1
|
Development and Regeneration of Muscle, Tendon, and Myotendinous Junctions in Striated Skeletal Muscle. Int J Mol Sci 2022; 23:ijms23063006. [PMID: 35328426 PMCID: PMC8950615 DOI: 10.3390/ijms23063006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Owing to a rapid increase in aging population in recent years, the deterioration of motor function in older adults has become an important social problem, and several studies have aimed to investigate the mechanisms underlying muscle function decline. Furthermore, structural maintenance of the muscle–tendon–bone complexes in the muscle attachment sites is important for motor function, particularly for joints; however, the development and regeneration of these complexes have not been studied thoroughly and require further elucidation. Recent studies have provided insights into the roles of mesenchymal progenitors in the development and regeneration of muscles and myotendinous junctions. In particular, studies on muscles and myotendinous junctions have—through the use of the recently developed scRNA-seq—reported the presence of syncytia, thereby suggesting that fibroblasts may be transformed into myoblasts in a BMP-dependent manner. In addition, the high mobility group box 1—a DNA-binding protein found in nuclei—is reportedly involved in muscle regeneration. Furthermore, studies have identified several factors required for the formation of locomotor apparatuses, e.g., tenomodulin (Tnmd) and mohawk (Mkx), which are essential for tendon maturation.
Collapse
|
2
|
Nara M, Kitamura K, Yamamoto M, Nagakura R, Mitomo K, Matsunaga S, Abe S. Developmental mechanism of muscle-tendon-bone complex in the fetal soft palate. Arch Oral Biol 2017; 82:71-78. [PMID: 28618344 DOI: 10.1016/j.archoralbio.2017.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE This study was performed to investigate how the palatine aponeurosis, medial pterygoid process (MPP) of the sphenoid bone, and tensor veli palatini (TVP) muscle form the pulley: muscle-tendon-bone complex. DESIGN Mice at embryonic day (ED) 14-17 were used as sample in this study. Azan staining was performed to observe the morphology, and immunohistochemical staining of desmin was performed to closely observe the development of the myotendinous junction. To confirm the bone formation process, immunohistochemical staining of type II collagen (col II), tartrate-resistant acid phosphatase (TRAP), and alkaline phosphatase (ALP) staining were performed. Furthermore, to objectively evaluate bone formation, the major axis and width of the MPP were measured, and osteoclasts that appeared in the MPP were counted. RESULTS At ED 14 and 14.5, ALP showed a reaction throughout the MPP. The col II-positive area expanded until ED 16.5, but it was markedly reduced at ED 17. The TVP initially contacted with the palatine aponeurosis at ED 16.5. The major axis and width of the MPP and the number of TRAP-positive osteoclasts were significantly increased as the TVP and palatine aponeurosis joined. CONCLUSIONS Therefore, in addition to the tissue units: muscle, tendon, and bone, the interaction in organogenesis promotes rapid growth of the pulley: muscle-tendon-bone complex.
Collapse
Affiliation(s)
- Michiyuki Nara
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Tokyo, Japan
| | - Kei Kitamura
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Tokyo, Japan.
| | - Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Tokyo, Japan
| | - Ryotaro Nagakura
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Tokyo, Japan
| | - Keisuke Mitomo
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Tokyo, Japan
| | - Satoru Matsunaga
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Tokyo, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Tokyo, Japan
| |
Collapse
|
3
|
Expressed miRNAs target feather related mRNAs involved in cell signaling, cell adhesion and structure during chicken epidermal development. Gene 2016; 591:393-402. [PMID: 27320726 DOI: 10.1016/j.gene.2016.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Previous studies have shown that miRNA regulation contributes to a diverse set of processes including cellular differentiation and morphogenesis which leads to the creation of different cell types in multicellular organisms and is thus key to animal development. Feathers are one of the most distinctive features of extant birds and are important for multiple functions including flight, thermal regulation, and sexual selection. However, the role of miRNAs in feather development has been woefully understudied despite the identification of cell signaling pathways, cell adhesion molecules and structural genes involved in feather development. In this study, we performed a microarray experiment comparing the expression of miRNAs and mRNAs among three embryonic stages of development and two tissues (scutate scale and feather) of the chicken. We combined this expression data with miRNA target prediction tools and a curated list of feather related genes to produce a set of 19 miRNA-mRNA duplexes. These targeted mRNAs have been previously identified as important cell signaling and cell adhesion genes as well as structural genes involved in feather and scale morphogenesis. Interestingly, the miRNA target site of the cell signaling pathway gene, Aldehyde Dehydrogenase 1 Family, Member A3 (ALDH1A3), is unique to birds indicating a novel role in Aves. The identified miRNA target site of the cell adhesion gene, Tenascin C (TNC), is only found in specific chicken TNC splice variants that are differentially expressed in developing scutate scale and feather tissue indicating an important role of miRNA regulation in epidermal differentiation. Additionally, we found that β-keratins, a major structural component of avian and reptilian epidermal appendages, are targeted by multiple miRNA genes. In conclusion, our work provides quantitative expression data on miRNAs and mRNAs during feather and scale development and has produced a highly diverse, but manageable list of miRNA-mRNA duplexes for future validation experiments.
Collapse
|
4
|
Abstract
Tenascin-C is a large, multimodular, extracellular matrix glycoprotein that exhibits a very restricted pattern of expression but an enormously diverse range of functions. Here, we discuss the importance of deciphering the expression pattern of, and effects mediated by, different forms of this molecule in order to fully understand tenascin-C biology. We focus on both post transcriptional and post translational events such as splicing, glycosylation, assembly into a 3D matrix and proteolytic cleavage, highlighting how these modifications are key to defining tenascin-C function.
Collapse
Key Words
- AD1/AD2, additional domain 1/ additional domain 2
- ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs
- ASMCs, aortic smooth muscle cells
- BDNF, brain derived neurotrophic factor
- BHKs, baby hamster kidney cells
- BMP, bone morphogenetic protein
- CA19–9, carbohydrate antigen 19–9
- CALEB, chicken acidic leucine-rich EGF-like domain containing brain protein
- CEA, carcinoembryonic antigen
- CNS, central nervous system
- CRC, colorectal carcinomas
- CTGF, connective tissue growth factor
- DCIS, ductal carcinoma in-situ
- ECM, extracellular matrix
- EDA-FN, extra domain A containing fibronectin
- EDB-FN, extra domain B containing fibronectin
- EGF-L, epidermal growth factor-like
- EGF-R, epidermal growth factor receptor
- ELISPOT, enzyme-linked immunospot assay
- FBG, fibrinogen-like globe
- FGF2, fibroblast growth factor 2
- FGF4, fibroblast growth factor 4
- FN, fibronectin
- FNIII, fibronectin type III-like repeat
- GMEM, glioma-mesenchymal extracellular matrix antigen
- GPI, glycosylphosphatidylinositol
- HB-EGF, heparin-binding EGF-like growth factor
- HCEs, immortalized human corneal epithelial cell line
- HGF, hepatocyte growth factor
- HNK-1, human natural killer-1
- HSPGs, heparan sulfate proteoglycans
- HUVECs, human umbilical vein endothelial cells
- ICC, immunocytochemistry
- IF, immunofluorescence
- IFNγ, interferon gamma
- IGF, insulin-like growth factor
- IGF-BP, insulin-like growth factor-binding protein
- IHC, immunohistochemistry
- IL, interleukin
- ISH, in situ hybridization
- LPS, lipopolysaccharide
- MMP, matrix metalloproteinase
- MPNSTs, malignant peripheral nerve sheath tumors
- Mr, molecular mass
- NB, northern blot
- NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NK, natural killer cells
- NSCLC, non-small cell lung carcinoma
- NSCs, neural stem cells
- NT, neurotrophin
- PAMPs, pathogen-associated molecular patterns
- PDGF, platelet derived growth factor
- PDGF-Rβ, platelet derived growth factor receptor β
- PIGF, phosphatidylinositol-glycan biosynthesis class F protein
- PLCγ, phospholipase-C gamma
- PNS, peripheral nervous system
- PTPRζ1, receptor-type tyrosine-protein phosphatase zeta
- RA, rheumatoid arthritis
- RCC, renal cell carcinoma
- RD, rhabdomyosarcoma
- RGD, arginylglycylaspartic acid
- RT-PCR, real-time polymerase chain reaction
- SB, Southern blot
- SCC, squamous cell carcinoma
- SMCs, smooth muscle cells
- SVZ, sub-ventricular zone
- TA, tenascin assembly domain
- TGFβ, transforming growth factor β
- TIMP, tissue inhibitor of metalloproteinases
- TLR4, toll-like receptor 4
- TNFα, tumor necrosis factor α
- TSS, transcription start site
- UBC, urothelial bladder cancer
- UCC, urothelial cell carcinoma
- VEGF, vascular endothelial growth factor
- VSMCs, vascular smooth muscle cells
- VZ, ventricular zone
- WB, immunoblot/ western blot
- bFGF, basic fibroblast growth factor
- biosynthesis
- c, charged
- cancer
- ccRCC, clear cell renal cell carcinoma
- chRCC, chromophobe-primary renal cell carcinoma
- development
- glycosylation
- mAb, monoclonal antibody
- matrix assembly
- mitogen-activated protein kinase, MAPK
- pHo, extracellular pH
- pRCC, papillary renal cell carcinoma
- proteolytic cleavage
- siRNA, small interfering RNA
- splicing
- tenascin-C
- therapeutics
- transcription
Collapse
Affiliation(s)
- Sean P Giblin
- a Nuffield Department of Orthopaedics; Rheumatology and Musculoskeletal Sciences ; Kennedy Institute of Rheumatology; University of Oxford ; Oxford , UK
| | | |
Collapse
|
5
|
Burgess JK, Weckmann M. Matrikines and the lungs. Pharmacol Ther 2012; 134:317-37. [PMID: 22366287 DOI: 10.1016/j.pharmthera.2012.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/03/2012] [Indexed: 01/09/2023]
Abstract
The extracellular matrix is a complex network of fibrous and nonfibrous molecules that not only provide structure to the lung but also interact with and regulate the behaviour of the cells which it surrounds. Recently it has been recognised that components of the extracellular matrix proteins are released, often through the action of endogenous proteases, and these fragments are termed matrikines. Matrikines have biological activities, independent of their role within the extracellular matrix structure, which may play important roles in the lung in health and disease pathology. Integrins are the primary cell surface receptors, characterised to date, which are used by the matrikines to exert their effects on cells. However, evidence is emerging for the need for co-factors and other receptors for the matrikines to exert their effects on cells. The potential for matrikines, and peptides derived from these extracellular matrix protein fragments, as therapeutic agents has recently been recognised. The natural role of these matrikines (including inhibitors of angiogenesis and possibly inflammation) make them ideal targets to mimic as therapies. A number of these peptides have been taken forward into clinical trials. The focus of this review will be to summarise our current understanding of the role, and potential for highly relevant actions, of matrikines in lung health and disease.
Collapse
Affiliation(s)
- Janette K Burgess
- Cell Biology, Woolcock Institute of Medical Research, Sydney, NSW, Australia.
| | | |
Collapse
|
6
|
Guttery DS, Hancox RA, Mulligan KT, Hughes S, Lambe SM, Pringle JH, Walker RA, Jones JL, Shaw JA. Association of invasion-promoting tenascin-C additional domains with breast cancers in young women. Breast Cancer Res 2010; 12:R57. [PMID: 20678196 PMCID: PMC2949648 DOI: 10.1186/bcr2618] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/27/2010] [Accepted: 08/02/2010] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Tenascin-C (TNC) is a large extracellular matrix glycoprotein that shows prominent stromal expression in many solid tumours. The profile of isoforms expressed differs between cancers and normal breast, with the two additional domains AD1 and AD2 considered to be tumour associated. The aim of the present study was to investigate expression of AD1 and AD2 in normal, benign and malignant breast tissue to determine their relationship with tumour characteristics and to perform in vitro functional assays to investigate the role of AD1 in tumour cell invasion and growth. METHODS Expression of AD1 and AD2 was related to hypoxanthine phosphoribosyltransferase 1 as a housekeeping gene in breast tissue using quantitative RT-PCR, and the results were related to clinicopathological features of the tumours. Constructs overexpressing an AD1-containing isoform (TNC-14/AD1/16) were transiently transfected into breast carcinoma cell lines (MCF-7, T-47 D, ZR-75-1, MDA-MB-231 and GI-101) to assess the effect in vitro on invasion and growth. Statistical analysis was performed using a nonparametric Mann-Whitney test for comparison of clinicopathological features with levels of TNC expression and using Jonckheere-Terpstra trend analysis for association of expression with tumour grade. RESULTS Quantitative RT-PCR detected AD1 and AD2 mRNA expression in 34.9% and 23.1% of 134 invasive breast carcinomas, respectively. AD1 mRNA was localised by in situ hybridisation to tumour epithelial cells, and more predominantly to myoepithelium around associated normal breast ducts. Although not tumour specific, AD1 and AD2 expression was significantly more frequent in carcinomas in younger women (age ≤40 years; P < 0.001) and AD1 expression was also associated with oestrogen receptor-negative and grade 3 tumours (P < 0.05). AD1 was found to be incorporated into a tumour-specific isoform, not detected in normal tissues. Overexpression of the TNC-14/AD1/16 isoform significantly enhanced tumour cell invasion (P < 0.01) and growth (P < 0.01) over base levels. CONCLUSIONS Together these data suggest a highly significant association between AD-containing TNC isoforms and breast cancers in younger women (age ≤40 years), which may have important functional significance in vivo.
Collapse
Affiliation(s)
- David S Guttery
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Infirmary Close, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bullough R, Finnigan T, Kay A, Maffulli N, Forsyth NR. Tendon repair through stem cell intervention: cellular and molecular approaches. Disabil Rehabil 2009; 30:1746-51. [PMID: 18720123 DOI: 10.1080/09638280701788258] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tendon injuries are common in either the workplace or sport activities, with some 3 to 5 million tendon and ligament injuries occurring annually worldwide. Management of tendon injury currently follows two routes: Conservative (rehabilitation and pain relief), or surgical. Irrespective of which of these primary treatment routes are followed, even if healing does occur, it may not result in a full gain of function. The inability of the tendon to self-repair and the relative inefficiency of current treatment regimens suggest that identifying alternative strategies is a priority. One such alternative is the use of stem cells to repair damage, either through direct application or in conjunction with scaffolding. We describe the current state of the art in terms of: (i) Molecular markers of tendon development, (ii) stem cell applicability to human tendon repair, (iii) scaffolding for in vitro tendon generation, and (iv) chemical/molecular approaches to both induce stem cell differentiation into tenocytes and maintain their proliferation in vitro.
Collapse
Affiliation(s)
- Richard Bullough
- Department of Trauma and Orthopaedic Surgery, Keele University Medical School, Keele, Stoke on Trent
| | | | | | | | | |
Collapse
|
8
|
Tucker RP, Chiquet-Ehrismann R. The regulation of tenascin expression by tissue microenvironments. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:888-92. [PMID: 19162090 DOI: 10.1016/j.bbamcr.2008.12.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 12/04/2008] [Accepted: 12/19/2008] [Indexed: 12/12/2022]
Abstract
Tenascins are a family of four extracellular matrix proteins: tenascin-C, X, R and W. The four members of the family have strikingly diverse patterns of expression during development and in the adult organism indicating independent mechanisms of regulation. In this review we illustrate that there are two types of tenascins, those that are significantly regulated by the tissue microenvironment (tenascin-C and tenascin-W), and those that have stabile, restricted expression patterns (tenascin-R and tenascin-X). We summarize what is known about the regulation of tenascin expression by transforming growth factor betas, fibroblast growth factors, platelet derived growth factors, as well as pro- and anti-inflammatory cytokines or hormones that either induce or inhibit expression of tenascins.
Collapse
Affiliation(s)
- Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, California 95616, USA.
| | | |
Collapse
|
9
|
Shukunami C, Takimoto A, Oro M, Hiraki Y. Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev Biol 2006; 298:234-47. [PMID: 16876153 DOI: 10.1016/j.ydbio.2006.06.036] [Citation(s) in RCA: 336] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 06/19/2006] [Accepted: 06/22/2006] [Indexed: 01/13/2023]
Abstract
Tenomodulin (TeM) is a type II transmembrane glycoprotein containing a C-terminal anti-angiogenic domain and is predominantly expressed in tendons and ligaments. Here we report that TeM expression is closely associated with the appearance of tenocytes during chick development and is positively regulated by Scleraxis (Scx). At stage 23, when Scx expression in the syndetome has extended to the tail region, TeM was detectable in the anterior eight somites. At stage 25, TeM and Scx were both detectable in the regions adjacent to the myotome. Double positive domains for these genes were flanked by a dorsal TeM single positive and a ventral Scx single positive domain. At stage 28, the expression profile of TeM in the axial tendons displayed more distinct morphological features at different levels of the vertebrae. At stage 32 and later, Scx and TeM showed similar expression profiles in developing tendons. Retroviral expression of Scx resulted in the significant upregulation of TeM in cultured tenocytes, but not in chondrocytes. In addition, the misexpression of RCAS-cScx by electroporation into the hindlimb could not induce the generation of additional tendons, but did result in the upregulation of TeM expression in the tendons at stage 33 and later. These findings suggest that TeM is a late marker of tendon formation and that Scx positively regulates TeM expression in a tendon cell lineage-dependent manner.
Collapse
Affiliation(s)
- Chisa Shukunami
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | |
Collapse
|
10
|
Pas J, Wyszko E, Rolle K, Rychlewski L, Nowak S, Zukiel R, Barciszewski J. Analysis of structure and function of tenascin-C. Int J Biochem Cell Biol 2006; 38:1594-602. [PMID: 16698307 DOI: 10.1016/j.biocel.2006.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 03/24/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
Tenascin-C is a multidomain large extracellular matrix glycoprotein composed of six monomers. The size of tenascin-C monomers (180-250 kDa) varies as a result of an alternative splicing of the fibronectin repeats at the pre-mRNA level. For the first time we applied bioinformatic and molecular modeling procedures, for detailed analysis of the organization of tenascin-C and we performed bioinformatic analysis of tenascin-C gene. We detected the presence of heat shock protein 33 in the tenascin-C N-terminal domain that may suggest its role in the protein-protein interactions and stress response. The number of fibronectin type III-like repeats and epidermal growth factor-like repeats were corrected to 15 and 14, respectively. Using polyactylamide gel electophoresis, RT/PCR analysis and microarrays data, we showed the higher level of tenascin-C in the human tumor tissues: brain, intestine and breast. These results suggested a new role of tenascin-C as the potential tumor marker and drug target.
Collapse
Affiliation(s)
- Jakub Pas
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
11
|
Leins A, Riva P, Lindstedt R, Davidoff MS, Mehraein P, Weis S. Expression of tenascin-C in various human brain tumors and its relevance for survival in patients with astrocytoma. Cancer 2003; 98:2430-9. [PMID: 14635078 DOI: 10.1002/cncr.11796] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Tenascin-C (TN-C), a large extracellular matrix (ECM) glycoprotein with a molecular weight of 180-250 kilodaltons, is present in several normal adult tissues. TN-C is up-regulated during embryogenesis, in wound healing, and in tumor tissues. Glioblastoma multiforme (GBM) is the most frequent and malignant astrocytic tumor comprised of poorly differentiated, neoplastic astrocytes. Recently, TN-C-based radioimmunotherapy was administered to patients with GBM. METHODS In the current study, the authors used immunohistochemistry to conduct a systematic investigation of TN-C distribution patterns in normal human brain tissue and in a large variety of brain tumors (n = 485 tumors). Immunoreactivity for TN-C was assessed with regard to its localization within tumor cells, blood vessels, and ECM using three different monoclonal antibodies (clones BC2, BC4, and TN2). RESULTS In control human brains, a significant difference was noted in the expression of TN-C when comparing gray with white matter using either Western blot analysis or immunohistochemistry. TN-C was found in the white matter of the frontal, temporal, parietal, and occipital lobes and in the hippocampus, where the immunoreaction was especially strong in the hippocampal formation. In 181 astrocytomas of different grades (World Health Organization [WHO] Grade 2-4), TN-C immunopositivity was seen to varying degrees in the cellular and stromal components of the tumor and in tumor-associated vessels. Glioblastomas (n = 113 tumors) showed strong immunopositivity in the vessels and moderate immunopositivity of the ECM. A statistically significant reduction of TN-C immunopositivity in tumor-associated vessels or ECM was observed in anaplastic astrocytomas (WHO Grade 3) compared with GBM (WHO Grade 4). A Kaplan-Meier analysis showed that patients who had GBM lesions that lacked TN-C immunopositivity in the ECM had a significantly longer survival (median, 28 months; standard error, 7.8 months) (n = 12 patients) compared with patients who had GBM lesions with TN-C immunopositivity (median, 12 months; standard error, 1.6 months) (n = 87 patients). In meningiomas (n = 24 tumors), the neoplastic cells, the ECM of the tumor, and the vessels were TN-C negative. In schwannomas (n = 31 tumors), the tumor cells were TN-C negative; whereas, in > 50% of tumors, the vessels and the ECM of regressively altered tumor areas were positive. In metastatic carcinomas (n = 53 tumors), the tumor cells were negative; seldom were vessels stained positive for TN-C. Focal areas of the ECM, often accompanied with fibrotic changes, were immunopositive for TN-C. CONCLUSIONS The most constant TN-C immunopositivity was noted in the ECM of the fibrotic stroma in highly malignant brain tumors and along the tumor border, especially in high-grade astrocytomas. The current results suggest that TN-C expression may be correlated with the grade of malignancy in astrocytic tumors and that the presence or absence of TN-C expression in the stroma of astrocytic tumors may play a not yet clearly understood role in shortening or prolonging, respectively, the survival of patients.
Collapse
Affiliation(s)
- Alexander Leins
- Institute of Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Sahlberg C, Aukhil I, Thesleff I. Tenascin-C in developing mouse teeth: expression of splice variants and stimulation by TGFbeta and FGF. Eur J Oral Sci 2001; 109:114-24. [PMID: 11347655 DOI: 10.1034/j.1600-0722.2001.00990.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tenascin-C is a protein of the extracellular matrix which has been suggested to regulate organogenesis. We have analysed the expression of tenascin-C mRNA during mouse tooth development. We show that it is transiently expressed during epithelial budding in the condensed dental mesenchyme, and that it reappears later in the dental papilla mesenchyme where it persists in the dental pulp but is downregulated in odontoblasts. Probes corresponding to the domains A4, B, and D of the differentially spliced and domain 7 of the constant region of the FNIII-like domain show similar patterns of hybridization. Dental epithelium has been shown to induce tenascin-C in early dental mesenchyme, and we show that growth factors in the transforming growth factor beta (TGFbeta) and fibroblast growth factor (FGF) families can mimic this effect. FGF-4, -8 and TGFbeta-1 proteins were applied locally by beads on dissected dental mesenchyme, and tenascin-C expression was analysed after 24 h culture by reverse transcriptase-polymerase chain reaction (RT-PCR) in situ hybridization, and immunohistochemistry. FGF-4 and TGFbeta-1 stimulated tenascin-C expression in E12 dental mesenchymes. RT-PCR showed induction of several tenascin-C isoforms by both TGFbeta-1 and FGFs. We conclude that several splice forms are expressed during mouse tooth development, and that TGFbeta- and FGF-family growth factors may act as epithelial signals inducing tenascin expression in the dental mesenchyme.
Collapse
Affiliation(s)
- C Sahlberg
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland.
| | | | | |
Collapse
|
13
|
Abstract
The tenascins are a family of large extracellular matrix glycoproteins that comprise five known members. Three of these, tenascin-C (TN-C) tenascin-R (TN-R) and tenascin-Y (TN-Y) are expressed in specific patterns during nervous system development and are down-regulated after maturation. The expression of TN-C, the best studied member of the family, persists in restricted areas of the nervous system that exhibit neuronal plasticity and is reexpressed after lesion. Numerous studies in vitro suggest specific roles for tenascins in the nervous system involving precursor cell migration, axon growth and guidance. TN-C has been shown to occur in a large number of isoform variants generated by combinatorial variation of alternatively spliced fibronectin type III (FNIII) repeats. This finding indicates that TN-C might specify neural microenvironments, a hypothesis supported by recent analysis of TN-C knockout animals, which has begun to reveal subtle nervous system dysfunctions.
Collapse
Affiliation(s)
- A Joester
- Department of Neurobiology, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | | |
Collapse
|
14
|
Abstract
Once specified to become neural crest (NC), cells occupying the dorsal portion of the neural tube disrupt their cadherin-mediated cell-cell contacts, acquire motile properties, and embark upon an extensive migration through the embryo to reach their ultimate phenotype-specific sites. The understanding of how this movement is regulated is still rather fragmentary due to the complexity of the cellular and molecular interactions involved. An additional intricate aspect of the regulation of NC cell movement is that the timings, modes and patterns of NC cell migration are intimately associated with the concomitant phenotypic diversification that cells undergo during their migratory phase and the fact that these changes modulate the way that moving cells interact with their microenvironment. To date, two interplaying mechanisms appear central for the guidance of the migrating NC cells through the embryo: one involves secreted signalling molecules acting through their cognate protein kinase/phosphatase-type receptors and the other is contributed by the multivalent interactions of the cells with their surrounding extracellular matrix (ECM). The latter ones seem fundamental in light of the central morphogenetic role played by the intracellular signals transduced through the cytoskeleton upon integrin ligation, and the convergence of these signalling cascades with those triggered by cadherins, survival/growth factor receptors, gap junctional communications, and stretch-activated calcium channels. The elucidation of the importance of the ECM during NC cell movement is presently favoured by the augmenting knowledge about the macromolecular structure of the specific ECM assembled during NC development and the functional assaying of its individual constituents via molecular and genetic manipulations. Collectively, these data propose that NC cell migration may be governed by time- and space-dependent alterations in the expression of inhibitory ECM components; the relative ratio of permissive versus non-permissive ECM components; and the supramolecular assembly of permissive ECM components. Six multidomain ECM constituents encoded by a corresponding number of genes appear to date the master ECM molecules in the control of NC cell movement. These are fibronectin, laminin isoforms 1 and 8, aggrecan, and PG-M/version isoforms V0 and V1. This review revisits a number of original observations in amphibian and avian embryos and discusses them in light of more recent experimental data to explain how the interaction of moving NC cells with these ECM components may be coordinated to guide cells toward their final sites during the process of organogenesis.
Collapse
Affiliation(s)
- R Perris
- Department of Functional and Evolutionary Biology, University of Parma, Viale delle Scienze, 43100, Parma, Italy
| | | |
Collapse
|
15
|
Mikic B, Wong M, Chiquet M, Hunziker EB. Mechanical modulation of tenascin-C and collagen-XII expression during avian synovial joint formation. J Orthop Res 2000; 18:406-15. [PMID: 10937627 DOI: 10.1002/jor.1100180312] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The objective of this study was to investigate how temporal and spatial patterns of characteristic extracellular matrix molecules are altered in the absence of normal functional skeletal muscle contractions during avian synovial joint development. By using in situ detection of protein and mRNA expression in developing avian feet and femorotibial joints from a wide range of developmental stages, we demonstrate that the morphological abnormalities that result from embryonic immobilization are associated with altered patterns of tenascin-C and collagen-XII expression within developing joint structures. As the joints fuse in immobilized embryos, the cells of the presumptive articular surface differentiate from flattened fibroblasts to more rounded chondrocytes and collagens XII and I are no longer detected at sites of complete joint fusion. Although the expression of collagen XII persists at normal levels elsewhere within the immobilized joint, tenascin-C expression is diminished within the chondroepiphysis, synovium, and tendons, as well as within the remains of the fibrous articular surface. This effect is most notable for the shortest tenascin variant (Tn190) within the chondroepiphysis and the largest variant (Tn230) within tendons, synovium, and the fibrous surface layer of the joint. This study thus provides in vivo support of previous in vitro work that suggests that tenascin expression is sensitive to external changes in mechanical loading environment. However, these data do not support a similar conclusion for collagen XII during early development.
Collapse
Affiliation(s)
- B Mikic
- Department of Orthopaedics, University of Virginia, Charlottesville 22908, USA.
| | | | | | | |
Collapse
|
16
|
Joester A, Faissner A. Evidence for combinatorial variability of tenascin-C isoforms and developmental regulation in the mouse central nervous system. J Biol Chem 1999; 274:17144-51. [PMID: 10358070 DOI: 10.1074/jbc.274.24.17144] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular matrix glycoprotein tenascin-C (TN-C) displays a restricted and developmentally regulated distribution in the mouse central nervous system. Defined modules of the molecule have been shown to mediate specific functions, such as neuron migration, neurite outgrowth, cell adhesion, and cell proliferation. The smallest TN-C form contains a stretch of eight fibronectin type III (FNIII) domains, which are common to all TN-C isoforms. Unrestricted and independent alternative splicing of six consecutive FNIII cassettes between the fifth and sixth constitutive FNIII domain bears the potential to generate 64 different combinations that might code for TN-C proteins with subtly different functions. To explore TN-C isoform variability in mouse brain, the alternatively spliced region of TN-C mRNAs was examined by the reverse transcription-polymerase chain reaction technique. Polymerase chain reaction products of uniform size were subcloned and analyzed using domain-specific probes to reveal the expression of particular combinations of alternatively spliced FNIII domains. 27 TN-C isoforms were identified to be expressed in mouse central nervous system, of which 22 are novel. Furthermore, during development, specific TN-C isoforms were found to occur in distinct relative frequencies, as demonstrated for isoforms containing two alternatively spliced FNIII domains. We conclude that TN-C is expressed in a complex and regulated pattern in mouse central nervous system. These findings highlight the potential role of TN-C in mediating specific neuron glia interactions.
Collapse
Affiliation(s)
- A Joester
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | | |
Collapse
|
17
|
Carnemolla B, Castellani P, Ponassi M, Borsi L, Urbini S, Nicolo G, Dorcaratto A, Viale G, Winter G, Neri D, Zardi L. Identification of a glioblastoma-associated tenascin-C isoform by a high affinity recombinant antibody. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:1345-52. [PMID: 10329587 PMCID: PMC1866608 DOI: 10.1016/s0002-9440(10)65388-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tenascin-C exists in several polymorphic isoforms due to alternative splicing of nine fibronectin-like type III repeats. Large Tenascin-C isoforms are present in almost all normal adult tissues but are upregulated in fetal, regenerating, and neoplastic tissues. Here, we report a human antibody fragment, TN11, derived from a phage library with high affinity for the spliced repeat C and demonstrate that this repeat is undetectable in normal adult tissues, barely detectable or undetectable in breast, lung and gastric carcinomas, meningioma, and low grade astrocytoma, but extremely abundant in high grade astrocytoma (grade III and glioblastoma), especially around vascular structures and proliferating cells. The antibody appears to have potential for development of a therapeutic agent for patients with high grade astrocytoma.
Collapse
Affiliation(s)
- B Carnemolla
- Laboratory of Cell Biology and Laboratory of Anatomic Pathology, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tongiorgi E. Tenascin-C expression in the trunk of wild-type, cyclops and floating head zebrafish embryos. Brain Res Bull 1999; 48:79-88. [PMID: 10210171 DOI: 10.1016/s0361-9230(98)00149-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The function and the regulation of the expression of the extracellular matrix molecule tenascin-C during embryonic development are still unclear. In the present study, the expression of tenascin-C was analyzed in the trunk of zebrafish at the end of the first embryonic day. An antiserum raised against a zebrafish tenascin-C (TN-C) fusion protein reacted with 220 (doublet), 200, and 160 KD peptides. In situ hybridization showed that in the zebrafish wild-type embryo, tn-c mRNA was expressed by somites, neural crest cells, roof plate, notochord, hypochord, and tail fin bud. Thus, the expression of tn-c mRNA is an excellent marker for the differentiation of most zebrafish trunk structures. Immunolabelling with the anti-TN-C antibody was detected in the migratory pathway of neural crest cells and in the intersomitic furrows. In situ hybridization analysis of the zebrafish cyclops mutants, lacking the midline floor plate cells, showed normal expression of tn-c mRNA in all trunk structures. Analysis of the floating-head mutant, lacking the notochord, showed that tn-c mRNA expression in neural crest cells, roof plate, and tail fin bud is normal, but it is defective in the somites. By showing that the notochord, but not the floor plate, cells are required for normal tn-c expression in the trunk, this work provides new information on the role played by the embryonic axial structures in the regulation of the expression of tn-c during the development of zebrafish and allows new conclusions about somite patterning in the cyclops and floating-head zebrafish mutants.
Collapse
Affiliation(s)
- E Tongiorgi
- Department of Neurobiology, ETH-Swiss Federal Institute of Technology, Hönggerberg, Zürich.
| |
Collapse
|
19
|
Abstract
A number of large multidomain extracellular matrix glycoproteins, including fibronectin and members of the tenascin and thrombospondin families, are expressed in locations that suggest they may be involved in the process of chondrogenesis. During early limb morphogenesis, tenascin-C is selectively associated with condensing chondrogenic mesenchyme. With progressive development of endochondral bones, tenascin-C is absent from the matrix surrounding proliferating and hypertrophic chondrocytes, but remains in a restricted distribution in peripheral epiphyseal cartilage. During long bone development, patterns of expression of tenascin-C splice variants differ between chondrogenic and osteogenic regions, suggesting that different isoforms may have different functional roles. Tenascin-C presented as a substratum for chick wing bud mesenchymal cells induces chondrogenic differentiation. In early studies, fibronectin was found to inhibit chondrogenesis, despite being abundant in early chondrogenic mesenchyme. Recent studies showing differential effects of fibronectin splice variants on prechondrogenic mesenchymal condensation may explain this paradox. Members of the thrombospondin gene family are expressed in chondrogenic tissues at different stages, suggesting that they each play a unique role in cartilage development.
Collapse
Affiliation(s)
- E J Mackie
- School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
20
|
Derr LB, Chiquet-Ehrismann R, Gandour-Edwards R, Spence J, Tucker RP. The expression of tenascin-C with the AD1 variable repeat in embryonic tissues, cell lines and tumors in various vertebrate species. Differentiation 1997; 62:71-82. [PMID: 9404002 DOI: 10.1046/j.1432-0436.1997.6220071.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tenascin-C is a modular glycoprotein composed of domains of amino acid repeats. All forms of tenascin-C have eight constant fibronectin type III repeats, but additional fibronectin type III repeats can be spliced into a variable domain found between the fifth and sixth constant repeats. Four extra repeats, named A, B, C and D, have been examined previously. Here, we have used in situ hybridization to determine the tissue origins of the novel AD1 and AD2 repeats. In the embryonic-day-10 chicken embryo, transcripts encoding the AD2 repeat are limited to the tips of lung bronchioles and the base of feather buds. In contrast the AD1 hybridization signal was widespread. Quantitative in situ hybridization reveals AD1-containing transcripts represent up to 85% of the total tenascin-C mRNA in some tissues (developing bone), and are undetectable in others (e.g. radial glia). Avian and human tumor cell lines were examined for the expression of the AD1 repeat using the reverse transcriptase polymerase chain reaction (RT-PCR). Transcripts encoding six different tenascin-C splice variants incorporating the AD1 repeat were found in the fibrosarcoma cell line, QT6. Many human tumor cells, including malignant melanoma and ductal breast carcinoma, were positive for AD1 tenascin-C expression. In addition, we found evidence of AD1 tenascin-C expression in samples of excised human tumors. Our results show that a novel variant may be a major part of the tenascin-C of the embryonic extracellular matrix, and may also be found in the stroma surrounding some human tumors.
Collapse
Affiliation(s)
- L B Derr
- Department of Neurobiology and Anatomy, Bowman Gray School of Medicine, Winston-Salem, NC 27510, USA
| | | | | | | | | |
Collapse
|
21
|
Fischer D, Tucker RP, Chiquet-Ehrismann R, Adams JC. Cell-adhesive responses to tenascin-C splice variants involve formation of fascin microspikes. Mol Biol Cell 1997; 8:2055-75. [PMID: 9348542 PMCID: PMC25670 DOI: 10.1091/mbc.8.10.2055] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/1997] [Accepted: 07/16/1997] [Indexed: 02/05/2023] Open
Abstract
Tenascin-C is an adhesion-modulating matrix glycoprotein that has multiple effects on cell behavior. Tenascin-C transcripts are expressed in motile cells and at sites of tissue modeling during development, and alternative splicing generates variants that encode different numbers of fibronectin type III repeats. We have examined the in vivo expression and cell adhesive properties of two full-length recombinant tenascin-C proteins: TN-190, which contains the eight constant fibronectin type III repeats, and TN-ADC, which contains the additional AD2, AD1, and C repeats. In situ hybridization with probes specific for the AD2, AD1, and C repeats shows that these splice variants are expressed at sites of active tissue modeling and fibronectin expression in the developing avian feather bud and sternum. Transcripts incorporating the AD2, AD1, and C repeats are present in embryonic day 10 wing bud but not in embryonic day 10 lung. By using a panel of nine cell lines in attachment assays, we have found that C2C12, G8, and S27 myoblastic cells undergo concentration-dependent adhesion to both variants, organize actin microspikes that contain the actin-bundling protein fascin, and do not assemble focal contacts. On a molar basis, TN-ADC is more active than TN-190 in promoting cell attachment and irregular cell spreading. The addition of either TN-190 or TN-ADC in solution to C2C12, COS-7, or MG-63 cells adherent on fibronectin decreases cell attachment and results in decreased organization of actin microfilament bundles, with formation of cortical membrane ruffles and retention of residual points of substratum contact that contain filamentous actin and fascin. These data establish a biochemical similarity in the processes of cell adhesion to tenascin-C and thrombospondin-1, also an "antiadhesive" matrix component, and also demonstrate that both the adhesive and adhesion-modulating properties of tenascin-C involve similar biochemical events in the cortical cytoskeleton. In addition to these generic properties, TN-ADC is less active in adhesion modulation than TN-190. The coordinated expression of different tenascin-C transcripts during development may, therefore, provide appropriate microenvironments for regulated changes in cell shape, adhesion, and movement.
Collapse
Affiliation(s)
- D Fischer
- Friedrich-Miescher Institut, Basel, Switzerland
| | | | | | | |
Collapse
|
22
|
Mighell AJ, Thompson J, Hume WJ, Markham AF, Robinson PA. Human tenascin-C: identification of a novel type III repeat in oral cancer and of novel splice variants in normal, malignant and reactive oral mucosae. Int J Cancer 1997; 72:236-40. [PMID: 9219826 DOI: 10.1002/(sici)1097-0215(19970717)72:2<236::aid-ijc6>3.0.co;2-s] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tenascin-C is a mosaic, linear glycoprotein that is up-regulated during many normal and pathological processes involving either cell migration or tissue morphogenesis, such as invasion of malignant cells and wound healing. Human tenascin-C contains 8 consecutive type III fibronectin (TNCfn) domains that are involved in alternative splicing and potentially generate a large number of isoforms that code for tenascin-C proteins with subtly different functions. Human tenascin-C splice variants were investigated by RT-PCR in a range of normal and pathological oral mucosal tissues. A novel, 9th human TNCfn domain involved in alternative splicing was identified. It shares 70% nucleic acid and 55% protein sequence homology with chicken TNCfn-ad2. As in avians, this novel repeat was located between TNCfn-B and TNCfn-ad1 and accordingly was designated human TNCfn-ad2. Human TNCfn-ad2 was detected in only 2 of 10 oral cancers. However, TNCfn-ad2 was absent from 40 normal, reactive, pre-malignant and other oral mucosal specimens investigated. Previous studies have described 8 splice variant transcripts for human tenascin-C. By systematic investigation we identified further novel splice variants for human tenascin-C. Furthermore, our results indicate that many potential splice variants probably do not exist in the tissues investigated. Thus, we have demonstrated that human tenascin-C transcripts generate a complex but selected repertoire of different alternative splice products.
Collapse
Affiliation(s)
- A J Mighell
- Molecular Medicine Unit, St. James's University Hospital, Leeds, UK.
| | | | | | | | | |
Collapse
|
23
|
Vollmer G. Biologic and oncologic implications of tenascin-C/hexabrachion proteins. Crit Rev Oncol Hematol 1997; 25:187-210. [PMID: 9177941 DOI: 10.1016/s1040-8428(97)00004-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- G Vollmer
- Institut für Molekulare Medizin, Medizinische Universität, Lübeck, Germany.
| |
Collapse
|
24
|
Gluhak J, Mais A, Mina M. Tenascin-C is associated with early stages of chondrogenesis by chick mandibular ectomesenchymal cells in vivo and in vitro. Dev Dyn 1996; 205:24-40. [PMID: 8770549 DOI: 10.1002/(sici)1097-0177(199601)205:1<24::aid-aja3>3.0.co;2-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tenascin-C is an extracellular matrix protein thought to be involved in skeletogenesis. We have examined the distribution of tenascin-C in the developing chick mandibular arch between stages 18-36, and during in vitro chondrogenesis of mandibular ectomesenchymal cells in micromass cultures using a probe and antibody that correspond to the portion of the tenascin-C transcript conserved in all of the three known chick splice variants. In situ hybridization and immunohistochemical analyses demonstrate that tenascin-C is predominantly expressed in the condensing mesenchyme of developing cartilage, and in the perichondrium of differentiated cartilage. Tenascin-C expression, although detected in differentiating chondroblasts, was not detected in differentiated cartilage. Tenascin-C was also expressed in the developing membranous bones. In addition, the expression of tenascin-C transcripts during in vitro chondrogenesis of mandibular ectomesenchymal cells in micromass cultures was compared to the patterns of expression of aggrecan core protein and alpha 1(I) collagen transcripts. Our in situ hybridization analyses of micromass cultures demonstrate the expression of tenascin-C and aggrecan core protein mRNAs by pre-chondrogenic aggregates in the 1-day cultures and by chondroblasts in differentiating cartilage nodules in 2-day cultures. In 4- and 9-day cultures, the pattern of expression of tenascin-C mRNA was different from the patterns of expression of aggrecan core protein mRNA, and appeared to be more closely related to the expression of alpha 1(I) collagen mRNA. Aggrecan core protein mRNA was expressed by chondrocytes in cartilage nodules in 4- and 9-day cultures. On the other hand, tenascin-C and alpha 1(I) collagen mRNAs, in addition to being expressed in the loose connective tissues in the inter-nodular spaces, were predominantly expressed by the elongated, flattened, and fibroblast-like cells around the cartilage nodules. These results indicate that during the in vitro chondrogenesis of mandibular ectomesenchymal cells, expression of tenascin-C mRNA identifies chondrocytes in their early stages of differentiation. The patterns of expression of tenascin-C mRNA in 4- and 9-day cultures further suggest that tenascin-C is expressed in the perichondrium-like structures that form around the cartilage nodules in micromass cultures. Therefore, our in vitro studies, in agreement with our in vivo studies, suggest an association of tenascin-C with the initial or early stages of chondrogenesis in the chicken mandibular arch.
Collapse
Affiliation(s)
- J Gluhak
- Department of Pediatric Dentistry, School of Dental Medicine, University of Connecticut Health Center, Farmington 06030, USA
| | | | | |
Collapse
|
25
|
Mitrovic N, Schachner M. Detection of tenascin-C in the nervous system of the tenascin-C mutant mouse. J Neurosci Res 1995; 42:710-7. [PMID: 8600304 DOI: 10.1002/jnr.490420514] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have investigated the expression of tenascin-C (TN-C) in the somatosensory cortex of early postnatal mutant mice in which lacZ was reported to be expressed in place of tenascin (Saga et al.: Genes Dev 6:1821-1831, 1992). At both the mRNA and protein levels, TN-C was detected at levels lower in the mutant than in wild type animals by in situ hybridization and by immunocytochemistry using several poly- and monoclonal antibodies directed against mouse TN-C. The distribution of TN-C immunoreactivity in coronal sections was abnormal in that the barrel field boundaries in layer 4 of the somatosensory cortex could not be detected intracellularly in most cell bodies, including possibly also neurons. Western blot analysis of homogenates of brain tissue from early postnatal animals showed an abnormal pattern of protein bands immunoreactive for TN-C in mutant animals while beta-galactosidase migrated at its expected molecular weight without incorporation into fusion proteins with TN-C, suggesting disturbed splicing mechanisms. No gross disturbances in the patterning of barrel fields could be detected in the mutant mice as shown by Nissl staining. Our observations show that the mutant mouse designed to be nully disrupted for TN-C expression shows detectable and abnormal TN-C expression.
Collapse
Affiliation(s)
- N Mitrovic
- Department of Neurobiology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | |
Collapse
|
26
|
Chiquet-Ehrismann R. Tenascins, a growing family of extracellular matrix proteins. EXPERIENTIA 1995; 51:853-62. [PMID: 7556567 DOI: 10.1007/bf01921736] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The tenascins are a family of large multimeric extracellular matrix proteins consisting of repeated structural modules including heptad repeats, epidermal growth factor (EGF)-like repeats, fibronectin type III repeats, and a globular domain shared with the fibrinogens. The tenascins are believed to be involved in the morphogenesis of many organs and tissues. To date three members of the tenascin family have been described, tenascin-C, tenascin-R, and tenascin-X. Tenascin-R seems to be specific for the central and peripheral nervous system, tenascin-X is most prominent in skeletal and heart muscle, while tenascin-C is present in a large number of developing tissues including the nervous system, but is absent in skeletal and heart muscles. Tenascin-C was the original tenascin discovered, partly because of its overexpression in tumors. Inferring from cell biological studies, it has been proposed that tenascin-C is an adhesion-modulating protein.
Collapse
|
27
|
Abstract
Tenascin expression was determined by an immunohistochemical technique in 120 surgical specimens of gastric carcinoma to investigate its relationship with clinicopathological factors. Tenascin expression was more prominent in the neoplastic area than in the adjacent non-neoplastic mucosa. Tenascin was frequently observed in gastric mucosa with diffuse chronic gastritis, glandular atrophy and intestinal metaplasia. In the neoplastic area, tenascin expression was positive in 72 cases (60 per cent). Tumours with a high frequency of tenascin expression included: Borrmann type II (19 of 20), well or moderately differentiated tumours (52 of 63), tumours with expansive growth and with an intermediate growth pattern (40 of 42), and those with a medullary or intermediate-type stroma (55 of 73). There was no significant relationship between tenascin expression and age, sex, depth of tumour invasion, lymph node metastasis, invasion to lymphatic vessel, venous invasion and the 4-year survival rate.
Collapse
Affiliation(s)
- K Ilunga
- Department of Pathology, Mie University School of Medicine, Tsu, Japan
| | | |
Collapse
|
28
|
Schenk S, Bruckner-Tuderman L, Chiquet-Ehrismann R. Dermo-epidermal separation is associated with induced tenascin expression in human skin. Br J Dermatol 1995; 133:13-22. [PMID: 7545419 DOI: 10.1111/j.1365-2133.1995.tb02486.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tenascin, a large glycoprotein of the extracellular matrix, shows a site-restricted distribution during embryogenesis, and can be found in adults in a variety of pathological conditions. In normal skin, tenascin is expressed at low levels, but it is upregulated in skin tumours, in a number of skin diseases with epidermal hyperproliferation and during wound healing. Several tenascin variants have been described, and these arise by alternative splicing. Using a monoclonal antibody recognizing all tenascin variants, and polyclonal antibodies specific for the large tenascin variants, we have investigated tenascin expression in bullous diseases such as epidermolysis bullosa, pemphigus, bullous pemphigoid and pemphigoid gestationis. By immunohistochemistry, we have found increased tenascin staining in all patient skin samples, with a more pronounced tenascin expression in samples of autoimmune bullous diseases. The large tenascin variants seem to be major forms of tenascin occurring in healthy skin. In patients with blistering diseases, however, these large variants appear to represent a subpopulation of the induced tenascin accumulation. These findings suggest different functions for the tenascin variants in normal and diseased skin.
Collapse
Affiliation(s)
- S Schenk
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|
29
|
Yokosaki Y, Palmer EL, Prieto AL, Crossin KL, Bourdon MA, Pytela R, Sheppard D. The integrin alpha 9 beta 1 mediates cell attachment to a non-RGD site in the third fibronectin type III repeat of tenascin. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47074-3] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|