1
|
Liu D, Song Y, Zheng B, Xie J, Chen Y, Xie J, Chen X, Yu Q. EGCG Alleviates the Aging Toxicity Induced by 3-MCPD via IIS Pathway in Caenorhabditis elegans with Abnormal Reproduction and Heat Shock Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14315-14325. [PMID: 38847877 DOI: 10.1021/acs.jafc.3c09583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This study aimed to investigate the mitigation effect of epigallocatechin gallate (EGCG) on aging induced by 3-monochloropropane-1,2-diol (3-MCPD) in Caenorhabditis elegans, evaluate health indicators during the process, and reveal the underlying mechanism through transcriptomics and identification of mutants. The results showed that EGCG alleviated the declined fertility, shortened lifespan, reduced body size, weakened movement, increased reactive oxygen species and lipofuscin, and damaged antioxidative stress response and excessive heat shock proteins caused by 3-MCPD. Transcriptomics study indicated that treatment with 3-MCPD and EGCG altered gene expression, and gene mutants confirmed the involvement of insulin/IGF-1 signaling pathway in mediating the process that EGCG alleviated the aging toxicity induced by 3-MCPD. The study showed that EGCG alleviated the aging toxicity induced by 3-MCPD.
Collapse
Affiliation(s)
- Danyang Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yiming Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Bing Zheng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiayan Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xinyi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
2
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Taylor M, Marx O, Norris A. TDP-1 and FUST-1 co-inhibit exon inclusion and control fertility together with transcriptional regulation. Nucleic Acids Res 2023; 51:9610-9628. [PMID: 37587694 PMCID: PMC10570059 DOI: 10.1093/nar/gkad665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
Gene expression is a multistep process and crosstalk among regulatory layers plays an important role in coordinating gene expression. To identify functionally relevant gene expression coordination, we performed a systematic reverse-genetic interaction screen in C. elegans, combining RNA binding protein (RBP) and transcription factor (TF) mutants to generate over 100 RBP;TF double mutants. We identified many unexpected double mutant phenotypes, including two strong genetic interactions between the ALS-related RBPs, fust-1 and tdp-1, and the homeodomain TF ceh-14. Losing any one of these genes alone has no effect on the health of the organism. However, fust-1;ceh-14 and tdp-1;ceh-14 double mutants both exhibit strong temperature-sensitive fertility defects. Both double mutants exhibit defects in gonad morphology, sperm function, and oocyte function. RNA-Seq analysis of double mutants identifies ceh-14 as the main controller of transcript levels, while fust-1 and tdp-1 control splicing through a shared role in exon inhibition. A skipped exon in the polyglutamine-repeat protein pqn-41 is aberrantly included in tdp-1 mutants, and genetically forcing this exon to be skipped in tdp-1;ceh-14 double mutants rescues their fertility. Together our findings identify a novel shared physiological role for fust-1 and tdp-1 in promoting C. elegans fertility and a shared molecular role in exon inhibition.
Collapse
Affiliation(s)
- Morgan Taylor
- Southern Methodist University, Dallas, TX 75205, USA
| | - Olivia Marx
- Southern Methodist University, Dallas, TX 75205, USA
| | - Adam Norris
- Southern Methodist University, Dallas, TX 75205, USA
| |
Collapse
|
4
|
Taylor M, Marx O, Norris A. TDP-1 and FUST-1 co-inhibit exon inclusion and control fertility together with transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537345. [PMID: 37131843 PMCID: PMC10153140 DOI: 10.1101/2023.04.18.537345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Gene expression is a multistep, carefully controlled process, and crosstalk between regulatory layers plays an important role in coordinating gene expression. To identify functionally relevant coordination between transcriptional and post-transcriptional gene regulation, we performed a systematic reverse-genetic interaction screen in C. elegans . We combined RNA binding protein (RBP) and transcription factor (TF) mutants, creating over 100 RBP; TF double mutants. This screen identified a variety of unexpected double mutant phenotypes, including two strong genetic interactions between the ALS-related RBPs, fust-1 and tdp-1 , and the homeodomain TF ceh-14 . Losing any one of these genes alone has no significant effect on the health of the organism. However, fust-1; ceh-14 and tdp-1; ceh-14 double mutants both exhibit strong temperature-sensitive fertility defects. Both double mutants exhibit defects in gonad morphology, sperm function, and oocyte function. RNA-seq analysis of double mutants identifies ceh-14 as the main controller of transcript levels, while fust-1 and tdp-1 control splicing through a shared role in exon inhibition. We identify a cassette exon in the polyglutamine-repeat protein pqn-41 which tdp-1 inhibits. Loss of tdp-1 causes the pqn-41 exon to be aberrantly included, and forced skipping of this exon in tdp-1; ceh-14 double mutants rescues fertility. Together our findings identify a novel shared physiological role for fust-1 and tdp-1 in promoting C. elegans fertility in a ceh-14 mutant background and reveal a shared molecular function of fust-1 and tdp-1 in exon inhibition.
Collapse
|
5
|
Kenny-Ganzert I, Chi Q, Sherwood D. Differential production rates of cytosolic and transmembrane GFP reporters in C. elegans L3 larval uterine cells. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000813. [PMID: 37033704 PMCID: PMC10074172 DOI: 10.17912/micropub.biology.000813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2023]
Abstract
Transgene driven protein expression is an important tool for investigating developmental mechanisms in C. elegans . Here, we have assessed protein production rates and levels in L3 larval uterine cells (UCs). Using ubiquitous promoter driven cytosolic and transmembrane tethered GFP, fluorescence recovery after photobleaching, and quantitative fluorescence analysis, we reveal that cytosolic GFP is produced at an ~two-fold higher rate than transmembrane tethered GFP and accumulates at ~five-fold higher levels in UCs. We also provide evidence that cytosolic GFP in the anchor cell, a specialized UC that mediates uterine-vulval connection, is more rapidly degraded through an autophagy-independent mechanism.
Collapse
Affiliation(s)
| | - Qiuyi Chi
- Department of Biology, Duke University
| | | |
Collapse
|
6
|
Park K, Jayadev R, Payne SG, Kenny-Ganzert IW, Chi Q, Costa DS, Ramos-Lewis W, Thendral SB, Sherwood DR. Reciprocal discoidin domain receptor signaling strengthens integrin adhesion to connect adjacent tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532639. [PMID: 36993349 PMCID: PMC10055161 DOI: 10.1101/2023.03.14.532639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Separate tissues connect through adjoining basement membranes to carry out molecular barrier, exchange, and organ support functions. Cell adhesion at these connections must be robust and balanced to withstand independent tissue movement. Yet, how cells achieve synchronized adhesion to connect tissues is unknown. Here, we have investigated this question using the C. elegans utse-seam tissue connection that supports the uterus during egg-laying. Through genetics, quantitative fluorescence, and cell specific molecular disruption, we show that type IV collagen, which fastens the linkage, also activates the collagen receptor discoidin domain receptor 2 (DDR-2) in both the utse and seam. RNAi depletion, genome editing, and photobleaching experiments revealed that DDR-2 signals through LET-60/Ras to coordinately strengthen an integrin adhesion in the utse and seam that stabilizes their connection. These results uncover a synchronizing mechanism for robust adhesion during tissue connection, where collagen both affixes the linkage and signals to both tissues to bolster their adhesion.
Collapse
Affiliation(s)
- Kieop Park
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Ranjay Jayadev
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Sara G. Payne
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27708, USA
| | | | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Daniel S. Costa
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | | | | | - David R. Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
- Correspondence:
| |
Collapse
|
7
|
Gianakas CA, Keeley DP, Ramos-Lewis W, Park K, Jayadev R, Kenny IW, Chi Q, Sherwood DR. Hemicentin-mediated type IV collagen assembly strengthens juxtaposed basement membrane linkage. J Cell Biol 2022; 222:213571. [PMID: 36282214 PMCID: PMC9597354 DOI: 10.1083/jcb.202112096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2023] Open
Abstract
Basement membrane (BM) matrices surround and separate most tissues. However, through poorly understood mechanisms, BMs of adjacent tissue can also stably link to support organ structure and function. Using endogenous knock-in fluorescent proteins, conditional RNAi, optogenetics, and quantitative live imaging, we identified extracellular matrix proteins mediating a BM linkage (B-LINK) between the uterine utse and epidermal seam cell BMs in Caenorhabditis elegans that supports the uterus during egg-laying. We found that hemicentin is secreted by the utse and promotes fibulin-1 assembly to jointly initiate the B-LINK. During egg-laying, however, both proteins' levels decline and are not required for B-LINK maintenance. Instead, we discovered that hemicentin recruits ADAMTS9/20, which facilitates the assembly of high levels of type IV collagen that sustains the B-LINK during the mechanically active egg-laying period. This work reveals mechanisms underlying BM-BM linkage maturation and identifies a crucial function for hemicentin and fibulin-1 in initiating attachment and type IV collagen in strengthening this specialized form of tissue linkage.
Collapse
Affiliation(s)
- Claire A. Gianakas
- Department of Biology, Duke University, Durham, NC,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | | | | | - Kieop Park
- Department of Biology, Duke University, Durham, NC
| | | | | | - Qiuyi Chi
- Department of Biology, Duke University, Durham, NC
| | - David R. Sherwood
- Department of Biology, Duke University, Durham, NC,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC,Correspondence to David R. Sherwood:
| |
Collapse
|
8
|
Smith JJ, Xiao Y, Parsan N, Medwig-Kinney TN, Martinez MAQ, Moore FEQ, Palmisano NJ, Kohrman AQ, Chandhok Delos Reyes M, Adikes RC, Liu S, Bracht SA, Zhang W, Wen K, Kratsios P, Matus DQ. The SWI/SNF chromatin remodeling assemblies BAF and PBAF differentially regulate cell cycle exit and cellular invasion in vivo. PLoS Genet 2022; 18:e1009981. [PMID: 34982771 PMCID: PMC8759636 DOI: 10.1371/journal.pgen.1009981] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/14/2022] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Chromatin remodelers such as the SWI/SNF complex coordinate metazoan development through broad regulation of chromatin accessibility and transcription, ensuring normal cell cycle control and cellular differentiation in a lineage-specific and temporally restricted manner. Mutations in genes encoding the structural subunits of chromatin, such as histone subunits, and chromatin regulating factors are associated with a variety of disease mechanisms including cancer metastasis, in which cancer co-opts cellular invasion programs functioning in healthy cells during development. Here we utilize Caenorhabditis elegans anchor cell (AC) invasion as an in vivo model to identify the suite of chromatin agents and chromatin regulating factors that promote cellular invasiveness. We demonstrate that the SWI/SNF ATP-dependent chromatin remodeling complex is a critical regulator of AC invasion, with pleiotropic effects on both G0 cell cycle arrest and activation of invasive machinery. Using targeted protein degradation and enhanced RNA interference (RNAi) vectors, we show that SWI/SNF contributes to AC invasion in a dose-dependent fashion, with lower levels of activity in the AC corresponding to aberrant cell cycle entry and increased loss of invasion. Our data specifically implicate the SWI/SNF BAF assembly in the regulation of the G0 cell cycle arrest in the AC, whereas the SWI/SNF PBAF assembly promotes AC invasion via cell cycle-independent mechanisms, including attachment to the basement membrane (BM) and activation of the pro-invasive fos-1/FOS gene. Together these findings demonstrate that the SWI/SNF complex is necessary for two essential components of AC invasion: arresting cell cycle progression and remodeling the BM. The work here provides valuable single-cell mechanistic insight into how the SWI/SNF assemblies differentially contribute to cellular invasion and how SWI/SNF subunit-specific disruptions may contribute to tumorigeneses and cancer metastasis. Cellular invasion is required for animal development and homeostasis. Inappropriate activation of invasion however can result in cancer metastasis. Invasion programs are orchestrated by complex gene regulatory networks (GRN) that function in a coordinated fashion to turn on and off pro-invasive genes. While the core of GRNs are DNA binding transcription factors, they require aid from chromatin remodelers to access the genome. To identify the suite of pro-invasive chromatin remodelers, we paired high resolution imaging with RNA interference to individually knockdown 269 chromatin factors, identifying the evolutionarily conserved SWItching defective/Sucrose Non-Fermenting (SWI/SNF) ATP-dependent chromatin remodeling complex as a new regulator of Caenorhabditis elegans anchor cell (AC) invasion. Using a combination of CRISPR/Cas9 genome engineering and targeted protein degradation we demonstrate that the core SWI/SNF complex functions in a dose-dependent manner to control invasion. Further, we determine that the accessory SWI/SNF complexes, BAF and PBAF, contribute to invasion via distinctive mechanisms: BAF is required to prevent inappropriate proliferation while PBAF promotes AC attachment and remodeling of the basement membrane. Together, our data provide insights into how the SWI/SNF complex, which is mutated in many human cancers, can function in a dose-dependent fashion to regulate switching from invasive to proliferative fates.
Collapse
Affiliation(s)
- Jayson J. Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Yutong Xiao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nithin Parsan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Taylor N. Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael A. Q. Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Frances E. Q. Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nicholas J. Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Abraham Q. Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Mana Chandhok Delos Reyes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Rebecca C. Adikes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Biology Department, Siena College, Loudonville, New York, United States of America
| | - Simeiyun Liu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Sydney A. Bracht
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Cell Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kailong Wen
- The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Paschalis Kratsios
- The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - David Q. Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Berger S, Spiri S, deMello A, Hajnal A. Microfluidic-based imaging of complete Caenorhabditis elegans larval development. Development 2021; 148:269282. [PMID: 34170296 PMCID: PMC8327290 DOI: 10.1242/dev.199674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022]
Abstract
Several microfluidic-based methods for Caenorhabditis elegans imaging have recently been introduced. Existing methods either permit imaging across multiple larval stages without maintaining a stable worm orientation, or allow for very good immobilization but are only suitable for shorter experiments. Here, we present a novel microfluidic imaging method that allows parallel live-imaging across multiple larval stages, while maintaining worm orientation and identity over time. This is achieved through an array of microfluidic trap channels carefully tuned to maintain worms in a stable orientation, while allowing growth and molting to occur. Immobilization is supported by an active hydraulic valve, which presses worms onto the cover glass during image acquisition only. In this way, excellent quality images can be acquired with minimal impact on worm viability or developmental timing. The capabilities of the devices are demonstrated by observing the hypodermal seam and P-cell divisions and, for the first time, the entire process of vulval development from induction to the end of morphogenesis. Moreover, we demonstrate feasibility of on-chip RNAi by perturbing basement membrane breaching during anchor cell invasion. Summary: Parallel microfluidic long-term imaging allows reliable long-term study of Caenorhabditis elegans development across multiple larval stages at high-resolution and with minimal effect on physiological development.
Collapse
Affiliation(s)
- Simon Berger
- Department of Molecular Life Science, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.,Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Silvan Spiri
- Department of Molecular Life Science, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Science, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
10
|
Banisch TU, Slaidina M, Gupta S, Ho M, Gilboa L, Lehmann R. A transitory signaling center controls timing of primordial germ cell differentiation. Dev Cell 2021; 56:1742-1755.e4. [PMID: 34081907 PMCID: PMC8330407 DOI: 10.1016/j.devcel.2021.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/07/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Organogenesis requires exquisite spatiotemporal coordination of cell morphogenesis, migration, proliferation, and differentiation of multiple cell types. For gonads, this involves complex interactions between somatic and germline tissues. During Drosophila ovary morphogenesis, primordial germ cells (PGCs) either are sequestered in stem cell niches and are maintained in an undifferentiated germline stem cell state or transition directly toward differentiation. Here, we identify a mechanism that links hormonal triggers of somatic tissue morphogenesis with PGC differentiation. An early ecdysone pulse initiates somatic swarm cell (SwC) migration, positioning these cells close to PGCs. A second hormone peak activates Torso-like signal in SwCs, which stimulates the Torso receptor tyrosine kinase (RTK) signaling pathway in PGCs promoting their differentiation by de-repression of the differentiation gene, bag of marbles. Thus, systemic temporal cues generate a transitory signaling center that coordinates ovarian morphogenesis with stem cell self-renewal and differentiation programs, highlighting a more general role for such centers in reproductive and developmental biology.
Collapse
Affiliation(s)
- Torsten U Banisch
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA.
| | - Maija Slaidina
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Selena Gupta
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Megan Ho
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Lilach Gilboa
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ruth Lehmann
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
11
|
Abstract
During multicellular organism development, complex structures are sculpted to form organs and tissues, which are maintained throughout adulthood. Many of these processes require cells to fuse with one another, or with themselves. These plasma membrane fusions merge endoplasmic cellular content across external, exoplasmic, space. In the nematode Caenorhabditis elegans, such cell fusions serve as a unique sculpting force, involved in the embryonic morphogenesis of the skin-like multinuclear hypodermal cells, but also in refining delicate structures, such as valve openings and the tip of the tail. During post-embryonic development, plasma membrane fusions continue to shape complex neuron structures and organs such as the vulva, while during adulthood fusion participates in cell and tissue repair. These processes rely on two fusion proteins (fusogens): EFF-1 and AFF-1, which are part of a broader family of structurally related membrane fusion proteins, encompassing sexual reproduction, viral infection, and tissue remodeling. The established capabilities of these exoplasmic fusogens are further expanded by new findings involving EFF-1 and AFF-1 in endocytic vesicle fission and phagosome sealing. Tight regulation by cell-autonomous and non-cell autonomous mechanisms orchestrates these diverse cell fusions at the correct place and time-these processes and their significance are discussed in this review.
Collapse
|
12
|
The Role of pkc-3 and Genetic Suppressors in Caenorhabditis elegans Epithelial Cell Junction Formation. Genetics 2020; 214:941-959. [PMID: 32005655 DOI: 10.1534/genetics.120.303085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Epithelial cells form intercellular junctions to strengthen cell-cell adhesion and limit diffusion, allowing epithelia to function as dynamic tissues and barriers separating internal and external environments. Junctions form as epithelial cells differentiate; clusters of junction proteins first concentrate apically, then mature into continuous junctional belts that encircle and connect each cell. In mammals and Drosophila, atypical protein kinase C (aPKC) is required for junction maturation, although how it contributes to this process is poorly understood. A role for the Caenorhabditis elegans aPKC homolog PKC-3 in junction formation has not been described previously. Here, we show that PKC-3 is essential for junction maturation as epithelia first differentiate. Using a temperature-sensitive allele of pkc-3 that causes junction breaks in the spermatheca and leads to sterility, we identify intragenic and extragenic suppressors that render pkc-3 mutants fertile. Intragenic suppressors include an unanticipated stop-to-stop mutation in the pkc-3 gene, providing evidence for the importance of stop codon identity in gene activity. One extragenic pkc-3 suppressor is a loss-of-function allele of the lethal(2) giant larvae homolog lgl-1, which antagonizes aPKC within epithelia of Drosophila and mammals, but was not known previously to function in C. elegans epithelia. Finally, two extragenic suppressors are loss-of-function alleles of sups-1-a previously uncharacterized gene. We show that SUPS-1 is an apical extracellular matrix protein expressed in epidermal cells, suggesting that it nonautonomously regulates junction formation in the spermatheca. These findings establish a foundation for dissecting the role of PKC-3 and interacting genes in epithelial junction maturation.
Collapse
|
13
|
Webb Chasser AM, Johnson RW, Chamberlin HM. EGL-38/Pax coordinates development in the Caenhorhabditis elegans egg-laying system through EGF pathway dependent and independent functions. Mech Dev 2019; 159:103566. [PMID: 31398431 PMCID: PMC6855382 DOI: 10.1016/j.mod.2019.103566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/26/2019] [Accepted: 08/01/2019] [Indexed: 01/01/2023]
Abstract
Paired box (Pax) proteins function as regulators of coordinated development in organogenesis by controlling factors such as cell growth and differentiation necessary to organize multiple cell types into a single, cohesive organ. Previous work has suggested that Pax transcription factors may regulate diverse cell types through participation in inductive cell-to-cell signaling, which has not been well explored. Here we show that EGL-38, a Pax2/5/8 ortholog, coordinates differentiation of the C. elegans egg-laying system through separate autonomous and non-autonomous functions synchronized by the EGF pathway. We find that EGL-38 protein is expressed at the correct times to both participate in and respond to the EGF pathway specifying uterine ventral (uv1) cell fate, and that EGL-38 is required for uv1 expression of nlp-2 and nlp-7, which are both markers of and participants in uv1 identity. Additionally, we have separated uv1 cell placement and gene expression as distinct hallmarks of uv1 identity and specification, with different dependencies on EGL-38. The parallels between EGL-38 participation in cell signaling events and previous Pax studies argue that coordination of signaling and response to an inductive pathway may be a common feature of Pax protein function.
Collapse
Affiliation(s)
- Allison M Webb Chasser
- Department of Molecular Genetics, United States of America; Ohio State Biochemistry Graduate Program, United States of America
| | - Ryan W Johnson
- Department of Molecular Genetics, United States of America
| | | |
Collapse
|
14
|
Choi S, Ambros V. The C. elegans heterochronic gene lin-28 coordinates the timing of hypodermal and somatic gonadal programs for hermaphrodite reproductive system morphogenesis. Development 2019; 146:dev164293. [PMID: 30745431 PMCID: PMC6432661 DOI: 10.1242/dev.164293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
C. elegans heterochronic genes determine the timing of expression of specific cell fates in particular stages of developing larvae. However, their broader roles in coordinating developmental events across diverse tissues have been less well investigated. Here, we show that loss of lin-28, a central heterochronic regulator of hypodermal development, causes reduced fertility associated with abnormal somatic gonadal morphology. In particular, the abnormal spermatheca-uterine valve morphology of lin-28(lf) hermaphrodites traps embryos in the spermatheca, which disrupts ovulation and causes embryonic lethality. The same genes that act downstream of lin-28 in the regulation of hypodermal developmental timing also act downstream of lin-28 in somatic gonadal morphogenesis and fertility. Importantly, we find that hypodermal expression, but not somatic gonadal expression, of lin-28 is sufficient for restoring normal somatic gonadal morphology in lin-28(lf) mutants. We propose that the abnormal somatic gonadal morphogenesis of lin-28(lf) hermaphrodites results from temporal discoordination between the accelerated hypodermal development and normally timed somatic gonadal development. Thus, our findings exemplify how a cell-intrinsic developmental timing program can also control proper development of other interacting tissues, presumably by cell non-autonomous signal(s). This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Sungwook Choi
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
15
|
Keeley DP, Sherwood DR. Tissue linkage through adjoining basement membranes: The long and the short term of it. Matrix Biol 2019; 75-76:58-71. [PMID: 29803937 PMCID: PMC6252152 DOI: 10.1016/j.matbio.2018.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
Abstract
Basement membranes (BMs) are thin dense sheets of extracellular matrix that surround most tissues. When the BMs of neighboring tissues come into contact, they usually slide along one another and act to separate tissues and organs into distinct compartments. However, in certain specialized regions, the BMs of neighboring tissues link, helping to bring tissues together. These BM connections can be transient, such as during tissue fusion events in development, or long-term, as with adult tissues involved with filtration, including the blood brain barrier and kidney glomerulus. The transitory nature of these connections in development and the complexity of tissue filtration systems in adults have hindered the understanding of how juxtaposed BMs fasten together. The recent identification of a BM-BM adhesion system in C. elegans, termed B-LINK (BM linkage), however, is revealing cellular and extracellular matrix components of a nascent tissue adhesion system. We discuss insights gained from studying the B-LINK tissue adhesion system in C. elegans, compare this adhesion with other BM-BM connections in Drosophila and vertebrates, and outline important future directions towards elucidating this fascinating and poorly understood mode of adhesion that joins neighboring tissues.
Collapse
Affiliation(s)
- Daniel P Keeley
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
16
|
Bodofsky S, Liberatore K, Pioppo L, Lapadula D, Thompson L, Birnbaum S, McClung G, Kartik A, Clever S, Wightman B. A tissue-specific enhancer of the C. elegans nhr-67/tailless gene drives coordinated expression in uterine stem cells and the differentiated anchor cell. Gene Expr Patterns 2018; 30:71-81. [PMID: 30404043 PMCID: PMC6373727 DOI: 10.1016/j.gep.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/27/2018] [Accepted: 10/29/2018] [Indexed: 10/27/2022]
Abstract
The nhr-67 nuclear receptor gene of Caenorhabditis elegans encodes the ortholog of the Drosophila tailless and vertebrate Tlx genes. In C. elegans, nhr-67 plays multiple roles in the development of the uterus during L2 and L3 larval stages. Four pre-VU cells are born in the L2 stage and form the precursor complement for the ventral surface of the mature uterus. One of the four pre-VU cells becomes the anchor cell (AC), which exits the cell cycle and differentiates, while the remaining three VU cells serve as stem cells that populate the ventral uterus. The nhr-67 gene functions in the development of both VU cell lineages and AC differentiation. Hypomorphic mutations in nhr-67 identify a 276bp region of the distal promoter that is sufficient to activate nhr-67 expression in pre-VU cells and the AC. The 276bp region includes 8 conserved potential cis-acting sites, including two E boxes and a nuclear receptor binding site. Mutational analysis demonstrates that the two E boxes are required for expression of nhr-67 in uterine precursor cells. The E/daughterless ortholog HLH-2 binds these sites as a homodimer, thus playing a central role in activating nhr-67 expression in the uterine precursors. At least two other binding activities, one of which may be the nhr-25/Ftz-F1 nuclear receptor transcription factor, also contribute to uterine precursor cell expression. The organization of the nhr-67 uterine precursor enhancer is compared to similar conserved enhancers in the egl-43, lag-2, and lin-3 genes, which contain the same HLH-2-binding E boxes and are similarly expressed in both pre-VU cells and the AC. This basic regulatory module allows the coordinated expression of at least four genes. Expression of genes in different cells that must coordinate to form a mature organ is driven by a shared set of promoter elements, which integrate multiple transcription factor inputs.
Collapse
Affiliation(s)
- Shari Bodofsky
- Biology Department, Muhlenberg College, Allentown, PA, 18104, USA.
| | | | - Lauren Pioppo
- Biology Department, Muhlenberg College, Allentown, PA, 18104, USA.
| | - Dominic Lapadula
- Biology Department, Muhlenberg College, Allentown, PA, 18104, USA.
| | - Lily Thompson
- Biology Department, Muhlenberg College, Allentown, PA, 18104, USA.
| | - Susanna Birnbaum
- Biology Department, Muhlenberg College, Allentown, PA, 18104, USA.
| | - George McClung
- Biology Department, Muhlenberg College, Allentown, PA, 18104, USA.
| | - Akshara Kartik
- Biology Department, Muhlenberg College, Allentown, PA, 18104, USA.
| | - Sheila Clever
- Biology Department, Muhlenberg College, Allentown, PA, 18104, USA.
| | - Bruce Wightman
- Biology Department, Muhlenberg College, Allentown, PA, 18104, USA.
| |
Collapse
|
17
|
Ghosh S, Vetrone SA, Sternberg PW. Non-neuronal cell outgrowth in C. elegans. WORM 2017; 6:e1405212. [PMID: 29238627 DOI: 10.1080/21624054.2017.1405212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Cell outgrowth is a hallmark of some non-migratory developing cells during morphogenesis. Understanding the mechanisms that control cell outgrowth not only increases our knowledge of tissue and organ development, but can also shed light on disease pathologies that exhibit outgrowth-like behavior. C. elegans is a highly useful model for the analysis of genes and the function of their respective proteins. In addition, C. elegans also has several cells and tissues that undergo outgrowth during development. Here we discuss the outgrowth mechanisms of nine different C. elegans cells and tissues. We specifically focus on how these cells and tissues grow outward and the interactions they make with their environment. Through our own identification, and a meta-analysis, we also identify gene families involved in multiple cell outgrowth processes, which defined potential C. elegans core components of cell outgrowth, as well as identify a potential stepwise cell behavioral cascade used by cells undergoing outgrowth.
Collapse
Affiliation(s)
- Srimoyee Ghosh
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | | | - Paul W Sternberg
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
18
|
Banerjee N, Bhattacharya R, Gorczyca M, Collins KM, Francis MM. Local neuropeptide signaling modulates serotonergic transmission to shape the temporal organization of C. elegans egg-laying behavior. PLoS Genet 2017; 13:e1006697. [PMID: 28384151 PMCID: PMC5398689 DOI: 10.1371/journal.pgen.1006697] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/20/2017] [Accepted: 03/15/2017] [Indexed: 11/18/2022] Open
Abstract
Animal behaviors are often composed of distinct alternating behavioral states. Neuromodulatory signals are thought to be critical for establishing stable behavioral states and for orchestrating transitions between them. However, we have only a limited understanding of how neuromodulatory systems act in vivo to alter circuit performance and shape behavior. To address these questions, we have investigated neuromodulatory signaling in the context of Caenorhabditis elegans egg-laying. Egg-laying activity cycles between discrete states-short bursts of egg deposition (active phases) that alternate with prolonged quiescent periods (inactive phases). Here using genetic, pharmacological and optogenetic approaches for cell-specific activation and inhibition, we show that a group of neurosecretory cells (uv1) located in close spatial proximity to the egg-laying neuromusculature direct the temporal organization of egg-laying by prolonging the duration of inactive phases. We demonstrate that the modulatory effects of the uv1 cells are mediated by peptides encoded by the nlp-7 and flp-11 genes that act locally to inhibit circuit activity, primarily by inhibiting vesicular release of serotonin from HSN motor neurons. This peptidergic inhibition is achieved, at least in part, by reducing synaptic vesicle abundance in the HSN motor neurons. By linking the in vivo actions of specific neuropeptide signaling systems with the generation of stable behavioral outcomes, our study reveals how cycles of neuromodulation emanating from non-neuronal cells can fundamentally shape the organization of a behavioral program.
Collapse
Affiliation(s)
- Navonil Banerjee
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA United States of America
| | - Raja Bhattacharya
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA United States of America
| | - Michael Gorczyca
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA United States of America
| | - Kevin M. Collins
- Department of Biology, University of Miami, Coral Gables, FL United States of America
| | - Michael M. Francis
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA United States of America
| |
Collapse
|
19
|
Huelsz-Prince G, van Zon JS. Canalization of C. elegans Vulva Induction against Anatomical Variability. Cell Syst 2017; 4:219-230.e6. [PMID: 28215526 PMCID: PMC5330807 DOI: 10.1016/j.cels.2017.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/29/2016] [Accepted: 01/11/2017] [Indexed: 11/24/2022]
Abstract
It is a fundamental open question as to how embryos develop into complex adult organisms with astounding reproducibility, particularly because cells are inherently variable on the molecular level. During C. elegans vulva induction, the anchor cell induces cell fate in the vulva precursor cells in a distance-dependent manner. Surprisingly, we found that initial anchor cell position was highly variable and caused variability in cell fate induction. However, we observed that vulva induction was "canalized," i.e., the variability in anchor cell position and cell fate was progressively reduced, resulting in an invariant spatial pattern of cell fates at the end of induction. To understand the mechanism of canalization, we quantified induction dynamics as a function of anchor cell position during the canalization process. Our experiments, combined with mathematical modeling, showed that canalization required a specific combination of long-range induction, lateral inhibition, and cell migration that is also found in other developmental systems.
Collapse
|
20
|
Collins KM, Bode A, Fernandez RW, Tanis JE, Brewer JC, Creamer MS, Koelle MR. Activity of the C. elegans egg-laying behavior circuit is controlled by competing activation and feedback inhibition. eLife 2016; 5. [PMID: 27849154 PMCID: PMC5142809 DOI: 10.7554/elife.21126] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/14/2016] [Indexed: 01/13/2023] Open
Abstract
Like many behaviors, Caenorhabditis elegans egg laying alternates between inactive and active states. To understand how the underlying neural circuit turns the behavior on and off, we optically recorded circuit activity in behaving animals while manipulating circuit function using mutations, optogenetics, and drugs. In the active state, the circuit shows rhythmic activity phased with the body bends of locomotion. The serotonergic HSN command neurons initiate the active state, but accumulation of unlaid eggs also promotes the active state independent of the HSNs. The cholinergic VC motor neurons slow locomotion during egg-laying muscle contraction and egg release. The uv1 neuroendocrine cells mechanically sense passage of eggs through the vulva and release tyramine to inhibit egg laying, in part via the LGC-55 tyramine-gated Cl- channel on the HSNs. Our results identify discrete signals that entrain or detach the circuit from the locomotion central pattern generator to produce active and inactive states. DOI:http://dx.doi.org/10.7554/eLife.21126.001 It has been said that if the human brain were so simple that we could understand it, we would be so simple that we couldn’t. This quote neatly captures the challenge of working out how 80 billion neurons collectively generate our thoughts and behavior. Fortunately, the nervous system is also organized into simpler units called circuits. Each consists of a relatively small number of neurons, which communicate with one another to control as little as a single behavior. These circuits should in principle be simple enough for us to understand, particularly if we study them in nervous systems less complex than our own. Despite this, there is currently not a single circuit in any organism in which we can explain how communication between individual neurons generates behavior. Collins et al. therefore set out to characterize a simple neural circuit in one of the simplest model organisms: the egg-laying circuit of the worm C. elegans. Using mutations, drugs and molecular genetic techniques, Collins et al. systematically altered the activity and signaling of each of the neurons within the egg-laying circuit. The experiments revealed that cells called command neurons trigger egg laying by producing signals that switch on the rest of the circuit. Once activated, the circuit is able to respond to waves of activity from a second circuit – called the central pattern generator – that also controls the worm’s movement. Finally, laying an egg activates a third set of neurons, which release a signal that returns the circuit to its inactive state. The use of distinct signals and neurons to activate the circuit, to coordinate its ongoing activity, and to inactivate the circuit when its task is complete also applies to many other neural circuits. Now that these signals have been identified in one circuit, it should be possible to build on these findings to better understand how others work. DOI:http://dx.doi.org/10.7554/eLife.21126.002
Collapse
Affiliation(s)
- Kevin M Collins
- Department of Biology, University of Miami, Coral Gables, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Addys Bode
- Department of Biology, University of Miami, Coral Gables, United States
| | - Robert W Fernandez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Jessica E Tanis
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Jacob C Brewer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
| | - Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| | - Michael R Koelle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| |
Collapse
|
21
|
Riddle MR, Spickard EA, Jevince A, Nguyen KCQ, Hall DH, Joshi PM, Rothman JH. Transorganogenesis and transdifferentiation in C. elegans are dependent on differentiated cell identity. Dev Biol 2016; 420:136-147. [PMID: 27717645 PMCID: PMC5224929 DOI: 10.1016/j.ydbio.2016.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/12/2016] [Accepted: 09/23/2016] [Indexed: 10/25/2022]
Abstract
The differentiated cell identities and structure of fully formed organs are generally stable after their development. In contrast, we report here that development of the C. elegans proximal somatic gonad (hermaphrodite uterus and spermathecae, and male vas deferens) can be redirected into intestine-like organs by brief expression of the ELT-7 GATA transcription factor. This process converts one developing organ into another and can hence be considered "transorganogenesis." We show that, following pulsed ELT-7 expression, cells of the uterus activate and maintain intestine-specific gene expression and are transformed at the ultrastructural level to form an epithelial tube resembling the normal intestine formed during embryogenesis. Ubiquitous ELT-7 expression activates intestinal markers in many different cell types but only cells in the somatic gonad and pharynx appear to become fully reprogrammed. We found that ectopic expression of other endoderm-promoting transcription factors, but not muscle- or ectoderm- promoting transcription factors, redirects the fate of these organs, suggesting that pharyngeal and somatic gonad cells are specifically competent to adopt intestine identity. Although the intestine, pharynx, and somatic gonad are derived from distant cell lineages, they all express the PHA-4/FoxA transcription factor. While we found that post-embryonic PHA-4 is not necessary for pharynx or uterus reprogramming and PHA-4 is not sufficient in combination with ELT-7 to induce reprogramming in other cells types, knock down of PHA-4 during embryogenesis, which abolishes normal pharynx differentiation, prevents pharyngeal precursors from being reprogrammed into intestine. These results suggest that differentiated cell identity determines susceptibility to transdifferentiation and highlight the importance of cellular context in controlling competency for reprogramming.
Collapse
Affiliation(s)
- Misty R Riddle
- Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Erik A Spickard
- Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Angela Jevince
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ken C Q Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pradeep M Joshi
- Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Joel H Rothman
- Department of Molecular, Cellular, and Developmental Biology, and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
22
|
Dobrzynska A, Askjaer P. Vaccinia-related kinase 1 is required for early uterine development in Caenorhabditis elegans. Dev Biol 2016; 411:246-256. [PMID: 26827901 DOI: 10.1016/j.ydbio.2016.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 10/25/2022]
Abstract
Protein kinases regulate a multitude of processes by reversible phosphorylation of target molecules. Induction of cell proliferation and differentiation are fundamental to development and rely on tightly controlled kinase activities. Vaccinia-Related Kinases (VRKs) have emerged as a multifunctional family of kinases with essential functions conserved, from nematodes and fruit flies, to humans. VRK substrates include chromatin and transcription factors, whereas deregulation of VRKs is implicated in sterility, cancer and neurological defects. In contrast to previous observations, we describe here that Caenorhabditis elegans VRK-1 is expressed in all cell types, including proliferating and post-mitotic cells. Despite the ubiquitous expression pattern, we find that vrk-1 mutants are particularly impaired in uterine development. Our data show that VRK-1 is required for uterine cell proliferation and differentiation. Moreover, the anchor cell, a specialized uterine cell, fails to fuse with neighboring cells to form the utse syncytium in vrk-1 mutants, thus providing further insight on the role of VRKs in organogenesis.
Collapse
Affiliation(s)
- Agnieszka Dobrzynska
- Andalusian Center for Developmental Biology, CSIC-Junta de Andalucia-Universidad Pablo de Olavide, Carretera de Utrera, km 1, 41013 Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology, CSIC-Junta de Andalucia-Universidad Pablo de Olavide, Carretera de Utrera, km 1, 41013 Seville, Spain.
| |
Collapse
|
23
|
Basement Membranes in the Worm: A Dynamic Scaffolding that Instructs Cellular Behaviors and Shapes Tissues. CURRENT TOPICS IN MEMBRANES 2015; 76:337-71. [PMID: 26610919 DOI: 10.1016/bs.ctm.2015.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nematode worm Caenorhabditis elegans has all the major basement membrane proteins found in vertebrates, usually with a smaller gene family encoding each component. With its powerful forward genetics, optical clarity, simple tissue organization, and the capability to functionally tag most basement membrane components with fluorescent proteins, C. elegans has facilitated novel insights into the assembly and function of basement membranes. Although basement membranes are generally thought of as static structures, studies in C. elegans have revealed their active properties and essential functions in tissue formation and maintenance. Here, we review discoveries from C. elegans development that highlight dynamic aspects of basement membrane assembly, function, and regulation during organ growth, tissue polarity, cell migration, cell invasion, and tissue attachment. These studies have helped transform our view of basement membranes from static support structures to dynamic scaffoldings that play broad roles in regulating tissue organization and cellular behavior that are essential for development and have important implications in human diseases.
Collapse
|
24
|
Mok DZL, Sternberg PW, Inoue T. Morphologically defined sub-stages of C. elegans vulval development in the fourth larval stage. BMC DEVELOPMENTAL BIOLOGY 2015; 15:26. [PMID: 26066484 PMCID: PMC4464634 DOI: 10.1186/s12861-015-0076-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/03/2015] [Indexed: 01/06/2023]
Abstract
Background During the fourth larval (L4) stage, vulval cells of C. elegans undergo extensive morphogenesis accompanied by changes in gene expression. This phase of vulval development, occurring after the well-studied induction of vulval cells, is not well understood but is potentially a useful context in which to study how a complex temporal sequence of events is regulated during development. However, a system for precisely describing different phases of vulval development in the L4 stage has been lacking. Results We defined ten sub-stages of L4 based on morphological criteria as observed using Nomarski microscopy (L4.0 ~ L4.9). Precise timing of each sub-stage at 20 °C was determined. We also re-examined the timing of expression for several gene expression markers, and correlated the sub-stages with the timing of other developmental events in the vulva and the uterus. Conclusions This scheme allows the developmental timing of an L4 individual to be determined at approximately one-hour resolution without the need to resort to time course experiments. These well-defined developmental stages will enable more precise description of gene expression and other developmental events.
Collapse
Affiliation(s)
- Darren Z L Mok
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Blk MD7, #02-06, Singapore, 117597, Singapore
| | - Paul W Sternberg
- HHMI and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Takao Inoue
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Blk MD7, #02-06, Singapore, 117597, Singapore. .,HHMI and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
25
|
Praslicka B, Gissendanner CR. The C. elegans NR4A nuclear receptor gene nhr-6 promotes cell cycle progression in the spermatheca lineage. Dev Dyn 2015; 244:417-30. [PMID: 25529479 DOI: 10.1002/dvdy.24244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND NR4A nuclear receptors are a conserved, functionally diverse group of nuclear receptors that regulate multiple cellular processes including proliferation and differentiation. The gene nhr-6 encodes the sole Caenorhabditis elegans NR4A nuclear receptor homolog with an essential role in reproduction by regulating morphogenesis of the spermatheca, a somatic gonad organ involved in ovulation and fertilization. RESULTS Here, we identify the spermatheca cell lineage defects that occur in nhr-6 mutants. Utilizing cell marker analysis, we find that nhr-6 is required for cell cycle progression and that the cell proliferation phenotype is not due to premature cell cycle exit. We also show that loss of the negative cell cycle regulators fzr-1 and lin-35 suppresses the cell proliferation defects. We further demonstrate that NHR-6 activity intersects with Eph receptor signaling during spermatheca cell proliferation. CONCLUSIONS NHR-6 has an essential function in promoting cell cycle progression during G1 phase in a specific spermatheca cell lineage. Genetic suppression of the proliferation phenotype does not affect the differentiation phenotypes observed in nhr-6 mutants, indicating a dualistic role for nhr-6 in regulating cell proliferation and cell differentiation during spermatheca organogenesis.
Collapse
Affiliation(s)
- Brandon Praslicka
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | | |
Collapse
|
26
|
B-LINK: a hemicentin, plakin, and integrin-dependent adhesion system that links tissues by connecting adjacent basement membranes. Dev Cell 2014; 31:319-331. [PMID: 25443298 DOI: 10.1016/j.devcel.2014.08.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/15/2014] [Accepted: 08/27/2014] [Indexed: 01/08/2023]
Abstract
Basement membrane (BM), a sheet-like form of extracellular matrix, surrounds most tissues. During organogenesis, specific adhesions between adjoining tissues frequently occur; however, their molecular basis is unclear. Using live-cell imaging and electron microscopy, we identify an adhesion system that connects the uterine and gonadal tissues through their juxtaposed BMs at the site of anchor cell (AC) invasion in C. elegans. We find that the extracellular matrix component hemicentin (HIM-4), found between BMs, forms punctate accumulations under the AC and controls BM linkage to promote rapid invasion. Through targeted screening, we identify the integrin-binding cytolinker plakin (VAB-10A) and integrin (INA-1/PAT-3) as key BM-BM linkage regulators: VAB-10A localizes to the AC-BM interface and tethers hemicentin to the AC while integrin promotes hemicentin punctae formation. Together, plakin, integrin, and hemicentin are founding components of a cell-directed adhesion system, which we name a BM-LINKage (B-LINK), that connects adjacent tissues through adjoining BMs.
Collapse
|
27
|
Bourdages KG, Lacroix B, Dorn JF, Descovich CP, Maddox AS. Quantitative analysis of cytokinesis in situ during C. elegans postembryonic development. PLoS One 2014; 9:e110689. [PMID: 25329167 PMCID: PMC4203819 DOI: 10.1371/journal.pone.0110689] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022] Open
Abstract
The physical separation of a cell into two daughter cells during cytokinesis requires cell-intrinsic shape changes driven by a contractile ring. However, in vivo, cells interact with their environment, which includes other cells. How cytokinesis occurs in tissues is not well understood. Here, we studied cytokinesis in an intact animal during tissue biogenesis. We used high-resolution microscopy and quantitative analysis to study the three rounds of division of the C. elegans vulval precursor cells (VPCs). The VPCs are cut in half longitudinally with each division. Contractile ring breadth, but not the speed of ring closure, scales with cell length. Furrowing speed instead scales with division plane dimensions, and scaling is consistent between the VPCs and C. elegans blastomeres. We compared our VPC cytokinesis kinetics data with measurements from the C. elegans zygote and HeLa and Drosophila S2 cells. Both the speed dynamics and asymmetry of ring closure are qualitatively conserved among cell types. Unlike in the C. elegans zygote but similar to other epithelial cells, Anillin is required for proper ring closure speed but not asymmetry in the VPCs. We present evidence that tissue organization impacts the dynamics of cytokinesis by comparing our results on the VPCs with the cells of the somatic gonad. In sum, this work establishes somatic lineages in post-embryonic C. elegans development as cell biological models for the study of cytokinesis in situ.
Collapse
Affiliation(s)
- Karine G. Bourdages
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Benjamin Lacroix
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Jonas F. Dorn
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
- Advanced Quantitative Sciences, Novartis Pharma AG, Basel, Switzerland
| | - Carlos P. Descovich
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Amy S. Maddox
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
28
|
Spatial and molecular cues for cell outgrowth during C. elegans uterine development. Dev Biol 2014; 396:121-35. [PMID: 25281934 DOI: 10.1016/j.ydbio.2014.09.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 01/04/2023]
Abstract
The Caenorhabditis elegans uterine seam cell (utse) is an H-shaped syncytium that connects the uterus to the body wall. Comprising nine nuclei that move outward in a bidirectional manner, this synctium undergoes remarkable shape change during development. Using cell ablation experiments, we show that three surrounding cell types affect utse development: the uterine toroids, the anchor cell and the sex myoblasts. The presence of the anchor cell (AC) nucleus within the utse is necessary for proper utse development and AC invasion genes fos-1, cdh-3, him-4, egl-43, zmp-1 and mig-10 promote utse cell outgrowth. Two types of uterine lumen epithelial cells, uterine toroid 1 (ut1) and uterine toroid 2 (ut2), mediate proper utse outgrowth and we show roles in utse development for two genes expressed in the uterine toroids: the RASEF ortholog rsef-1 and Trio/unc-73. The SM expressed gene unc-53/NAV regulates utse cell shape; ablation of sex myoblasts (SMs), which generate uterine and vulval muscles, cause defects in utse morphology. Our results clarify the nature of the interactions that exist between utse and surrounding tissue, identify new roles for genes involved in cell outgrowth, and present the utse as a new model system for understanding cell shape change and, putatively, diseases associated with cell shape change.
Collapse
|
29
|
Matus DQ, Chang E, Makohon-Moore SC, Hagedorn MA, Chi Q, Sherwood DR. Cell division and targeted cell cycle arrest opens and stabilizes basement membrane gaps. Nat Commun 2014; 5:4184. [PMID: 24924309 PMCID: PMC4138880 DOI: 10.1038/ncomms5184] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 05/21/2014] [Indexed: 12/13/2022] Open
Abstract
Large gaps in basement membrane (BM) occur during organ remodelling and cancer cell invasion. Whether dividing cells, which temporarily reduce their attachment to BM, influence these breaches is unknown. Here we analyse uterine-vulval attachment during development across 21 species of rhabditid nematodes and find that the BM gap that forms between these organs is always bounded by a non-dividing vulval cell. Through cell cycle manipulation and live cell imaging in Caenorhabditis elegans, we show that actively dividing vulval cells facilitate enlargement of this breach by promoting BM movement. In contrast, targeted cell cycle arrest halts BM movement and limits gap opening. Further, we demonstrate that the BM component laminin accumulates at the BM gap edge and promotes increased integrin levels in non-dividing vulval cells, stabilizing gap position. Together, these studies reveal that cell division can be used as a mechanism to regulate BM breaches, thus controlling the exchange of cells between tissues.
Collapse
Affiliation(s)
- David Q Matus
- 1] Department of Biology, Duke University, Durham, North Carolina 27705, USA [2]
| | - Emily Chang
- 1] Department of Biology, Duke University, Durham, North Carolina 27705, USA [2]
| | | | - Mary A Hagedorn
- Department of Biology, Duke University, Durham, North Carolina 27705, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Durham, North Carolina 27705, USA
| | - David R Sherwood
- Department of Biology, Duke University, Durham, North Carolina 27705, USA
| |
Collapse
|
30
|
Weinberg F, Schulze E, Fatouros C, Schmidt E, Baumeister R, Brummer T. Expression pattern and first functional characterization of riok-1 in Caenorhabditis elegans. Gene Expr Patterns 2014; 15:124-34. [PMID: 24929033 DOI: 10.1016/j.gep.2014.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 01/08/2023]
Abstract
Rio kinases are atypical serine/threonine kinases that emerge as potential cooperation partners in Ras-driven tumors. In the current study, we performed an RNAi screen in Caenorhabditis elegans to identify suppressors of oncogenic Ras signaling. Aberrant Ras/Raf signaling in C. elegans leads to the formation of a multi-vulva (Muv) phenotype. We found that depletion of riok-1, the C. elegans orthologue of the mammalian RioK1, suppressed the Muv phenotype. By using a promoter GFP construct, we could show that riok-1 is expressed in neuronal cells, the somatic gonad, the vulva, the uterus and the spermatheca. Furthermore, we observed developmental defects in the gonad upon riok-1 knockdown in a wildtype background. Our data suggest that riok-1 is a modulator of the Ras signaling pathway, suggesting implications for novel interventions in the context of Ras-driven tumors.
Collapse
Affiliation(s)
- Florian Weinberg
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany; IMMZ - Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany
| | - Ekkehard Schulze
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Chronis Fatouros
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany; International Max Planck Research School for Molecular and Cell Biology (IMPRS-MCB), Freiburg, Germany
| | - Enrico Schmidt
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Ralf Baumeister
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany; IMMZ - Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Tilman Brummer
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany; IMMZ - Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, University of Freiburg, Germany.
| |
Collapse
|
31
|
Rosa BA, Jasmer DP, Mitreva M. Genome-wide tissue-specific gene expression, co-expression and regulation of co-expressed genes in adult nematode Ascaris suum. PLoS Negl Trop Dis 2014; 8:e2678. [PMID: 24516681 PMCID: PMC3916258 DOI: 10.1371/journal.pntd.0002678] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 12/18/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Caenorhabditis elegans has traditionally been used as a model for studying nematode biology, but its small size limits the ability for researchers to perform some experiments such as high-throughput tissue-specific gene expression studies. However, the dissection of individual tissues is possible in the parasitic nematode Ascaris suum due to its relatively large size. Here, we take advantage of the recent genome sequencing of Ascaris suum and the ability to physically dissect its separate tissues to produce a wide-scale tissue-specific nematode RNA-seq datasets, including data on three non-reproductive tissues (head, pharynx, and intestine) in both male and female worms, as well as four reproductive tissues (testis, seminal vesicle, ovary, and uterus). We obtained fundamental information about the biology of diverse cell types and potential interactions among tissues within this multicellular organism. METHODOLOGY/PRINCIPAL FINDINGS Overexpression and functional enrichment analyses identified many putative biological functions enriched in each tissue studied, including functions which have not been previously studied in detail in nematodes. Putative tissue-specific transcriptional factors and corresponding binding motifs that regulate expression in each tissue were identified, including the intestine-enriched ELT-2 motif/transcription factor previously described in nematode intestines. Constitutively expressed and novel genes were also characterized, with the largest number of novel genes found to be overexpressed in the testis. Finally, a putative acetylcholine-mediated transcriptional network connecting biological activity in the head to the male reproductive system is described using co-expression networks, along with a similar ecdysone-mediated system in the female. CONCLUSIONS/SIGNIFICANCE The expression profiles, co-expression networks and co-expression regulation of the 10 tissues studied and the tissue-specific analysis presented here are a valuable resource for studying tissue-specific biological functions in nematodes.
Collapse
Affiliation(s)
- Bruce A. Rosa
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Douglas P. Jasmer
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Makedonka Mitreva
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
32
|
Schindler AJ, Sherwood DR. Morphogenesis of the caenorhabditis elegans vulva. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 2:75-95. [PMID: 23418408 DOI: 10.1002/wdev.87] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding how cells move, change shape, and alter cellular behaviors to form organs, a process termed morphogenesis, is one of the great challenges of developmental biology. Formation of the Caenorhabditis elegans vulva is a powerful, simple, and experimentally accessible model for elucidating how morphogenetic processes produce an organ. In the first step of vulval development, three epithelial precursor cells divide and differentiate to generate 22 cells of 7 different vulval subtypes. The 22 vulval cells then rearrange from a linear array into a tube, with each of the seven cell types undergoing characteristic morphogenetic behaviors that construct the vulva. Vulval morphogenesis entails many of the same cellular activities that underlie organogenesis and tissue formation across species, including invagination, lumen formation, oriented cell divisions, cell–cell adhesion, cell migration, cell fusion, extracellular matrix remodeling, and cell invasion. Studies of vulval development have led to pioneering discoveries in a number of these processes and are beginning to bridge the gap between the pathways that specify cells and their connections to morphogenetic behaviors. The simplicity of the vulva and the experimental tools available in C. elegans will continue to make vulval morphogenesis a powerful paradigm to further our understanding of the largely mysterious mechanisms that build tissues and organs.
Collapse
|
33
|
Abstract
Similar to other organisms, necrotic cell death in the nematode Caenorhabditis elegans is manifested as the catastrophic collapse of cellular homeostasis, in response to overwhelming stress that is inflicted either in the form of extreme environmental stimuli or by intrinsic insults such as the expression of proteins carrying deleterious mutations. Remarkably, necrotic cell death in C. elegans and pathological cell death in humans share multiple fundamental features and mechanistic aspects. Therefore, mechanisms mediating necrosis are also conserved across the evolutionary spectrum and render the worm a versatile tool, with the capacity to facilitate studies of human pathologies. Here, we overview necrotic paradigms that have been characterized in the nematode and outline the cellular and molecular mechanisms that mediate this mode of cell demise. In addition, we discuss experimental approaches that utilize C. elegans to elucidate the molecular underpinnings of devastating human disorders that entail necrosis.
Collapse
Affiliation(s)
- Vassiliki Nikoletopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.
| |
Collapse
|
34
|
Ranawade AV, Cumbo P, Gupta BP. Caenorhabditis elegans histone deacetylase hda-1 is required for morphogenesis of the vulva and LIN-12/Notch-mediated specification of uterine cell fates. G3 (BETHESDA, MD.) 2013; 3:1363-74. [PMID: 23797102 PMCID: PMC3737176 DOI: 10.1534/g3.113.006999] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 06/02/2013] [Indexed: 01/03/2023]
Abstract
Chromatin modification genes play crucial roles in development and disease. In Caenorhabditis elegans, the class I histone deacetylase family member hda-1, a component of the nucleosome remodeling and deacetylation complex, has been shown to control cell proliferation. We recovered hda-1 in an RNA interference screen for genes involved in the morphogenesis of the egg-laying system. We found that hda-1 mutants have abnormal vulva morphology and vulval-uterine connections (i.e., no uterine-seam cell). We characterized the vulval defects by using cell fate-specific markers and found that hda-1 is necessary for the specification of all seven vulval cell types. The analysis of the vulval-uterine connection defect revealed that hda-1 is required for the differentiation of the gonadal anchor cell (AC), which in turn induces ventral uterine granddaughters to adopt π fates, leading to the formation of the uterine-seam cell. Consistent with these results, hda-1 is expressed in the vulva and AC. A search for hda-1 target genes revealed that fos-1 (fos proto-oncogene family) acts downstream of hda-1 in vulval cells, whereas egl-43 (evi1 proto-oncogene family) and nhr-67 (tailless homolog, NHR family) mediate hda-1 function in the AC. Furthermore, we showed that AC expression of hda-1 plays a crucial role in the regulation of the lin-12/Notch ligand lag-2 to specify π cell fates. These results demonstrate the pivotal role of hda-1 in the formation of the vulva and the vulval-uterine connection. Given that hda-1 homologs are conserved across the phyla, our findings are likely to provide a better understanding of HDAC1 function in development and disease.
Collapse
Affiliation(s)
| | - Philip Cumbo
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - Bhagwati P. Gupta
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
| |
Collapse
|
35
|
Abstract
Interconnection of epithelial tubules is a crucial process during organogenesis. Organisms have evolved sets of molecular and cellular strategies to generate an interconnected tubular network during animal development. Spatiotemporal control of common cellular strategies includes dissolution of the basement membrane, apoptosis, rearrangements of cell adhesion junctions, and mesenchymal-like invasive cellular behaviors prior to tubular interconnection. Different model systems exhibit varying degrees of active invasive-like behaviors that precede tubular interconnection, which may reflect changes in cell polarity or differential adhesive cell states. Studies in this newly-emerging field of tubular interconnections will provide a greater understanding of pediatric diseases and cancer metastasis, as well as generate fundamentally new insights into lumen formation pathology, or lumopathies.
Collapse
Affiliation(s)
- Robert M Kao
- Departments of Molecular and Cellular Biology and Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
36
|
Park SK, Choi VN, Hwang BJ. LIN-12/Notch regulates lag-1 and lin-12 expression during anchor cell/ventral uterine precursor cell fate specification. Mol Cells 2013; 35:249-54. [PMID: 23483278 PMCID: PMC3887913 DOI: 10.1007/s10059-013-2333-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/02/2013] [Accepted: 01/04/2013] [Indexed: 01/22/2023] Open
Abstract
During Caenorhabditis elegans gonadal development, a stochastic interaction between the LIN-12/Notch receptor and the LAG-2/Delta ligand initiates cell fate specification of two equivalent pre-anchor cell (AC)/pre-ventral uterine (VU) precursor cells. Both cells express lin-12 and lag-2 before specification, and a small difference in LIN-12 activity leads to the exclusive expression of lin-12 in VUs and lag-2 in the AC through an unknown feedback mechanism. In this Notch signaling process, the cleaved LIN-12/Notch intracellular domain (NICD) binds to the LAG-1/CSL transcriptional repressor, forming a transcriptional activator complex containing LAG-1 and NICD. Here we show that clustered LAG-1 binding sites in lin-12 and lag-1 are involved in regulating lin-12 and lag-1 expression during AC/VU cell fate specification. Both genes are expressed in VU cells, but not the AC, after specification. We also show that lin-12 is necessary for lag-1 expression in VU cells. Interestingly, lin-12 (null) animals express lag-1 in the AC, suggesting that LIN-12 signaling is necessary for the suppression of lag-1 expression in the AC. Ectopic expression of lag-1 cDNA in the AC causes a defect in the vulvaluterine (V-U) connection; therefore, LAG-1 should be eliminated in the AC to form a normal V-U connection at a later developmental stage in wild-type animals.
Collapse
Affiliation(s)
- Seong Kyun Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 200–701,
Korea
| | - Vit Na Choi
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 200–701,
Korea
| | - Byung Joon Hwang
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 200–701,
Korea
| |
Collapse
|
37
|
Mancozeb-induced behavioral deficits precede structural neural degeneration. Neurotoxicology 2013; 34:74-81. [DOI: 10.1016/j.neuro.2012.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/10/2012] [Accepted: 10/11/2012] [Indexed: 01/03/2023]
|
38
|
Avinoam O, Podbilewicz B. Eukaryotic cell-cell fusion families. CURRENT TOPICS IN MEMBRANES 2012; 68:209-34. [PMID: 21771501 DOI: 10.1016/b978-0-12-385891-7.00009-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ori Avinoam
- Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
39
|
Verghese E, Schocken J, Jacob S, Wimer AM, Royce R, Nesmith JE, Baer GM, Clever S, McCain E, Lakowski B, Wightman B. The tailless ortholog nhr-67 functions in the development of the C. elegans ventral uterus. Dev Biol 2011; 356:516-28. [DOI: 10.1016/j.ydbio.2011.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 05/13/2011] [Accepted: 06/04/2011] [Indexed: 12/14/2022]
|
40
|
Ihara S, Hagedorn EJ, Morrissey MA, Chi Q, Motegi F, Kramer JM, Sherwood DR. Basement membrane sliding and targeted adhesion remodels tissue boundaries during uterine-vulval attachment in Caenorhabditis elegans. Nat Cell Biol 2011; 13:641-51. [PMID: 21572423 PMCID: PMC3107347 DOI: 10.1038/ncb2233] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/08/2011] [Indexed: 12/14/2022]
Abstract
Large gaps in basement membrane (BM) occur at sites of cell invasion and tissue remodelling in development and cancer. Though never followed directly in vivo, BM dissolution or reduced synthesis have been postulated to create these gaps. Using landmark photobleaching and optical highlighting of laminin and type IV collagen, we find that a new mechanism, BM sliding, underlies BM gap enlargement during uterine-vulval attachment in C. elegans. Laser ablation and mutant analysis reveal that the invaginating vulval cells promote BM movement. Further, an RNA interference and expression screen identify the integrin INA-1/PAT-3 and VAB-19, homolog of the tumour suppressor Kank, as regulators of BM opening. Both concentrate within vulval cells at the BM gap boundary and halt expansion of the shifting BM. BM sliding followed by targeted adhesion represents a new mechanism for creating precise BM breaches that can be used by cells to break down compartment boundaries.
Collapse
Affiliation(s)
- Shinji Ihara
- Department of Biology, Duke University, Science Drive, Box 90388, Durham, North Carolina 27708, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Heterochronic control of AFF-1-mediated cell-to-cell fusion in C. elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:5-11. [PMID: 21432011 DOI: 10.1007/978-94-007-0763-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In normal development cell fusion is essential for organ formation and sexual reproduction. The nematode Caenorhabditis elegans has become an excellent system to study the mechanisms and developmental functions of cell-to-cell fusion. In this review we focus on the heterochronic regulation of cell fusion. Heterochronic genes control the timing of specific developmental events in C. elegans. The first microRNAs discovered were found as mutations that affect heterochronic development and cell-cell fusions. In addition numerous heterochronic transcription factors also control specific cell fusion events in C. elegans. We describe what is known about the heterochronic regulation of cell fusion of the epidermal seam cells. The fusogen AFF-1 was previously shown to mediate the fusion of the lateral epidermal seam cells. Here we provide evidence supporting the model in which LIN-29, the heterochronic Zinc-finger transcription factor that controls the terminal fusion of the seam cells, stimulates AFF-1 expression in the seam cells before they fuse. Therefore, the heterochronic gene LIN-29 controls AFF-1-mediated cell-cell fusion as part of the terminal differentiation program of the epidermal seam cells.
Collapse
|
42
|
Lee RYN, Sternberg PW. Building a cell and anatomy ontology of Caenorhabditis elegans. Comp Funct Genomics 2010; 4:121-6. [PMID: 18629098 PMCID: PMC2447384 DOI: 10.1002/cfg.248] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2002] [Accepted: 12/02/2002] [Indexed: 11/25/2022] Open
Abstract
We are endowed with a rich knowledge about Caenorhabditis elegans. Its stereotyped anatomy and development has stimulated research and resulted in the accumulation
of cell-based information concerning gene expression, and the role of specific cells
in developmental signalling and behavioural circuits. To make the information more
accessible to sophisticated queries and automated retrieval systems, WormBase has
begun to construct a C. elegans cell and anatomy ontology. Here we present our
strategies and progress.
Collapse
Affiliation(s)
- Raymond Y N Lee
- WormBase, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
43
|
C. elegans BED domain transcription factor BED-3 controls lineage-specific cell proliferation during organogenesis. Dev Biol 2009; 338:226-36. [PMID: 20005870 PMCID: PMC2862168 DOI: 10.1016/j.ydbio.2009.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 11/09/2009] [Accepted: 12/04/2009] [Indexed: 11/23/2022]
Abstract
The control of cell division is critical to organogenesis, but how this control is achieved is not fully understood. We found that mutations in bed-3, encoding a BED Zn-finger domain transcription factor, confer a phenotype where a specific set of cell divisions during vulval organogenesis is lost. Unlike general cell cycle regulators in Caenorhabditis elegans, the function of bed-3 is restricted to specific lineages. Transcriptional reporters suggest that bed-3 is expressed in a limited number of cell types including vulval cells whose divisions are affected in bed-3 mutants. A bed-3 mutation also affects the expression pattern of the cdh-3 cadherin gene in the vulva. The phenotype of bed-3 mutants is similar to the phenotype caused by mutations in cog-1 (Nkx6), a component of a gene regulatory network controlling cell type specific gene expression in the vulval lineage. These results suggest that bed-3 is a key component linking the gene regulatory network controlling cell-type specification to control of cell division during vulval organogenesis.
Collapse
|
44
|
Klerkx EPF, Alarcón P, Waters K, Reinke V, Sternberg PW, Askjaer P. Protein kinase VRK-1 regulates cell invasion and EGL-17/FGF signaling in Caenorhabditis elegans. Dev Biol 2009; 335:12-21. [PMID: 19679119 DOI: 10.1016/j.ydbio.2009.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 08/03/2009] [Accepted: 08/03/2009] [Indexed: 11/16/2022]
Abstract
The vaccinia-related kinases (VRKs) are highly conserved throughout the animal kingdom and phosphorylate several chromatin proteins and transcription factors. In early Caenorhabditis elegans embryos, VRK-1 is required for proper nuclear envelope formation. In this work, we present the first investigation of the developmental role of VRKs by means of a novel C. elegans vrk-1 mutant allele. We found that VRK-1 is essential in hermaphrodites for formation of the vulva, uterus, and utse and for development and maintenance of the somatic gonad and thus the germ line. VRK-1 regulates anchor cell polarity and the timing of anchor cell invasion through the basement membranes separating vulval and somatic gonadal cells during the L3 larval stage. VRK-1 is also required for proper specification and proliferation of uterine cells and sex myoblasts. Expression of the fibroblast growth factor-like protein EGL-17 and its receptor EGL-15 is reduced in vrk-1 mutants, suggesting that VRK-1 might act at least partially through activation of FGF signaling. Expression of a translational VRK-1Colon, two colonsGFP fusion protein in the ventral nerve cord and vulva precursor cells restores vulva and uterus formation, suggesting both cell autonomous and non-autonomous roles of VRK-1.
Collapse
Affiliation(s)
- Elke P F Klerkx
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville 41013, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Johnson RW, Liu LY, Hanna-Rose W, Chamberlin HM. The Caenorhabditis elegans heterochronic gene lin-14 coordinates temporal progression and maturation in the egg-laying system. Dev Dyn 2009; 238:394-404. [PMID: 19161245 DOI: 10.1002/dvdy.21837] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Heterochronic genes function to ensure the timing of stage-specific developmental events in C. elegans. Mutations in these genes cause certain developmental programs to be executed in a precocious or retarded manner. Canonical precocious (loss-of-function) and retarded (gain-of-function) mutations in the lin-14 gene lead to elimination or reiteration of larval stage-specific cellular events. Here, we describe a hypomorphic, missense allele of lin-14, sa485. lin-14(sa485) hermaphrodites pass through normal larval stages, but exhibit asynchrony between vulval and gonadal maturation in the L4 larval stage. We show that a subtly precocious morphogenetic event in the vulva disrupts tissue synchrony and is followed by retarded vulval eversion. Additionally, uterine uv1 cell differentiation is retarded in lin-14(sa485) animals that exhibit delayed vulval eversion. Together, these experiments outline a function for LIN-14 in coordinating the temporal progression of development, which is separable from its role in regulating stage-specific events during C. elegans postembryonic development.
Collapse
Affiliation(s)
- Ryan W Johnson
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
46
|
Ziel JW, Matus DQ, Sherwood DR. An expression screen for RhoGEF genes involved in C. elegans gonadogenesis. Gene Expr Patterns 2009; 9:397-403. [PMID: 19540360 DOI: 10.1016/j.gep.2009.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/04/2009] [Accepted: 06/12/2009] [Indexed: 11/18/2022]
Abstract
The gonad in Caenorhabditis elegans is an important model system for understanding complex morphogenetic processes including cellular movement, cell fusion, cell invasion and cell polarity during development. One class of signaling proteins known to be critical for the cellular events underlying morphogenesis is the Rho family GTPases, particularly RhoA, Rac and Cdc42. In C. elegans orthologues of these genes have been shown to be important for gonad development. In our current study we have extended those findings by examining the patterns of 5'cis-regulatory element (5'CRE) activity associated with nineteen putative guanine nucleotide exchange factors (GEFs) encoded by the C. elegans genome predicted to activate Rho family GTPases. Here we identify 13 RhoGEF genes that are expressed during gonadogenesis and characterize the cells in which their 5'CREs are active. These data provide the basis for designing experiments to examine Rho GTPase activation during morphogenetic processes central to normal gonad development.
Collapse
Affiliation(s)
- Joshua W Ziel
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
47
|
Abstract
In the nematode Caenorhabditis elegans, 300 of the 959 somatic nuclei present in the adult hermaphrodite are located in syncytia. These syncytia are formed by the fusion of mononucleate cells throughout embryonic and postembryonic development. These cell fusions occur in a well-characterized stereotypical pattern, allowing investigators to study many cell fusion events at the molecular and cellular levels. Using tools that allow visualization of cell membranes, cell junctions, and cell cytoplasm during fusion, genetic screens have identified many C. elegans cell fusion genes, including those that regulate the fusion cell fate decision and two genes that encode components of the cell fusion machinery.
Collapse
Affiliation(s)
- Scott Alper
- Laboratory of Respiratory Biology, NIEHS, NIH, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
48
|
Ems S, Mohler WA. Optical imaging of cell fusion and fusion proteins in Caenorhabditis elegans. Methods Mol Biol 2008; 475:223-244. [PMID: 18979247 DOI: 10.1007/978-1-59745-250-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cell fusion is a very dynamic process in which the entire membrane and cellular contents of two or more cells merge into one. Strategies developed to understand the component processes that make up a full fusion event require imaging to be performed over a range of space and time scales. These strategies must cover detection of nanometer-sized pores, monitoring cytoplasmic diffusion and the dynamic localization of proteins that induce fusion competence, and three-dimensional reconstruction of multinucleated cells. Caenorhabditis elegans' small size, predictable development, and transparent body make this organism optimal for microscopic investigations. In this chapter, focus is placed on light microscopy techniques that have been used thus far to study developmental fusion events in C. elegans and the insights that have been gained from them. There is also a general overview of the developmental timing of the cell fusion events. Additionally, several protocols are described for preparing both fixed and live specimens at various developmental stages of C. elegans for examination via optical microscopy.
Collapse
Affiliation(s)
- Star Ems
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT, USA
| | | |
Collapse
|
49
|
Cell fusion during development. Trends Cell Biol 2007; 17:537-46. [PMID: 17981036 DOI: 10.1016/j.tcb.2007.09.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 09/07/2007] [Accepted: 09/07/2007] [Indexed: 11/21/2022]
Abstract
Most readers of this review originated from a sperm-egg fusion event. Cell fusion is a process that is crucial at many intersections later during development. However, we do not know which molecules (fusogens) fuse the membranes of gametes to form zygotes, myoblasts to form myotubes in muscles, macrophages to form osteoclasts in bones, or cytotrophoblasts to form syncytiotrophoblasts in placentas. There are five gold standards that can be applied for the identification of genuine fusogens. Based on these criteria, a numerical score can be used to assess the likelihood of protein fusogenicity. We compare distinct families of candidate developmental, viral and intracellular fusogens and analyze current models of membrane fusion.
Collapse
|
50
|
Trends, Stasis, and Drift in the Evolution of Nematode Vulva Development. Curr Biol 2007; 17:1925-37. [DOI: 10.1016/j.cub.2007.10.061] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/19/2007] [Accepted: 10/22/2007] [Indexed: 11/22/2022]
|