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Benítez M, Azpeitia E, Alvarez-Buylla ER. Dynamic models of epidermal patterning as an approach to plant eco-evo-devo. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:11-18. [PMID: 23219864 DOI: 10.1016/j.pbi.2012.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/08/2012] [Accepted: 11/14/2012] [Indexed: 06/01/2023]
Abstract
Epidermal patterning in Arabidopsis thaliana leaves and root has become a model system for experimental and theoretical developmental studies, yielding well-characterized regulatory networks. We succinctly review the dynamic models proposed for this system and then argue that it provides an excellent instance to integrate and further study the role of non-genetic factors in plant development and evolution. Then, we set up to review the role of phytohormones and environmental stimuli in the regulation of cell-fate determination and patterning in this system. We conclude that dynamic modeling of complex regulatory networks can help understand the plasticity and variability of cellular patterns, and hence, such modeling approaches can be expanded to advance in the consolidation of plant Evolutionary and Ecological Developmental Biology (eco-evo-devo).
Collapse
Affiliation(s)
- Mariana Benítez
- Departamento de Ecología de la Biodiversidad, Instituto de Ecologıa, Universidad Nacional Autónoma de México, Ciudad Universitaria, 3er circuito exterior junto al Jardın Botanico, Del. Coyoacan, México D.F. 04510, Mexico
| | | | | |
Collapse
|
21
|
Fox DT, Duronio RJ. Endoreplication and polyploidy: insights into development and disease. Development 2013; 140:3-12. [PMID: 23222436 DOI: 10.1242/dev.080531] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyploid cells have genomes that contain multiples of the typical diploid chromosome number and are found in many different organisms. Studies in a variety of animal and plant developmental systems have revealed evolutionarily conserved mechanisms that control the generation of polyploidy and have recently begun to provide clues to its physiological function. These studies demonstrate that cellular polyploidy plays important roles during normal development and also contributes to human disease, particularly cancer.
Collapse
Affiliation(s)
- Donald T Fox
- Department of Pharmacology and Cancer Biology, and Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| | | |
Collapse
|
22
|
De Veylder L, Larkin JC, Schnittger A. Molecular control and function of endoreplication in development and physiology. TRENDS IN PLANT SCIENCE 2011; 16:624-34. [PMID: 21889902 DOI: 10.1016/j.tplants.2011.07.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/19/2011] [Accepted: 07/21/2011] [Indexed: 05/03/2023]
Abstract
Endoreplication, also called endoreduplication, is a cell cycle variant of multicellular eukaryotes in which mitosis is skipped and cells repeatedly replicate their DNA, resulting in cellular polyploidy. In recent years, research results have shed light on the molecular mechanism of endoreplication control, but the function of this cell-cycle variant has remained elusive. However, new evidence is at last providing insight into the biological relevance of cellular polyploidy, demonstrating that endoreplication is essential for developmental processes, such as cell fate maintenance, and is a prominent response to physiological conditions, such as pathogen attack or DNA damage. Thus, endoreplication is being revealed as an important module in plant growth that contributes to the robustness of plant life.
Collapse
|