1
|
Parasram K, Zuccato A, Shin M, Willms R, DeVeale B, Foley E, Karpowicz P. The emergence of circadian timekeeping in the intestine. Nat Commun 2024; 15:1788. [PMID: 38413599 PMCID: PMC10899604 DOI: 10.1038/s41467-024-45942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
The circadian clock is a molecular timekeeper, present from cyanobacteria to mammals, that coordinates internal physiology with the external environment. The clock has a 24-h period however development proceeds with its own timing, raising the question of how these interact. Using the intestine of Drosophila melanogaster as a model for organ development, we track how and when the circadian clock emerges in specific cell types. We find that the circadian clock begins abruptly in the adult intestine and gradually synchronizes to the environment after intestinal development is complete. This delayed start occurs because individual cells at earlier stages lack the complete circadian clock gene network. As the intestine develops, the circadian clock is first consolidated in intestinal stem cells with changes in Ecdysone and Hnf4 signalling influencing the transcriptional activity of Clk/cyc to drive the expression of tim, Pdp1, and vri. In the mature intestine, stem cell lineage commitment transiently disrupts clock activity in differentiating progeny, mirroring early developmental clock-less transitions. Our data show that clock function and differentiation are incompatible and provide a paradigm for studying circadian clocks in development and stem cell lineages.
Collapse
Affiliation(s)
- Kathyani Parasram
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Amy Zuccato
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Minjeong Shin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Reegan Willms
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Brian DeVeale
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Phillip Karpowicz
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
2
|
Jia Y, Chen J, Zhong J, He X, Zeng L, Wang Y, Li J, Xia S, Ye E, Zhao J, Ke B, Li C. Novel rare mutation in a conserved site of PTPRB causes human hypoplastic left heart syndrome. Clin Genet 2023; 103:79-86. [PMID: 36148623 DOI: 10.1111/cge.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
Hypoplastic left heart syndrome (HLHS) is a rare but fatal birth defect in which the left side of the heart is underdeveloped. HLHS accounts for 2% to 4% of congenital heart anomalies. Whole genome sequencing (WGS) was conducted for a family trio consisting of a proband and his parents. A homozygous rare variant was detected in the PTPRB (Protein Tyrosine Phosphatase Receptor Type B) gene of the proband by functional annotation and co-segregation analysis. Sanger sequencing was used to confirm genotypes of the variant. The in silico prediction tools, including Mutation Taster, SpliceAI, and CADD, were used to predict the impact of the mutation. The allele frequencies across populations were compared based on multiple databases, including "1000 genomes" and "gnomAD". We used two vectors (pcMINI and pcDNA3.1) to generate a minigene construct to validate the mutational effect at the transcriptional level. Family-based WGS analyses showed that only a homozygous splice acceptor variant (NC_000012.12: g.70636068T>G, NM_001109754.4: c.56-2A>C, NG_029940.2: g.6373A>C) at the exon-intron border of PTPRB gene associates with HLHS. This variant is also within the region with the enhancer activity based on UCSC genome annotation. Genotyping and Sanger sequencing revealed that the proband's parents are heterozygous for this variant. Evolutionary conservation analysis revealed that the site (NC_000012.12: g.70636068) is extremely conserved across species, supporting the evolutionary functional constraints of the ancestral wild type (T). In silico tools universally predicted a deleterious or disease-causing impact of the mutation from T to G. The mutation was not found in the 1000 genomes and gnomAD databases, which indicates that this mutation is very rare in most human populations. A splicing assay indicated that the mutated minigene caused aberrant splicing of mRNA, in which a 3 bp missing in the second exon resulted in the deletion of one amino acid (NP_001103224.1:p.Glu19del) compared to the normal protein of PRPTB (also the VE-PTP). Structure prediction revealed that the deletion occurred within the C-region of the signal peptide of VE-PTP, suggesting signal peptide-related defects as a potential mechanism for the HLHS cellular pathogeny. We report a rare homozygous variant with splicing error in PTPRB associated with HLHS. Previous model species studies revealed conserved functions of PTPRB in cardiovascular and heart development in mice and zebrafish. Our study is the first report to show the association between PTPRB and HLHS in humans.
Collapse
Affiliation(s)
- Yangying Jia
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jianhai Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhong
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xuefei He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zeng
- The Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yanmin Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Jiakun Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Erdengqieqieke Ye
- Department of Prenatal Diagnosis, Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jing Zhao
- Department of Prenatal Diagnosis, Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Bin Ke
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Grossfeld P. ETS1 and HLHS: Implications for the Role of the Endocardium. J Cardiovasc Dev Dis 2022; 9:jcdd9070219. [PMID: 35877581 PMCID: PMC9319889 DOI: 10.3390/jcdd9070219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/16/2022] Open
Abstract
We have identified the ETS1 gene as the cause of congenital heart defects, including an unprecedented high frequency of HLHS, in the chromosomal disorder Jacobsen syndrome. Studies in Ciona intestinalis demonstrated a critical role for ETS1 in heart cell fate determination and cell migration, suggesting that the impairment of one or both processes can underlie the pathogenesis of HLHS. Our studies determined that ETS1 is expressed in the cardiac neural crest and endocardium in the developing murine heart, implicating one or both lineages in the development of HLHS. Studies in Drosophila and Xenopus demonstrated a critical role for ETS1 in regulating cardiac cell fate determination, and results in Xenopus provided further evidence for the role of the endocardium in the evolution of the “hypoplastic” HLHS LV. Paradoxically, these studies suggest that the loss of ETS1 may cause a cell fate switch resulting in the loss of endocardial cells and a relative abundance of cardiac myocytes. These studies implicate an “HLHS transcriptional network” of genes conserved across species that are essential for early heart development. Finally, the evidence suggests that in a subset of HLHS patients, the HLHS LV cardiac myocytes are, intrinsically, developmentally and functionally normal, which has important implications for potential future therapies.
Collapse
Affiliation(s)
- Paul Grossfeld
- Department of Pediatrics, Division of Cardiology, UCSD School of Medicine, San Diego, CA 92093, USA
| |
Collapse
|
4
|
Abstract
In adult insects, as in vertebrates, the gut epithelium is a highly regenerative tissue that can renew itself rapidly in response to changing inputs from nutrition, the gut microbiota, ingested toxins, and signals from other organs. Because of its cellular and genetic similarities to the mammalian intestine, and its relevance as a target for the control of insect pests and disease vectors, many researchers have used insect intestines to address fundamental questions about stem cell functions during tissue maintenance and regeneration. In Drosophila, where most of the experimental work has been performed, not only are intestinal cell types and behaviors well characterized, but numerous cell signaling interactions have been detailed that mediate gut epithelial regeneration. A prevailing model for regenerative responses in the insect gut invokes stress sensing by damaged enterocytes (ECs) as a principal source for signaling that activates the division of intestinal stem cells (ISCs) and the growth and differentiation of their progeny. However, extant data also reveal alternative mechanisms for regeneration that involve ISC-intrinsic functions, active culling of healthy epithelial cells, enhanced EC growth, and even cytoplasmic shedding by infected ECs. This article reviews current knowledge of the molecular mechanisms involved in gut regeneration in several insect models (Drosophila and Aedes of the order Diptera, and several Lepidoptera).
Collapse
Affiliation(s)
- Peng Zhang
- Huntsman Cancer Institute, University of Utah
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | - Bruce A Edgar
- Huntsman Cancer Institute, University of Utah
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
5
|
Panta M, Kump AJ, Schwab KR, Ahmad SM. Assessing the Roles of Potential Notch Signaling Components in Instructive and Permissive Pathways with Two Drosophila Pericardial Reporters. Methods Mol Biol 2022; 2472:109-130. [PMID: 35674896 DOI: 10.1007/978-1-0716-2201-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The highly conserved Notch signaling pathway brings about the transcriptional activation of target genes via either instructive or permissive mechanisms that depend on the identity of the specific target gene. As additional components of the Notch signaling pathway are identified, assessing whether each of these components are utilized exclusively by one of these mechanisms (and if so, which), or by both, becomes increasingly important. Using RNA interference-mediated knockdowns of the Notch component to be tested, reporters for two Notch-activated pericardial genes in Drosophila melanogaster, immunohistochemistry, and fluorescence microscopy, we describe a method to determine the type of signaling mechanism-instructive, permissive, or both-to which a particular Notch pathway component contributes.
Collapse
Affiliation(s)
- Manoj Panta
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
| | - Andrew J Kump
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN, USA
| | - Kristopher R Schwab
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN, USA
| | - Shaad M Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN, USA.
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA.
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
6
|
Kuang Y, Pyo A, Eafergan N, Cain B, Gutzwiller LM, Axelrod O, Gagliani EK, Weirauch MT, Kopan R, Kovall RA, Sprinzak D, Gebelein B. Enhancers with cooperative Notch binding sites are more resistant to regulation by the Hairless co-repressor. PLoS Genet 2021; 17:e1009039. [PMID: 34559800 PMCID: PMC8494340 DOI: 10.1371/journal.pgen.1009039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/06/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Notch signaling controls many developmental processes by regulating gene expression. Notch-dependent enhancers recruit activation complexes consisting of the Notch intracellular domain, the Cbf/Su(H)/Lag1 (CSL) transcription factor (TF), and the Mastermind co-factor via two types of DNA sites: monomeric CSL sites and cooperative dimer sites called Su(H) paired sites (SPS). Intriguingly, the CSL TF can also bind co-repressors to negatively regulate transcription via these same sites. Here, we tested how synthetic enhancers with monomeric CSL sites versus dimeric SPSs bind Drosophila Su(H) complexes in vitro and mediate transcriptional outcomes in vivo. Our findings reveal that while the Su(H)/Hairless co-repressor complex similarly binds SPS and CSL sites in an additive manner, the Notch activation complex binds SPSs, but not CSL sites, in a cooperative manner. Moreover, transgenic reporters with SPSs mediate stronger, more consistent transcription and are more resistant to increased Hairless co-repressor expression compared to reporters with the same number of CSL sites. These findings support a model in which SPS containing enhancers preferentially recruit cooperative Notch activation complexes over Hairless repression complexes to ensure consistent target gene activation. Cell signaling provides a basic means of communication during development. Many signaling pathways, including the Notch pathway, convert extracellular signals into changes in gene expression via transcription factors that bind specific DNA sequences. Importantly, the Notch pathway transcription factor can either form activating complexes upon Notch activation to stimulate gene expression or repression complexes with co-repressors to inhibit gene expression. Prior studies showed that the Notch activation complex binds DNA as either an independent complex on monomer binding sites or as two cooperative complexes (dimer) on paired binding sites. In this study, we used synthetic biology to examine how these two types of DNA sites impact the binding of Notch activation versus repression complexes and the output of Notch target gene expression. Our studies reveal that unlike the Notch activation complex, the repression complex does not cooperatively bind dimer sites. Moreover, our findings support the model that the enhanced stability of the Notch activation complex on dimer sites makes target genes with dimer sites less sensitive to the repression complex than target genes with only monomer sites. Thus, our studies reveal how target genes with different binding sites differ in sensitivity to the ratio of Notch activation to repression complexes.
Collapse
Affiliation(s)
- Yi Kuang
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Anna Pyo
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Natanel Eafergan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Brittany Cain
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Lisa M. Gutzwiller
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ofri Axelrod
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Ellen K. Gagliani
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Matthew T. Weirauch
- Divisions of Biomedical Informatics and Developmental Biology, Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
7
|
Fan C, Ma X, Wang Y, Lv L, Zhu Y, Liu H, Liu Y. A NOTCH1/LSD1/BMP2 co-regulatory network mediated by miR-137 negatively regulates osteogenesis of human adipose-derived stem cells. Stem Cell Res Ther 2021; 12:417. [PMID: 34294143 PMCID: PMC8296522 DOI: 10.1186/s13287-021-02495-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/05/2021] [Indexed: 01/26/2023] Open
Abstract
Background MicroRNAs have been recognized as critical regulators for the osteoblastic lineage differentiation of human adipose-derived stem cells (hASCs). Previously, we have displayed that silencing of miR-137 enhances the osteoblastic differentiation potential of hASCs partly through the coordination of lysine-specific histone demethylase 1 (LSD1), bone morphogenetic protein 2 (BMP2), and mothers against decapentaplegic homolog 4 (SMAD4). However, still numerous molecules involved in the osteogenic regulation of miR-137 remain unknown. This study aimed to further elucidate the epigenetic mechanisms of miR-137 on the osteogenic differentiation of hASCs. Methods Dual-luciferase reporter assay was performed to validate the binding to the 3′ untranslated region (3′ UTR) of NOTCH1 by miR-137. To further identify the role of NOTCH1 in miR-137-modulated osteogenesis, tangeretin (an inhibitor of NOTCH1) was applied to treat hASCs which were transfected with miR-137 knockdown lentiviruses, then together with negative control (NC), miR-137 overexpression and miR-137 knockdown groups, the osteogenic capacity and possible downstream signals were examined. Interrelationships between signaling pathways of NOTCH1-hairy and enhancer of split 1 (HES1), LSD1 and BMP2-SMADs were thoroughly investigated with separate knockdown of NOTCH1, LSD1, BMP2, and HES1. Results We confirmed that miR-137 directly targeted the 3′ UTR of NOTCH1 while positively regulated HES1. Tangeretin reversed the effects of miR-137 knockdown on osteogenic promotion and downstream genes expression. After knocking down NOTCH1 or BMP2 individually, we found that these two signals formed a positive feedback loop as well as activated LSD1 and HES1. In addition, LSD1 knockdown induced NOTCH1 expression while suppressed HES1. Conclusions Collectively, we proposed a NOTCH1/LSD1/BMP2 co-regulatory signaling network to elucidate the modulation of miR-137 on the osteoblastic differentiation of hASCs, thus providing mechanism-based rationale for miRNA-targeted therapy of bone defect. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02495-3.
Collapse
Affiliation(s)
- Cong Fan
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing, China. .,National Center of Stomatology, Beijing, China. .,National Clinical Research Center for Oral Diseases, Beijing, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China. .,Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China. .,NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Xiaohan Ma
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Prosthodontics, Beijing Stomatological Hospital Capital Medical University, Beijing, China
| | - Yuejun Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Longwei Lv
- National Center of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China.,NMPA Key Laboratory for Dental Materials, Beijing, China.,Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hao Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunsong Liu
- National Center of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China.,NMPA Key Laboratory for Dental Materials, Beijing, China.,Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
8
|
Hixson B, Taracena ML, Buchon N. Midgut Epithelial Dynamics Are Central to Mosquitoes' Physiology and Fitness, and to the Transmission of Vector-Borne Disease. Front Cell Infect Microbiol 2021; 11:653156. [PMID: 33842397 PMCID: PMC8027260 DOI: 10.3389/fcimb.2021.653156] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bretta Hixson
- Department of Entomology. Cornell Institute of Host-Microbe Interactions and Disease, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Mabel Laline Taracena
- Department of Entomology. Cornell Institute of Host-Microbe Interactions and Disease, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Nicolas Buchon
- Department of Entomology. Cornell Institute of Host-Microbe Interactions and Disease, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
9
|
Grossfeld P, Nie S, Lin L, Wang L, Anderson RH. Hypoplastic Left Heart Syndrome: A New Paradigm for an Old Disease? J Cardiovasc Dev Dis 2019; 6:jcdd6010010. [PMID: 30813450 PMCID: PMC6462956 DOI: 10.3390/jcdd6010010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 12/18/2022] Open
Abstract
Hypoplastic left heart syndrome occurs in up to 3% of all infants born with congenital heart disease and is a leading cause of death in this population. Although there is strong evidence for a genetic component, a specific genetic cause is only known in a small subset of patients, consistent with a multifactorial etiology for the syndrome. There is controversy surrounding the mechanisms underlying the syndrome, which is likely due, in part, to the phenotypic variability of the disease. The most commonly held view is that the “decreased” growth of the left ventricle is due to a decreased flow during a critical period of ventricular development. Research has also been hindered by what has been, up until now, a lack of genetically engineered animal models that faithfully reproduce the human disease. There is a growing body of evidence, nonetheless, indicating that the hypoplasia of the left ventricle is due to a primary defect in ventricular development. In this review, we discuss the evidence demonstrating that, at least for a subset of cases, the chamber hypoplasia is the consequence of hyperplasia of the contained cardiomyocytes. In this regard, hypoplastic left heart syndrome could be viewed as a neonatal form of cardiomyopathy. We also discuss the role of the endocardium in the development of the ventricular hypoplasia, which may provide a mechanistic basis for how impaired flow to the developing ventricle leads to the anatomical changes seen in the syndrome.
Collapse
Affiliation(s)
- Paul Grossfeld
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA.
| | - Shuyi Nie
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Lizhu Lin
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA.
| | - Lu Wang
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA.
| | - Robert H Anderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
10
|
Altered pheromone biosynthesis is associated with sex-specific changes in life span and behavior in Drosophila melanogaster. Mech Ageing Dev 2018; 176:1-8. [DOI: 10.1016/j.mad.2018.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/07/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022]
|
11
|
Mendoza-Ortíz MA, Murillo-Maldonado JM, Riesgo-Escovar JR. aaquetzalli is required for epithelial cell polarity and neural tissue formation in Drosophila. PeerJ 2018; 6:e5042. [PMID: 29942698 PMCID: PMC6015755 DOI: 10.7717/peerj.5042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/31/2018] [Indexed: 01/30/2023] Open
Abstract
Morphogenetic movements during embryogenesis require dynamic changes in epithelial cell polarity and cytoskeletal reorganization. Such changes involve, among others, rearrangements of cell-cell contacts and protein traffic. In Drosophila melanogaster, neuroblast delamination during early neurogenesis is a well-characterized process requiring a polarized neuroepithelium, regulated by the Notch signaling pathway. Maintenance of epithelial cell polarity ensues proper Notch pathway activation during neurogenesis. We characterize here aaquetzalli (aqz), a gene whose mutations affect cell polarity and nervous system specification. The aqz locus encodes a protein that harbors a domain with significant homology to a proline-rich conserved domain of nuclear receptor co-activators. aqz expression occurs at all stages of the fly life cycle, and is dynamic. aqz mutants are lethal, showing a disruption of cell polarity during embryonic ventral neuroepithelium differentiation resulting in loss of epithelial integrity and mislocalization of membrane proteins (shown by mislocalization of Crumbs, DE-Cadherin, and Delta). As a consequence, aqz mutant embryos with compromised apical-basal cell polarity develop spotty changes of neuronal and epithelial numbers of cells.
Collapse
Affiliation(s)
- Miguel A Mendoza-Ortíz
- Developmental Neurobiology and Neurophysiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Juan M Murillo-Maldonado
- Developmental Neurobiology and Neurophysiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Juan R Riesgo-Escovar
- Developmental Neurobiology and Neurophysiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
12
|
Schwarz B, Hollfelder D, Scharf K, Hartmann L, Reim I. Diversification of heart progenitor cells by EGF signaling and differential modulation of ETS protein activity. eLife 2018; 7:32847. [PMID: 29869981 PMCID: PMC6033539 DOI: 10.7554/elife.32847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
For coordinated circulation, vertebrate and invertebrate hearts require stereotyped arrangements of diverse cell populations. This study explores the process of cardiac cell diversification in the Drosophila heart, focusing on the two major cardioblast subpopulations: generic working myocardial cells and inflow valve-forming ostial cardioblasts. By screening a large collection of randomly induced mutants, we identified several genes involved in cardiac patterning. Further analysis revealed an unexpected, specific requirement of EGF signaling for the specification of generic cardioblasts and a subset of pericardial cells. We demonstrate that the Tbx20 ortholog Midline acts as a direct target of the EGFR effector Pointed to repress ostial fates. Furthermore, we identified Edl/Mae, an antagonist of the ETS factor Pointed, as a novel cardiac regulator crucial for ostial cardioblast specification. Combining these findings, we propose a regulatory model in which the balance between activation of Pointed and its inhibition by Edl controls cardioblast subtype-specific gene expression. Organs contain many different kinds of cells, each specialised to perform a particular role. The fruit fly heart, for example, has two types of muscle cells: generic heart muscle cells and ostial heart muscle cells. The generic cells contract to force blood around the body, whilst the ostial cells form openings that allow blood to enter the heart. Though both types of cells carry the same genetic information, each uses a different combination of active genes to perform their role. During development, the cells must decide whether to become generic or ostial. They obtain signals from other cells in and near the developing heart, and respond by turning genes on or off. The response uses proteins called transcription factors, which bind to regulatory portions of specific genes. The sequence of signals and transcription factors that control the fate of developing heart muscle cells was not known. So Schwarz et al. examined the process using a technique called a mutagenesis screen. This involved triggering random genetic mutations and looking for flies with defects in their heart muscle cells. Matching the defects to the mutations revealed genes responsible for heart development. Schwarz et al. found that for cells to develop into generic heart muscle cells, a signal called epidermal growth factor (EGF) switches on a transcription factor called Pointed in the cells. Pointed then turns on another transcription factor that switches off the genes for ostial cells. Conversely, ostial heart muscle cells develop when a protein called ‘ETS-domain lacking’ (Edl) interferes with Pointed, allowing the ostial genes to remain on. The balance between Pointed and Edl controls which type of heart cell each cell will become. Many cells in other tissues in fruit flies also produce the Pointed and Edl proteins and respond to EGF signals. This means that this system may help to decide the fate of cells in other organs. The EGF signaling system is also present in other animals, including humans. Future work could reveal whether the same molecular decision making happens in our own hearts.
Collapse
Affiliation(s)
- Benjamin Schwarz
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik Hollfelder
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Scharf
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leonie Hartmann
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ingolf Reim
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Serrate/Notch Signaling Regulates the Size of the Progenitor Cell Pool in Drosophila Imaginal Rings. Genetics 2018; 209:829-843. [PMID: 29773559 DOI: 10.1534/genetics.118.300963] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022] Open
Abstract
Drosophila imaginal rings are larval tissues composed of progenitor cells that are essential for the formation of adult foreguts, hindguts, and salivary glands. Specified from subsets of ectoderm in the embryo, imaginal ring cells are kept quiescent until midsecond larval instar, and undergo rapid proliferation during the third instar to attain adequate numbers of cells that will replace apoptotic larval tissues for adult organ formation. Here, we show that Notch signaling is activated in all three imaginal rings from middle embryonic stage to early pupal stage, and that Notch signaling positively controls cell proliferation in all three imaginal rings during the third larval instar. Our mutant clonal analysis, knockdown, and gain-of-function studies indicate that canonical Notch pathway components are involved in regulating the proliferation of these progenitor cells. Both trans-activation and cis-inhibition between the ligand and receptor control Notch activation in the imaginal ring. Serrate (Ser) is the ligand provided from neighboring imaginal ring cells that trans-activates Notch signaling, whereas both Ser and Delta (Dl) could cis-inhibit Notch activity when the ligand and the receptor are in the same cell. In addition, we show that Notch signaling expressed in middle embryonic and first larval stages is required for the initial size of imaginal rings. Taken together, these findings indicate that imaginal rings are excellent in vivo models to decipher how progenitor cell number and proliferation are developmentally regulated, and that Notch signaling in these imaginal tissues is the primary growth-promoting signal that controls the size of the progenitor cell pool.
Collapse
|
14
|
Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum. Dev Biol 2018; 438:44-56. [PMID: 29548943 DOI: 10.1016/j.ydbio.2018.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/16/2018] [Accepted: 03/03/2018] [Indexed: 11/21/2022]
Abstract
A single Atoh1 basic-helix-loop-helix transcription factor specifies multiple neuron types in the mammalian cerebellum and anterior hindbrain. The zebrafish genome encodes three paralagous atoh1 genes whose functions in cerebellum and anterior hindbrain development we explore here. With use of a transgenic reporter, we report that zebrafish atoh1c-expressing cells are organized in two distinct domains that are separated both by space and developmental time. An early isthmic expression domain gives rise to an extracerebellar population in rhombomere 1 and an upper rhombic lip domain gives rise to granule cell progenitors that migrate to populate all four granule cell territories of the fish cerebellum. Using genetic mutants we find that of the three zebrafish atoh1 paralogs, atoh1c and atoh1a are required for the full complement of granule neurons. Surprisingly, the two genes are expressed in non-overlapping granule cell progenitor populations, indicating that fish use duplicate atoh1 genes to generate granule cell diversity that is not detected in mammals. Finally, live imaging of granule cell migration in wildtype and atoh1c mutant embryos reveals that while atoh1c is not required for granule cell specification per se, it is required for granule cells to delaminate and migrate away from the rhombic lip.
Collapse
|
15
|
Ahmad SM. Conserved signaling mechanisms in Drosophila heart development. Dev Dyn 2017; 246:641-656. [PMID: 28598558 PMCID: PMC11546222 DOI: 10.1002/dvdy.24530] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/06/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
Signal transduction through multiple distinct pathways regulates and orchestrates the numerous biological processes comprising heart development. This review outlines the roles of the FGFR, EGFR, Wnt, BMP, Notch, Hedgehog, Slit/Robo, and other signaling pathways during four sequential phases of Drosophila cardiogenesis-mesoderm migration, cardiac mesoderm establishment, differentiation of the cardiac mesoderm into distinct cardiac cell types, and morphogenesis of the heart and its lumen based on the proper positioning and cell shape changes of these differentiated cardiac cells-and illustrates how these same cardiogenic roles are conserved in vertebrates. Mechanisms bringing about the regulation and combinatorial integration of these diverse signaling pathways in Drosophila are also described. This synopsis of our present state of knowledge of conserved signaling pathways in Drosophila cardiogenesis and the means by which it was acquired should facilitate our understanding of and investigations into related processes in vertebrates. Developmental Dynamics 246:641-656, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
16
|
Conservation of the Notch antagonist Hairless in arthropods: functional analysis of the crustacean Daphnia pulex Hairless gene. Dev Genes Evol 2017; 227:339-353. [DOI: 10.1007/s00427-017-0593-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 01/05/2023]
|
17
|
Kozlovskaja-Gumbrienė A, Yi R, Alexander R, Aman A, Jiskra R, Nagelberg D, Knaut H, McClain M, Piotrowski T. Proliferation-independent regulation of organ size by Fgf/Notch signaling. eLife 2017; 6. [PMID: 28085667 PMCID: PMC5235355 DOI: 10.7554/elife.21049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/23/2016] [Indexed: 12/31/2022] Open
Abstract
Organ morphogenesis depends on the precise orchestration of cell migration, cell shape changes and cell adhesion. We demonstrate that Notch signaling is an integral part of the Wnt and Fgf signaling feedback loop coordinating cell migration and the self-organization of rosette-shaped sensory organs in the zebrafish lateral line system. We show that Notch signaling acts downstream of Fgf signaling to not only inhibit hair cell differentiation but also to induce and maintain stable epithelial rosettes. Ectopic Notch expression causes a significant increase in organ size independently of proliferation and the Hippo pathway. Transplantation and RNASeq analyses revealed that Notch signaling induces apical junctional complex genes that regulate cell adhesion and apical constriction. Our analysis also demonstrates that in the absence of patterning cues normally provided by a Wnt/Fgf signaling system, rosettes still self-organize in the presence of Notch signaling. DOI:http://dx.doi.org/10.7554/eLife.21049.001
Collapse
Affiliation(s)
| | - Ren Yi
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - Andy Aman
- Stowers Institute for Medical Research, Kansas City, United States
| | - Ryan Jiskra
- Stowers Institute for Medical Research, Kansas City, United States
| | - Danielle Nagelberg
- Developmental Genetics Program and Kimmel Center for Stem Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, United States
| | - Holger Knaut
- Developmental Genetics Program and Kimmel Center for Stem Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, United States
| | - Melainia McClain
- Stowers Institute for Medical Research, Kansas City, United States
| | | |
Collapse
|
18
|
Liu S, Boulianne GL. The NHR domains of Neuralized and related proteins: Beyond Notch signalling. Cell Signal 2017; 29:62-68. [DOI: 10.1016/j.cellsig.2016.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 11/17/2022]
|
19
|
Moulton MJ, Letsou A. Modeling congenital disease and inborn errors of development in Drosophila melanogaster. Dis Model Mech 2016; 9:253-69. [PMID: 26935104 PMCID: PMC4826979 DOI: 10.1242/dmm.023564] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fly models that faithfully recapitulate various aspects of human disease and human health-related biology are being used for research into disease diagnosis and prevention. Established and new genetic strategies in Drosophila have yielded numerous substantial successes in modeling congenital disorders or inborn errors of human development, as well as neurodegenerative disease and cancer. Moreover, although our ability to generate sequence datasets continues to outpace our ability to analyze these datasets, the development of high-throughput analysis platforms in Drosophila has provided access through the bottleneck in the identification of disease gene candidates. In this Review, we describe both the traditional and newer methods that are facilitating the incorporation of Drosophila into the human disease discovery process, with a focus on the models that have enhanced our understanding of human developmental disorders and congenital disease. Enviable features of the Drosophila experimental system, which make it particularly useful in facilitating the much anticipated move from genotype to phenotype (understanding and predicting phenotypes directly from the primary DNA sequence), include its genetic tractability, the low cost for high-throughput discovery, and a genome and underlying biology that are highly evolutionarily conserved. In embracing the fly in the human disease-gene discovery process, we can expect to speed up and reduce the cost of this process, allowing experimental scales that are not feasible and/or would be too costly in higher eukaryotes.
Collapse
Affiliation(s)
- Matthew J Moulton
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 5100, Salt Lake City, UT 84112-5330, USA
| | - Anthea Letsou
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 5100, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
20
|
Yarbrough WG, Panaccione A, Chang MT, Ivanov SV. Clinical and molecular insights into adenoid cystic carcinoma: Neural crest-like stemness as a target. Laryngoscope Investig Otolaryngol 2016; 1:60-77. [PMID: 28894804 PMCID: PMC5510248 DOI: 10.1002/lio2.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES This review surveys trialed therapies and molecular defects in adenoid cystic carcinoma (ACC), with an emphasis on neural crest-like stemness characteristics of newly discovered cancer stem cells (CSCs) and therapies that may target these CSCs. DATA SOURCES Articles available on Pubmed or OVID MEDLINE databases and unpublished data. REVIEW METHODS Systematic review of articles pertaining to ACC and neural crest-like stem cells. RESULTS Adenoid cystic carcinoma of the salivary gland is a slowly growing but relentless cancer that is prone to nerve invasion and metastases. A lack of understanding of molecular etiology and absence of targetable drivers has limited therapy for patients with ACC to surgery and radiation. Currently, no curative treatments are available for patients with metastatic disease, which highlights the need for effective new therapies. Research in this area has been inhibited by the lack of validated cell lines and a paucity of clinically useful markers. The ACC research environment has recently improved, thanks to the introduction of novel tools, technologies, approaches, and models. Improved understanding of ACC suggests that neural crest-like stemness is a major target in this rare tumor. New cell culture techniques and patient-derived xenografts provide tools for preclinical testing. CONCLUSION Preclinical research has not identified effective targets in ACC, as confirmed by the large number of failed clinical trials. New molecular data suggest that drivers of neural crest-like stemness may be required for maintenance of ACC; as such, CSCs are a target for therapy of ACC.
Collapse
Affiliation(s)
- Wendell G. Yarbrough
- Section of Otolaryngology, Department of Surgery, Yale School of MedicineNew HavenConnecticutUSA
- Yale Cancer CenterNew HavenConnecticutUSA
| | - Alexander Panaccione
- Department of Cancer BiologyVanderbilt University School of MedicineNashvilleTennesseeU.S.A.
| | - Michael T. Chang
- Section of Otolaryngology, Department of Surgery, Yale School of MedicineNew HavenConnecticutUSA
| | - Sergey V. Ivanov
- Section of Otolaryngology, Department of Surgery, Yale School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
21
|
Shahab J, Baratta C, Scuric B, Godt D, Venken KJT, Ringuette MJ. Loss of SPARC dysregulates basal lamina assembly to disrupt larval fat body homeostasis in Drosophila melanogaster. Dev Dyn 2015; 244:540-52. [PMID: 25529377 DOI: 10.1002/dvdy.24243] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND SPARC is a collagen-binding glycoprotein whose functions during early development are unknown. We previously reported that SPARC is expressed in Drosophila by hemocytes and the fat body (FB) and enriched in basal laminae (BL) surrounding tissues, including adipocytes. We sought to explore if SPARC is required for proper BL assembly in the FB. RESULTS SPARC deficiency leads to larval lethality, associated with remodeling of the FB. In the absence of SPARC, FB polygonal adipocytes assume a spherical morphology. Loss-of-function clonal analyses revealed a cell-autonomous accumulation of BL components around mutant cells that include collagen IV (Col lV), Laminin, and Perlecan. Ultrastructural analyses indicate SPARC-deficient adipocytes are surrounded by an aberrant accumulation of a fibrous extracellular matrix. CONCLUSIONS Our data indicate a critical requirement for SPARC for the proper BL assembly in Drosophila FB. Since Col IV within the BL is a prime determinant of cell shape, the rounded appearance of SPARC-deficient adipocytes is due to aberrant assembly of Col IV.
Collapse
Affiliation(s)
- Jaffer Shahab
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Patil VS, Anand A, Chakrabarti A, Kai T. The Tudor domain protein Tapas, a homolog of the vertebrate Tdrd7, functions in the piRNA pathway to regulate retrotransposons in germline of Drosophila melanogaster. BMC Biol 2014; 12:61. [PMID: 25287931 PMCID: PMC4210518 DOI: 10.1186/s12915-014-0061-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/25/2014] [Indexed: 01/21/2023] Open
Abstract
Background Piwi-interacting RNAs (piRNAs) are a special class of small RNAs that provide defense against transposable elements in animal germline cells. In Drosophila, germline piRNAs are thought to be processed at a unique perinuclear structure, the nuage, that houses piRNA pathway proteins including the Piwi clade of Argonaute family proteins, along with several Tudor domain proteins, RNA helicases and nucleases. We previously demonstrated that Tudor domain protein Tejas (Tej), an ortholog of vertebrate Tdrd5, is an important component of the piRNA pathway. Results In the current study, we identified the paralog of the Drosophila tej gene, tapas (tap), which is an ortholog of vertebrate Tdrd7. Like Tej, Tap is localized at the nuage. Alone, tap loss leads to a mild increase in transposon expression and decrease in piRNAs targeting transposons expressed in the germline. The tap gene genetically interacts with other piRNA pathway genes and we also show that Tap physically interacts with piRNA pathway components, such as Piwi family proteins Aubergine and Argonaute3 and the RNA helicases Spindle-E and Vasa. Together with tej, tap is required for survival of germline cells during early stages and for polarity formation. We further observed that loss of tej and tap together results in more severe defects in the piRNA pathway in germline cells compared to single mutants: the double-mutant ovaries exhibit mis-localization of piRNA pathway components and significantly greater reduction of piRNAs against transposons predominantly expressed in germline compared to single mutants. The single or double mutants did not have any reduction in piRNAs mapping to transposons predominantly expressed in gonadal somatic cells or those derived from unidirectional clusters such as flamenco. Consistently, the loss of both tej and tap function resulted in mis-localization of Piwi in germline cells, whereas Piwi remained localized to the nucleus in somatic cells. Conclusions Our observations suggest that tej and tap work together for germline maintenance. tej and tap also function in a synergistic manner to maintain examined piRNA components at the perinuclear nuage and for piRNA production in Drosophila germline cells. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0061-9) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Driver I, Ohlstein B. Specification of regional intestinal stem cell identity during Drosophila metamorphosis. Development 2014; 141:1848-56. [PMID: 24700821 DOI: 10.1242/dev.104018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the adult Drosophila midgut the bone morphogenetic protein (BMP) signaling pathway is required to specify and maintain the acid-secreting region of the midgut known as the copper cell region (CCR). BMP signaling is also involved in the modulation of intestinal stem cell (ISC) proliferation in response to injury. How ISCs are able to respond to the same signaling pathway in a regionally different manner is currently unknown. Here, we show that dual use of the BMP signaling pathway in the midgut is possible because BMP signals are only capable of transforming ISC and enterocyte identity during a defined window of metamorphosis. ISC heterogeneity is established prior to adulthood and then maintained in cooperation with regional signals from surrounding tissue. Our data provide a conceptual framework for how other tissues maintained by regional stem cells might be patterned and establishes the pupal and adult midgut as a novel genetic platform for identifying genes necessary for regional stem cell specification and maintenance.
Collapse
Affiliation(s)
- Ian Driver
- Integrated Program in Cellular, Molecular and Biomedical Studies, New York, NY 10032, USA
| | | |
Collapse
|
24
|
Ecdysone-induced receptor tyrosine phosphatase PTP52F regulates Drosophila midgut histolysis by enhancement of autophagy and apoptosis. Mol Cell Biol 2014; 34:1594-606. [PMID: 24550005 DOI: 10.1128/mcb.01391-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid removal of larval midgut is a critical developmental process directed by molting hormone ecdysone during Drosophila metamorphosis. To date, it remains unclear how the stepwise events can link the onset of ecdysone signaling to the destruction of larval midgut. This study investigated whether ecdysone-induced expression of receptor protein tyrosine phosphatase PTP52F regulates this process. The mutation of the Ptp52F gene caused significant delay in larval midgut degradation. Transitional endoplasmic reticulum ATPase (TER94), a regulator of ubiquitin proteasome system, was identified as a substrate and downstream effector of PTP52F in the ecdysone signaling. The inducible expression of PTP52F at the puparium formation stage resulted in dephosphorylation of TER94 on its Y800 residue, ensuring the rapid degradation of ubiquitylated proteins. One of the proteins targeted by dephosphorylated TER94 was found to be Drosophila inhibitor of apoptosis 1 (DIAP1), which was rapidly proteolyzed in cells with significant expression of PTP52F. Importantly, the reduced level of DIAP1 in response to inducible PTP52F was essential not only for the onset of apoptosis but also for the initiation of autophagy. This study demonstrates a novel function of PTP52F in regulating ecdysone-directed metamorphosis via enhancement of autophagic and apoptotic cell death in doomed Drosophila midguts.
Collapse
|
25
|
Abstract
Oenocytes have intrigued insect physiologists since the nineteenth century. Many years of careful but mostly descriptive research on these cells highlights their diverse sizes, numbers, and anatomical distributions across Insecta. Contemporary molecular genetic studies in Drosophila melanogaster and Tribolium castaneum support the hypothesis that oenocytes are of ectodermal origin. They also suggest that, in both short and long germ-band species, oenocytes are induced from a Spalt major/Engrailed ectodermal zone by MAPK signaling. Recent glimpses into some of the physiological functions of oenocytes indicate that they involve fatty acid and hydrocarbon metabolism. Genetic studies in D. melanogaster have shown that larval oenocytes synthesize very-long-chain fatty acids required for tracheal waterproofing and that adult oenocytes produce cuticular hydrocarbons required for desiccation resistance and pheromonal communication. Exciting areas of future research include the evolution of oenocytes and their cross talk with other tissues involved in lipid metabolism such as the fat body.
Collapse
Affiliation(s)
- Rami Makki
- Division of Physiology and Metabolism, Medical Research Council, National Institute for Medical Research, London, NW7 1AA, United Kingdom;
| | | | | |
Collapse
|
26
|
|
27
|
Zeng X, Hou SX. Broad relays hormone signals to regulate stem cell differentiation in Drosophila midgut during metamorphosis. Development 2012; 139:3917-25. [PMID: 23048182 DOI: 10.1242/dev.083030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Like the mammalian intestine, the Drosophila adult midgut is constantly replenished by multipotent intestinal stem cells (ISCs). Although it is well known that adult ISCs arise from adult midgut progenitors (AMPs), relatively little is known about the mechanisms that regulate AMP specification. Here, we demonstrate that Broad (Br)-mediated hormone signaling regulates AMP specification. Br is highly expressed in AMPs temporally during the larva-pupa transition stage, and br loss of function blocks AMP differentiation. Furthermore, Br is required for AMPs to develop into functional ISCs. Conversely, br overexpression drives AMPs toward premature differentiation. In addition, we found that Br and Notch (N) signaling function in parallel pathways to regulate AMP differentiation. Our results reveal a molecular mechanism whereby Br-mediated hormone signaling directly regulates stem cells to generate adult cells during metamorphosis.
Collapse
Affiliation(s)
- Xiankun Zeng
- The Mouse Cancer Genetics Program, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, USA.
| | | |
Collapse
|
28
|
Two forkhead transcription factors regulate the division of cardiac progenitor cells by a Polo-dependent pathway. Dev Cell 2012; 23:97-111. [PMID: 22814603 DOI: 10.1016/j.devcel.2012.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 02/02/2012] [Accepted: 05/11/2012] [Indexed: 11/22/2022]
Abstract
The development of a complex organ requires the specification of appropriate numbers of each of its constituent cell types, as well as their proper differentiation and correct positioning relative to each other. During Drosophila cardiogenesis, all three of these processes are controlled by jumeau (jumu) and Checkpoint suppressor homologue (CHES-1-like), two genes encoding forkhead transcription factors that we discovered utilizing an integrated genetic, genomic, and computational strategy for identifying genes expressed in the developing Drosophila heart. Both jumu and CHES-1-like are required during asymmetric cell division for the derivation of two distinct cardiac cell types from their mutual precursor and in symmetric cell divisions that produce yet a third type of heart cell. jumu and CHES-1-like control the division of cardiac progenitors by regulating the activity of Polo, a kinase involved in multiple steps of mitosis. This pathway demonstrates how transcription factors integrate diverse developmental processes during organogenesis.
Collapse
|
29
|
Functional analysis of the NHR2 domain indicates that oligomerization of Neuralized regulates ubiquitination and endocytosis of Delta during Notch signaling. Mol Cell Biol 2012; 32:4933-45. [PMID: 23045391 DOI: 10.1128/mcb.00711-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Notch pathway plays an integral role in development by regulating cell fate in a wide variety of multicellular organisms. A critical step in the activation of Notch signaling is the endocytosis of the Notch ligands Delta and Serrate. Ligand endocytosis is regulated by one of two E3 ubiquitin ligases, Neuralized (Neur) or Mind bomb. Neur is comprised of a C-terminal RING domain, which is required for Delta ubiquitination, and two Neur homology repeat (NHR) domains. We have previously shown that the NHR1 domain is required for Delta trafficking. Here we show that the NHR1 domain also affects the binding and internalization of Serrate. Furthermore, we show that the NHR2 domain is required for Neur function and that a point mutation in the NHR2 domain (Gly430) abolishes Neur ubiquitination activity and affects ligand internalization. Finally, we provide evidence that Neur can form oligomers in both cultured cells and fly tissues, which regulate Neur activity and, by extension, ligand internalization.
Collapse
|
30
|
Ungerer P, Eriksson BJ, Stollewerk A. Unravelling the evolution of neural stem cells in arthropods: notch signalling in neural stem cell development in the crustacean Daphnia magna. Dev Biol 2012; 371:302-11. [PMID: 22964415 DOI: 10.1016/j.ydbio.2012.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 08/14/2012] [Accepted: 08/23/2012] [Indexed: 01/13/2023]
Abstract
The genetic regulatory networks controlling major developmental processes seem to be conserved in bilaterians regardless of an independent or a common origin of the structures. This has been explained by the employment of a genetic toolkit that was repeatedly used during bilaterian evolution to build the various forms and body plans. However, it is not clear how genetic networks were incorporated into the formation of novel structures and how homologous genes can regulate the disparate morphological processes. Here we address this question by analysing the role of Notch signalling, which is part of the bilaterian toolkit, in neural stem cell evolution in arthropods. Within arthropods neural stem cells have evolved in the last common ancestor of insects and crustaceans (Tetraconata). We analyse here for the first time the role of Notch signalling in a crustacean, the branchiopod Daphnia magna, and show that it is required in neural stem cells for regulating the time of neural precursor production and for binary cell fate decisions in the ventral neuroectoderm. The function of Notch signalling has diverged in the ventral neuroectoderm of insects and crustaceans accompanied by changes in the morphogenetic processes. In the crustacean, Notch controlled mechanisms of neuroblast regulation have evolved that are surprisingly similar to vertebrates and thus present a remarkable case of parallel evolution. These new data on a representative of crustaceans complete the arthropod data set on Notch signalling in the nervous system and allow for reconstructing how the Notch signalling pathway has been co-opted from pre-existing structures to the development of the evolving neural stem cells in the Tetraconata ancestor.
Collapse
Affiliation(s)
- Petra Ungerer
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| | | | | |
Collapse
|
31
|
Jiang H, Edgar BA. Intestinal stem cells in the adult Drosophila midgut. Exp Cell Res 2011; 317:2780-8. [PMID: 21856297 PMCID: PMC6141237 DOI: 10.1016/j.yexcr.2011.07.020] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 07/23/2011] [Indexed: 12/28/2022]
Abstract
Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury.
Collapse
Affiliation(s)
- Huaqi Jiang
- Department of Developmental Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75235, USA.
| | | |
Collapse
|
32
|
Royet J. Epithelial homeostasis and the underlying molecular mechanisms in the gut of the insect model Drosophila melanogaster. Cell Mol Life Sci 2011; 68:3651-60. [PMID: 21964927 PMCID: PMC11115164 DOI: 10.1007/s00018-011-0828-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 11/30/2022]
Abstract
Insects mostly develop on decaying and contaminated organic matter and often serve as vectors of biologically transmitted diseases by transporting microorganisms to the plant and animal hosts. As such, insects are constantly ingesting microorganisms, a small fraction of which reach their epithelial surfaces, mainly their digestive tract, where they can establish relationships ranging from symbiosis to mutualism or even parasitism. Understanding the tight physical, genetic, and biochemical interactions that takes place between intestinal epithelia and either resident or infectious microbes has been a long-lasting objective of the immunologist. Research in this field has recently been re-vitalized with the development of deep sequencing techniques, which allow qualitative and quantitative characterization of gut microbiota. Interestingly, the recent identification of regenerative stem cells in the Drosophila gut together with the initial characterization of Drosophila gut microbiota have opened up new avenues of study aimed at understanding the mechanisms that regulate the dialog between the Drosophila gut epithelium and its microbiota of this insect model. The fact that some of the responses are conserved across species combined with the power of Drosophila genetics could make this organism model a useful tool to further elucidate some aspects of the interaction occurring between the microbiota and the human gut.
Collapse
Affiliation(s)
- Julien Royet
- IBDML, UMR 6216 CNRS, Université Aix-Marseille, Marseille, France.
| |
Collapse
|
33
|
Micchelli CA. The origin of intestinal stem cells in Drosophila. Dev Dyn 2011; 241:85-91. [PMID: 21972080 DOI: 10.1002/dvdy.22759] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2011] [Indexed: 11/08/2022] Open
Abstract
Renewing tissues in the adult organism such as the gastrointestinal (GI) epithelium depend on stem cells for epithelial maintenance and repair. Yet, little is known about the developmental origins of adult stem cells and their niches. Studies of Drosophila adult midgut precursors (AMPs), a population of endodermal progenitors, demonstrate that adult intestinal stem cells (ISCs) arise from the AMP lineage and provide insight into the stepwise process by which the adult midgut epithelium is established during development. Here, I review the current literature on AMPs, where local, inductive and long-range humoral signals have been found to control progenitor cell behavior. Future studies will be necessary to determine the precise mechanism by which adult intestinal stem cells are established in the endodermal lineage.
Collapse
Affiliation(s)
- Craig A Micchelli
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
34
|
Grigorian M, Mandal L, Hakimi M, Ortiz I, Hartenstein V. The convergence of Notch and MAPK signaling specifies the blood progenitor fate in the Drosophila mesoderm. Dev Biol 2011; 353:105-18. [PMID: 21382367 PMCID: PMC3312814 DOI: 10.1016/j.ydbio.2011.02.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/26/2011] [Accepted: 02/26/2011] [Indexed: 11/25/2022]
Abstract
Blood progenitors arise from a pool of pluripotential cells ("hemangioblasts") within the Drosophila embryonic mesoderm. The fact that the cardiogenic mesoderm consists of only a small number of highly stereotypically patterned cells that can be queried individually regarding their gene expression in normal and mutant embryos is one of the significant advantages that Drosophila offers to dissect the mechanism specifying the fate of these cells. We show in this paper that the expression of the Notch ligand Delta (Dl) reveals segmentally reiterated mesodermal clusters ("cardiogenic clusters") that constitute the cardiogenic mesoderm. These clusters give rise to cardioblasts, blood progenitors and nephrocytes. Cardioblasts emerging from the cardiogenic clusters accumulate high levels of Dl, which is required to prevent more cells from adopting the cardioblast fate. In embryos lacking Dl function, all cells of the cardiogenic clusters become cardioblasts, and blood progenitors are lacking. Concomitant activation of the Mitogen Activated Protein Kinase (MAPK) pathway by Epidermal Growth Factor Receptor (EGFR) and Fibroblast Growth Factor Receptor (FGFR) is required for the specification and maintenance of the cardiogenic mesoderm; in addition, the spatially restricted localization of some of the FGFR ligands may be instrumental in controlling the spatial restriction of the Dl ligand to presumptive cardioblasts.
Collapse
Affiliation(s)
- Melina Grigorian
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
35
|
Isolation, primary culture and morphological characterization of oenocytes from Aedes aegypti pupae. Tissue Cell 2011; 43:83-90. [DOI: 10.1016/j.tice.2010.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/11/2010] [Accepted: 12/17/2010] [Indexed: 11/21/2022]
|
36
|
Muñoz-Descalzo S, Tkocz K, Balayo T, Arias AM. Modulation of the ligand-independent traffic of Notch by Axin and Apc contributes to the activation of Armadillo in Drosophila. Development 2011; 138:1501-6. [PMID: 21389052 DOI: 10.1242/dev.061309] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is increasing evidence for close functional interactions between Wnt and Notch signalling. In many instances, these are mediated by convergence of the signalling events on common transcriptional targets, but there are other instances that cannot be accounted for in this manner. Studies in Drosophila have revealed that an activated form of Armadillo, the effector of Wnt signalling, interacts with, and is modulated by, the Notch receptor. Specifically, the ligand-independent traffic of Notch serves to set up a threshold for the amount of this form of Armadillo and therefore for Wnt signalling. In the current model of Wnt signalling, a complex assembled around Axin and Apc allows GSK3 (Shaggy) to phosphorylate Armadillo and target it for degradation. However, genetic experiments suggest that the loss of function of any of these three elements does not have the same effect as elevating the activity of β-catenin. Here, we show that Axin and Apc, but not GSK3, modulate the ligand-independent traffic of Notch. This finding helps to explain unexpected differences in the phenotypes obtained by different ways of activating Armadillo function and provides further support for the notion that Wnt and Notch signalling form a single functional module.
Collapse
|
37
|
Affiliation(s)
- Michela Noseda
- From the British Heart Foundation Centre of Research Excellence (M.N., M.D.S.), National Heart and Lung Institute, Imperial College London; and the Weatherall Institute of Molecular Medicine (T.P., F.C.S., R.P.), University of Oxford, United Kingdom
| | - Tessa Peterkin
- From the British Heart Foundation Centre of Research Excellence (M.N., M.D.S.), National Heart and Lung Institute, Imperial College London; and the Weatherall Institute of Molecular Medicine (T.P., F.C.S., R.P.), University of Oxford, United Kingdom
| | - Filipa C. Simões
- From the British Heart Foundation Centre of Research Excellence (M.N., M.D.S.), National Heart and Lung Institute, Imperial College London; and the Weatherall Institute of Molecular Medicine (T.P., F.C.S., R.P.), University of Oxford, United Kingdom
| | - Roger Patient
- From the British Heart Foundation Centre of Research Excellence (M.N., M.D.S.), National Heart and Lung Institute, Imperial College London; and the Weatherall Institute of Molecular Medicine (T.P., F.C.S., R.P.), University of Oxford, United Kingdom
| | - Michael D. Schneider
- From the British Heart Foundation Centre of Research Excellence (M.N., M.D.S.), National Heart and Lung Institute, Imperial College London; and the Weatherall Institute of Molecular Medicine (T.P., F.C.S., R.P.), University of Oxford, United Kingdom
| |
Collapse
|
38
|
Orihara-Ono M, Toriya M, Nakao K, Okano H. Downregulation of Notch mediates the seamless transition of individual Drosophila neuroepithelial progenitors into optic medullar neuroblasts during prolonged G1. Dev Biol 2011; 351:163-75. [PMID: 21215740 DOI: 10.1016/j.ydbio.2010.12.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 12/29/2010] [Accepted: 12/30/2010] [Indexed: 11/17/2022]
Abstract
The first step in the development of the Drosophila optic medullar primordia is the expansion of symmetrically dividing neuroepithelial cells (NEs); this step is then followed by the appearance of asymmetrically dividing neuroblasts (NBs). However, the mechanisms responsible for the change from NEs to NBs remain unclear. Here, we performed detailed analyses demonstrating that individual NEs are converted into NBs. We also showed that this transition occurs during an elongated G1 phase. During this G1 phase, the morphological features and gene expressions of each columnar NE changed dynamically. Once the NE-to-NB transition was completed, the former NE changed its cell-cycling behavior, commencing asymmetric division. We also found that Notch signaling pathway was activated just before the transition and was rapidly downregulated. Furthermore, the clonal loss of the Notch wild copy in the NE region near the medial edge caused the ectopic accumulation of Delta, leading to the precocious onset of transition. Taken together, these findings indicate that the activation of Notch signaling during a finite window coordinates the proper timing of the NE-to-NB transition.
Collapse
Affiliation(s)
- Minako Orihara-Ono
- Department of Physiology, Faculty of Medicine, Keio University, Tokyo, Zip 160-8582, Japan
| | | | | | | |
Collapse
|
39
|
Micchelli CA, Sudmeier L, Perrimon N, Tang S, Beehler-Evans R. Identification of adult midgut precursors in Drosophila. Gene Expr Patterns 2010; 11:12-21. [PMID: 20804858 DOI: 10.1016/j.gep.2010.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 01/19/2023]
Abstract
The adult Drosophila midgut is thought to arise from an endodermal rudiment specified during embryogenesis. Previous studies have reported the presence of individual cells termed adult midgut precursors (AMPs) as well as "midgut islands" or "islets" in embryonic and larval midgut tissue. Yet the precise relationship between progenitor cell populations and the cells of the adult midgut has not been characterized. Using a combination of molecular markers and directed cell lineage tracing, we provide evidence that the adult midgut arises from a molecularly distinct population of single cells present by the embryonic/larval transition. AMPs reside in a distinct basal position in the larval midgut where they remain through all subsequent larval and pupal stages and into adulthood. At least five phases of AMP activity are associated with the stepwise process of midgut formation. Our data shows that during larval stages AMPs give rise to the presumptive adult epithelium; during pupal stages AMPs contribute to the final size, cell number and form. Finally, a genetic screen has led to the identification of the Ecdysone receptor as a regulator of AMP expansion.
Collapse
Affiliation(s)
- Craig A Micchelli
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
40
|
Reim I, Frasch M. Genetic and genomic dissection of cardiogenesis in the Drosophila model. Pediatr Cardiol 2010; 31:325-34. [PMID: 20033682 DOI: 10.1007/s00246-009-9612-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 12/07/2009] [Indexed: 01/26/2023]
Abstract
The linear heart tube of the fruit fly Drosophila has served as a very valuable model for studying the regulation of early heart development. In the past, regulatory genes of Drosophila cardiogenesis have been identified largely through candidate approaches. The vast genetic toolkit available in this organism has made it possible to determine their functions and build regulatory networks of transcription factors and signaling inputs that control heart development. In this review, we summarize the major findings from this study and present current approaches aiming to identify additional players in the specification, morphogenesis, and differentiation of the heart by forward genetic screens. We also discuss various genomic and bioinformatic approaches that are currently being developed to extend the known transcriptional networks more globally which, in combination with the genetic approaches, will provide a comprehensive picture of the regulatory circuits during cardiogenesis.
Collapse
Affiliation(s)
- Ingolf Reim
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Staudtstr. 5, 91058, Erlangen, Germany.
| | | |
Collapse
|
41
|
Babaoglan AB, O'Connor-Giles KM, Mistry H, Schickedanz A, Wilson BA, Skeath JB. Sanpodo: a context-dependent activator and inhibitor of Notch signaling during asymmetric divisions. Development 2009; 136:4089-98. [PMID: 19906847 DOI: 10.1242/dev.040386] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asymmetric cell divisions generate sibling cells of distinct fates ('A', 'B') and constitute a fundamental mechanism that creates cell-type diversity in multicellular organisms. Antagonistic interactions between the Notch pathway and the intrinsic cell-fate determinant Numb appear to regulate asymmetric divisions in flies and vertebrates. During these divisions, productive Notch signaling requires sanpodo, which encodes a novel transmembrane protein. Here, we demonstrate that Drosophila sanpodo plays a dual role to regulate Notch signaling during asymmetric divisions - amplifying Notch signaling in the absence of Numb in the 'A' daughter cell and inhibiting Notch signaling in the presence of Numb in the 'B' daughter cell. In so doing, sanpodo ensures the asymmetry in Notch signaling levels necessary for the acquisition of distinct fates by the two daughter cells. These findings answer long-standing questions about the restricted ability of Numb and Sanpodo to inhibit and to promote, respectively, Notch signaling during asymmetric divisions.
Collapse
Affiliation(s)
- A Burcu Babaoglan
- Program in Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
42
|
On the roles of Notch, Delta, kuzbanian, and inscuteable during the development of Drosophila embryonic neuroblast lineages. Dev Biol 2009; 336:156-68. [PMID: 19782677 DOI: 10.1016/j.ydbio.2009.09.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 09/11/2009] [Accepted: 09/20/2009] [Indexed: 01/22/2023]
Abstract
The generation of cellular diversity in the nervous system involves the mechanism of asymmetric cell division. Besides an array of molecules, including the Par protein cassette, a heterotrimeric G protein signalling complex, Inscuteable plays a major role in controlling asymmetric cell division, which ultimately leads to differential activation of the Notch signalling pathway and correct specification of the two daughter cells. In this context, Notch is required to be active in one sibling and inactive in the other. Here, we investigated the requirement of genes previously known to play key roles in sibling cell fate specification such as members of the Notch signalling pathway, e.g., Notch (N), Delta (Dl), and kuzbanian (kuz) and a crucial regulator of asymmetric cell division, inscuteable (insc) throughout lineage progression of 4 neuroblasts (NB1-1, MP2, NB4-2, and NB7-1). Notch-mediated cell fate specification defects were cell-autonomous and were observed in all neuroblast lineages even in cells born from late ganglion mother cells (GMC) within the lineages. We also show that Dl functions non-autonomously during NB lineage progression and clonal cells do not require Dl from within the clone. This suggests that within a NB lineage Dl is dispensable for sibling cell fate specification. Furthermore, we provide evidence that kuz is involved in sibling cell fate specification in the central nervous system. It is cell-autonomously required in the same postmitotic cells which also depend on Notch function. This indicates that KUZ is required to facilitate a functional Notch signal in the Notch-dependent cell for correct cell fate specification. Finally, we show that three neuroblast lineages (NB1-1, NB4-2, and NB7-1) require insc function for sibling cell fate specification in cells born from early GMCs whereas insc is not required in cells born from later GMCs of the same lineages. Thus, there is differential requirement for insc for cell fate specification depending on the stage of lineage progression of NBs.
Collapse
|
43
|
Sanders PGT, Muñoz-Descalzo S, Balayo T, Wirtz-Peitz F, Hayward P, Arias AM. Ligand-independent traffic of Notch buffers activated Armadillo in Drosophila. PLoS Biol 2009; 7:e1000169. [PMID: 19668359 PMCID: PMC2716527 DOI: 10.1371/journal.pbio.1000169] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 07/02/2009] [Indexed: 12/13/2022] Open
Abstract
Full-length Notch receptor binds to the Wnt pathway effector β-catenin and mediates its endocytosis and degradation, demonstrating a novel mechanism by which Notch may modulate Wnt pathway activity. Notch receptors act as ligand-dependent membrane-tethered transcription factors with a prominent role in binary cell fate decisions during development, which is conserved across species. In addition there is increasing evidence for other functions of Notch, particularly in connection with Wnt signalling: Notch is able to modulate the activity of Armadillo/ß-catenin, the effector of Wnt signalling, in a manner that is independent of its transcriptional activity. Here we explore the mechanism of this interaction in the epithelium of the Drosophila imaginal discs and find that it is mediated by the ligand-independent endocytosis and traffic of the Notch receptor. Our results show that Notch associates with Armadillo near the adherens junctions and that it is rapidly endocytosed promoting the traffic of an activated form of Armadillo into endosomal compartments, where it may be degraded. As Notch has the ability to interact with and downregulate activated forms of Armadillo, it is possible that in vivo Notch regulates the transcriptionally competent pool of Armadillo. These interactions reveal a previously unknown activity of Notch, which serves to buffer the function of activated Armadillo and might underlie some of its transcription-independent effects. Establishment of the correct shape and pattern of tissues within an organism requires the integration of molecular information present in signalling and transcriptional networks and demands delicate exchanges and balances of their activities. A large body of experimental work has revealed close correlations in the activities of two pathways: Notch and Wnt, which suggest the existence of multiple links between them. Notch signalling relies in part upon the activity of the Notch protein, a membrane-bound receptor with a transcription factor domain that can be released from the membrane by proteolytic cleavage. On the other hand Wnt proteins are ligands that trigger changes in the activity of ß-catenin, which is called Armadillo in the fruit fly Drosophila melanogaster. In this study we uncover a previously unknown activity for Notch: endocytosis and trafficking of full length Notch, which targets Armadillo for degradation. This activity of Notch is independent of its ligands, Delta and Serrate, and of its downstream effector, the transcription factor Suppressor of Hairless. We further show that in the absence of Notch, which has been shown to act as a tumor suppressor in mammals, expression of an activated form of Armadillo causes tissue overgrowth and changes in the polarity of cells. Our results suggest that Drosophila Notch can promote the degradation of activated forms of Armadillo and may buffer cells against fluctuations in Wnt signalling activity.
Collapse
Affiliation(s)
- Phil G. T. Sanders
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Tina Balayo
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Penelope Hayward
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
44
|
Embryonic arrest at midgestation and disruption of Notch signaling produced by the absence of both epsin 1 and epsin 2 in mice. Proc Natl Acad Sci U S A 2009; 106:13838-43. [PMID: 19666558 DOI: 10.1073/pnas.0907008106] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epsins are endocytic adaptors with putative functions in general aspects of clathrin-mediated endocytosis as well as in the internalization of specific membrane proteins. We have now tested the role of the ubiquitously expressed epsin genes, Epn1 and Epn2, by a genetic approach in mice. While either gene is dispensable for life, their combined inactivation results in embryonic lethality at E9.5-E10, i.e., at the beginning of organogenesis. Consistent with studies in Drosophila, where epsin endocytic function was linked to Notch activation, developmental defects observed in epsin 1/2 double knockout (DKO) embryos recapitulated those produced by a global impairment of Notch signaling. Accordingly, expression of Notch primary target genes was severely reduced in DKO embryos. However, housekeeping forms of clathrin-mediated endocytosis were not impaired in cells derived from these embryos. These findings support a role of epsin as a specialized endocytic adaptor, with a critical role in the activation of Notch signaling in mammals.
Collapse
|
45
|
Maeder ML, Megley C, Eastman DA. Differential expression of the Enhancer of split genes in the developing Drosophila midgut. Hereditas 2009; 146:11-8. [PMID: 19348652 DOI: 10.1111/j.1601-5223.2008.02094.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Notch signaling pathway plays an important role during development in animals from worms to humans and pathway components are required for the differentiation of many different cell types. In Drosophila, Su(H) dependent Notch activation up-regulates transcription of the Enhancer of split-Complex (E(spl)-C). The E(spl) genes are known to function during neurogenesis, although expression and genetics studies suggest that they also play roles in the development of other tissues. The majority of the E(spl) genes contain upstream binding sites for Su(H), proneural proteins, and E(spl) bHLH proteins resulting in overlapping expression patterns during embryonic development. However, their expression patterns are quite distinct during later embryonic stages and in larval imaginal discs. In order to characterize expression patterns of the E(spl) genes during development and determine potential mechanisms through which expression is controlled, we examined the expression levels and patterns of the E(spl) genes in the midgut during metamorphosis. Quantitative Reverse Transcriptase-PCR and X-Gal staining results show that the genes have different levels and patterns of expression in the developing midgut. Two ancestral E(spl) genes, malpha and mbeta, are highly expressed and increase significantly at puparium formation, whereas another gene, mgamma, is expressed at low levels and decreases in expression at puparium formation. We also show that mbeta is expressed in cells throughout the midgut, while mgamma is expressed in two small regions. These results provide further evidence that the E(spl) genes function during midgut development and that they are regulated by different factors.
Collapse
Affiliation(s)
- Morgan L Maeder
- Department of Biology, Connecticut College, New London, Connecticut 06320, USA
| | | | | |
Collapse
|
46
|
Dang H, Lin AL, Zhang B, Zhang HM, Katz MS, Yeh CK. Role for Notch signaling in salivary acinar cell growth and differentiation. Dev Dyn 2009; 238:724-31. [PMID: 19235730 DOI: 10.1002/dvdy.21875] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Notch pathway is crucial for stem/progenitor cell maintenance, growth and differentiation in a variety of tissues. The Notch signaling is essential for Drosophila salivary gland development but its role in mammalian salivary gland remains unclear. The human salivary epithelial cell line, HSG, was studied to determine the role of Notch signaling in salivary epithelial cell differentiation. HSG expressed Notch 1 to 4, and the Notch ligands Jagged 1 and 2 and Delta 1. Treatment of HSG cells with inhibitors of gamma-secretase, which is required for Notch cleavage and activation, blocked vimentin and cystatin S expression, an indicator of HSG differentiation. HSG differentiation was also associated with Notch downstream signal Hes-1 expression, and Hes-1 expression was inhibited by gamma-secretase inhibitors. siRNA corresponding to Notch 1 to 4 was used to show that silencing of all four Notch receptors was required to inhibit HSG differentiation. Normal human submandibular gland expressed Notch 1 to 4, Jagged 1 and 2, and Delta 1, with nuclear localization indicating Notch signaling in vivo. Hes-1 was also expressed in the human tissue, with staining predominantly in the ductal cells. In salivary tissue from rats undergoing and recovering from ductal obstruction, we found that Notch receptors and ligands were expressed in the nucleus of the regenerating epithelial cells. Taken together, these data suggest that Notch signaling is critical for normal salivary gland cell growth and differentiation.
Collapse
Affiliation(s)
- Howard Dang
- The University of Texas Health Science Center, Department of Community Dentistry, San Antonio, Texas, USA
| | | | | | | | | | | |
Collapse
|
47
|
Sellin J, Drechsler M, Nguyen HT, Paululat A. Antagonistic function of Lmd and Zfh1 fine tunes cell fate decisions in the Twi and Tin positive mesoderm of Drosophila melanogaster. Dev Biol 2008; 326:444-55. [PMID: 19028484 DOI: 10.1016/j.ydbio.2008.10.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/30/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
Abstract
In this study we show that cell fate decisions in the dorsal and lateral mesoderm of Drosophila melanogaster depend on the antagonistic action of the Gli-like transcription factor Lame duck (Lmd) and the zinc finger homeodomain factor Zfh1. Lmd expression leads to the reduction of Zfh1 positive cell types, thereby restricting the number of Odd-skipped (Odd) positive and Tinman (Tin) positive pericardial cells in the dorsal mesoderm. In more lateral regions, ectopic activation of Zfh1 or loss of Lmd leads to an excess of adult muscle precursor (AMP) like cells. We also observed that Lmd is co-expressed with Tin in the early dorsal mesoderm and leads to a reduction of Tin expression in cells destined to become dorsal fusion competent myoblasts (FCMs). In the absence of Lmd function, these cells remain Tin positive and develop as Tin positive pericardial cells although they do not express Zfh1. We show further that Tin repression and pericardial restriction in the dorsal mesoderm facilitated by Lmd is instructed by a late Decapentaplegic (Dpp) signal that is abolished in embryos carrying the disk region mutation dpp(d6).
Collapse
Affiliation(s)
- Julia Sellin
- Universität Osnabrück, Fachbereich Biologie/Chemie - Zoologie/Entwicklungsbiologie, Osnabrück, Germany
| | | | | | | |
Collapse
|
48
|
Song R, Kim YW, Koo BK, Jeong HW, Yoon MJ, Yoon KJ, Jun DJ, Im SK, Shin J, Kong MP, Kim KT, Yoon K, Kong YY. Mind bomb 1 in the lymphopoietic niches is essential for T and marginal zone B cell development. ACTA ACUST UNITED AC 2008; 205:2525-36. [PMID: 18824586 PMCID: PMC2571928 DOI: 10.1084/jem.20081344] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Notch signaling regulates lineage decisions at multiple stages of lymphocyte development, and Notch activation requires the endocytosis of Notch ligands in the signal-sending cells. Four E3 ubiquitin ligases, Mind bomb (Mib) 1, Mib2, Neuralized (Neur) 1, and Neur2, regulate the Notch ligands to activate Notch signaling, but their roles in lymphocyte development have not been defined. We show that Mib1 regulates T and marginal zone B (MZB) cell development in the lymphopoietic niches. Inactivation of the Mib1 gene, but not the other E3 ligases, Mib2, Neur1, and Neur2, abrogated T and MZB cell development. Reciprocal bone marrow (BM) transplantation experiments revealed that Mib1 in the thymic and splenic niches is essential for T and MZB cell development. Interestingly, when BM cells from transgenic Notch reporter mice were transplanted into Mib1-null mice, the Notch signaling was abolished in the double-negative thymocytes. In addition, the endocytosis of Dll1 was impaired in the Mib1-null microenvironment. Moreover, the block in T cell development and the failure of Dll1 endocytosis were also observed in coculture system by Mib1 knockdown. Our study reveals that Mib1 is the essential E3 ligase in T and MZB cell development, through the regulation of Notch ligands in the thymic and splenic microenvironments.
Collapse
Affiliation(s)
- Ran Song
- Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bryantsev AL, Cripps RM. Cardiac gene regulatory networks in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:343-53. [PMID: 18849017 DOI: 10.1016/j.bbagrm.2008.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/09/2008] [Accepted: 09/09/2008] [Indexed: 11/29/2022]
Abstract
The Drosophila system has proven a powerful tool to help unlock the regulatory processes that occur during specification and differentiation of the embryonic heart. In this review, we focus upon a temporal analysis of the molecular events that result in heart formation in Drosophila, with a particular emphasis upon how genomic and other cutting-edge approaches are being brought to bear upon the subject. We anticipate that systems-level approaches will contribute greatly to our comprehension of heart development and disease in the animal kingdom.
Collapse
Affiliation(s)
- Anton L Bryantsev
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
50
|
Gene expression analysis in post-embryonic pericardial cells of Drosophila. Gene Expr Patterns 2008; 8:199-205. [DOI: 10.1016/j.gep.2007.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/19/2007] [Accepted: 10/24/2007] [Indexed: 11/24/2022]
|