1
|
Hatori R, Wood BM, Oliveira Barbosa G, Kornberg TB. Regulated delivery controls Drosophila Hedgehog, Wingless, and Decapentaplegic signaling. eLife 2021; 10:71744. [PMID: 34292155 PMCID: PMC8376250 DOI: 10.7554/elife.71744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Morphogen signaling proteins disperse across tissues to activate signal transduction in target cells. We investigated dispersion of Hedgehog (Hh), Wnt homolog Wingless (Wg), and Bone morphogenic protein homolog Decapentaplegic (Dpp) in the Drosophila wing imaginal disc. We discovered that delivery of Hh, Wg, and Dpp to their respective targets is regulated. We found that <5% of Hh and <25% of Wg are taken up by disc cells and activate signaling. The amount of morphogen that is taken up and initiates signaling did not change when the level of morphogen expression was varied between 50 and 200% (Hh) or 50 and 350% (Wg). Similar properties were observed for Dpp. We analyzed an area of 150 μm×150 μm that includes Hh-responding cells of the disc as well as overlying tracheal cells and myoblasts that are also activated by disc-produced Hh. We found that the extent of signaling in the disc was unaffected by the presence or absence of the tracheal and myoblast cells, suggesting that the mechanism that disperses Hh specifies its destinations to particular cells, and that target cells do not take up Hh from a common pool.
Collapse
Affiliation(s)
- Ryo Hatori
- Cardiovascular Research Institute University of California, San Francisco, San Francisco, United States
| | - Brent M Wood
- Cardiovascular Research Institute University of California, San Francisco, San Francisco, United States
| | | | - Thomas B Kornberg
- Cardiovascular Research Institute University of California, San Francisco, San Francisco, United States
| |
Collapse
|
2
|
Saad F, Hipfner DR. Extensive crosstalk of G protein-coupled receptors with the Hedgehog signalling pathway. Development 2021; 148:dev189258. [PMID: 33653875 PMCID: PMC10656458 DOI: 10.1242/dev.189258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/19/2021] [Indexed: 12/23/2022]
Abstract
Hedgehog (Hh) ligands orchestrate tissue patterning and growth by acting as morphogens, dictating different cellular responses depending on ligand concentration. Cellular sensitivity to Hh ligands is influenced by heterotrimeric G protein activity, which controls production of the second messenger 3',5'-cyclic adenosine monophosphate (cAMP). cAMP in turn activates Protein kinase A (PKA), which functions as an inhibitor and (uniquely in Drosophila) as an activator of Hh signalling. A few mammalian Gαi- and Gαs-coupled G protein-coupled receptors (GPCRs) have been shown to influence Sonic hedgehog (Shh) responses in this way. To determine whether this is a more-general phenomenon, we carried out an RNAi screen targeting GPCRs in Drosophila. RNAi-mediated depletion of more than 40% of GPCRs tested either decreased or increased Hh responsiveness in the developing Drosophila wing, closely matching the effects of Gαs and Gαi depletion, respectively. Genetic analysis indicated that the orphan GPCR Mthl5 lowers cAMP levels to attenuate Hh responsiveness. Our results identify Mthl5 as a new Hh signalling pathway modulator in Drosophila and suggest that many GPCRs may crosstalk with the Hh pathway in mammals.
Collapse
Affiliation(s)
- Farah Saad
- Institut de recherches cliniques de Montréal, 110 Pine Avenue West, Montreal H2W 1R7, QC, Canada
- Department of Biology, McGill University, Montreal H3A 1B1, QC, Canada
| | - David R. Hipfner
- Institut de recherches cliniques de Montréal, 110 Pine Avenue West, Montreal H2W 1R7, QC, Canada
- Department of Biology, McGill University, Montreal H3A 1B1, QC, Canada
- Département de médecine, Université de Montréal, Montreal H3C 3J7, QC, Canada
| |
Collapse
|
3
|
Kang YY, Wachi Y, Engdorf E, Fumagalli E, Wang Y, Myers J, Massey S, Greiss A, Xu S, Roman G. Normal Ethanol Sensitivity and Rapid Tolerance Require the G Protein Receptor Kinase 2 in Ellipsoid Body Neurons in Drosophila. Alcohol Clin Exp Res 2020; 44:1686-1699. [PMID: 32573992 PMCID: PMC7485117 DOI: 10.1111/acer.14396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND G protein signaling pathways are key neuromodulatory mechanisms for behaviors and neurological functions that affect the impact of ethanol (EtOH) on locomotion, arousal, and synaptic plasticity. Here, we report a novel role for the Drosophila G protein-coupled receptor kinase 2 (GPRK2) as a member of the GRK4/5/6 subfamily in modulating EtOH-induced behaviors. METHODS We studied the requirement of Drosophila Gprk2 for naïve sensitivity to EtOH sedation and ability of the fly to develop rapid tolerance after a single exposure to EtOH, using the loss of righting reflex (LORR) and fly group activity monitor (FlyGrAM) assays. RESULTS Loss-of-function Gprk2 mutants demonstrate an increase in alcohol-induced hyperactivity, reduced sensitivity to the sedative effects of EtOH, and diminished rapid tolerance after a single intoxicating exposure. The requirement for Gprk2 in EtOH sedation and rapid tolerance maps to ellipsoid body neurons within the Drosophila brain, suggesting that wild-type Gprk2 is required for modulation of locomotion and alertness. However, even though Gprk2 loss of function leads to decreased and fragmented sleep, this change in the sleep state does not depend on Gprk2 expression in the ellipsoid body. CONCLUSION Our work on GPRK2 has established a role for this GRK4/5/6 subfamily member in EtOH sensitivity and rapid tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shiyu Xu
- University of HoustonHoustonTexas
| | - Gregg Roman
- University of MississippiUniversityMississippi
| |
Collapse
|
4
|
Xu Y, Borcherding AF, Heier C, Tian G, Roeder T, Kühnlein RP. Chronic dysfunction of Stromal interaction molecule by pulsed RNAi induction in fat tissue impairs organismal energy homeostasis in Drosophila. Sci Rep 2019; 9:6989. [PMID: 31061470 PMCID: PMC6502815 DOI: 10.1038/s41598-019-43327-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 04/15/2019] [Indexed: 01/09/2023] Open
Abstract
Obesity is a progressive, chronic disease, which can be caused by long-term miscommunication between organs. It remains challenging to understand how chronic dysfunction in a particular tissue remotely impairs other organs to eventually imbalance organismal energy homeostasis. Here we introduce RNAi Pulse Induction (RiPI) mediated by short hairpin RNA (shRiPI) or double-stranded RNA (dsRiPI) to generate chronic, organ-specific gene knockdown in the adult Drosophila fat tissue. We show that organ-restricted RiPI targeting Stromal interaction molecule (Stim), an essential factor of store-operated calcium entry (SOCE), results in progressive fat accumulation in fly adipose tissue. Chronic SOCE-dependent adipose tissue dysfunction manifests in considerable changes of the fat cell transcriptome profile, and in resistance to the glucagon-like Adipokinetic hormone (Akh) signaling. Remotely, the adipose tissue dysfunction promotes hyperphagia likely via increased secretion of Akh from the neuroendocrine system. Collectively, our study presents a novel in vivo paradigm in the fly, which is widely applicable to model and functionally analyze inter-organ communication processes in chronic diseases.
Collapse
Affiliation(s)
- Yanjun Xu
- Max-Planck-Institut für biophysikalische Chemie, Research Group Molecular Physiology, Am Faβberg 11, D-37077, Göttingen, Germany.
- Max-Planck-Institut für biophysikalische Chemie, Department of Molecular Developmental Biology, Am Faβberg 11, D-37077, Göttingen, Germany.
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, D-85764, Neuherberg, München, Germany.
| | - Annika F Borcherding
- Max-Planck-Institut für biophysikalische Chemie, Research Group Molecular Physiology, Am Faβberg 11, D-37077, Göttingen, Germany
| | - Christoph Heier
- University of Graz, Institute of Molecular Biosciences, Humboldtstrasse 50/2.OG, A-8010, Graz, Austria
| | - Gu Tian
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098, Kiel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Kiel, Germany
| | - Thomas Roeder
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098, Kiel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Kiel, Germany
| | - Ronald P Kühnlein
- Max-Planck-Institut für biophysikalische Chemie, Research Group Molecular Physiology, Am Faβberg 11, D-37077, Göttingen, Germany.
- University of Graz, Institute of Molecular Biosciences, Humboldtstrasse 50/2.OG, A-8010, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
5
|
Franco A, Zhang L, Matkovich SJ, Kovacs A, Dorn GW. G-protein receptor kinases 2, 5 and 6 redundantly modulate Smoothened-GATA transcriptional crosstalk in fetal mouse hearts. J Mol Cell Cardiol 2018; 121:60-68. [PMID: 29969579 PMCID: PMC6178805 DOI: 10.1016/j.yjmcc.2018.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/04/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022]
Abstract
G-protein receptor kinases (GRKs) regulate adult hearts by modulating inotropic, chronotropic and hypertrophic signaling of 7-transmembrane spanning neurohormone receptors. GRK-mediated desensitization and downregulation of β-adrenergic receptors has been implicated in adult heart failure; GRKs are therefore a promising therapeutic target. However, germ-line (but not cardiomyocyte-specific) GRK2 deletion provoked lethal fetal heart defects, suggesting an unexplained role for GRKs in heart development. Here we undertook to better understand the consequences of GRK deficiency on fetal heart development by creating mice and cultured murine embryonic fibroblasts (MEFs) having floxed GRK2 and GRK5 alleles on the GRK6 null background; simultaneous conditional deletion of these 3 GRK genes was achieved using Nkx2-5 Cre or adenoviral Cre, respectively. Phenotypes were related to GRK-modulated gene expression using whole-transcriptome RNA sequencing, RT-qPCR, and luciferase reporter assays. In cultured MEFs the atypical 7-transmembrane spanning protein and GRK2 substrate Smoothened (Smo) stimulated Gli-mediated transcriptional activity, which was interrupted by deleting GRK2/5/6. Mice with Nkx2-5 Cre mediated GRK2/5/6 ablation died between E15.5 and E16.5, whereas mice expressing any one of these 3 GRKs (i.e. GRK2/5, GRK2/6 or GRK5/6 deleted) were developmentally normal. GRK2/5/6 triple null mice at E14.5 exhibited left and right heart blood intermixing through single atrioventricular valves or large membranous ventricular septal defects. Hedgehog and GATA pathway gene expression promoted by Smo/Gli was suppressed in GRK2/5/6 deficient fetal hearts and MEFs. These data indicate that GRK2, GRK5 and GRK6 redundantly modulate Smo-GATA crosstalk in fetal mouse hearts, orchestrating transcriptional pathways previously linked to clinical and experimental atrioventricular canal defects. GRK modulation of Smo reflects convergence of conventional neurohormonal signaling and transcriptional regulation pathways, comprising an unanticipated mechanism for spatiotemporal orchestration of developmental gene expression in the heart.
Collapse
Affiliation(s)
- Antonietta Franco
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| | - Lihong Zhang
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Scot J Matkovich
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Attila Kovacs
- Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
6
|
Praktiknjo SD, Saad F, Maier D, Ip P, Hipfner DR. Activation of Smoothened in the Hedgehog pathway unexpectedly increases Gα s-dependent cAMP levels in Drosophila. J Biol Chem 2018; 293:13496-13508. [PMID: 30018136 DOI: 10.1074/jbc.ra118.001953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/13/2018] [Indexed: 12/28/2022] Open
Abstract
Hedgehog (Hh) signaling plays a key role in the development and maintenance of animal tissues. This signaling is mediated by the atypical G protein-coupled receptor (GPCR) Smoothened (Smo). Smo activation leads to signaling through several well-characterized effectors to activate Hh target gene expression. Recent studies have implicated activation of the heterotrimeric G protein subunit Gαi and the subsequent decrease in cellular cAMP levels in promoting the Hh response in flies and mammals. Although Hh stimulation decreases cAMP levels in some insect cell lines, here using a bioluminescence resonance energy transfer (BRET)-based assay we found that this stimulation had no detectable effect in Drosophila S2-R+ cells. However, we observed an unexpected and significant Gαs-dependent increase in cAMP levels in response to strong Smo activation in Smo-transfected cells. This effect was mediated by Smo's broadly conserved core, and was specifically activated in response to phosphorylation of the Smo C-terminus by GPCR kinase 2 (Gprk2). Genetic analysis of heterotrimeric G protein function in the developing Drosophila wing revealed a positive role for cAMP in the endogenous Hh response. Specifically, we found that mutation or depletion of Gαs diminished low-threshold Hh responses in Drosophila, whereas depletion of Gαi potentiated them (in contrast to previous findings). Our analysis suggested that regulated cAMP production is important for controlling the sensitivity of cellular responses to Hh in Drosophila.
Collapse
Affiliation(s)
- Samantha D Praktiknjo
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7.,the Departments of Anatomy and Cell Biology and
| | - Farah Saad
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7.,Biology, McGill University, Montreal, Quebec H3A 0C7, and
| | - Dominic Maier
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7.,the Departments of Anatomy and Cell Biology and
| | - Pamela Ip
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7.,the Departments of Anatomy and Cell Biology and
| | - David R Hipfner
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, .,the Departments of Anatomy and Cell Biology and.,Biology, McGill University, Montreal, Quebec H3A 0C7, and.,the Département de médecine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
7
|
Maier D, Cheng S, Faubert D, Hipfner DR. A broadly conserved g-protein-coupled receptor kinase phosphorylation mechanism controls Drosophila smoothened activity. PLoS Genet 2014; 10:e1004399. [PMID: 25009998 PMCID: PMC4091690 DOI: 10.1371/journal.pgen.1004399] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/08/2014] [Indexed: 01/20/2023] Open
Abstract
Hedgehog (Hh) signaling is essential for normal growth, patterning, and homeostasis of many tissues in diverse organisms, and is misregulated in a variety of diseases including cancer. Cytoplasmic Hedgehog signaling is activated by multisite phosphorylation of the seven-pass transmembrane protein Smoothened (Smo) in its cytoplasmic C-terminus. Aside from a short membrane-proximal stretch, the sequence of the C-terminus is highly divergent in different phyla, and the evidence suggests that the precise mechanism of Smo activation and transduction of the signal to downstream effectors also differs. To clarify the conserved role of G-protein-coupled receptor kinases (GRKs) in Smo regulation, we mapped four clusters of phosphorylation sites in the membrane-proximal C-terminus of Drosophila Smo that are phosphorylated by Gprk2, one of the two fly GRKs. Phosphorylation at these sites enhances Smo dimerization and increases but is not essential for Smo activity. Three of these clusters overlap with regulatory phosphorylation sites in mouse Smo and are highly conserved throughout the bilaterian lineages, suggesting that they serve a common function. Consistent with this, we find that a C-terminally truncated form of Drosophila Smo consisting of just the highly conserved core, including Gprk2 regulatory sites, can recruit the downstream effector Costal-2 and activate target gene expression, in a Gprk2-dependent manner. These results indicate that GRK phosphorylation in the membrane proximal C-terminus is an evolutionarily ancient mechanism of Smo regulation, and point to a higher degree of similarity in the regulation and signaling mechanisms of bilaterian Smo proteins than has previously been recognized.
Collapse
Affiliation(s)
- Dominic Maier
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Department of Anatomy & Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Shuofei Cheng
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Department of Anatomy & Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Denis Faubert
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Proteomics Core Facility, IRCM, Montreal, Quebec, Canada
| | - David R. Hipfner
- Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Department of Anatomy & Cell Biology, McGill University, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
8
|
Li S, Ma G, Wang B, Jiang J. Hedgehog induces formation of PKA-Smoothened complexes to promote Smoothened phosphorylation and pathway activation. Sci Signal 2014; 7:ra62. [PMID: 24985345 PMCID: PMC4621970 DOI: 10.1126/scisignal.2005414] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hedgehog (Hh) is a secreted glycoprotein that binds its receptor Patched to activate the G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor-like protein Smoothened (Smo). In Drosophila, protein kinase A (PKA) phosphorylates and activates Smo in cells stimulated with Hh. In unstimulated cells, PKA phosphorylates and inhibits the transcription factor Cubitus interruptus (Ci). We found that in cells exposed to Hh, the catalytic subunit of PKA (PKAc) bound to the juxtamembrane region of the carboxyl terminus of Smo. PKA-mediated phosphorylation of Smo further enhanced its association with PKAc to form stable kinase-substrate complexes that promoted the PKA-mediated transphosphorylation of Smo dimers. We identified multiple basic residues in the carboxyl terminus of Smo that were required for interaction with PKAc, Smo phosphorylation, and Hh pathway activation. Hh induced a switch from the association of PKAc with a cytosolic complex of Ci and the kinesin-like protein Costal2 (Cos2) to a membrane-bound Smo-Cos2 complex. Thus, our study uncovers a previously uncharacterized mechanism for regulation of PKA activity and demonstrates that the signal-regulated formation of kinase-substrate complexes plays a central role in Hh signal transduction.
Collapse
Affiliation(s)
- Shuang Li
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Guoqiang Ma
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Bing Wang
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Jin Jiang
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA. Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| |
Collapse
|
9
|
Fuse N, Yu F, Hirose S. Gprk2 adjusts Fog signaling to organize cell movements in Drosophila gastrulation. Development 2013; 140:4246-55. [PMID: 24026125 DOI: 10.1242/dev.093625] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gastrulation of Drosophila melanogaster proceeds through sequential cell movements: ventral mesodermal (VM) cells are induced by secreted Fog protein to constrict their apical surfaces to form the ventral furrow, and subsequently lateral mesodermal (LM) cells involute toward the furrow. How these cell movements are organized remains elusive. Here, we observed that LM cells extended apical protrusions and then underwent accelerated involution movement, confirming that VM and LM cells display distinct cell morphologies and movements. In a mutant for the GPCR kinase Gprk2, apical constriction was expanded to all mesodermal cells and the involution movement was abolished. In addition, the mesodermal cells halted apical constriction prematurely in accordance with the aberrant accumulation of Myosin II. Epistasis analyses revealed that the Gprk2 mutant phenotypes were dependent on the fog gene. Overexpression of Gprk2 suppressed the effects of excess Cta, a downstream component of Fog signaling. Based on these findings, we propose that Gprk2 attenuates and tunes Fog-Cta signaling to prevent apical constriction in LM cells and to support appropriate apical constriction in VM cells. Thus, the two distinct cell movements in mesoderm invagination are not predetermined, but rather are organized by the adjustment of cell signaling.
Collapse
Affiliation(s)
- Naoyuki Fuse
- Department of Developmental Genetics, National Institute of Genetics, Yata 1111, Mishima 411-8540, Japan
| | | | | |
Collapse
|
10
|
McGowan SE, McCoy DM. Platelet-derived growth factor-A and sonic hedgehog signaling direct lung fibroblast precursors during alveolar septal formation. Am J Physiol Lung Cell Mol Physiol 2013; 305:L229-39. [PMID: 23748534 DOI: 10.1152/ajplung.00011.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alveolar septal formation is required to support the respiration of growing mammals; in humans effacement of the alveolar surface and impaired gas exchange are critical features of emphysema and pulmonary fibrosis. Platelet-derived growth factor-A (PDGF-A) and its receptor PDGF-receptor-α (PDGFRα) are required for secondary septal elongation in mice during postnatal days 4 through 12 and they regulate the proliferation and septal location of interstitial fibroblasts. We examined lung fibroblasts (LF) to learn whether PDGFRα expression distinguished a population of precursor cells, with enhanced proliferative and migratory capabilities. We identified a subpopulation of LF that expresses sonic hedgehog (Shh) and stem cell antigen-1 (Sca1). PDGF-A and Shh both increased cytokinesis and chemotaxis in vitro, but through different mechanisms. In primary LF cultures, Shh signaled exclusively through a noncanonical pathway involving generation of Rac1-GTP, whereas both the canonical and noncanonical pathways were used by the Mlg neonatal mouse LF cell line. LF preferentially oriented their primary cilia toward their anterior pole during migration. Furthermore, a larger proportion of PDGFRα-expressing LF, which are more abundant at the septal tips, bore primary cilia compared with other alveolar cells. In pulmonary emphysema, destroyed alveolar septa do not regenerate, in part because cells fail to assume a configuration that allows efficient gas exchange. Better understanding how LF are positioned during alveolar development could identify signaling pathways, which promote alveolar septal regeneration.
Collapse
Affiliation(s)
- Stephen E McGowan
- Department of Veterans Affairs Research Service, Iowa City, IA, USA.
| | | |
Collapse
|
11
|
Abstract
Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis, and its deregulation leads to numerous human disorders including cancer. Binding of Hh to Patched (Ptc), a twelve-transmembrane protein, alleviates its inhibition of Smoothened (Smo), a seven-transmembrane protein related to G-protein-coupled receptors (GPCRs), leading to Smo phosphorylation and activation. Smo acts through intracellular signaling complexes to convert the latent transcription factor Cubitus interruptus (Ci)/Gli from a truncated repressor to a full-length activator, leading to derepression/activation of Hh target genes. Increasing evidence suggests that phosphorylation participates in almost every step in the signal relay from Smo to Ci/Gli, and that differential phosphorylation of several key pathway components may be crucial for translating the Hh morphogen gradient into graded pathway activities. In this review, we focus on the multifaceted roles that phosphorylation plays in Hh signal transduction, and discuss the conservation and difference between Drosophila and mammalian Hh signaling mechanisms.
Collapse
|
12
|
Maier D, Cheng S, Hipfner DR. The complexities of G-protein-coupled receptor kinase function in Hedgehog signaling. Fly (Austin) 2012; 6:135-41. [PMID: 22653052 DOI: 10.4161/fly.20245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hedgehog (Hh) signaling is essential for proper tissue patterning and maintenance and has a substantial impact on human disease. While many of the main components and mechanisms involved in transduction of the Hh signal have been identified, the details of how the pathway functions are continually being refined. One aspect that has attracted much attention recently is the involvement of G-protein-coupled receptor kinases (GRKs) in the pathway. These regulators of G-protein-coupled receptor (GPCR) signaling have an evolutionarily-conserved function in promoting high-threshold Hh target gene expression through regulation of Smoothened (Smo), a GPCR family member that activates intracellular Hh signaling. Several models of how GRKs impact on Smo to increase downstream signaling have been proposed. Recently, we demonstrated that these kinases have surprisingly complex and conflicting roles, acting to limit signaling through the pathway while also promoting Smo activity. In addition to the previously described direct effects of Gprk2 on Smo activation, Gprk2 also indirectly affects Hh signaling by controlling production of the second messenger cyclic AMP to influence Protein kinase A activity.
Collapse
Affiliation(s)
- Dominic Maier
- Institut de recherches cliniques de Montréal; Montreal, QC Canada
| | | | | |
Collapse
|
13
|
Cheng S, Maier D, Hipfner DR. Drosophila G-protein-coupled receptor kinase 2 regulates cAMP-dependent Hedgehog signalling. J Cell Sci 2012. [DOI: 10.1242/jcs.106047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|