1
|
Abstract
The Genetics Society of America's (GSA's) Edward Novitski Prize recognizes a single experimental accomplishment or a body of work in which an exceptional level of creativity, and intellectual ingenuity, has been used to design and execute scientific experiments to solve a difficult problem in genetics. The 2020 recipient is Welcome W. Bender of Harvard Medical School, recognizing his creativity and ingenuity in revealing the molecular nature and regulation of the bithorax gene complex.
Collapse
|
2
|
Postika N, Metzler M, Affolter M, Müller M, Schedl P, Georgiev P, Kyrchanova O. Boundaries mediate long-distance interactions between enhancers and promoters in the Drosophila Bithorax complex. PLoS Genet 2018; 14:e1007702. [PMID: 30540750 PMCID: PMC6306242 DOI: 10.1371/journal.pgen.1007702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/26/2018] [Accepted: 11/16/2018] [Indexed: 11/18/2022] Open
Abstract
Drosophila bithorax complex (BX-C) is one of the best model systems for studying the role of boundaries (insulators) in gene regulation. Expression of three homeotic genes, Ubx, abd-A, and Abd-B, is orchestrated by nine parasegment-specific regulatory domains. These domains are flanked by boundary elements, which function to block crosstalk between adjacent domains, ensuring that they can act autonomously. Paradoxically, seven of the BX-C regulatory domains are separated from their gene target by at least one boundary, and must “jump over” the intervening boundaries. To understand the jumping mechanism, the Mcp boundary was replaced with Fab-7 and Fab-8. Mcp is located between the iab-4 and iab-5 domains, and defines the border between the set of regulatory domains controlling abd-A and Abd-B. When Mcp is replaced by Fab-7 or Fab-8, they direct the iab-4 domain (which regulates abd-A) to inappropriately activate Abd-B in abdominal segment A4. For the Fab-8 replacement, ectopic induction was only observed when it was inserted in the same orientation as the endogenous Fab-8 boundary. A similar orientation dependence for bypass activity was observed when Fab-7 was replaced by Fab-8. Thus, boundaries perform two opposite functions in the context of BX-C–they block crosstalk between neighboring regulatory domains, but at the same time actively facilitate long distance communication between the regulatory domains and their respective target genes. Drosophila bithorax complex (BX-C) is one of a few examples demonstrating in vivo role of boundary/insulator elements in organization of independent chromatin domains. BX-C contains three HOX genes, whose parasegment-specific pattern is controlled by cis-regulatory domains flanked by boundary/insulator elements. Since the boundaries ensure autonomy of adjacent domains, the presence of these elements poses a paradox: how do the domains bypass the intervening boundaries and contact their proper regulatory targets? According to the textbook model, BX-C regulatory domains are able to bypass boundaries because they harbor special promoter targeting sequences. However, contrary to this model, we show here that the boundaries themselves play an active role in directing regulatory domains to their appropriate HOX gene promoter.
Collapse
Affiliation(s)
- Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - Paul Schedl
- Department of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- * E-mail: (PG); (OK)
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- * E-mail: (PG); (OK)
| |
Collapse
|
3
|
Kyrchanova O, Mogila V, Wolle D, Magbanua JP, White R, Georgiev P, Schedl P. The boundary paradox in the Bithorax complex. Mech Dev 2015; 138 Pt 2:122-132. [PMID: 26215349 PMCID: PMC4890074 DOI: 10.1016/j.mod.2015.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 02/08/2023]
Abstract
The parasegment-specific expression of the three Drosophila Bithorax complex homeotic genes is orchestrated by nine functionally autonomous regulatory domains. Functional autonomy depends upon special elements called boundaries or insulators that are located between each domain. The boundaries ensure the independent activity of each domain by blocking adventitious interactions with initiators, enhancers and silencers in the neighboring domains. However, this blocking activity poses a regulatory paradox--the Bithorax boundaries are also able to insulate promoters from regulatory interactions with enhancers and silencers and six of the nine Bithorax regulatory domains are separated from their target genes by at least one boundary element. Here we consider several mechanisms that have been suggested for how the Bithorax regulatory domains are able to bypass intervening boundary elements and direct the appropriate parasegment-specific temporal and spatial expression of their target gene.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladic Mogila
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Nikolaev V.A. Sukhomlinsky National University, Department of Biology, Ukraine
| | - Daniel Wolle
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jose Paolo Magbanua
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Robert White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia; Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
4
|
The elimination of an adult segment by the Hox gene Abdominal-B. Mech Dev 2015; 138 Pt 2:210-217. [DOI: 10.1016/j.mod.2015.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 11/19/2022]
|
5
|
Following the intracellular localization of the iab-8ncRNA of the bithorax complex using the MS2-MCP-GFP system. Mech Dev 2015; 138 Pt 2:133-140. [PMID: 26277563 DOI: 10.1016/j.mod.2015.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
Homeotic genes are aligned on the chromosome in the order of the segments that they specify along the antero-posterior axis of the fly. In general the genes affecting the more posterior segments repress the more anterior genes, a phenomenon known as "posterior dominance". There is however a noticeable exception to this rule in the central nervous system of Drosophila melanogaster where the posterior Abd-B gene does not repress the immediately more anterior abd-A gene. Instead, abd-A repression is accomplished by a 92 kb-long ncRNA (the iab-8ncRNA) that is transcribed from the large inter-genic region between abd-A and Abd-B. This iab-8ncRNA encodes a microRNA to repress abd-A and also a second redundant repression mechanism acting in cis and thought to be transcriptional interference with the abd-A promoter. Using in situ hybridization, a previous work suggested that the iab8ncRNA transcript forms discrete foci restricted to the nuclear periphery and that this localization may be important for its function. In order to better characterize the intra-cellular localization of the iab-8ncRNA we used the MS2-MCP system, which allows fluorescent labeling of RNA in cells and relies on the interaction between GFP-tagged MS2 coat protein (MCP-GFP) and MS2 RNA stem loops. Our results indicate that the large foci seen in previous studies correspond to the site of iab8ncRNA transcription and that the foci seen may simply be an indication of the level of transcription at the locus. We find no evidence to suggest that this localization is important for its function on abd-A repression. We discuss the idea that the iab-8ncRNA may be a relic of a more general ancient mechanism of posterior dominance during the emergence of the hox clusters that was mediated by transcriptional interference.
Collapse
|
6
|
Functional role of dimerization and CP190 interacting domains of CTCF protein in Drosophila melanogaster. BMC Biol 2015; 13:63. [PMID: 26248466 PMCID: PMC4528719 DOI: 10.1186/s12915-015-0168-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/15/2015] [Indexed: 12/22/2022] Open
Abstract
Background Insulators play a central role in gene regulation, chromosomal architecture and genome function in higher eukaryotes. To learn more about how insulators carry out their diverse functions, we have begun an analysis of the Drosophila CTCF (dCTCF). CTCF is one of the few insulator proteins known to be conserved from flies to man. Results In the studies reported here we have focused on the identification and characterization of two dCTCF protein interaction modules. The first mediates dCTCF multimerization, while the second mediates dCTCF–CP190 interactions. The multimerization domain maps in the N-terminus of the dCTCF protein and likely mediates the formation of tetrameric complexes. The CP190 interaction module encompasses a sequence ~200 amino acids long that spans the C-terminal and mediates interactions with the N-terminal BTB domain of the CP190 protein. Transgene rescue experiments showed that a dCTCF protein lacking sequences critical for CP190 interactions was almost as effective as wild type in rescuing the phenotypic effects of a dCTCF null allele. The mutation did, however, affect CP190 recruitment to specific Drosophila insulator elements and had a modest effect on dCTCF chromatin association. A protein lacking the N-terminal dCTCF multimerization domain incompletely rescued the zygotic and maternal effect lethality of the null and did not rescue the defects in Abd-B regulation evident in surviving adult dCTCF mutant flies. Finally, we show that elimination of maternally contributed dCTCF at the onset of embryogenesis has quite different effects on development and Abd-B regulation than is observed when the homozygous mutant animals develop in the presence of maternally derived dCTCF activity. Conclusions Our results indicate that dCTCF–CP190 interactions are less critical for the in vivo functions of the dCTCF protein than the N-terminal dCTCF–dCTCF interaction domain. We also show that the phenotypic consequences of dCTCF mutations differ depending upon when and how dCTCF activity is lost. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0168-7) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Kim KH, Yoo S. Sequence-specific interaction between ABD-B homeodomain and castor gene in Drosophila. BMB Rep 2014; 47:92-7. [PMID: 24219869 PMCID: PMC4163903 DOI: 10.5483/bmbrep.2014.47.2.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/06/2013] [Accepted: 06/12/2013] [Indexed: 12/26/2022] Open
Abstract
We have examined the effect of bithorax complex genes on the expression of castor gene. During the embryonic stages 12-15, both Ultrabithorax and abdominal-A regulated the castor gene expression negatively, whereas Abdominal-B showed a positive correlation with the castor gene expression according to real-time PCR. To investigate whether ABD-B protein directly interacts with the castor gene, electrophoretic mobility shift assays were performed using the recombinant ABD-B homeodomain and oligonucleotides, which are located within the region 10 kb upstream of the castor gene. The results show that ABD-B protein directly binds to the castor gene specifically. ABD-B binds more strongly to oligonucleotides containing two 5'-TTAT-3' canonical core motifs than the probe containing the 5'-TTAC-3' motif. In addition, the sequences flanking the core motif are also involved in the protein-DNA interaction. The results demonstrate the importance of HD for direct binding to target sequences to regulate the expression level of the target genes. [BMB Reports 2014; 47(2): 92-97]
Collapse
Affiliation(s)
- Keon-Hee Kim
- Department of Life Sciences, College of Sciences, Yeungnam University, Gyeongsan 712-749, Korea
| | - Siuk Yoo
- Department of Life Sciences, College of Sciences, Yeungnam University, Gyeongsan 712-749, Korea
| |
Collapse
|
8
|
Bowman SK, Deaton AM, Domingues H, Wang PI, Sadreyev RI, Kingston RE, Bender W. H3K27 modifications define segmental regulatory domains in the Drosophila bithorax complex. eLife 2014; 3:e02833. [PMID: 25082344 PMCID: PMC4139060 DOI: 10.7554/elife.02833] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The bithorax complex (BX-C) in Drosophila melanogaster is a cluster of homeotic genes that determine body segment identity. Expression of these genes is governed by cis-regulatory domains, one for each parasegment. Stable repression of these domains depends on Polycomb Group (PcG) functions, which include trimethylation of lysine 27 of histone H3 (H3K27me3). To search for parasegment-specific signatures that reflect PcG function, chromatin from single parasegments was isolated and profiled. The H3K27me3 profiles across the BX-C in successive parasegments showed a 'stairstep' pattern that revealed sharp boundaries of the BX-C regulatory domains. Acetylated H3K27 was broadly enriched across active domains, in a pattern complementary to H3K27me3. The CCCTC-binding protein (CTCF) bound the borders between H3K27 modification domains; it was retained even in parasegments where adjacent domains lack H3K27me3. These findings provide a molecular definition of the homeotic domains, and implicate precisely positioned H3K27 modifications as a central determinant of segment identity.
Collapse
Affiliation(s)
- Sarah K Bowman
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Genetics, Harvard Medical School, Boston, United States
| | - Aimee M Deaton
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Genetics, Harvard Medical School, Boston, United States
| | - Heber Domingues
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Peggy I Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Genetics, Harvard Medical School, Boston, United States
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Pathology, Harvard Medical School, Boston, United States
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States Department of Genetics, Harvard Medical School, Boston, United States
| | - Welcome Bender
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| |
Collapse
|
9
|
Gummalla M, Galetti S, Maeda RK, Karch F. Hox gene regulation in the central nervous system of Drosophila. Front Cell Neurosci 2014; 8:96. [PMID: 24795565 PMCID: PMC4005941 DOI: 10.3389/fncel.2014.00096] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 12/20/2022] Open
Abstract
Hox genes specify the structures that form along the anteroposterior (AP) axis of bilateria. Within the genome, they often form clusters where, remarkably enough, their position within the clusters reflects the relative positions of the structures they specify along the AP axis. This correspondence between genomic organization and gene expression pattern has been conserved through evolution and provides a unique opportunity to study how chromosomal context affects gene regulation. In Drosophila, a general rule, often called “posterior dominance,” states that Hox genes specifying more posterior structures repress the expression of more anterior Hox genes. This rule explains the apparent spatial complementarity of Hox gene expression patterns in Drosophila. Here we review a noticeable exception to this rule where the more-posteriorly expressed Abd-B Hox gene fails to repress the more-anterior abd-A gene in cells of the central nervous system (CNS). While Abd-B is required to repress ectopic expression of abd-A in the posterior epidermis, abd-A repression in the posterior CNS is accomplished by a different mechanism that involves a large 92 kb long non-coding RNA (lncRNA) encoded by the intergenic region separating abd-A and Abd-B (the iab8ncRNA). Dissection of this lncRNA revealed that abd-A is repressed by the lncRNA using two redundant mechanisms. The first mechanism is mediated by a microRNA (mir-iab-8) encoded by intronic sequence within the large iab8-ncRNA. Meanwhile, the second mechanism seems to involve transcriptional interference by the long iab-8 ncRNA on the abd-A promoter. Recent work demonstrating CNS-specific regulation of genes by ncRNAs in Drosophila, seem to highlight a potential role for the iab-8-ncRNA in the evolution of the Drosophila Hox complexes.
Collapse
Affiliation(s)
- Maheshwar Gummalla
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland ; Institute of Biochemistry, University of Medicine - University of Göttingen Göttingen, Germany
| | - Sandrine Galetti
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland
| | - Robert K Maeda
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland
| | - François Karch
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland
| |
Collapse
|
10
|
Homeotic gene regulation: a paradigm for epigenetic mechanisms underlying organismal development. Subcell Biochem 2014; 61:177-207. [PMID: 23150252 DOI: 10.1007/978-94-007-4525-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The organization of eukaryotic genome into chromatin within the nucleus eventually dictates the cell type specific expression pattern of genes. This higher order of chromatin organization is established during development and dynamically maintained throughout the life span. Developmental mechanisms are conserved in bilaterians and hence they have body plan in common, which is achieved by regulatory networks controlling cell type specific gene expression. Homeotic genes are conserved in metazoans and are crucial for animal development as they specify cell type identity along the anterior-posterior body axis. Hox genes are the best studied in the context of epigenetic regulation that has led to significant understanding of the organismal development. Epigenome specific regulation is brought about by conserved chromatin modulating factors like PcG/trxG proteins during development and differentiation. Here we discuss the conserved epigenetic mechanisms relevant to homeotic gene regulation in metazoans.
Collapse
|
11
|
Birkholz O, Vef O, Rogulja-Ortmann A, Berger C, Technau GM. Abdominal-B and caudal inhibit the formation of specific neuroblasts in the Drosophila tail region. Development 2013; 140:3552-64. [PMID: 23903193 PMCID: PMC3915569 DOI: 10.1242/dev.096099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The central nervous system of Drosophila melanogaster consists of fused segmental units (neuromeres), each generated by a characteristic number of neural stem cells (neuroblasts). In the embryo, thoracic and anterior abdominal neuromeres are almost equally sized and formed by repetitive sets of neuroblasts, whereas the terminal abdominal neuromeres are generated by significantly smaller populations of progenitor cells. Here we investigated the role of the Hox gene Abdominal-B in shaping the terminal neuromeres. We show that the regulatory isoform of Abdominal-B (Abd-B.r) not only confers abdominal fate to specific neuroblasts (e.g. NB6-4) and regulates programmed cell death of several progeny cells within certain neuroblast lineages (e.g. NB3-3) in parasegment 14, but also inhibits the formation of a specific set of neuroblasts in parasegment 15 (including NB7-3). We further show that Abd-B.r requires cooperation of the ParaHox gene caudal to unfold its full competence concerning neuroblast inhibition and specification. Thus, our findings demonstrate that combined action of Abdominal-B and caudal contributes to the size and composition of the terminal neuromeres by regulating both the number and lineages of specific neuroblasts.
Collapse
|
12
|
Rivas ML, Espinosa-Vázquez JM, Sambrani N, Greig S, Merabet S, Graba Y, Castelli-Gair Hombría J. Antagonism versus cooperativity with TALE cofactors at the base of the functional diversification of Hox protein function. PLoS Genet 2013; 9:e1003252. [PMID: 23408901 PMCID: PMC3567137 DOI: 10.1371/journal.pgen.1003252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
Extradenticle (Exd) and Homothorax (Hth) function as positive transcriptional cofactors of Hox proteins, helping them to bind specifically their direct targets. The posterior Hox protein Abdominal-B (Abd-B) does not require Exd/Hth to bind DNA; and, during embryogenesis, Abd-B represses hth and exd transcription. Here we show that this repression is necessary for Abd-B function, as maintained Exd/Hth expression results in transformations similar to those observed in loss-of-function Abd-B mutants. We characterize the cis regulatory module directly regulated by Abd-B in the empty spiracles gene and show that the Exd/Hth complex interferes with Abd-B binding to this enhancer. Our results suggest that this novel Exd/Hth function does not require the complex to bind DNA and may be mediated by direct Exd/Hth binding to the Abd-B homeodomain. Thus, in some instances, the main positive cofactor complex for anterior Hox proteins can act as a negative factor for the posterior Hox protein Abd-B. This antagonistic interaction uncovers an alternative way in which MEIS and PBC cofactors can modulate Abd-B like posterior Hox genes during development.
Collapse
Affiliation(s)
| | | | - Nagraj Sambrani
- IBDML, CNRS/Université de la Méditerranée, Marseille, France
| | - Stephen Greig
- Akam Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Samir Merabet
- IBDML, CNRS/Université de la Méditerranée, Marseille, France
| | - Yacine Graba
- IBDML, CNRS/Université de la Méditerranée, Marseille, France
| | | |
Collapse
|
13
|
Abstract
Cell-cell signaling and adhesion are critical for establishing tissue architecture during development and for maintaining tissue architecture and function in the adult. Defects in adhesion and signaling can result in mislocalization of cells, uncontrolled proliferation and improper differentiation, leading to tissue overgrowth, tumor formation, and cancer metastasis. An important example is found in the germline. Germ cells that are not incorporated into the gonad exhibit a greater propensity for forming germ cell tumors, and defects in germline development can reduce fertility. While much attention is given to germ cells, their development into functional gametes depends upon somatic gonadal cells. The study of model organisms has provided great insights into how somatic gonadal cells are specified, the molecular mechanisms that regulate gonad morphogenesis, and the role of germline-soma communication in the establishment and maintenance of the germline stem cell niche. This work will be discussed in the context of Drosophila melanogaster.
Collapse
Affiliation(s)
- Jennifer C Jemc
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
14
|
Sexually dimorphic regulation of the Wingless morphogen controls sex-specific segment number in Drosophila. Proc Natl Acad Sci U S A 2011; 108:11139-44. [PMID: 21690416 DOI: 10.1073/pnas.1108431108] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sexual dimorphism is widespread throughout the metazoa and plays important roles in mate recognition and preference, sex-based niche partitioning, and sex-specific coadaptation. One notable example of sex-specific differences in insect body morphology is presented by the higher diptera, such as Drosophila, in which males develop fewer abdominal segments than females. Because diversity in segment number is a distinguishing feature of major arthropod clades, it is of fundamental interest to understand how different numbers of segments can be generated within the same species. Here we show that sex-specific and segment-specific regulation of the Wingless (Wg) morphogen underlies the development of sexually dimorphic adult segment number in Drosophila. Wg expression is repressed in the developing terminal male abdominal segment by the combination of the Hox protein Abdominal-B (Abd-B) and the sex-determination regulator Doublesex (Dsx). The subsequent loss of the terminal male abdominal segment during pupation occurs through a combination of developmental processes including segment compartmental transformation, apoptosis, and suppression of cell proliferation. Furthermore, we show that ectopic expression of Wg is sufficient to rescue this loss. We propose that dimorphic Wg regulation, in concert with monomorphic segment-specific programmed cell death, are the principal mechanisms of sculpting the sexually dimorphic abdomen of Drosophila.
Collapse
|
15
|
Ho MCW, Schiller BJ, Akbari OS, Bae E, Drewell RA. Disruption of the abdominal-B promoter tethering element results in a loss of long-range enhancer-directed Hox gene expression in Drosophila. PLoS One 2011; 6:e16283. [PMID: 21283702 PMCID: PMC3025016 DOI: 10.1371/journal.pone.0016283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 12/21/2010] [Indexed: 11/29/2022] Open
Abstract
There are many examples within gene complexes of transcriptional enhancers interacting with only a subset of target promoters. A number of molecular mechanisms including promoter competition, insulators and chromatin looping are thought to play a role in regulating these interactions. At the Drosophila bithorax complex (BX-C), the IAB5 enhancer specifically drives gene expression only from the Abdominal-B (Abd-B) promoter, even though the enhancer and promoter are 55 kb apart and are separated by at least three insulators. In previous studies, we discovered that a 255 bp cis-regulatory module, the promoter tethering element (PTE), located 5′ of the Abd-B transcriptional start site is able to tether IAB5 to the Abd-B promoter in transgenic embryo assays. In this study we examine the functional role of the PTE at the endogenous BX-C using transposon-mediated mutagenesis. Disruption of the PTE by P element insertion results in a loss of enhancer-directed Abd-B expression during embryonic development and a homeotic transformation of abdominal segments. A partial deletion of the PTE and neighboring upstream genomic sequences by imprecise excision of the P element also results in a similar loss of Abd-B expression in embryos. These results demonstrate that the PTE is an essential component of the regulatory network at the BX-C and is required in vivo to mediate specific long-range enhancer-promoter interactions.
Collapse
Affiliation(s)
- Margaret C. W. Ho
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Benjamin J. Schiller
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Omar S. Akbari
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Esther Bae
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, United States of America
| | - Robert A. Drewell
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Kyrchanova O, Ivlieva T, Toshchakov S, Parshikov A, Maksimenko O, Georgiev P. Selective interactions of boundaries with upstream region of Abd-B promoter in Drosophila bithorax complex and role of dCTCF in this process. Nucleic Acids Res 2010; 39:3042-52. [PMID: 21149269 PMCID: PMC3082887 DOI: 10.1093/nar/gkq1248] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Expression of the genes Ubx, abd-A, and Abd-B of the bithorax complex depends on its cis-regulatory region, which is divided into discrete functional domains (iab). Boundary/insulator elements, named Mcp, Fab-6, Fab-7 and Fab-8 (PTS/F8), have been identified at the borders of the iab domains. Recently, binding sites for a Drosophila homolog of the vertebrate insulator protein CTCF have been identified in Mcp, Fab-6 and Fab-8 and also in several regions that correspond to predicted boundaries, Fab-3 and Fab-4 in particular. Taking into account the inability of the yeast GAL4 activator to stimulate the white promoter when the activator and the promoter are separated by a 5-kb yellow gene, we have tested functional interactions between the boundaries. The results show that all dCTCF-containing boundaries interact with each other. However, inactivation of dCTCF binding sites in Mcp, Fab-6 and PTS/F8 only partially reduces their ability to interact, suggesting the presence of additional protein(s) supporting distant interactions between the boundaries. Interestingly, only Fab-6, Fab-7 (which contains no dCTCF binding sites) and PTS/F8 interact with the upstream region of the Abd-B promoter. Thus, the boundaries might be involved in supporting the specific interactions between iab enhancers and promoters of the bithorax complex.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow 119334, Russia
| | | | | | | | | | | |
Collapse
|
17
|
Lin Q, Lin L, Zhou J. Chromatin insulator and the promoter targeting sequence modulate the timing of long-range enhancer-promoter interactions in the Drosophila embryo. Dev Biol 2010; 339:329-37. [PMID: 20045684 DOI: 10.1016/j.ydbio.2009.12.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/10/2009] [Accepted: 12/19/2009] [Indexed: 10/20/2022]
Abstract
The homeotic genes are essential to the patterning of the anterior-posterior axis along the developing Drosophila embryo. The expression timing and levels of these genes are crucial for the correct specification of segmental identity. The Abdominal-B (Abd-B) gene is first detected in the most posterior abdominal segments at high levels and gradually appears in progressively anterior abdominal segments in lower amounts. Regulatory mutations affecting this expression pattern produce homeotic transformations in the abdomen. The promoter targeting sequences (PTS) from Abd-B locus overcome the enhancer blocking effect of insulators and facilitate long-range enhancer-promoter interactions in transgenic flies (1, 2). In this study, we found that transgene activation by the IAB5 enhancer can be delayed by inserting a 9.5 kb 3' Abd-B regulatory region containing the Frontabdominal-8 (Fab-8) insulator and the PTS element. We found that the delay is caused by the PTS and an insulator, and it is not specific to the enhancer or the promoter tested. Based on these findings, we hypothesize that the delay of remote enhancers is responsible for the Abd-B expression pattern, which is at least in part due to the regulatory activities of the PTS elements and chromatin boundaries.
Collapse
Affiliation(s)
- Qing Lin
- University of Pennsylvania School of Medicine, The Children's Hospital of Philadelphia, Division of Neonatology, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
18
|
Kostyuchenko MV, Savitskaya EE, Krivega MN, Georgiev PG. Several copies of insulator from MDG4 can determine the interaction between positively and negatively acting regulatory elements and promoter of the miniwhite gene of Drosophila melanogaster. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408120120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Kyrchanova O, Toshchakov S, Podstreshnaya Y, Parshikov A, Georgiev P. Functional interaction between the Fab-7 and Fab-8 boundaries and the upstream promoter region in the Drosophila Abd-B gene. Mol Cell Biol 2008; 28:4188-95. [PMID: 18426914 PMCID: PMC2423118 DOI: 10.1128/mcb.00229-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 04/05/2008] [Indexed: 11/20/2022] Open
Abstract
Boundary elements have been found in the regulatory region of the Drosophila melanogaster Abdominal-B (Abd-B) gene, which is subdivided into a series of iab domains. The best-studied Fab-7 and Fab-8 boundaries flank the iab-7 enhancer and isolate it from the four promoters regulating Abd-B expression. Recently binding sites for the Drosophila homolog of the vertebrate insulator protein CTCF (dCTCF) were identified in the Fab-8 boundary and upstream of Abd-B promoter A, with no binding of CTCF to the Fab-7 boundary being detected either in vivo or in vitro. Taking into account the inability of the yeast GAL4 activator to stimulate the white promoter when its binding sites are separated by a 5-kb yellow gene, we have tested the functional interactions between the Fab-7 and Fab-8 boundaries and between these boundaries and the upstream promoter A region containing a dCTCF binding site. It has been found that dCTCF binding sites are essential for pairing between two Fab-8 insulators. However, a strong functional interaction between the Fab-7 and Fab-8 boundaries suggests that additional, as yet unidentified proteins are involved in long-distance interactions between them. We have also shown that Fab-7 and Fab-8 boundaries effectively interact with the upstream region of the Abd-B promoter.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | | | | | | | | |
Collapse
|
20
|
Stark A, Bushati N, Jan CH, Kheradpour P, Hodges E, Brennecke J, Bartel DP, Cohen SM, Kellis M. A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands. Genes Dev 2008; 22:8-13. [PMID: 18172160 DOI: 10.1101/gad.1613108] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are approximately 22-nucleotide RNAs that are processed from characteristic precursor hairpins and pair to sites in messages of protein-coding genes to direct post-transcriptional repression. Here, we report that the miRNA iab-4 locus in the Drosophila Hox cluster is transcribed convergently from both DNA strands, giving rise to two distinct functional miRNAs. Both sense and antisense miRNA products target neighboring Hox genes via highly conserved sites, leading to homeotic transformations when ectopically expressed. We also report sense/antisense miRNAs in mouse and find antisense transcripts close to many miRNAs in both flies and mammals, suggesting that additional sense/antisense pairs exist.
Collapse
Affiliation(s)
- Alexander Stark
- Broad Institute of Massachussetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02141, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The iab-4 noncoding RNA from the Drosophila bithorax complex is the substrate for a microRNA (miRNA). Gene conversion was used to delete the hairpin precursor of this miRNA; flies homozygous for this deletion are sterile. Surprisingly, this mutation complements with rearrangement breakpoint mutations that disrupt the iab-4 RNA but fails to complement with breaks mapping in the iab-5 through iab-7 regulatory regions. These breaks disrupt the iab-8 RNA, transcribed from the opposite strand. This iab-8 RNA also encodes a miRNA, detected on Northern blots, derived from the hairpin complementary to the iab-4 precursor hairpin. Ultrabithorax is a target of both miRNAs, although its repression is subtle in both cases.
Collapse
Affiliation(s)
- Welcome Bender
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
22
|
Rodin S, Kyrchanova O, Pomerantseva E, Parshikov A, Georgiev P. New properties of Drosophila fab-7 insulator. Genetics 2007; 177:113-21. [PMID: 17890362 PMCID: PMC2013716 DOI: 10.1534/genetics.107.075887] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the Abd-B 3' cis-regulatory region, which is subdivided into a series of iab domains, boundary elements have previously been detected, including the Fab-7 element providing for the autonomous functioning of the iab-6 and iab-7 cis-regulatory domains. Here, it has been shown that a single copy of the 860-bp Fab-7 insulator effectively blocks the yellow and white enhancers. The eye and testis enhancers can stimulate the white promoter across the pair of Fab-7, which is indicative of a functional interaction between the insulators. Unexpectedly, Fab-7 has proved to lose the enhancer-blocking activity when placed near the white promoter. It seems likely that Fab-7 strengthens the relatively weak white promoter, which leads to the efficient enhancer-promoter interaction and insulator bypass.
Collapse
Affiliation(s)
- Sergey Rodin
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | | | | | | | | |
Collapse
|
23
|
Kyrchanova O, Toshchakov S, Parshikov A, Georgiev P. Study of the functional interaction between Mcp insulators from the Drosophila bithorax complex: effects of insulator pairing on enhancer-promoter communication. Mol Cell Biol 2007; 27:3035-43. [PMID: 17283051 PMCID: PMC1899939 DOI: 10.1128/mcb.02203-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Boundary elements have been found in the Abd-B 3' cis-regulatory region, which is subdivided into a series of iab domains. Previously, a 340-bp insulator-like element, M(340), was identified in one such 755-bp Mcp fragment linked to the PcG-dependent silencer. In this study, we identified a 210-bp core that was sufficient for pairing of sequence-remote Mcp elements. In two-gene transgenic constructs with two Mcp insulators (or their cores) surrounding yellow, the upstream yeast GAL4 sites were able to activate the distal white only if the insulators were in the opposite orientations (head-to-head or tail-to-tail), which is consistent with the looping/bypass model. The same was true for the efficiency of the cognate eye enhancer, while yellow thus isolated in the loop from its enhancers was blocked more strongly. These results indicate that the relative placement and orientation of insulator-like elements can determine proper enhancer-promoter communication.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | | | | | | |
Collapse
|
24
|
de Navas L, Foronda D, Suzanne M, Sánchez-Herrero E. A simple and efficient method to identify replacements of P-lacZ by P-Gal4 lines allows obtaining Gal4 insertions in the bithorax complex of Drosophila. Mech Dev 2006; 123:860-7. [PMID: 16971094 DOI: 10.1016/j.mod.2006.07.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 07/25/2006] [Accepted: 07/26/2006] [Indexed: 01/12/2023]
Abstract
The functional replacement of one gene product by another one is a powerful method to study specificity in development and evolution. In Drosophila, the Gal4/UAS method has been used to analyze in vivo such functional substitutions. To this aim, Gal4 lines that inactivate a gene and reproduce its expression pattern are required, and they can be frequently obtained by replacing pre-existing P-lacZ lines with such characteristics. We have devised a new method to quickly identify replacements of P-lacZ lines by P-Gal4 lines, and applied it successfully to obtain Gal4 insertions in the Ultrabithorax and Abdominal-B Hox genes. We have used these lines to study the functional replacement of a Hox gene by another one. Our experiments confirm that the abdominal-A gene can replace Ultrabithorax in haltere development but that it cannot substitute for Abdominal-B in the formation of the genitalia.
Collapse
Affiliation(s)
- Luis de Navas
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
25
|
Chen EH, Christiansen AE, Baker BS. Allocation and specification of the genital disc precursor cells in Drosophila. Dev Biol 2006; 281:270-85. [PMID: 15893978 DOI: 10.1016/j.ydbio.2005.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2004] [Revised: 02/19/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
The adult structures of Drosophila melanogaster are derived from larval imaginal discs, which originate as clusters of cells within the embryonic ectoderm. The genital imaginal disc is composed of three primordia (female genital, male genital, and anal primordia) that originate from the embryonic tail segments A8, A9, and A10, respectively, and produce the sexually dimorphic genitalia and analia. We show that the genital disc precursor cells (GDPCs) are first detectable during mid-embryogenesis as a 22-cell cluster in the ventral epidermis. Analysis of mutant and double mutant phenotypes of embryonic patterning genes in the GDPCs, together with their expression patterns in these cells, revealed the following with respect to the origins and specification of the GDPCs. The allocation of the GDPCs from the ventral epidermis requires the function of ventral patterning genes, including the EGF receptor and the spitz group of genes. The ventral localization of the GDPCs is further restricted by the action of dorsal patterning genes. Along the anterior-posterior axis, several segment polarity genes (wingless, engrailed, hedgehog, and patched) are required for the proper allocation of the GDPCs. These segment polarity genes are expressed in some, but not all of the GDPCs, indicating that anterior and posterior compartments are not fully established in the GDPCs. In addition, we found that the three primordia of the larval genital disc have already been specified in the GDPCs by the coordinated actions of the homeotic (Hox) genes, abdominal-A, Abdominal-B, and caudal. By identifying how these different patterning networks regulate the allocation and primordial organization of the 22 embryonic precursors of the compound genital disc, we demonstrate that at least some of the organization of the larval disc originates as positional information in the embryo, thus providing a context for further studies on the development of the genital disc.
Collapse
Affiliation(s)
- Elizabeth H Chen
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
26
|
Yoder JH, Carroll SB. The evolution of abdominal reduction and the recent origin of distinct Abdominal-B transcript classes in Diptera. Evol Dev 2006; 8:241-51. [PMID: 16686635 DOI: 10.1111/j.1525-142x.2006.00095.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In insects, the Hox gene Abdominal-B (Abd-B) governs the development of the posterior-most segments, the number and fate of which differ within and between orders. A striking feature of insect evolution is a trend toward the reduction of posterior abdominal segments which is most pronounced in higher Diptera. In Drosophila melanogaster, two distinct Abd-B transcript classes and protein isoforms are expressed in non-overlapping domains and have discrete functions in patterning the posterior abdomen. It has been proposed that evolutionary changes in Abd-B structure and expression are responsible for the reduction of the dipteran abdomen. We have investigated the relationship between the evolution of the Abd-B gene and abdominal reduction by analyzing the structure and expression of homologs from four additional dipterans representing distinct clades within the order. The lower dipteran mosquito Anopheles gambiae expresses a single Abd-B transcript class, as do two species phylogenetically intermediate to mosquitoes and drosophilids. These results delimit the evolution of distinct functional Abd-B isoforms to within the dipteran radiation after the origin of the reduced abdominal morphology. Furthermore, we found that the spatial distribution of Abd-B transcripts in non-drosophilid Diptera is identical to the combined domains of the two D. melanogaster Abd-B transcripts. Therefore, neither the structural evolution nor changes in the spatial regulation of Abd-B account for the derived abdomen of higher Diptera. The recent subfunctionalization of this Hox gene has occurred without any apparent morphological correlate. We conclude that regulatory modifications to developmental programs downstream of or parallel to Abd-B are responsible for the evolutionary reduction of the higher dipteran postabdomen.
Collapse
Affiliation(s)
- John H Yoder
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, 53706, USA
| | | |
Collapse
|
27
|
Chen Q, Lin L, Smith S, Lin Q, Zhou J. Multiple Promoter Targeting Sequences exist in Abdominal-B to regulate long-range gene activation. Dev Biol 2005; 286:629-36. [PMID: 16197941 DOI: 10.1016/j.ydbio.2005.08.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 08/01/2005] [Accepted: 08/11/2005] [Indexed: 11/15/2022]
Abstract
In complex genomes, insulators set up chromatin domain boundaries and protect promoters from inappropriate activation by enhancers from neighboring genes. The Drosophila Abdominal-B locus uses insulator elements to organize its large regulatory region into several body segment-specific chromatin domains. This organization leads to a problem in enhancer-promoter communication, that is, how do distal enhancers activate the Abd-B promoter when there are several insulators in between? This issue is partially resolved by the Promoter Targeting Sequence, which can overcome the enhancer blocking effect of an insulator. In this study, we describe a new Promoter Targeting Sequence, PTS-6, from the Abd-B 3' regulatory region. PTS-6, comprised of approximately 200 bp, was found to bypass both homologous Abdominal-B insulators, such as Fab-7 and Fab-8, and a heterologous insulator, suHw. Most importantly, it also overcomes a combination of two insulators such as Fab-7/Fab-8. Thus, PTS-6 could, in principle, target remote enhancers that are separated from the Abd-B promoter by multiple insulators. In addition, PTS-6 selectively targets the distal enhancer to only one transgenic promoter, and it strongly facilitates Abd-B enhancers. These results suggest that promoter targeting is necessary for long-range enhancer-promoter communication in Abd-B, and PTS elements could be a common occurrence in large, complex genetic loci.
Collapse
Affiliation(s)
- Qi Chen
- Gene Expression and Regulation Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
28
|
Gruzdeva N, Kyrchanova O, Parshikov A, Kullyev A, Georgiev P. The Mcp element from the bithorax complex contains an insulator that is capable of pairwise interactions and can facilitate enhancer-promoter communication. Mol Cell Biol 2005; 25:3682-9. [PMID: 15831473 PMCID: PMC1084309 DOI: 10.1128/mcb.25.9.3682-3689.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Chromatin insulators, or boundary elements, appear to control eukaryotic gene expression by regulating interactions between enhancers and promoters. Boundaries have been identified in the 3' cis-regulatory region of Abd-B, which is subdivided into a series of separate iab domains. Boundary elements such as Mcp, Fab-7, and Fab-8 and adjacent silencers flank the iab domains and restrict the activity of the iab enhancers. We have identified an insulator in the 755-bp Mcp fragment that is linked to the previously characterized Polycomb response element (PRE) and silences the adjacent genes. This insulator blocks the enhancers of the yellow and white genes and protects them from PRE-mediated repression. The interaction between the Mcp elements, each containing the insulator and PRE, allows the eye enhancer to activate the white promoter over the repressed yellow domain. The same level of white activation was observed when the Mcp element combined with the insulator alone was interposed between the eye enhancer and the promoter, suggesting that the insulator is responsible for the interaction between the Mcp elements.
Collapse
Affiliation(s)
- Natalia Gruzdeva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | | | | | | | | |
Collapse
|
29
|
DeFalco T, Le Bras S, Van Doren M. Abdominal-B is essential for proper sexually dimorphic development of the Drosophila gonad. Mech Dev 2005; 121:1323-33. [PMID: 15454263 DOI: 10.1016/j.mod.2004.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 06/30/2004] [Accepted: 07/01/2004] [Indexed: 11/19/2022]
Abstract
Sexual dimorphism requires the integration of positional information in the embryo with the sex determination pathway. Homeotic genes are a major source of positional information responsible for patterning along the anterior-posterior axis in embryonic development, and are likely to play a critical role in sexual dimorphism. Here, we investigate the role of homeotic genes in the sexually dimorphic development of the gonad in Drosophila. We have found that Abdominal-B (ABD-B) is expressed in a sexually dimorphic manner in the embryonic gonad. Furthermore, Abd-B is necessary and sufficient for specification of a sexually dimorphic cell type, the male-specific somatic gonadal precursors (msSGPs). In Abd-B mutants, the msSGPs are not specified and male gonads now resemble female gonads with respect to these cells. Ectopic expression of Abd-B is sufficient to induce formation of extra msSGPs in additional segments of the embryo. Abd-B works together with abdominal-A to pattern the non-sexually dimorphic somatic gonad in both sexes, while Abd-B alone specifies the msSGPs. Our results indicate that Abd-B acts at multiple levels to regulate gonad development and that Abd-B class homeotic genes are conserved factors in establishing gonad sexual dimorphism in diverse species.
Collapse
Affiliation(s)
- Tony DeFalco
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, 305 Mudd Hall, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
30
|
Abstract
The Crustacea present a variety of body plans not encountered in any other class or phylum of the Metazoa. Here we review our current knowledge on the complement and expression of the Hox genes in Crustacea, addressing questions related to the evolution of body architecture. Specifically, we discuss the molecular mechanisms underlying the homeotic transformation of legs into feeding appendages, which occurred in parallel in several branches of the crustacean evolutionary tree. A second issue that can be approached by the comparative study of Hox genes and their expression in the Crustacea bears on the homology of the abdomen. We discuss whether the so-called "abdominal" tagma of the crustaceans is homologous to the abdomen of insects. In addition, the homology of the abdomen between malacostracan and non-malacostracan crustaceans has also been questioned. We also address the question of the molecular developmental basis of the apparent lack of an abdomen in barnacles. We discuss these issues in relation to the problem of constraint versus adaptation in evolution.
Collapse
Affiliation(s)
- Jean S Deutsch
- Equipe Evolution et Développement, Université P. et M. Curie, Paris, France.
| | | |
Collapse
|
31
|
Drewell RA, Bae E, Burr J, Lewis EB. Transcription defines the embryonic domains of cis-regulatory activity at the Drosophila bithorax complex. Proc Natl Acad Sci U S A 2002; 99:16853-8. [PMID: 12477928 PMCID: PMC139233 DOI: 10.1073/pnas.222671199] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2002] [Indexed: 11/18/2022] Open
Abstract
The extensive infraabdominal (iab) region contains a number of cis-regulatory elements, including enhancers, silencers, and insulators responsible for directing the developmental expression of the abdominal-A and Abdominal-B homeotic genes at the Drosophila bithorax complex. It is unclear how these regulatory elements are primed for activity early in embryogenesis, but the 100-kb intergenic region is subject to a complex transcriptional program. Here, we use molecular and genetic methods to examine the functional activity of the RNAs produced from this region and their role in cis regulation. We show that a subset of these transcripts demonstrates a distinct pattern of cellular localization. Furthermore, the transcripts from each iab region are discrete and the transcripts do not spread across the insulator elements that delineate the iab regions. In embryos carrying a Mcp deletion, the intergenic transcription pattern is disrupted in the iab4 region and the fourth abdominal segment is transformed into the fifth. We propose that intergenic transcription is required early in embryogenesis to initiate the activation of the Drosophila bithorax complex and define the domains of activity for the iab cis-regulatory elements. We also discuss a possible mechanism by which this may occur.
Collapse
Affiliation(s)
- Robert A Drewell
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
32
|
Bae E, Calhoun VC, Levine M, Lewis EB, Drewell RA. Characterization of the intergenic RNA profile at abdominal-A and Abdominal-B in the Drosophila bithorax complex. Proc Natl Acad Sci U S A 2002; 99:16847-52. [PMID: 12481037 PMCID: PMC139232 DOI: 10.1073/pnas.222671299] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The correct spatial expression of two Drosophila bithorax complex (BX-C) genes, abdominal-A (abdA) and Abdominal-B (AbdB), is dependent on the 100-kb intergenic infraabdominal (iab) region. The iab region is known to contain a number of different domains (iab2 through iab8) that harbor cis-regulatory elements responsible for directing expression of abdA and AbdB in the second through eighth abdominal segments. Here, we use in situ hybridization to perform high-resolution mapping of the transcriptional activity in the iab control regions. We show that transcription of the control regions themselves is abundant and precedes activation of the abdA and AbdB genes. As with the homeotic genes of the BX-C, the transcription patterns of the RNAs from the iab control regions demonstrate colinearity with the sequence of the iab regions along the chromosome and the domains in the embryo under the control of the specific iab regions. These observations suggest that the intergenic RNAs may play a role in initiating cis regulation at the BX-C early in development.
Collapse
Affiliation(s)
- Esther Bae
- Department of Molecular and Cell Biology, Division of Genetics and Development, 401 Barker Hall, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
33
|
Lo PCH, Skeath JB, Gajewski K, Schulz RA, Frasch M. Homeotic genes autonomously specify the anteroposterior subdivision of the Drosophila dorsal vessel into aorta and heart. Dev Biol 2002; 251:307-19. [PMID: 12435360 DOI: 10.1006/dbio.2002.0839] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The embryonic dorsal vessel in Drosophila possesses anteroposterior polarity and is subdivided into two chamber-like portions, the aorta in the anterior and the heart in the posterior. The heart portion features a wider bore as compared with the aorta and develops inflow valves (ostia) that allow the pumping of hemolymph from posterior toward the anterior. Here, we demonstrate that homeotic selector genes provide positional information that determines the anteroposterior subdivision of the dorsal vessel. Antennapedia (Antp), Ultrabithorax (Ubx), abdominal-A (abd-A), and Abdominal-B (Abd-B) are expressed in distinct domains along the anteroposterior axis within the dorsal vessel, and, in particular, the domain of abd-A expression in cardioblasts and pericardial cells coincides with the heart portion. We provide evidence that loss of abd-A function causes a transformation of the heart into aorta, whereas ectopic expression of abd-A in more anterior cardioblasts causes the aorta to assume heart-like features. These observations suggest that the spatially restricted expression and activity of abd-A determine heart identities in cells of the posterior portion of the dorsal vessel. We also show that Abd-B, which at earlier stages is expressed posteriorly to the cardiogenic mesoderm, represses cardiogenesis. In light of the developmental and morphological similarities between the Drosophila dorsal vessel and the primitive heart tube in early vertebrate embryos, these data suggest that Hox genes may also provide important anteroposterior cues during chamber specification in the developing vertebrate heart.
Collapse
Affiliation(s)
- Patrick C H Lo
- Brookdale Center for Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
34
|
Christiansen AE, Keisman EL, Ahmad SM, Baker BS. Sex comes in from the cold: the integration of sex and pattern. Trends Genet 2002; 18:510-6. [PMID: 12350340 DOI: 10.1016/s0168-9525(02)02769-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There has recently been a revolution in our understanding of how the Drosophila sex-determination hierarchy generates somatic sexual dimorphism. Most significantly, the sex hierarchy has been shown to modulate the activities of well-known signaling molecules (FGF, Wnt and TGF beta proteins) and transcription factors (BAB and DAC) to direct various sex-specific aspects of growth and differentiation. As some of the genes encoding these proteins are also the targets of Hox gene action, these and other findings are revealing the levels at which the sex determination and Hox patterning pathways are integrated to control growth, morphogenesis and differentiation.
Collapse
|
35
|
Mishra RK, Mihaly J, Barges S, Spierer A, Karch F, Hagstrom K, Schweinsberg SE, Schedl P. The iab-7 polycomb response element maps to a nucleosome-free region of chromatin and requires both GAGA and pleiohomeotic for silencing activity. Mol Cell Biol 2001; 21:1311-8. [PMID: 11158316 PMCID: PMC99583 DOI: 10.1128/mcb.21.4.1311-1318.2001] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the work reported here we have undertaken a functional dissection of a Polycomb response element (PRE) from the iab-7 cis-regulatory domain of the Drosophila melanogaster bithorax complex (BX-C). Previous studies mapped the iab-7 PRE to an 860-bp fragment located just distal to the Fab-7 boundary. Located within this fragment is an approximately 230-bp chromatin-specific nuclease-hypersensitive region called HS3. We have shown that HS3 is capable of functioning as a Polycomb-dependent silencer in vivo, inducing pairing-dependent silencing of a mini-white reporter. The HS3 sequence contains consensus binding sites for the GAGA factor, a protein implicated in the formation of nucleosome-free regions of chromatin, and Pleiohomeotic (Pho), a Polycomb group protein that is related to the mammalian transcription factor YY1. We show that GAGA and Pho interact with these sequences in vitro and that the consensus binding sites for the two proteins are critical for the silencing activity of the iab-7 PRE in vivo.
Collapse
Affiliation(s)
- R K Mishra
- Département de Zoologie et Biologie Animale, Université de Genève, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
P elements containing a 7 kb DNA fragment from the middle of the Drosophila bithorax complex insert preferentially into the bithorax complex or into the adjacent chromosome regions. This ‘homing’ property is similar to that reported for the engrailed promoter (Hama, C., Ali, Z. and Kornberg, T. B. (1990) Genes Dev. 4, 1079–1093). The 7 kb fragment does not contain any known promoter, but it acts as a boundary element separating adjacent segmental domains. An enhancer-trap P element was constructed with the homing fragment and the selectable marker flanked by FRT sites. P insertions can be trimmed down by Flp-mediated recombination to just the lacZ reporter, so that the (beta)-galactosidase pattern is not influenced by sequences inside the P element. Twenty insertions into the bithorax complex express (beta)-galactosidase in segmentally limited patterns, reflecting the segmental domains of the bithorax complex where the elements reside. The mapping of segmental domains has now been revised, with enlargement of the abx/bx, bxd/pbx, and the iab-3 domains. The FRT sites in the P elements permit recombination between pairs of elements on opposite chromosomes, to generate duplications or deletions of the DNA between the two insertion sites. Using this technique, the length of the Ultrabithorax transcription unit was varied from 37 to 138 kb, but there was surprisingly little effect on Ultrabithorax function.
Collapse
Affiliation(s)
- W Bender
- BCMP Department, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
37
|
Zhou J, Levine M. A novel cis-regulatory element, the PTS, mediates an anti-insulator activity in the Drosophila embryo. Cell 1999; 99:567-75. [PMID: 10612393 DOI: 10.1016/s0092-8674(00)81546-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Abd-B Hox gene contains an extended 3' cis-regulatory region that is subdivided into a series of separate lab domains. The lab-7 domain activates Abd-B in parasegment 12 (ps12), whereas lab-8 controls expression in ps13. iab-7 is flanked by two insulators, Fab-7 and Fab-8, which are thought to prevent regulatory factors, such as Polycomb silencers, from influencing neighboring iab domains. This organization poses a potential paradox, since insulator DNAs can work in a dominant fashion to block enhancer-promoter interactions over long distances. Here, we present evidence for a novel cis-regulatory sequence located within lab-7, the promoter targeting sequence (PTS), which permits distal enhancers to overcome the blocking effects of Fab-8 and the heterologous su(Hw) insulator. We propose that the PTS converts dominant, long-range insulators into local regulatory elements that separate neighboring lab domains.
Collapse
Affiliation(s)
- J Zhou
- Department of Molecular Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
38
|
Muller M, Hagstrom K, Gyurkovics H, Pirrotta V, Schedl P. The mcp element from the Drosophila melanogaster bithorax complex mediates long-distance regulatory interactions. Genetics 1999; 153:1333-56. [PMID: 10545463 PMCID: PMC1460818 DOI: 10.1093/genetics/153.3.1333] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the studies reported here, we have examined the properties of the Mcp element from the Drosophila melanogaster bithorax complex (BX-C). We have found that sequences from the Mcp region of BX-C have properties characteristic of Polycomb response elements (PREs), and that they silence adjacent reporters by a mechanism that requires trans-interactions between two copies of the transgene. However, Mcp trans-regulatory interactions have several novel features. In contrast to classical transvection, homolog pairing does not seem to be required. Thus, trans-regulatory interactions can be observed not only between Mcp transgenes inserted at the same site, but also between Mcp transgenes inserted at distant sites on the same chromosomal arm, or even on different arms. Trans-regulation can even be observed between transgenes inserted on different chromosomes. A small 800-bp Mcp sequence is sufficient to mediate these long-distance trans-regulatory interactions. This small fragment has little silencing activity on its own and must be combined with other Polycomb-Group-responsive elements to function as a "pairing-sensitive" silencer. Finally, this pairing element can also mediate long-distance interactions between enhancers and promoters, activating mini-white expression.
Collapse
Affiliation(s)
- M Muller
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA
| | | | | | | | | |
Collapse
|
39
|
Zhou J, Ashe H, Burks C, Levine M. Characterization of the transvection mediating region of the abdominal-B locus in Drosophila. Development 1999; 126:3057-65. [PMID: 10375498 DOI: 10.1242/dev.126.14.3057] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genetic studies have identified an unusual transvection process in the Abdominal-B (Abd-B) locus of Drosophila. In some cases distal infraabdominal (iab) regulatory domains continue to activate the Abd-B promoter even when translocated onto different chromosomes. Transvection depends on an approx. 10 kb genomic DNA sequence, termed the transvection mediating region (tmr), located immediately downstream of the Abd-B transcription unit. Here we report a detailed analysis of this region. Different DNA fragments from the tmr were inserted into a variety of P-transformation vectors. Analyses of reporter gene expression in transgenic embryos and adults identify at least three cis-regulatory elements, including two enhancers (IAB7 and IAB8) and a new insulator DNA (Frontabdominal-8, Fab-8). Evidence is also presented for a Polycomb Response Element (PRE) linked to the IAB8 enhancer, and an internal promoter in the iab-8 domain, which transcribes the iab-7 and iab-8 cis-regulatory DNA, including the Fab-8 insulator. We discuss the significance of these findings with regard to Abd-B transvection and long-range enhancer-promoter interactions in mammalian globin loci.
Collapse
Affiliation(s)
- J Zhou
- Dept Mol. Cell Biol., Division of Genetics, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
40
|
Sipos L, Mihály J, Karch F, Schedl P, Gausz J, Gyurkovics H. Transvection in the Drosophila Abd-B domain: extensive upstream sequences are involved in anchoring distant cis-regulatory regions to the promoter. Genetics 1998; 149:1031-50. [PMID: 9611211 PMCID: PMC1460194 DOI: 10.1093/genetics/149.2.1031] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Abd-B gene, one of the three homeotic genes in the Drosophila bithorax complex (BX-C), is required for the proper identity of the fifth through the eighth abdominal segments (corresponding to parasegments 10-14) of the fruitfly. The morphological difference between these four segments is due to the differential expression of Abd-B, which is achieved by the action of the parasegment-specific cis-regulatory regions infra-abdominal-5 (iab-5), -6, -7 and -8. The dominant gain-of-function mutation Frontabdominal-7 (Fab-7) removes a boundary separating two of these cis-regulatory regions, iab-6 and iab-7. As a consequence of the Fab-7 deletion, the parasegment 12- (PS12-) specific iab-7 is ectopically activated in PS11. This results in the transformation of the sixth abdominal segment (A6) into the seventh (A7) in Fab-7 flies. Here we report that point mutations of the Abd-B gene in trans suppress the Fab-7 phenotype in a pairing-dependent manner and thus represent a type of transvection. We show that the observed suppression is the result of trans-regulation of the defective Abd-B gene by the ectopically activated iab-7. Unlike previously demonstrated cases of trans-regulation in the Abd-B locus, trans-suppression of Fab-7 is sensitive to heterozygosity for chromosomal rearrangements that disturb homologous pairing at the nearby Ubx locus. However, in contrast to Ubx, the transvection we observed in the Abd-B locus is insensitive to the allelic status of zeste. Analysis of different deletion alleles of Abd-B that enhance trans-regulation suggests that an extensive upstream region, different from the sequences required for transcription initiation, mediates interactions between the iab cis-regulatory regions and the proximal Abd-B promoter. Moreover, we find that the amount of DNA deleted in the upstream region is roughly proportional to the strength of trans-interaction, suggesting that this region consists of numerous discrete elements that cooperate in tethering the iab regulatory domains to Abd-B. Possible implications of the tethering complex for the regulation of Abd-B are discussed. In addition, we present evidence that the tenacity of trans-interactions in the Abd-B gene may vary, depending upon the tissue and stage of development.
Collapse
Affiliation(s)
- L Sipos
- Hungarian Academy of Sciences, Biological Research Center, Institute of Genetics, H-6701 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
41
|
Castelli-Gair J. The lines gene of Drosophila is required for specific functions of the Abdominal-B HOX protein. Development 1998; 125:1269-74. [PMID: 9477325 DOI: 10.1242/dev.125.7.1269] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Hox genes encode homeobox transcription factors that control the formation of segment specific structures in the anterior-posterior axis. HOX proteins regulate the transcription of downstream targets acting both as repressors and as activators. Due to the similarity of their homeoboxes it is likely that much of the specificity of HOX proteins is determined by interaction with transcriptional cofactors, but few HOX cofactor proteins have yet been described. Here I present genetic evidence showing that lines, a segment polarity gene of Drosophila, is required for the function of the Abdominal-B protein. In lines mutant embryos Abdominal-B protein expression is normal but incapable of promoting its normal functions: formation of the posterior spiracles and specification of an eighth abdominal denticle belt. These defects arise because in lines mutant embryos the Abdominal-B protein cannot activate its direct target empty spiracles or other downstream genes while it can function as a repressor of Ultrabithorax and abdominal-A. The lines gene seems to be required exclusively for Abdominal-B but not for the function of other Hox genes.
Collapse
Affiliation(s)
- J Castelli-Gair
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
| |
Collapse
|
42
|
Mihaly J, Hogga I, Gausz J, Gyurkovics H, Karch F. In situ dissection of the Fab-7 region of the bithorax complex into a chromatin domain boundary and a Polycomb-response element. Development 1997; 124:1809-20. [PMID: 9165128 DOI: 10.1242/dev.124.9.1809] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parasegmental (PS)-specific expression of the homeotic genes of the bithorax-complex (BX-C) appears to depend upon the subdivision of the complex into a series of functionally independent cis-regulatory domains. Fab-7 is a regulatory element that lies between iab-6 and iab-7 (the PS11- and PS12-specific cis-regulatory domains, respectively). Deletion of Fab-7 causes ectopic expression of iab-7 in PS11 (where normally only iab-6 is active). Two models have been proposed to account for the dominant Fab-7 phenotype. The first considers that Fab-7 functions as a boundary element that insulates iab-6 and iab-7. The second model envisages that Fab-7 contains a silencer element that keeps iab-7 repressed in parasegments anterior to PS12. Using a P-element inserted in the middle of the Fab-7 region (the bit transposon), we have generated an extensive collection of new Fab-7 mutations that allow us to subdivide Fab-7 into a boundary element and a Polycomb-respond element (PRE). The boundary lies within 1 kb of DNA on the proximal side of the bit transposon (towards iab-6). Deletions removing this element alone cause a complex gain- and loss-of-function phenotype in PS11; in some groups of cells, both iab-6 and iab-7 are active, while in others both iab-6 and iab-7 are inactive. Thus, deletion of the boundary allows activating as well as repressing activities to travel between iab-6 and iab-7. We also provide evidences that the boundary region contains an enhancer blocker element. The Polycomb-response element lies within 0.5 kb of DNA immediately distal to the boundary (towards iab-7). Deletions removing the PRE alone do not typically cause any visible phenotype as homozygotes. Interestingly, weak ectopic activation of iab-7 is observed in hemizygous PRE deletions, suggesting that the mechanisms that keep iab-7 repressed in the absence of this element may depend upon chromosome pairing. These results help to reconcile the previously contradictory models on Fab-7 function and to shed light on how a chromatin domain boundary and a nearby PRE concur in the setting up of the appropriate PS-specific expression of the Abd-B gene of the BX-C.
Collapse
Affiliation(s)
- J Mihaly
- Department of Zoology and Animal Biology, University of Geneva, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Zhou J, Barolo S, Szymanski P, Levine M. The Fab-7 element of the bithorax complex attenuates enhancer-promoter interactions in the Drosophila embryo. Genes Dev 1996; 10:3195-201. [PMID: 8985187 DOI: 10.1101/gad.10.24.3195] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Enhancers integrate positive and negative regulatory information to direct localized patterns of gene expression in the Drosophila embryo. Here we present evidence for the occurrence of cis regulatory elements that control the levels of gene expression by modulating enhancer-promoter interactions. For this purpose we have investigated the Drosophila bithorax complex (BX-C) because genetic studies suggest that the BX-C contains as much as 300 kb of cis regulatory information. A specialized DNA element, Fab-7, has been proposed to function as a boundary element that separates the iab-6 and iab-7 cis regulatory regions within the Abd-B domain of the BX-C. A 1.2-kb Fab-7 DNA fragment was placed between divergently transcribed white and lacZ test promoters and challenged with several defined enhancers expressed in the early embryo. These studies suggest that Fab-7 functions as an attenuator, which weakens gene expression by reducing enhancer-promoter interactions. Fab-7 selectively blocks distal enhancers in an orientation-independent fashion, and can function when located far from either the distal enhancer or target promoter. Fab-7 may be related to insulator DNAs, which flank genetic loci and functionally isolate neighboring genes. We propose that specialized DNA elements, such as the Fab-7 attenuator, might play a general role in controlling the levels of gene expression by modulating enhancer-promoter interactions.
Collapse
Affiliation(s)
- J Zhou
- Department of Molecular and Cellular Biology, Division of Genetics, University of California, Berkeley 94720-3201, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Each of the homeotic genes of the bithorax complex of Drosophila defines the identities of more than one body segment. The mechanisms by which this occurs have been elusive. In a recent report, Castelli-Gair and Akam analyze in detail the control of parasegment 5 and parasegment 6 identities by the bithorax complex gene Ubx. Their results indicate that differences in the spatial and temporal expression patterns of Ubx are critical in determining differences between these parasegments. However, dose effects observed by others indicate that parasegment-specific differences in the level of Ubx expression are also important. For the other BX-C genes, parasegment-specific expression of protein isoforms, or combinatorial control dependent on the expression patterns of other spatially restricted regulators, may also play a role.
Collapse
Affiliation(s)
- I Duncan
- Department of Biology, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
45
|
Rauskolb C, Smith KM, Peifer M, Wieschaus E. extradenticle determines segmental identities throughout Drosophila development. Development 1995; 121:3663-73. [PMID: 8582279 DOI: 10.1242/dev.121.11.3663] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
extradenticle (exd) and the homeotic selector proteins together establish segmental identities by coordinately regulating the expression of downstream target genes. The inappropriate expression of these targets in exd mutant embryos results in homeotic transformations and aberrant morphogenesis. Here we examine the role of exd in adult development by using genetic mosaics and a hypomorphic exd allele caused by a point mutation in the homeodomain. exd continues to be essential for the specification of segmental identities, consistent with a continuing requirement for exd as cofactor of the homeotic selector proteins. Loss of exd results in the homeotic transformation of abdominal segments to an A5 or A6 segmental identity, the antenna and arista to leg, and the head capsule to dorsal thorax or notum. Proximal leg structures are particularly sensitive to the loss of exd, although exd does not affect the allocation of proximal positional values of the leg imaginal disc. Using heat-shocks to induce expression of a hsp70-exd fusion gene, we show that, in contrast to the homeotic selector genes, ubiquitously high levels of exd expression do not cause pattern abnormalities or segmental transformations.
Collapse
Affiliation(s)
- C Rauskolb
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| | | | | | | |
Collapse
|
46
|
Kuhn DT, Turenchalk G, Mack JA, Packert G, Kornberg TB. Analysis of the genes involved in organizing the tail segments of the Drosophila melanogaster embryo. Mech Dev 1995; 53:3-13. [PMID: 8555109 DOI: 10.1016/0925-4773(95)00399-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The metameric organization of the Drosophila melanogaster tail is obscured by developmental events that partially suppress or fuse some of its regions. To better define the developmental origins and segmental identities in the tail of the Drosophila embryo, we documented expression patterns and mutant phenotypes of several genes that play important roles in its morphogenesis. We documented the domains of engrailed (en), Abdominal-B (Abd-B) and caudal (cad) expression in the tail region. The staining pattern of cut (ct) was used to correlate the embryonic sense organs with their respective positions on the larval cuticle. The en patterns in different Bithorax-Complex (BX-C) Abd-B morphogenetic (m) and regulatory (r) mutants demonstrated that Abd-B functions to, among other things, suppress embryonic ventral epidermal structures on the posterior side of A8 to A9. Ventral epidermal structures were not added back into the en pattern in r- or BX-C- mutants, indicating that although the BX-C functions extend through A10, other non-BX-C genes must be required for development of this segment.
Collapse
Affiliation(s)
- D T Kuhn
- Department of Biology, University of Central Florida, Orlando 32816, USA
| | | | | | | | | |
Collapse
|
47
|
Sánchez-Herrero E, Guerrero I, Sampedro J, González-Reyes A. Developmental consequences of unrestricted expression of the abd-A gene of Drosophila. Mech Dev 1994; 46:153-67. [PMID: 7918101 DOI: 10.1016/0925-4773(94)90068-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The abdominal-A (abd-A) gene of Drosophila specifies abdominal segments two through eight (A2-A8). We have found that the uniform expression of the abd-A protein under heat shock control transforms embryonic segments anterior to the abd-A domain into an abdominal segment of the A2-A6 type. Posterior abdominal segments and telson undergo little or no transformation, that is, the abd-A product is phenotypically suppressed posterior to its realm of expression. The comparison of wildtype embryos with embryos carrying the heat shock-abd-A construct but no abd-A endogenous product indicate that some elements of the pattern-like shape of denticle belts or ventral pits depend on the amount of abd-A protein. The concurrent expression of abd-A and other homeotic genes suggest competition for common downstream genes. This competition has been studied by looking at the expression on the visceral mesoderm of a gene downstream of abd-A, decapentaplegic, when two homeoproteins with opposing effects on its transcription are simultaneously induced.
Collapse
Affiliation(s)
- E Sánchez-Herrero
- Centro de Biología Molecular Severo Ochod, Facultad de Ciencias, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
48
|
Rauskolb C, Peifer M, Wieschaus E. extradenticle, a regulator of homeotic gene activity, is a homolog of the homeobox-containing human proto-oncogene pbx1. Cell 1993; 74:1101-12. [PMID: 8104703 DOI: 10.1016/0092-8674(93)90731-5] [Citation(s) in RCA: 215] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mutations in the Drosophila gene extradenticle (exd) cause homeotic transformations by altering the morphological consequences of homeotic selector gene activity. We have cloned and sequenced exd: it encodes a homeodomain protein with extensive identity (71%) to the human proto-oncoprotein Pbx1. exd is expressed during embryogenesis when the selector homeodomain proteins of the Antennapedia and bithorax complexes establish segmental identity. Maternally expressed exd is uniform and can suppress the segmental transformations of embryos lacking zygotic exd. While zygotic exd expression is also at first uniform, later expression is modulated by the homeotic selector genes. These studies support the view that exd acts with the selector homeodomain proteins as a DNA-binding transcription factor, thereby altering their regulation of downstream target genes.
Collapse
Affiliation(s)
- C Rauskolb
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | | | | |
Collapse
|
49
|
Kuziora MA. Abdominal-B protein isoforms exhibit distinct cuticular transformations and regulatory activities when ectopically expressed in Drosophila embryos. Mech Dev 1993; 42:125-37. [PMID: 8105875 DOI: 10.1016/0925-4773(93)90002-f] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Drosophila homeotic gene Abdominal-B includes two genetically distinct elements, a morphogenetic (m) activity and a regulatory (r) activity. The proteins responsible for these activities were ectopically expressed in fly embryos. The larval cuticular transformations which result are consistent with the genetically defined role of each protein during normal embryogenesis. Both ABD-B proteins activate ectopic expression of transcripts encoding the m protein, but the levels of Antennapedia, Ultrabithorax and abdominal-A transcripts are differentially repressed. A structural and functional comparison of the ABD-B proteins and a chimeric DFD/ABD-B protein reaffirms that target specificity is largely determined by the homeodomain region and suggests protein domains outside of the homeodomain influence the activation or repression of target gene expression.
Collapse
Affiliation(s)
- M A Kuziora
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| |
Collapse
|
50
|
Nelson HB, Laughon A. Drosophila glial architecture and development: analysis using a collection of new cell-specific markers. ACTA ACUST UNITED AC 1993; 202:341-354. [DOI: 10.1007/bf00188733] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/1993] [Accepted: 02/04/1993] [Indexed: 10/26/2022]
|