1
|
Di Tommaso E, Giunta S. Dynamic interplay between human alpha-satellite DNA structure and centromere functions. Semin Cell Dev Biol 2024; 156:130-140. [PMID: 37926668 DOI: 10.1016/j.semcdb.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
Maintenance of genome stability relies on functional centromeres for correct chromosome segregation and faithful inheritance of the genetic information. The human centromere is the primary constriction within mitotic chromosomes made up of repetitive alpha-satellite DNA hierarchically organized in megabase-long arrays of near-identical higher order repeats (HORs). Centromeres are epigenetically specified by the presence of the centromere-specific histone H3 variant, CENP-A, which enables the assembly of the kinetochore for microtubule attachment. Notably, centromeric DNA is faithfully inherited as intact haplotypes from the parents to the offspring without intervening recombination, yet, outside of meiosis, centromeres are akin to common fragile sites (CFSs), manifesting crossing-overs and ongoing sequence instability. Consequences of DNA changes within the centromere are just starting to emerge, with unclear effects on intra- and inter-generational inheritance driven by centromere's essential role in kinetochore assembly. Here, we review evidence of meiotic selection operating to mitigate centromere drive, as well as recent reports on centromere damage, recombination and repair during the mitotic cell division. We propose an antagonistic pleiotropy interpretation to reconcile centromere DNA instability as both driver of aneuploidy that underlies degenerative diseases, while also potentially necessary for the maintenance of homogenized HORs for centromere function. We attempt to provide a framework for this conceptual leap taking into consideration the structural interface of centromere-kinetochore interaction and present case scenarios for its malfunctioning. Finally, we offer an integrated working model to connect DNA instability, chromatin, and structural changes with functional consequences on chromosome integrity.
Collapse
Affiliation(s)
- Elena Di Tommaso
- Laboratory of Genome Evolution, Department of Biology & Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Simona Giunta
- Laboratory of Genome Evolution, Department of Biology & Biotechnology Charles Darwin, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
2
|
Jeon HJ, Levine MT, Lampson MA. Telomere Elongation During Pre-Implantation Embryo Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:121-129. [PMID: 39030357 DOI: 10.1007/978-3-031-55163-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The primary mechanism of telomere elongation in mammals is reverse transcription by telomerase. An alternative (ALT) pathway elongates telomeres by homologous recombination in some cancer cells and during pre-implantation embryo development, when telomere length increases rapidly within a few cell cycles. The maternal and paternal telomeres in the zygote are genetically and epigenetically distinct, with differences in telomere length and in chromatin packaging. We discuss models for how these asymmetries may contribute to telomere regulation during the earliest embryonic cell cycles and suggest directions for future research.
Collapse
Affiliation(s)
- Hyuk-Joon Jeon
- Department of Biology and Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA
| | - Mia T Levine
- Department of Biology and Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA.
| | - Michael A Lampson
- Department of Biology and Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Bogolyubova IO, Sailau ZK, Bogolyubov DS. Nuclear Distribution of the Chromatin-Remodeling Protein ATRX in Mouse Early Embryos during Normal Development and Developmental Arrest In Vitro. Life (Basel) 2023; 14:5. [PMID: 38276254 PMCID: PMC10817635 DOI: 10.3390/life14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
The chromatin-remodeling protein ATRX, which is currently recognized as one of the key genome caretakers, plays an important role in oogenesis and early embryogenesis in mammals. ATRX distribution in the nuclei of mouse embryos developing in vivo and in vitro, including when the embryos are arrested at the two-cell stage-the so-called two-cell block in vitro-was studied using immunofluorescent labeling and FISH. In normally developing two- and four-cell embryos, ATRX was found to be closely colocalized with pericentromeric DNA sequences detected with a probe to the mouse major satellite DNA. The association of ATRX with pericentromeric heterochromatin is mediated by nuclear actin and reduced after the treatment of embryos with latrunculin B. When culturing embryos in vitro, the distribution pattern of ATRX changes, leading to a decrease in the association of this protein with major satellite DNA especially under the two-cell block in vitro. Taken together, our data suggest that the intranuclear distribution of ATRX reflects the viability of mouse embryos and their probability of successful preimplantation development.
Collapse
Affiliation(s)
- Irina O. Bogolyubova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia;
| | - Zhuldyz K. Sailau
- PERSONA International Clinical Center for Reproductology, Almaty 050060, Kazakhstan;
| | - Dmitry S. Bogolyubov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia;
| |
Collapse
|
4
|
Baumann C, Zhang X, Kandasamy MK, Mei X, Chen S, Tehrani KF, Mortensen LJ, Watford W, Lall A, De La Fuente R. Acute irradiation induces a senescence-like chromatin structure in mammalian oocytes. Commun Biol 2023; 6:1258. [PMID: 38086992 PMCID: PMC10716162 DOI: 10.1038/s42003-023-05641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The mechanisms leading to changes in mesoscale chromatin organization during cellular aging are unknown. Here, we used transcriptional activator-like effectors, RNA-seq and superresolution analysis to determine the effects of genotoxic stress on oocyte chromatin structure. Major satellites are organized into tightly packed globular structures that coalesce into chromocenters and dynamically associate with the nucleolus. Acute irradiation significantly enhanced chromocenter mobility in transcriptionally inactive oocytes. In transcriptionally active oocytes, irradiation induced a striking unfolding of satellite chromatin fibers and enhanced the expression of transcripts required for protection from oxidative stress (Fermt1, Smg1), recovery from DNA damage (Tlk2, Rad54l) and regulation of heterochromatin assembly (Zfp296, Ski-oncogene). Non-irradiated, senescent oocytes exhibit not only high chromocenter mobility and satellite distension but also a high frequency of extra chromosomal satellite DNA. Notably, analysis of biological aging using an oocyte-specific RNA clock revealed cellular communication, posttranslational protein modifications, chromatin and histone dynamics as the top cellular processes that are dysregulated in both senescent and irradiated oocytes. Our results indicate that unfolding of heterochromatin fibers following acute genotoxic stress or cellular aging induced the formation of distended satellites and that abnormal chromatin structure together with increased chromocenter mobility leads to chromosome instability in senescent oocytes.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
| | | | - Xiaohan Mei
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Division of Surgical Research, University of Missouri, School of Medicine, Columbia, MO, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Shiyou Chen
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Division of Surgical Research, University of Missouri, School of Medicine, Columbia, MO, USA
| | - Kayvan F Tehrani
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, USA
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Luke J Mortensen
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Wendy Watford
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Ashley Lall
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA.
| |
Collapse
|
5
|
Baumann C, Zhang X, Viveiros MM, De La Fuente R. Pericentric major satellite transcription is essential for meiotic chromosome stability and spindle pole organization. Open Biol 2023; 13:230133. [PMID: 37935356 PMCID: PMC10645078 DOI: 10.1098/rsob.230133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023] Open
Abstract
In somatic cells, mitotic transcription of major satellite non-coding RNAs is tightly regulated and essential for heterochromatin formation and the maintenance of genome integrity. We recently demonstrated that major satellite transcripts are expressed, and chromatin-bound during mouse oocyte meiosis. Pericentric satellite RNAs are also expressed in human oocytes. However, the specific biological function(s) during oocyte meiosis remain to be established. Here, we use validated locked nucleic acid gapmers for major satellite RNA depletion followed by live cell imaging, and superresolution analysis to determine the role of pericentric non-coding RNAs during female meiosis. Depletion of satellite RNA induces mesoscale changes in pericentric heterochromatin structure leading to chromosome instability, kinetochore attachment errors and abnormal chromosome alignment. Chromosome misalignment is associated with spindle defects, microtubule instability and, unexpectedly, loss of acentriolar microtubule organizing centre (aMTOC) tethering to spindle poles. Pericentrin fragmentation and failure to assemble ring-like aMTOCs with loss of associated polo-like kinase 1 provide critical insight into the mechanisms leading to impaired spindle pole integrity. Inhibition of transcription or RNA splicing phenocopies the chromosome alignment errors and spindle defects, suggesting that pericentric transcription during oocyte meiosis is required to regulate heterochromatin structure, chromosome segregation and maintenance of spindle organization.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
| | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA 30602-0002, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-0002, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA 30602-0002, USA
| |
Collapse
|
6
|
Udroiu I, Marinaccio J, Sgura A. Inhibition of p53 and ATRX increases telomeric recombination in primary fibroblasts. FEBS Open Bio 2023; 13:1683-1698. [PMID: 37499040 PMCID: PMC10476563 DOI: 10.1002/2211-5463.13680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Telomere length can be maintained either by the telomerase enzyme or by alternative lengthening of telomeres (ALT), which is based on telomeric recombination. However, both mechanisms are inactive in most human somatic cells. ATRX has been previously identified as an ALT repressor gene. Nonetheless, TP53 is also deficient in most ALT cell lines, and previous works showed that it is an inhibitor of homologous recombination (HR). Despite this, the role of p53 as an ALT repressor has not been previously examined. Therefore, we investigated the effects of p53 and ATRX inhibition on normal human fibroblasts (devoid of any mutation), in the presence or absence of X-ray-induced telomeric damage. Performing immunofluorescence with antibodies for RAD51, H2AX, and TRF1 (for studying HR-mediated DNA damage repair) and CO-FISH (for telomeric sister chromatid exchanges), we observed that HR is a normal mechanism for the repair of telomeric damage, present also in noncancer cells. Moreover, we discovered that telomeric HR, as for HR in general, is significantly inhibited by p53. Indeed, we observed that inhibition of p53 drastically increases telomeric sister chromatid exchanges. We also confirmed that ATRX inhibition increases telomeric recombination. In particular, we observed an increase in crossover products, but a much higher increase in noncrossover products.
Collapse
Affiliation(s)
- Ion Udroiu
- Dipartimento di Scienze, Università "Roma Tre", Italy
| | | | | |
Collapse
|
7
|
Guthmann M, Qian C, Gialdini I, Nakatani T, Ettinger A, Schauer T, Kukhtevich I, Schneider R, Lamb DC, Burton A, Torres-Padilla ME. A change in biophysical properties accompanies heterochromatin formation in mouse embryos. Genes Dev 2023; 37:336-350. [PMID: 37072228 PMCID: PMC10153458 DOI: 10.1101/gad.350353.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/31/2023] [Indexed: 04/20/2023]
Abstract
The majority of our genome is composed of repeated DNA sequences that assemble into heterochromatin, a highly compacted structure that constrains their mutational potential. How heterochromatin forms during development and how its structure is maintained are not fully understood. Here, we show that mouse heterochromatin phase-separates after fertilization, during the earliest stages of mammalian embryogenesis. Using high-resolution quantitative imaging and molecular biology approaches, we show that pericentromeric heterochromatin displays properties consistent with a liquid-like state at the two-cell stage, which change at the four-cell stage, when chromocenters mature and heterochromatin becomes silent. Disrupting the condensates results in altered transcript levels of pericentromeric heterochromatin, suggesting a functional role for phase separation in heterochromatin function. Thus, our work shows that mouse heterochromatin forms membrane-less compartments with biophysical properties that change during development and provides new insights into the self-organization of chromatin domains during mammalian embryogenesis.
Collapse
Affiliation(s)
- Manuel Guthmann
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Chen Qian
- Department of Chemistry, Center for NanoScience (CeNS), Ludwig Maximilians-Universität München, 81377 München, Germany
| | - Irene Gialdini
- Department of Chemistry, Center for NanoScience (CeNS), Ludwig Maximilians-Universität München, 81377 München, Germany
| | - Tsunetoshi Nakatani
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Tamas Schauer
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Igor Kukhtevich
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Robert Schneider
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Don C Lamb
- Department of Chemistry, Center for NanoScience (CeNS), Ludwig Maximilians-Universität München, 81377 München, Germany
| | - Adam Burton
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany;
- Faculty of Biology, Ludwig-Maximilians Universität, München, 82152 Planegg, Germany
| |
Collapse
|
8
|
Qiu R, Zhao S, Lu C, Xu Z, Shu E, Weng Q, Chen W, Fang S, Chen W, Zheng L, Zhao Z, Yang Y, Ji J. Proteomic analysis of DZIP3 interactome and its role in proliferation and metastasis in gastric cancer cells. Exp Cell Res 2023; 425:113525. [PMID: 36841324 DOI: 10.1016/j.yexcr.2023.113525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Gastric cancer is a serious malignant tumor in the world, accounting for the third cause of cancer death worldwide. The pathogenesis of gastric cancer is very complex, in which epigenetic inheritance plays an important role. In our study, we found that DZIP3 was significantly up-regulated in gastric cancer tissues as compared to adjacent normal tissue, which suggested it may be play a crucial part in gastric cancer. To clarify the mechanism of it, we further analyzed the interacting proteome and transcriptome of DZIP3. An association between DZIP3 and some epigenetic regulators, such as CUL4B complex, was verified. We also present the first proteomic characterization of the protein-protein interaction (PPI) network of DZIP3. Then, the transcriptome analysis of DZIP3 demonstrated that knockdown DZIP3 increased a cohort of genes, including SETD7 and ZBTB4, which have essential role in tumors. We also revealed that DZIP3 promotes proliferation and metastasis of gastric cancer cells. And the higher expression of DZIP3 is positively associated with the poor prognosis of several cancers. In summary, our study revealed a mechanistic role of DZIP3 in promoting proliferation and metastasis in gastric cancer, supporting the pursuit of DZIP3 as a potential target for gastric cancer therapy.
Collapse
Affiliation(s)
- Rongfang Qiu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Siyu Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Ziwei Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China
| | - Enfen Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Weiyue Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Department of Radiology, Clinical College of the Affiliated Central Hospital, Lishui University, Lishui, 323000, China; Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| |
Collapse
|
9
|
Zhu J, Chen K, Sun YH, Ye W, Liu J, Zhang D, Su N, Wu L, Kou X, Zhao Y, Wang H, Gao S, Kang L. LSM1-mediated Major Satellite RNA decay is required for nonequilibrium histone H3.3 incorporation into parental pronuclei. Nat Commun 2023; 14:957. [PMID: 36810573 PMCID: PMC9944933 DOI: 10.1038/s41467-023-36584-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Epigenetic reprogramming of the parental genome is essential for zygotic genome activation and subsequent embryo development in mammals. Asymmetric incorporation of histone H3 variants into the parental genome has been observed previously, but the underlying mechanism remains elusive. In this study, we discover that RNA-binding protein LSM1-mediated major satellite RNA decay plays a central role in the preferential incorporation of histone variant H3.3 into the male pronucleus. Knockdown of Lsm1 disrupts nonequilibrium pronucleus histone incorporation and asymmetric H3K9me3 modification. Subsequently, we find that LSM1 mainly targets major satellite repeat RNA (MajSat RNA) for decay and that accumulated MajSat RNA in Lsm1-depleted oocytes leads to abnormal incorporation of H3.1 into the male pronucleus. Knockdown of MajSat RNA reverses the anomalous histone incorporation and modifications in Lsm1-knockdown zygotes. Our study therefore reveals that accurate histone variant incorporation and incidental modifications in parental pronuclei are specified by LSM1-dependent pericentromeric RNA decay.
Collapse
Affiliation(s)
- Jiang Zhu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China.,Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Kang Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China.,Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu H Sun
- Departments of Biology, University of Rochester, 14642, Rochester, NY, USA
| | - Wen Ye
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Juntao Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Dandan Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Nan Su
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Li Wu
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaochen Kou
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Yanhong Zhao
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Hong Wang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China. .,Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China. .,Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| | - Lan Kang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China. .,Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
10
|
Zhang J, Yuan HJ, Zhu J, Gong S, Luo MJ, Tan JH. Topoisomerase II dysfunction causes metaphase I arrest by activating aurora B, SAC and MPF and prevents PB1 abscission in mouse oocytes†. Biol Reprod 2022; 106:900-909. [PMID: 35084021 DOI: 10.1093/biolre/ioac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 11/02/2021] [Accepted: 01/13/2022] [Indexed: 11/14/2022] Open
Abstract
Oocyte aneuploidy is caused mainly by chromosome nondisjunction and/or unbalanced sister chromatid pre-division. Although studies in somatic cells have shown that topoisomerase II (TOP2) plays important roles in chromosome condensation and timely separation of centromeres, little is known about its role during oocyte meiosis. Furthermore, because VP-16, which is a TOP2 inhibitor and induces DNA double strand breaks, is often used for ovarian cancer chemotherapy, its effects on oocytes must be studied for ovarian cancer patients to recover ovarian function following chemotherapy. This study showed that inhibiting TOP2 with either ICRF-193 or VP-16 during meiosis I impaired chromatin condensation, chromosome alignment, TOP2α localization and caused metaphase I (MI) arrest and first polar body (PB1) abscission failure. Inhibiting or neutralizing either spindle assembly checkpoint (SAC), Aurora B or maturation-promoting factor (MPF) significantly abolished the effect of ICRF-193 or VP-16 on MI arrest. Treatment with ICRF-193 or VP-16 significantly activated MPF and SAC but the effect disappeared when Aurora B was inhibited. Most of the oocytes matured in the presence of ICRF-193 or VP-16 were arrested at MI, and only 11% to 27% showed PB1 protrusion. Furthermore, most of the PB1 protrusions formed in the presence of ICRF-193 or VP-16 were retracted after further culture for 7 h. In conclusion, TOP2 dysfunction causes MI arrest by activating Aurora B, SAC and MPF and it prevents PB1 abscission by promoting chromatin bridges.
Collapse
Affiliation(s)
- Jie Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Hong-Jie Yuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Jiang Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Shuai Gong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Ming-Jiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Jing-He Tan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| |
Collapse
|
11
|
Hua LL, Casas C, Mikawa T. Mitotic Antipairing of Homologous Chromosomes. Results Probl Cell Differ 2022; 70:191-220. [PMID: 36348108 PMCID: PMC9731508 DOI: 10.1007/978-3-031-06573-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosome organization is highly dynamic and plays an essential role during cell function. It was recently found that pairs of the homologous chromosomes are continuously separated at mitosis and display a haploid (1n) chromosome set, or "antipairing," organization in human cells. Here, we provide an introduction to the current knowledge of homologous antipairing in humans and its implications in human disease.
Collapse
Affiliation(s)
- Lisa L. Hua
- Department of Biology, Sonoma State University, San Francisco
| | - Christian Casas
- Department of Biology, Sonoma State University, San Francisco
| | - Takashi Mikawa
- Department of Anatomy, Cardiovascular Research Institute, University of California, San Francisco,Corresponding author:
| |
Collapse
|
12
|
Mu H, Zhang T, Yang Y, Zhang D, Gao J, Li J, Yue L, Gao D, Shi B, Han Y, Zhong L, Chen X, Wang ZB, Lin Z, Tong MH, Sun QY, Yang YG, Han J. METTL3-mediated mRNA N 6-methyladenosine is required for oocyte and follicle development in mice. Cell Death Dis 2021; 12:989. [PMID: 34689175 PMCID: PMC8542036 DOI: 10.1038/s41419-021-04272-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
Proper follicle development is very important for the production of mature oocytes, which is essential for the maintenance of female fertility. This complex biological process requires precise gene regulation. The most abundant modification of mRNA, N6-methyladenosine (m6A), is involved in many RNA metabolism processes, including RNA splicing, translation, stability, and degradation. Here, we report that m6A plays essential roles during oocyte and follicle development. Oocyte-specific inactivation of the key m6A methyltransferase Mettl3 with Gdf9-Cre caused DNA damage accumulation in oocytes, defective follicle development, and abnormal ovulation. Mechanistically, combined RNA-seq and m6A methylated RNA immunoprecipitation sequencing (MeRIP-seq) data from oocytes revealed, that we found METTL3 targets Itsn2 for m6A modification and then enhances its stability to influence the oocytes meiosis. Taken together, our findings highlight the crucial roles of mRNA m6A modification in follicle development and coordination of RNA stabilization during oocyte growth.
Collapse
Affiliation(s)
- Haiyuan Mu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ting Zhang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,China National Center for Bioinformation, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,China National Center for Bioinformation, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Danru Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jie Gao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junhong Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liang Yue
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dengfeng Gao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Bingbo Shi
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yue Han
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,China National Center for Bioinformation, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Zhong
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, Hebei, 050051, China
| | - Xinze Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen-Bo Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming-Han Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China. .,China National Center for Bioinformation, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianyong Han
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
The Multiple Facets of ATRX Protein. Cancers (Basel) 2021; 13:cancers13092211. [PMID: 34062956 PMCID: PMC8124985 DOI: 10.3390/cancers13092211] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The gene encoding for the epigenetic regulator ATRX is gaining a prominent position among the most important oncosuppressive genes of the human genome. ATRX gene somatic mutations are found across a number of diverse cancer types, suggesting its relevance in tumor induction and progression. In the present review, the multiple activities of ATRX protein are described in the light of the most recent literature available highlighting its multifaceted role in the caretaking of the human genome. Abstract ATRX gene codifies for a protein member of the SWI-SNF family and was cloned for the first time over 25 years ago as the gene responsible for a rare developmental disorder characterized by α-thalassemia and intellectual disability called Alpha Thalassemia/mental Retardation syndrome X-linked (ATRX) syndrome. Since its discovery as a helicase involved in alpha-globin gene transcriptional regulation, our understanding of the multiple roles played by the ATRX protein increased continuously, leading to the recognition of this multifaceted protein as a central “caretaker” of the human genome involved in cancer suppression. In this review, we report recent advances in the comprehension of the ATRX manifold functions that encompass heterochromatin epigenetic regulation and maintenance, telomere function, replicative stress response, genome stability, and the suppression of endogenous transposable elements and exogenous viral genomes.
Collapse
|
14
|
Baumann C, Zhang X, De La Fuente R. Loss of CBX2 induces genome instability and senescence-associated chromosomal rearrangements. J Cell Biol 2021; 219:152063. [PMID: 32870972 PMCID: PMC7594495 DOI: 10.1083/jcb.201910149] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/08/2020] [Accepted: 08/02/2020] [Indexed: 01/05/2023] Open
Abstract
The polycomb group protein CBX2 is an important epigenetic reader involved in cell proliferation and differentiation. While CBX2 overexpression occurs in a wide range of human tumors, targeted deletion results in homeotic transformation, proliferative defects, and premature senescence. However, its cellular function(s) and whether it plays a role in maintenance of genome stability remain to be determined. Here, we demonstrate that loss of CBX2 in mouse fibroblasts induces abnormal large-scale chromatin structure and chromosome instability. Integrative transcriptome analysis and ATAC-seq revealed a significant dysregulation of transcripts involved in DNA repair, chromocenter formation, and tumorigenesis in addition to changes in chromatin accessibility of genes involved in lateral sclerosis, basal transcription factors, and folate metabolism. Notably, Cbx2−/− cells exhibit prominent decondensation of satellite DNA sequences at metaphase and increased sister chromatid recombination events leading to rampant chromosome instability. The presence of extensive centromere and telomere defects suggests a prominent role for CBX2 in heterochromatin homeostasis and the regulation of nuclear architecture.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA.,Regenerative Bioscience Center, University of Georgia, Athens, GA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA.,Regenerative Bioscience Center, University of Georgia, Athens, GA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA.,Regenerative Bioscience Center, University of Georgia, Athens, GA
| |
Collapse
|
15
|
Bogolyubova I, Bogolyubov D. DAXX Is a Crucial Factor for Proper Development of Mammalian Oocytes and Early Embryos. Int J Mol Sci 2021; 22:ijms22031313. [PMID: 33525665 PMCID: PMC7866053 DOI: 10.3390/ijms22031313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
The Death-domain associated protein 6 (DAXX) is an evolutionarily conserved and ubiquitously expressed multifunctional protein that is implicated in many cellular processes, including transcription, cellular proliferation, cell cycle regulation, Fas-induced apoptosis, and many other events. In the nucleus, DAXX interacts with transcription factors, epigenetic modifiers, and chromatin-remodeling proteins such as the transcription regulator ATRX-the α-thalassemia/mental retardation syndrome X-linked ATP-dependent helicase II. Accordingly, DAXX is considered one of the main players involved in chromatin silencing and one of the most important factors that maintain integrity of the genome. In this brief review, we summarize available data regarding the general and specific functions of DAXX in mammalian early development, with special emphasis on the function of DAXX as a chaperone of the histone variant H3.3. Since H3.3 plays a key role in the developmental processes, especially in the pronounced rearrangements of heterochromatin compartment during oogenesis and embryogenesis, DAXX can be considered as an important factor supporting proper development. Specifically, loss of DAXX affects the recruitment of ATRX, transcription of tandem repeats and telomere functions, which results in a decrease in the viability of early embryos.
Collapse
|
16
|
Kolapalli SP, Sahu R, Chauhan NR, Jena KK, Mehto S, Das SK, Jain A, Rout M, Dash R, Swain RK, Lee DY, Rusten TE, Chauhan S, Chauhan S. RNA-Binding RING E3-Ligase DZIP3/hRUL138 Stabilizes Cyclin D1 to Drive Cell-Cycle and Cancer Progression. Cancer Res 2021; 81:315-331. [PMID: 33067265 PMCID: PMC7116596 DOI: 10.1158/0008-5472.can-20-1871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/02/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022]
Abstract
DZIP3/hRUL138 is a poorly characterized RNA-binding RING E3-ubiquitin ligase with functions in embryonic development. Here we demonstrate that DZIP3 is a crucial driver of cancer cell growth, migration, and invasion. In mice and zebrafish cancer models, DZIP3 promoted tumor growth and metastasis. In line with these results, DZIP3 was frequently overexpressed in several cancer types. Depletion of DZIP3 from cells resulted in reduced expression of Cyclin D1 and a subsequent G1 arrest and defect in cell growth. Mechanistically, DZIP3 utilized its two different domains to interact and stabilize Cyclin D1 both at mRNA and protein levels. Using an RNA-binding lysine-rich region, DZIP3 interacted with the AU-rich region in 3' untranslated region of Cyclin D1 mRNA and stabilized it. Using a RING E3-ligase domain, DZIP3 interacted and increased K63-linked ubiquitination of Cyclin D1 protein to stabilize it. Remarkably, DZIP3 interacted with, ubiquitinated, and stabilized Cyclin D1 predominantly in the G1 phase of the cell cycle, where it is needed for cell-cycle progression. In agreement with this, a strong positive correlation of mRNA expression between DZIP3 and Cyclin D1 in different cancer types was observed. Additionally, DZIP3 regulated several cell cycle proteins by modulating the Cyclin D1-E2F axes. Taken together, this study demonstrates for the first time that DZIP3 uses a unique two-pronged mechanism in its stabilization of Cyclin D1 to drive cell-cycle and cancer progression. SIGNIFICANCE: These findings show that DZIP3 is a novel driver of cell-cycle and cancer progression via its control of Cyclin D1 mRNA and protein stability in a cell-cycle phase-dependent manner. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/2/315/F1.large.jpg.
Collapse
Affiliation(s)
| | - Rinku Sahu
- Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Nishant R Chauhan
- Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Kautilya K Jena
- Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Subhash Mehto
- Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Saroj K Das
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ashish Jain
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Manaswini Rout
- Vascular Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Rupesh Dash
- Gene Therapy and Cancer Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Rajeeb K Swain
- Vascular Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - David Y Lee
- Department of Internal Medicine, Radiation Oncology, and University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Tor Erik Rusten
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Santosh Chauhan
- Cell and Cancer Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Swati Chauhan
- Gene Therapy and Cancer Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
17
|
Le R, Huang Y, Zhang Y, Wang H, Lin J, Dong Y, Li Z, Guo M, Kou X, Zhao Y, Chen M, Zhu Q, Zhao A, Yin J, Sun J, Su Z, Shi K, Gao Y, Chen J, Liu W, Kang L, Wang Y, Li C, Liu X, Gao R, Wang H, Ju Z, Gao S. Dcaf11 activates Zscan4-mediated alternative telomere lengthening in early embryos and embryonic stem cells. Cell Stem Cell 2020; 28:732-747.e9. [PMID: 33357405 DOI: 10.1016/j.stem.2020.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 05/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Telomeres play vital roles in ensuring chromosome stability and are thus closely linked with the onset of aging and human disease. Telomeres undergo extensive lengthening during early embryogenesis. However, the detailed molecular mechanism of telomere resetting in early embryos remains unknown. Here, we show that Dcaf11 (Ddb1- and Cul4-associated factor 11) participates in telomere elongation in early embryos and 2-cell-like embryonic stem cells (ESCs). The deletion of Dcaf11 in embryos and ESCs leads to reduced telomere sister-chromatid exchange (T-SCE) and impairs telomere lengthening. Importantly, Dcaf11-deficient mice exhibit gradual telomere erosion with successive generations, and hematopoietic stem cell (HSC) activity is also greatly compromised. Mechanistically, Dcaf11 targets Kap1 (KRAB-associated protein 1) for ubiquitination-mediated degradation, leading to the activation of Zscan4 downstream enhancer and the removal of heterochromatic H3K9me3 at telomere/subtelomere regions. Our study therefore demonstrates that Dcaf11 plays important roles in telomere elongation in early embryos and ESCs through activating Zscan4.
Collapse
Affiliation(s)
- Rongrong Le
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Yixin Huang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanping Zhang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hu Wang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632 Guangdong, China
| | - Jiaming Lin
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yu Dong
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ziyi Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mingyue Guo
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mo Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qianshu Zhu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Anqi Zhao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiqing Yin
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiatong Sun
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhongqu Su
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Kerong Shi
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wenqiang Liu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lan Kang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yixuan Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chong Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoyu Liu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632 Guangdong, China.
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266071, China.
| |
Collapse
|
18
|
Phillips RE, Soshnev AA, Allis CD. Epigenomic Reprogramming as a Driver of Malignant Glioma. Cancer Cell 2020; 38:647-660. [PMID: 32916125 PMCID: PMC8248764 DOI: 10.1016/j.ccell.2020.08.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Malignant gliomas are central nervous system tumors and remain among the most treatment-resistant cancers. Exome sequencing has revealed significant heterogeneity and important insights into the molecular pathogenesis of gliomas. Mutations in chromatin modifiers-proteins that shape the epigenomic landscape through remodeling and regulation of post-translational modifications on chromatin-are very frequent and often define specific glioma subtypes. This suggests that epigenomic reprogramming may be a fundamental driver of glioma. Here, we describe the key chromatin regulatory pathways disrupted in gliomas, delineating their physiological function and our current understanding of how their dysregulation may contribute to gliomagenesis.
Collapse
Affiliation(s)
- Richard E Phillips
- Department of Neurology and Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA.
| | - Alexey A Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
19
|
Baumann C, Ma W, Wang X, Kandasamy MK, Viveiros MM, De La Fuente R. Helicase LSH/Hells regulates kinetochore function, histone H3/Thr3 phosphorylation and centromere transcription during oocyte meiosis. Nat Commun 2020; 11:4486. [PMID: 32900989 PMCID: PMC7478982 DOI: 10.1038/s41467-020-18009-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/23/2020] [Indexed: 12/31/2022] Open
Abstract
Centromeres are epigenetically determined nuclear domains strictly required for chromosome segregation and genome stability. However, the mechanisms regulating centromere and kinetochore chromatin modifications are not known. Here, we demonstrate that LSH is enriched at meiotic kinetochores and its targeted deletion induces centromere instability and abnormal chromosome segregation. Superresolution chromatin analysis resolves LSH at the inner centromere and kinetochores during oocyte meiosis. LSH knockout pachytene oocytes exhibit reduced HDAC2 and DNMT-1. Notably, mutant oocytes show a striking increase in histone H3 phosphorylation at threonine 3 (H3T3ph) and accumulation of major satellite transcripts in both prophase-I and metaphase-I chromosomes. Moreover, knockout oocytes exhibit centromere fusions, ectopic kinetochore formation and abnormal exchange of chromatin fibers between paired bivalents and asynapsed chromosomes. Our results indicate that loss of LSH affects the levels and chromosomal localization of H3T3ph and provide evidence that, by maintaining transcriptionally repressive heterochromatin, LSH may be essential to prevent deleterious meiotic recombination events at repetitive centromeric sequences.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, 30602, USA
| | - Wei Ma
- School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Xiaotian Wang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, 30602, USA
| | | | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, 30602, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
20
|
Martins NMC, Cisneros-Soberanis F, Pesenti E, Kochanova NY, Shang WH, Hori T, Nagase T, Kimura H, Larionov V, Masumoto H, Fukagawa T, Earnshaw WC. H3K9me3 maintenance on a human artificial chromosome is required for segregation but not centromere epigenetic memory. J Cell Sci 2020; 133:jcs242610. [PMID: 32576667 PMCID: PMC7390644 DOI: 10.1242/jcs.242610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
Most eukaryotic centromeres are located within heterochromatic regions. Paradoxically, heterochromatin can also antagonize de novo centromere formation, and some centromeres lack it altogether. In order to investigate the importance of heterochromatin at centromeres, we used epigenetic engineering of a synthetic alphoidtetO human artificial chromosome (HAC), to which chimeric proteins can be targeted. By tethering the JMJD2D demethylase (also known as KDM4D), we removed heterochromatin mark H3K9me3 (histone 3 lysine 9 trimethylation) specifically from the HAC centromere. This caused no short-term defects, but long-term tethering reduced HAC centromere protein levels and triggered HAC mis-segregation. However, centromeric CENP-A was maintained at a reduced level. Furthermore, HAC centromere function was compatible with an alternative low-H3K9me3, high-H3K27me3 chromatin signature, as long as residual levels of H3K9me3 remained. When JMJD2D was released from the HAC, H3K9me3 levels recovered over several days back to initial levels along with CENP-A and CENP-C centromere levels, and mitotic segregation fidelity. Our results suggest that a minimal level of heterochromatin is required to stabilize mitotic centromere function but not for maintaining centromere epigenetic memory, and that a homeostatic pathway maintains heterochromatin at centromeres.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
| | | | - Elisa Pesenti
- Wellcome Trust Centre for Cell Biology, Edinburgh, UK
| | | | - Wei-Hao Shang
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Hiroshi Kimura
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Vladimir Larionov
- National Cancer Institute, National Institutes of Health, Bethesda, USA
| | | | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | |
Collapse
|
21
|
Ahmad SF, Singchat W, Jehangir M, Panthum T, Srikulnath K. Consequence of Paradigm Shift with Repeat Landscapes in Reptiles: Powerful Facilitators of Chromosomal Rearrangements for Diversity and Evolution. Genes (Basel) 2020; 11:E827. [PMID: 32708239 PMCID: PMC7397244 DOI: 10.3390/genes11070827] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Reptiles are notable for the extensive genomic diversity and species richness among amniote classes, but there is nevertheless a need for detailed genome-scale studies. Although the monophyletic amniotes have recently been a focus of attention through an increasing number of genome sequencing projects, the abundant repetitive portion of the genome, termed the "repeatome", remains poorly understood across different lineages. Consisting predominantly of transposable elements or mobile and satellite sequences, these repeat elements are considered crucial in causing chromosomal rearrangements that lead to genomic diversity and evolution. Here, we propose major repeat landscapes in representative reptilian species, highlighting their evolutionary dynamics and role in mediating chromosomal rearrangements. Distinct karyotype variability, which is typically a conspicuous feature of reptile genomes, is discussed, with a particular focus on rearrangements correlated with evolutionary reorganization of micro- and macrochromosomes and sex chromosomes. The exceptional karyotype variation and extreme genomic diversity of reptiles are used to test several hypotheses concerning genomic structure, function, and evolution.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Maryam Jehangir
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Integrative Genomics Lab-LGI, Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| |
Collapse
|
22
|
Hsieh CL, Xia J, Lin H. MIWI prevents aneuploidy during meiosis by cleaving excess satellite RNA. EMBO J 2020; 39:e103614. [PMID: 32677148 DOI: 10.15252/embj.2019103614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 01/01/2023] Open
Abstract
MIWI, a murine member of PIWI proteins mostly expressed during male meiosis, is crucial for piRNA biogenesis, post-transcriptional regulation, and spermiogenesis. However, its meiotic function remains unknown. Here, we report that MIWI deficiency alters meiotic kinetochore assembly, significantly increases chromosome misalignment at the meiosis metaphase I plate, and causes chromosome mis-segregation. Consequently, Miwi-deficient mice show elevated aneuploidy in metaphase II and spermatid death. Furthermore, in Miwi-null and Miwi slicer-deficient mutants, major and minor satellite RNAs from centromeric and pericentromeric satellite repeats accumulate in excess. Over-expression of satellite repeats in wild-type spermatocytes also causes elevated chromosome misalignment, whereas reduction of both strands of major or minor satellite RNAs results in lower frequencies of chromosome misalignment. We show that MIWI, guided by piRNA, cleaves major satellite RNAs, generating RNA fragments that may form substrates for subsequent Dicer cleavage. Furthermore, Dicer cleaves all satellite RNAs in conjunction with MIWI. These findings reveal a novel mechanism in which MIWI- and Dicer-mediated cleavage of the satellite RNAs prevents the over-expression of satellite RNAs, thus ensuring proper kinetochore assembly and faithful chromosome segregation during meiosis.
Collapse
Affiliation(s)
- Chia-Ling Hsieh
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Jing Xia
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
23
|
Bogolyubova I, Bogolyubov D. Heterochromatin Morphodynamics in Late Oogenesis and Early Embryogenesis of Mammals. Cells 2020; 9:cells9061497. [PMID: 32575486 PMCID: PMC7348780 DOI: 10.3390/cells9061497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
During the period of oocyte growth, chromatin undergoes global rearrangements at both morphological and molecular levels. An intriguing feature of oogenesis in some mammalian species is the formation of a heterochromatin ring-shaped structure, called the karyosphere or surrounded "nucleolus", which is associated with the periphery of the nucleolus-like bodies (NLBs). Morphologically similar heterochromatin structures also form around the nucleolus-precursor bodies (NPBs) in zygotes and persist for several first cleavage divisions in blastomeres. Despite recent progress in our understanding the regulation of gene silencing/expression during early mammalian development, as well as the molecular mechanisms that underlie chromatin condensation and heterochromatin structure, the biological significance of the karyosphere and its counterparts in early embryos is still elusive. We pay attention to both the changes of heterochromatin morphology and to the molecular mechanisms that can affect the configuration and functional activity of chromatin. We briefly discuss how DNA methylation, post-translational histone modifications, alternative histone variants, and some chromatin-associated non-histone proteins may be involved in the formation of peculiar heterochromatin structures intimately associated with NLBs and NPBs, the unique nuclear bodies of oocytes and early embryos.
Collapse
|
24
|
Liu Z, Tardat M, Gill ME, Royo H, Thierry R, Ozonov EA, Peters AH. SUMOylated PRC1 controls histone H3.3 deposition and genome integrity of embryonic heterochromatin. EMBO J 2020; 39:e103697. [PMID: 32395866 PMCID: PMC7327501 DOI: 10.15252/embj.2019103697] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Chromatin integrity is essential for cellular homeostasis. Polycomb group proteins modulate chromatin states and transcriptionally repress developmental genes to maintain cell identity. They also repress repetitive sequences such as major satellites and constitute an alternative state of pericentromeric constitutive heterochromatin at paternal chromosomes (pat‐PCH) in mouse pre‐implantation embryos. Remarkably, pat‐PCH contains the histone H3.3 variant, which is absent from canonical PCH at maternal chromosomes, which is marked by histone H3 lysine 9 trimethylation (H3K9me3), HP1, and ATRX proteins. Here, we show that SUMO2‐modified CBX2‐containing Polycomb Repressive Complex 1 (PRC1) recruits the H3.3‐specific chaperone DAXX to pat‐PCH, enabling H3.3 incorporation at these loci. Deficiency of Daxx or PRC1 components Ring1 and Rnf2 abrogates H3.3 incorporation, induces chromatin decompaction and breakage at PCH of exclusively paternal chromosomes, and causes their mis‐segregation. Complementation assays show that DAXX‐mediated H3.3 deposition is required for chromosome stability in early embryos. DAXX also regulates repression of PRC1 target genes during oogenesis and early embryogenesis. The study identifies a novel critical role for Polycomb in ensuring heterochromatin integrity and chromosome stability in mouse early development.
Collapse
Affiliation(s)
- Zichuan Liu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mathieu Tardat
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mark E Gill
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Helene Royo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Raphael Thierry
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Antoine Hfm Peters
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
25
|
Disruption of ATRX-RNA interactions uncovers roles in ATRX localization and PRC2 function. Nat Commun 2020; 11:2219. [PMID: 32376827 PMCID: PMC7203109 DOI: 10.1038/s41467-020-15902-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 03/27/2020] [Indexed: 01/01/2023] Open
Abstract
Heterochromatin in the eukaryotic genome is rigorously controlled by the concerted action of protein factors and RNAs. Here, we investigate the RNA binding function of ATRX, a chromatin remodeler with roles in silencing of repetitive regions of the genome and in recruitment of the polycomb repressive complex 2 (PRC2). We identify ATRX RNA binding regions (RBRs) and discover that the major ATRX RBR lies within the N-terminal region of the protein, distinct from its PHD and helicase domains. Deletion of this ATRX RBR (ATRXΔRBR) compromises ATRX interactions with RNAs in vitro and in vivo and alters its chromatin binding properties. Genome-wide studies reveal that loss of RNA interactions results in a redistribution of ATRX on chromatin. Finally, our studies identify a role for ATRX-RNA interactions in regulating PRC2 localization to a subset of polycomb target genes. ATRX is an RNA binding protein that mediates targeting of polycomb repressive complex 2 (PRC2) to genomic sites. Here the authors identify the RNA binding region and show that the RNA binding is required for ATRX localization and for its recruitment of PRC2 to a subset of polycomb targets.
Collapse
|
26
|
Louzada S, Lopes M, Ferreira D, Adega F, Escudeiro A, Gama-Carvalho M, Chaves R. Decoding the Role of Satellite DNA in Genome Architecture and Plasticity-An Evolutionary and Clinical Affair. Genes (Basel) 2020; 11:E72. [PMID: 31936645 PMCID: PMC7017282 DOI: 10.3390/genes11010072] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/29/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Repetitive DNA is a major organizational component of eukaryotic genomes, being intrinsically related with their architecture and evolution. Tandemly repeated satellite DNAs (satDNAs) can be found clustered in specific heterochromatin-rich chromosomal regions, building vital structures like functional centromeres and also dispersed within euchromatin. Interestingly, despite their association to critical chromosomal structures, satDNAs are widely variable among species due to their high turnover rates. This dynamic behavior has been associated with genome plasticity and chromosome rearrangements, leading to the reshaping of genomes. Here we present the current knowledge regarding satDNAs in the light of new genomic technologies, and the challenges in the study of these sequences. Furthermore, we discuss how these sequences, together with other repeats, influence genome architecture, impacting its evolution and association with disease.
Collapse
Affiliation(s)
- Sandra Louzada
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Mariana Lopes
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Daniela Ferreira
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Ana Escudeiro
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Margarida Gama-Carvalho
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (S.L.); (M.L.); (D.F.); (F.A.); (A.E.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal;
| |
Collapse
|
27
|
Bogolyubova IO, Sailau ZK, Bogolyubov DS. The dynamics of DAXX protein distribution in the nucleus of mouse early embryos. Acta Histochem 2019; 121:522-529. [PMID: 31029404 DOI: 10.1016/j.acthis.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 02/02/2023]
Abstract
Nuclear distribution of Death-associated protein 6 (Daxx) was studied using fluorescent and electron microscopy in mouse embryos at different stages of development in vivo, from zygote to morula. Daxx was found in association with transcriptionally silent chromatin predominantly with a heterochromatin rim surrounding the nucleolus precursor bodies (NPBs) at all stages studied. At the zygote stage, Daxx was detected only at the periphery of NPBs both in male and female pronuclei. At the late two-cell stage, Daxx was localized not only in the heterochromatin rim at the periphery of NPBs but also in heterochromatin zones not associated with NPBs. At the morula stage, a diffuse distribution of Daxx prevailed. Scarce Daxx-positive zones were detected only in some embryos at the nucleolar periphery. Thus, Daxx is noticeably redistributed during mouse embryo cleavage, and the most conspicuous areas of Daxx concentration are observed at the end of two-cell stage. Daxx is found colocalized with the chromatin-remodeling protein ATRX exclusively in two-cell embryos, but the heterochromatin areas containing either Daxx or ATRX individually are also observed at this stage. However, most zones containing both Daxx and ATRX demonstrated a low FRET-efficiency. This suggest that two molecules are not approached sufficiently close for molecular interactions to occur. Our data suggests that Daxx may function without cooperation with ATRX at least at some stages of early mouse development.
Collapse
Affiliation(s)
- Irina O Bogolyubova
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Science, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia.
| | - Zhuldyz K Sailau
- St. Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Dmitry S Bogolyubov
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Science, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia
| |
Collapse
|
28
|
Reichmann J, Nijmeijer B, Hossain MJ, Eguren M, Schneider I, Politi AZ, Roberti MJ, Hufnagel L, Hiiragi T, Ellenberg J. Dual-spindle formation in zygotes keeps parental genomes apart in early mammalian embryos. Science 2018; 361:189-193. [PMID: 30002254 DOI: 10.1126/science.aar7462] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/08/2018] [Indexed: 12/24/2022]
Abstract
At the beginning of mammalian life, the genetic material from each parent meets when the fertilized egg divides. It was previously thought that a single microtubule spindle is responsible for spatially combining the two genomes and then segregating them to create the two-cell embryo. We used light-sheet microscopy to show that two bipolar spindles form in the zygote and then independently congress the maternal and paternal genomes. These two spindles aligned their poles before anaphase but kept the parental genomes apart during the first cleavage. This spindle assembly mechanism provides a potential rationale for erroneous divisions into more than two blastomeric nuclei observed in mammalian zygotes and reveals the mechanism behind the observation that parental genomes occupy separate nuclear compartments in the two-cell embryo.
Collapse
Affiliation(s)
- Judith Reichmann
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bianca Nijmeijer
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - M Julius Hossain
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Manuel Eguren
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Isabell Schneider
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Antonio Z Politi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - M Julia Roberti
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Lars Hufnagel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Takashi Hiiragi
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
29
|
Das A, Lampson MA. Keeping Parents Apart. Dev Cell 2018; 46:255-256. [PMID: 30086299 DOI: 10.1016/j.devcel.2018.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Parental genomes are initially separate in the zygote following fertilization. A recent study in Science by Reichmann et al. (2018) reveals that dual spindles assemble around the two pronuclei in mouse embryos to maintain separation of the two parental genomes through the first zygotic division.
Collapse
Affiliation(s)
- Arunika Das
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Giunta S. Centromere Chromosome Orientation Fluorescent in situ Hybridization (Cen-CO-FISH) Detects Sister Chromatid Exchange at the Centromere in Human Cells. Bio Protoc 2018; 8:e2792. [PMID: 34179295 DOI: 10.21769/bioprotoc.2792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 03/22/2018] [Accepted: 04/12/2018] [Indexed: 11/02/2022] Open
Abstract
Human centromeres are composed of large tandem arrays of repetitive alpha satellite DNA, which are often sites of aberrant rearrangement in cancers ( Mitelman et al., 1997 ; Padilla- Nash et al., 2001 ). To date, annotation of the human centromere repetitive sequences remains incomplete, greatly hindering in-depth functional studies of these regions essential for chromosome segregation. In order to monitor sister chromatid exchange happening at the centromere (C-SCE) due to recombination and mutagenic events, I have applied the Chromosome-Orientation Fluorescence in situ Hybridization (CO-FISH) technique to centromeres (Cen-CO-FISH) in human cells. This hybridization-based method involves (1) the incorporation of nucleotide analogs through a single round of replication, (2) enzymatic digestion of the newly synthesized DNA strand and (3) subsequent hybridization of single-stranded probes, in absence of a denaturation step. The resulting signal allows to differentially label each sister chromatid based on the 5'-3' directionality of the DNA and to score aberrant staining patterns indicative of C-SCE. The Cen-CO-FISH method applied to human centromeres revealed that human centromeres indeed undergo recombination in cycling cells resulting in C-SCE, and centromere instability is enhanced in cancer cell lines and primary cells undergoing senescence (Giunta and Funabiki, 2017). Here, I present the detailed protocol of the preparation, experimental procedure and data acquisition for the Cen-CO-FISH method in human cells. It also includes a conceptual overview of the technique, with examples of representative images and scoring guidelines. The Cen-CO-FISH represents a valuable tool to facilitate exploration of centromere repeats.
Collapse
Affiliation(s)
- Simona Giunta
- Laboratory of Chromosome and Cell Biology, the Rockefeller University, New York, NY, USA
| |
Collapse
|
31
|
Ilicheva N, Podgornaya O, Bogolyubov D, Pochukalina G. The karyosphere capsule in Rana temporaria oocytes contains structural and DNA-binding proteins. Nucleus 2018; 9:516-529. [PMID: 30272509 PMCID: PMC6244735 DOI: 10.1080/19491034.2018.1530935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
During the last stages of oogenesis, oocyte chromosomes condense and come close together, forming the so-called karyosphere. Karyosphere formation is accompanied by an essential decrease in transcriptional activity. In the grass frog Rana temporaria, the karyosphere is surrounded by an extrachromosomal capsule that separates the chromosomes from the rest of the nucleoplasm. The karyosphere capsule (KC) of R. temporaria has been investigated in detail at the ultrastructural level, but its protein composition remained largely unknown. We demonstrate here that nuclear actin, especially F-actin, as well as lamins A/C and B are the most abundant proteins of the KC. Key proteins of nuclear pore complexes, such as Nup93 and Nup35, are also detectable in the KC. New antibodies recognizing the telomere-binding protein TRF2 allowed us to localize TRF2 in nuclear speckles. We also found that the R. temporaria KC contains some proteins involved in chromatin remodeling, including topoisomerase II and ATRX. Thus, we believe that KC isolates the chromosomes from the rest of the nucleoplasm during the final period of oocyte growth (late diplotene) and represents a specialized oocyte nuclear compartment to store a variety of factors involved in nuclear metabolism that can be used in future early development. Abbreviations: BrUTP: 5-bromouridine 5'-triphosphate; CytD: cytochalasin D; IGCs: interchromatin granule clasters; IgG: immunoglobulin G; KC: karyosphere capsule; Mw: molecular weight; NE: nuclear envelope; PBS: phosphate buffered saline; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; Topo II: topoisomerase II.
Collapse
Affiliation(s)
- Nadya Ilicheva
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga Podgornaya
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
- Department of Cytology and Histology, Faculty of Biology, Saint Petersburg State University, St. Petersburg, Russia
- Laboratory of Biomedical Cell Technology, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Dmitry Bogolyubov
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Galina Pochukalina
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
32
|
Tardat M, Déjardin J. Telomere chromatin establishment and its maintenance during mammalian development. Chromosoma 2017; 127:3-18. [PMID: 29250704 PMCID: PMC5818603 DOI: 10.1007/s00412-017-0656-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Telomeres are specialized structures that evolved to protect the end of linear chromosomes from the action of the cell DNA damage machinery. They are composed of tandem arrays of repeated DNA sequences with a specific heterochromatic organization. The length of telomeric repeats is dynamically regulated and can be affected by changes in the telomere chromatin structure. When telomeres are not properly controlled, the resulting chromosomal alterations can induce genomic instability and ultimately the development of human diseases, such as cancer. Therefore, proper establishment, regulation, and maintenance of the telomere chromatin structure are required for cell homeostasis. Here, we review the current knowledge on telomeric chromatin dynamics during cell division and early development in mammals, and how its proper regulation safeguards genome stability.
Collapse
Affiliation(s)
- Mathieu Tardat
- Institute of Human Genetics, CNRS UMR 9002, 141 rue de la Cardonille, 34396, Montpellier, France.
| | - Jérôme Déjardin
- Institute of Human Genetics, CNRS UMR 9002, 141 rue de la Cardonille, 34396, Montpellier, France.
| |
Collapse
|
33
|
Garrido-Ramos MA. Satellite DNA: An Evolving Topic. Genes (Basel) 2017; 8:genes8090230. [PMID: 28926993 PMCID: PMC5615363 DOI: 10.3390/genes8090230] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Satellite DNA represents one of the most fascinating parts of the repetitive fraction of the eukaryotic genome. Since the discovery of highly repetitive tandem DNA in the 1960s, a lot of literature has extensively covered various topics related to the structure, organization, function, and evolution of such sequences. Today, with the advent of genomic tools, the study of satellite DNA has regained a great interest. Thus, Next-Generation Sequencing (NGS), together with high-throughput in silico analysis of the information contained in NGS reads, has revolutionized the analysis of the repetitive fraction of the eukaryotic genomes. The whole of the historical and current approaches to the topic gives us a broad view of the function and evolution of satellite DNA and its role in chromosomal evolution. Currently, we have extensive information on the molecular, chromosomal, biological, and population factors that affect the evolutionary fate of satellite DNA, knowledge that gives rise to a series of hypotheses that get on well with each other about the origin, spreading, and evolution of satellite DNA. In this paper, I review these hypotheses from a methodological, conceptual, and historical perspective and frame them in the context of chromosomal organization and evolution.
Collapse
Affiliation(s)
- Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
34
|
Miao N, Wang X, Feng Y, Gong Y. Male-biased miR-92 from early chicken embryonic gonads directly targets ATRX and DDX3X. Gene 2017; 626:326-336. [PMID: 28554548 DOI: 10.1016/j.gene.2017.05.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/11/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
MiR-17-92 cluster consists of multifunctional miRNAs related to gonadal development in mammals. Our preliminary data showed that gga-miR-92 was male-biased in chicken embryonic gonads at E5.5 and E6.5. MiR-92(a-2) and two putative targets (ATRX and DDX3X) were highly conserved and located on mammalian Chromosome X but on autosomes in chicken. Here, we studied the expression and interaction of miR-92 and the targets (ATRX and DDX3X) in chicken embryonic gonads. What's more, male-biased miR-92 shows an opposite expression tendency with ATRX and DDX3X in eight embryonic stages and different tissues at E10.5 by qRT-PCR. To verify the regulation relationship between miR-92 and two targets, we performed dual-luciferase reporter assay in DF1, overexpression and inhibition of miR-92 in chicken embryonic fibroblasts (CEFs). The results show that miR-92 directly targets ATRX and DDX3X by binding the 3' un-translated region (3'-UTR), and the over-expression and inhibition of miR-92 negatively regulates ATRX and DDX3X. After the identification of the expression of their downstream genes (AMH and WNT4) in mRNA level, we found that there is no regulatory relationship between ATRX and DDX3X. The overall results indicate that miR-92 may perform roles in early chicken gonadogenesis by regulating the expressions of ATRX and DDX3X, respectively.
Collapse
Affiliation(s)
- Nan Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; Institute of Genomics, College of Biomedical, Huaqiao University, 668 Jimei Road, Xiamen 361021, People's Republic of China
| | - Xin Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yanping Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
35
|
Weaver ICG, Korgan AC, Lee K, Wheeler RV, Hundert AS, Goguen D. Stress and the Emerging Roles of Chromatin Remodeling in Signal Integration and Stable Transmission of Reversible Phenotypes. Front Behav Neurosci 2017; 11:41. [PMID: 28360846 PMCID: PMC5350110 DOI: 10.3389/fnbeh.2017.00041] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 02/24/2017] [Indexed: 01/02/2023] Open
Abstract
The influence of early life experience and degree of parental-infant attachment on emotional development in children and adolescents has been comprehensively studied. Structural and mechanistic insight into the biological foundation and maintenance of mammalian defensive systems (metabolic, immune, nervous and behavioral) is slowly advancing through the emerging field of developmental molecular (epi)genetics. Initial evidence revealed that differential nurture early in life generates stable differences in offspring hypothalamic-pituitary-adrenal (HPA) regulation, in part, through chromatin remodeling and changes in DNA methylation of specific genes expressed in the brain, revealing physical, biochemical and molecular paths for the epidemiological concept of gene-environment interactions. Herein, a primary molecular mechanism underpinning the early developmental programming and lifelong maintenance of defensive (emotional) responses in the offspring is the alteration of chromatin domains of specific genomic regions from a condensed state (heterochromatin) to a transcriptionally accessible state (euchromatin). Conversely, DNA methylation promotes the formation of heterochromatin, which is essential for gene silencing, genomic integrity and chromosome segregation. Therefore, inter-individual differences in chromatin modifications and DNA methylation marks hold great potential for assessing the impact of both early life experience and effectiveness of intervention programs—from guided psychosocial strategies focused on changing behavior to pharmacological treatments that target chromatin remodeling and DNA methylation enzymes to dietary approaches that alter cellular pools of metabolic intermediates and methyl donors to affect nutrient bioavailability and metabolism. In this review article, we discuss the potential molecular mechanism(s) of gene regulation associated with chromatin modeling and programming of endocrine (e.g., HPA and metabolic or cardiovascular) and behavioral (e.g., fearfulness, vigilance) responses to stress, including alterations in DNA methylation and the role of DNA repair machinery. From parental history (e.g., drugs, housing, illness, nutrition, socialization) to maternal-offspring exchanges of nutrition, microbiota, antibodies and stimulation, the nature of nurture provides not only mechanistic insight into how experiences propagate from external to internal variables, but also identifies a composite therapeutic target, chromatin modeling, for gestational/prenatal stress, adolescent anxiety/depression and adult-onset neuropsychiatric disease.
Collapse
Affiliation(s)
- Ian C G Weaver
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Austin C Korgan
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Kristen Lee
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Ryan V Wheeler
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Amos S Hundert
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Donna Goguen
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| |
Collapse
|
36
|
Magaraki A, van der Heijden G, Sleddens-Linkels E, Magarakis L, van Cappellen WA, Peters AHFM, Gribnau J, Baarends WM, Eijpe M. Silencing markers are retained on pericentric heterochromatin during murine primordial germ cell development. Epigenetics Chromatin 2017; 10:11. [PMID: 28293300 PMCID: PMC5346203 DOI: 10.1186/s13072-017-0119-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Background In the nuclei of most mammalian cells, pericentric heterochromatin is characterized by DNA methylation, histone modifications such as H3K9me3 and H4K20me3, and specific binding proteins like heterochromatin-binding protein 1 isoforms (HP1 isoforms). Maintenance of this specialized chromatin structure is of great importance for genome integrity and for the controlled repression of the repetitive elements within the pericentric DNA sequence. Here we have studied histone modifications at pericentric heterochromatin during primordial germ cell (PGC) development using different fixation conditions and fluorescent immunohistochemical and immunocytochemical protocols. Results We observed that pericentric heterochromatin marks, such as H3K9me3, H4K20me3, and HP1 isoforms, were retained on pericentric heterochromatin throughout PGC development. However, the observed immunostaining patterns varied, depending on the fixation method, explaining previous findings of a general loss of pericentric heterochromatic features in PGCs. Also, in contrast to the general clustering of multiple pericentric regions and associated centromeres in DAPI-dense regions in somatic cells, the pericentric regions of PGCs were more frequently organized as individual entities. We also observed a transient enrichment of the chromatin remodeler ATRX in pericentric regions in embryonic day 11.5 (E11.5) PGCs. At this stage, a similar and low level of major satellite repeat RNA transcription was detected in both PGCs and somatic cells. Conclusions These results indicate that in pericentric heterochromatin of mouse PGCs, only minor reductions in levels of some chromatin-associated proteins occur, in association with a transient increase in ATRX, between E11.5 and E13.5. These pericentric heterochromatin regions more frequently contain only a single centromere in PGCs compared to the surrounding soma, indicating a difference in overall organization, but there is no de-repression of major satellite transcription. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0119-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aristea Magaraki
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Godfried van der Heijden
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, The Netherlands
| | - Esther Sleddens-Linkels
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Leonidas Magarakis
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Central Hospital of Karlstad, Karlstad, Värmland Sweden
| | | | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Maureen Eijpe
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
37
|
O'Shea LC, Daly E, Hensey C, Fair T. ATRX is a novel progesterone-regulated protein and biomarker of low developmental potential in mammalian oocytes. Reproduction 2017; 153:671-682. [PMID: 28250240 DOI: 10.1530/rep-16-0443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/03/2017] [Accepted: 02/28/2017] [Indexed: 01/09/2023]
Abstract
A multi-species meta-analysis of published transcriptomic data from models of oocyte competence identified the chromatin remodelling factor ATRX as a putative biomarker of oocyte competence. The objective of the current study was to test the hypothesis that ATRX protein expression by cumulus-oocyte complexes (COCs) reflects their intrinsic quality and developmental potential. In excess of 10,000 bovine COCs were utilised to test our hypothesis. COCs were in vitro matured (IVM) under conditions associated with reduced developmental potential: IVM in the presence or absence of (1) progesterone synthesis inhibitor (Trilostane); (2) nuclear progesterone receptor inhibitor (Aglepristone) or (3) an inducer of DNA damage (Staurosporine). ATRX protein expression and localisation were determined using immunocytochemistry and Western blot analysis. A proportion of COCs matured in the presence or absence of Trilostane was in vitro fertilised and cultured, and subsequent embryo development characteristics were analysed. In addition, ATRX expression was investigated in 40 human germinal vesicle-stage COCs. Our results showed that ATRX is expressed in human and bovine germinal vesicle oocytes and cumulus cells. In bovine, expression decreases after IVM. However, this decline is not observed in COCs matured under sub-optimal conditions. Blastocyst development rate and cell number are decreased, whereas the incidence of abnormal metaphase phase spindle and chromosome alignment are increased, after IVM in the presence of Trilostane (P < 0.05). In conclusion, localisation of ATRX to the cumulus cell nuclei and oocyte chromatin, after IVM, is associated with poor oocyte quality and low developmental potential. Furthermore, ATRX is dynamically regulated in response to progesterone signalling.
Collapse
Affiliation(s)
- Lynne C O'Shea
- School of Agriculture and Food Sciences .,School of Medicine
| | | | - Carmel Hensey
- School of Bimolecular and Biomedical ScienceUniversity College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
38
|
Destouni A, Vermeesch JR. How can zygotes segregate entire parental genomes into distinct blastomeres? The zygote metaphase revisited. Bioessays 2017; 39. [DOI: 10.1002/bies.201600226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aspasia Destouni
- Laboratory of Cytogenetics and Genome Research; Center of Human Genetics; KU Leuven; Leuven Belgium
| | - Joris R. Vermeesch
- Laboratory of Cytogenetics and Genome Research; Center of Human Genetics; KU Leuven; Leuven Belgium
| |
Collapse
|
39
|
Integrity of the human centromere DNA repeats is protected by CENP-A, CENP-C, and CENP-T. Proc Natl Acad Sci U S A 2017; 114:1928-1933. [PMID: 28167779 DOI: 10.1073/pnas.1615133114] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centromeres are highly specialized chromatin domains that enable chromosome segregation and orchestrate faithful cell division. Human centromeres are composed of tandem arrays of α-satellite DNA, which spans up to several megabases. Little is known about the mechanisms that maintain integrity of the long arrays of α-satellite DNA repeats. Here, we monitored centromeric repeat stability in human cells using chromosome-orientation fluorescent in situ hybridization (CO-FISH). This assay detected aberrant centromeric CO-FISH patterns consistent with sister chromatid exchange at the frequency of 5% in primary tissue culture cells, whereas higher levels were seen in several cancer cell lines and during replicative senescence. To understand the mechanism(s) that maintains centromere integrity, we examined the contribution of the centromere-specific histone variant CENP-A and members of the constitutive centromere-associated network (CCAN), CENP-C, CENP-T, and CENP-W. Depletion of CENP-A and CCAN proteins led to an increase in centromere aberrations, whereas enhancing chromosome missegregation by alternative methods did not, suggesting that CENP-A and CCAN proteins help maintain centromere integrity independently of their role in chromosome segregation. Furthermore, superresolution imaging of centromeric CO-FISH using structured illumination microscopy implied that CENP-A protects α-satellite repeats from extensive rearrangements. Our study points toward the presence of a centromere-specific mechanism that actively maintains α-satellite repeat integrity during human cell proliferation.
Collapse
|
40
|
Nuclear distribution of the chromatin-remodeling protein ATRX in mouse early embryogenesis. Acta Histochem 2017; 119:18-25. [PMID: 27863708 DOI: 10.1016/j.acthis.2016.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
The nucleus of mammalian embryos differs by transcriptional activity at different stages of early development. Here, we studied nuclear distribution of the chromatin-remodeling protein ATRX in pre-implantation mouse embryos. Immunofluorescent staining revealed the changes of ATRX nuclear distribution at the initial stages of early mouse development. At the stage of early zygote, a diffuse ATRX distribution pattern was prevalent. During the course of zygotic genome activation (ZGA), zones of increased ATRX concentration are observed, and they are most expressed in the nuclei of late 2-cell embryos. In the morula stage, the ATRX distribution becomes diffuse again. In zygotes, the patterns of ATRX distribution differ between male and female pronuclei. At all the stages, ATRX concentrates in the DAPI-positive areas of condensed chromatin. The level of colocalization between ATRX and heterochromatin was found the highest at the late 2-cell stage. When transcription was artificially suppressed, the pattern of intranuclear ATRX distribution was mostly determined by the mechanism of inhibitor action rather than the decreased level of transcriptional activity. Thus, the obvious changes of ATRX distribution occur and partially correlate with the main stages of ZGA during mouse early development, but these changes seem to be determined by other processes of structural and functional rearrangements of blastomere nuclei.
Collapse
|
41
|
Heterochromatin and the molecular mechanisms of ‘parent-of-origin’ effects in animals. J Biosci 2016; 41:759-786. [DOI: 10.1007/s12038-016-9650-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Abstract
A considerable fraction of the eukaryotic genome is made up of satellite DNA constituted of tandemly repeated sequences. These elements are mainly located at centromeres, pericentromeres, and telomeres and are major components of constitutive heterochromatin. Although originally satellite DNA was thought silent and inert, an increasing number of studies are providing evidence on its transcriptional activity supporting, on the contrary, an unexpected dynamicity. This review summarizes the multiple structural roles of satellite noncoding RNAs at chromosome level. Indeed, satellite noncoding RNAs play a role in the establishment of a heterochromatic state at centromere and telomere. These highly condensed structures are indispensable to preserve chromosome integrity and genome stability, preventing recombination events, and ensuring the correct chromosome pairing and segregation. Moreover, these RNA molecules seem to be involved also in maintaining centromere identity and in elongation, capping, and replication of telomere. Finally, the abnormal variation of centromeric and pericentromeric DNA transcription across major eukaryotic lineages in stress condition and disease has evidenced the critical role that these transcripts may play and the potentially dire consequences for the organism.
Collapse
|
43
|
Lim CY, Knowles BB, Solter D, Messerschmidt DM. Epigenetic Control of Early Mouse Development. Curr Top Dev Biol 2016; 120:311-60. [PMID: 27475856 DOI: 10.1016/bs.ctdb.2016.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the genes sequentially transcribed in the mammalian embryo prior to implantation have been identified, understanding of the molecular processes ensuring this transcription is still in development. The genomes of the sperm and egg are hypermethylated, hence transcriptionally silent. Their union, in the prepared environment of the egg, initiates their epigenetic genomic reprogramming into a totipotent zygote, in which the genome gradually becomes transcriptionally activated. During gametogenesis, sex-specific processes result in sperm and eggs with disparate epigenomes, both of which require drastic reprogramming to establish the totipotent genome of the zygote and the pluripotent inner cell mass of the blastocyst. Herein, we describe the factors, DNA and histone modifications, activation and repression of retrotransposons, and cytoplasmic localizations, known to influence the activation of the mammalian genome at the initiation of new life.
Collapse
Affiliation(s)
- C Y Lim
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - B B Knowles
- Emerita, The Jackson Laboratory, Bar Harbor, ME, United States; Siriraj Center of Excellence for Stem Cell Research, Mahidol University, Bangkok, Thailand
| | - D Solter
- Siriraj Center of Excellence for Stem Cell Research, Mahidol University, Bangkok, Thailand; Emeritus, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - D M Messerschmidt
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
| |
Collapse
|
44
|
Ross JE, Woodlief KS, Sullivan BA. Inheritance of the CENP-A chromatin domain is spatially and temporally constrained at human centromeres. Epigenetics Chromatin 2016; 9:20. [PMID: 27252782 PMCID: PMC4888493 DOI: 10.1186/s13072-016-0071-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/20/2016] [Indexed: 11/17/2022] Open
Abstract
Background Chromatin containing the histone variant CENP-A (CEN chromatin) exists as an essential domain at every centromere and heritably marks the location of kinetochore assembly. The size of the CEN chromatin domain on alpha satellite DNA in humans has been shown to vary according to underlying array size. However, the average amount of CENP-A reported at human centromeres is largely consistent, implying the genomic extent of CENP-A chromatin domains more likely reflects variations in the number of CENP-A subdomains and/or the density of CENP-A nucleosomes within individual subdomains. Defining the organizational and spatial properties of CEN chromatin would provide insight into centromere inheritance via CENP-A loading in G1 and the dynamics of its distribution between mother and daughter strands during replication. Results Using a multi-color protein strategy to detect distinct pools of CENP-A over several cell cycles, we show that nascent CENP-A is equally distributed to sister centromeres. CENP-A distribution is independent of previous or subsequent cell cycles in that centromeres showing disproportionately distributed CENP-A in one cycle can equally divide CENP-A nucleosomes in the next cycle. Furthermore, we show using extended chromatin fibers that maintenance of the CENP-A chromatin domain is achieved by a cycle-specific oscillating pattern of new CENP-A nucleosomes next to existing CENP-A nucleosomes over multiple cell cycles. Finally, we demonstrate that the size of the CENP-A domain does not change throughout the cell cycle and is spatially fixed to a similar location within a given alpha satellite DNA array. Conclusions We demonstrate that most human chromosomes share similar patterns of CENP-A loading and distribution and that centromere inheritance is achieved through specific placement of new CENP-A near existing CENP-A as assembly occurs each cell cycle. The loading pattern fixes the location and size of the CENP-A domain on individual chromosomes. These results suggest that spatial and temporal dynamics of CENP-A are important for maintaining centromere identity and genome stability. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0071-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justyne E Ross
- Department of Molecular Genetics and Microbiology, Division of Human Genetics, Duke University Medical Center, DUMC, 213 Research Drive, 3054, Durham, NC 27710 USA
| | - Kaitlin Stimpson Woodlief
- Department of Molecular Genetics and Microbiology, Division of Human Genetics, Duke University Medical Center, DUMC, 213 Research Drive, 3054, Durham, NC 27710 USA ; Teaching, Learning, and Technology, College of Charleston, JC Long Building, 66 George Street, Charleston, SC 29424 USA
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Division of Human Genetics, Duke University Medical Center, DUMC, 213 Research Drive, 3054, Durham, NC 27710 USA
| |
Collapse
|
45
|
TERRA and the state of the telomere. Nat Struct Mol Biol 2016; 22:853-8. [PMID: 26581519 DOI: 10.1038/nsmb.3078] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/29/2015] [Indexed: 02/05/2023]
Abstract
Long noncoding telomeric repeat-containing RNA (TERRA) has been implicated in telomere maintenance in a telomerase-dependent and a telomerase-independent manner during replicative senescence and cancer. TERRA's proposed activities are diverse, thus making it difficult to pinpoint the critical roles that TERRA may have. We propose that TERRA orchestrates different activities at chromosome ends in a manner that depends on the state of the telomere.
Collapse
|
46
|
Trapphoff T, Heiligentag M, Dankert D, Demond H, Deutsch D, Fröhlich T, Arnold GJ, Grümmer R, Horsthemke B, Eichenlaub-Ritter U. Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. Hum Reprod 2016; 31:133-49. [PMID: 26577303 PMCID: PMC5853592 DOI: 10.1093/humrep/dev279] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/06/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Is the postovulatory aging-dependent differential decrease of mRNAs and polyadenylation of mRNAs coded by maternal effect genes associated with altered abundance and distribution of maternal effect and RNA-binding proteins (MSY2)? SUMMARY ANSWER Postovulatory aging results in differential reduction in abundance of maternal effect proteins, loss of RNA-binding proteins from specific cytoplasmic domains and critical alterations of pericentromeric proteins without globally affecting protein abundance. WHAT IS KNOWN ALREADY Oocyte postovulatory aging is associated with differential alteration in polyadenylation and reduction in abundance of mRNAs coded by selected maternal effect genes. RNA-binding and -processing proteins are involved in storage, polyadenylation and degradation of mRNAs thus regulating stage-specific recruitment of maternal mRNAs, while chromosomal proteins that are stage-specifically expressed at pericentromeres, contribute to control of chromosome segregation and regulation of gene expression in the zygote. STUDY DESIGN, SIZE, DURATION Germinal vesicle (GV) and metaphase II (MII) oocytes from sexually mature C57B1/6J female mice were investigated. Denuded in vivo or in vitro matured MII oocytes were postovulatory aged and analyzed by semiquantitative confocal microscopy for abundance and localization of polyadenylated RNAs, proteins of maternal effect genes (transcription activator BRG1 also known as ATP-dependent helicase SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (SMARCA4) and NOD-like receptor family pyrin domain containing 5 (NLRP5) also known as MATER), RNA-binding proteins (MSY2 also known as germ cell-specific Y-box-binding protein, YBX2), and post-transcriptionally modified histones (trimethylated histone H3K9 and acetylated histone H4K12), as well as pericentromeric ATRX (alpha thalassemia/mental retardation syndrome X-linked, also termed ATP-dependent helicase ATRX or X-linked nuclear protein (XNP)). For proteome analysis five replicates of 30 mouse oocytes were analyzed by selected reaction monitoring (SRM). MATERIAL AND METHODS GV and MII oocytes were obtained from large antral follicles or ampullae of sexually mature mice, respectively. Denuded MII oocytes were aged for 24 h post ovulation. For analysis of distribution and abundance of polyadenylated RNAs fixed oocytes were in situ hybridized to Cy5 labeled oligo(dT)20 nucleotides. Absolute quantification of protein concentration per oocyte of selected proteins was done by SRM proteome analysis. Relative abundance of ATRX was assessed by confocal laser scanning microscopy (CLSM) of whole mount formaldehyde fixed oocytes or after removal of zona and spreading. MSY2 protein distribution and abundance was studied in MII oocytes prior to, during and after exposure to nocodazole, or after aging for 2 h in presence of H2O2 or for 24 h in presence of a glutathione donor, glutathione ethylester (GEE). MAIN RESULTS AND ROLE OF CHANCE The significant reduction in abundance of proteins (P < 0.001) translated from maternal mRNAs was independent of polyadenylation status, while their protein localization was not significantly changed by aging. Most of other proteins quantified by SRM analysis did not significantly change in abundance upon aging except MSY2 and GTSF1. MSY2 was enriched in the subcortical RNP domain (SCRD) and in the spindle chromosome complex (SCC) in a distinct pattern, right and left to the chromosomes. There was a significant loss of MSY2 from the SCRD (P < 0.001) and the spindle after postovulatory aging. Microtubule de- and repolymerization caused reversible loss of MSY2 spindle-association whereas H2O2 stress did not significantly decrease MSY2 abundance. Aging in presence of GEE decreased significantly (P < 0.05) the aging-related overall and cytoplasmic loss of MSY2. Postovulatory aging increased significantly spindle abnormalities, unaligned chromosomes, and abundance of acetylated histone H4K12, and decreased pericentromeric trimethylated histone H3K9 (all P < 0.001). Spreading revealed a highly significant increase in pericentromeric ATRX (P < 0.001) upon ageing. Thus, the significantly reduced abundance of MSY2 protein, especially at the SCRD and the spindle may disturb the spatial control and timely recruitment, deadenylation and degradation of developmentally important RNAs. An autonomous program of degradation appears to exist which transiently and specifically induces the loss and displacement of transcripts and specific maternal proteins independent of fertilization in aging oocytes and thereby can critically affect chromosome segregation and gene expression in the embryo after fertilization. LIMITATION, REASONS FOR CAUTION We used the mouse oocyte to study processes associated with postovulatory aging, which may not entirely reflect processes in aging human oocytes. However, increases in spindle abnormalities, unaligned chromosomes and H4K12 acetylated histones, as well as in mRNA abundance and polyadenylation have been observed also in aged human oocytes suggesting conserved processes in aging. WIDER IMPLICATIONS OF THE FINDINGS Postovulatory aging precociously induces alterations in expression and epigenetic modifications of chromatin by ATRX and in histone pattern in MII oocytes that normally occur after fertilization, possibly contributing to disturbances in the oocyte-to-embryo transition (OET) and the zygotic gene activation (ZGA). These observations in mouse oocytes are also relevant to explain disturbances and reduced developmental potential of aged human oocytes and caution to prevent oocyte aging in vivo and in vitro. STUDY FUNDING/COMPETING INTERESTS The study has been supported by the German Research Foundation (DFG) (EI 199/7-1 | GR 1138/12-1 | HO 949/21-1 and FOR 1041). There is no competing interest.
Collapse
Affiliation(s)
- T Trapphoff
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - M Heiligentag
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - D Dankert
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
| | - H Demond
- Institute of Human Genetics, University Hospital, University Duisburg-Essen, Essen, Germany
| | - D Deutsch
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - T Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - G J Arnold
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - R Grümmer
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
| | - B Horsthemke
- Institute of Human Genetics, University Hospital, University Duisburg-Essen, Essen, Germany
| | - U Eichenlaub-Ritter
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
47
|
Wynne DJ, Funabiki H. Kinetochore function is controlled by a phospho-dependent coexpansion of inner and outer components. J Cell Biol 2015; 210:899-916. [PMID: 26347137 PMCID: PMC4576862 DOI: 10.1083/jcb.201506020] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is widely accepted that the kinetochore is built on CENP-A-marked centromeric chromatin in a hierarchical order from inner to outer kinetochore. Recruitment of many kinetochore proteins depends on microtubule attachment status, but it remains unclear how their assembly/disassembly is orchestrated. Applying 3D structured illumination microscopy to Xenopus laevis egg extracts, here we reveal that in the absence of microtubule attachment, proteins responsible for lateral attachment and spindle checkpoint signaling expand to form micrometer-scale fibrous structures over CENP-A-free chromatin, whereas a core module responsible for end-on attachment (CENP-A, CENP-T, and Ndc80) does not. Both outer kinetochore proteins (Bub1, BubR1, Mad1, and CENP-E) and the inner kinetochore component CENP-C are integral components of the expandable module, whose assembly depends on multiple mitotic kinases (Aurora B, Mps1, and Plx1) and is suppressed by protein phosphatase 1. We propose that phospho-dependent coexpansion of CENP-C and outer kinetochore proteins promotes checkpoint signal amplification and lateral attachment, whereas their selective disassembly enables the transition to end-on attachment.
Collapse
|