1
|
Miller A, Dasen JS. Establishing and maintaining Hox profiles during spinal cord development. Semin Cell Dev Biol 2024; 152-153:44-57. [PMID: 37029058 PMCID: PMC10524138 DOI: 10.1016/j.semcdb.2023.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
The chromosomally-arrayed Hox gene family plays central roles in embryonic patterning and the specification of cell identities throughout the animal kingdom. In vertebrates, the relatively large number of Hox genes and pervasive expression throughout the body has hindered understanding of their biological roles during differentiation. Studies on the subtype diversification of spinal motor neurons (MNs) have provided a tractable system to explore the function of Hox genes during differentiation, and have provided an entry point to explore how neuronal fate determinants contribute to motor circuit assembly. Recent work, using both in vitro and in vivo models of MN subtype differentiation, have revealed how patterning morphogens and regulation of chromatin structure determine cell-type specific programs of gene expression. These studies have not only shed light on basic mechanisms of rostrocaudal patterning in vertebrates, but also have illuminated mechanistic principles of gene regulation that likely operate in the development and maintenance of terminal fates in other systems.
Collapse
Affiliation(s)
- Alexander Miller
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| | - Jeremy S Dasen
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
2
|
Cooper EJ, Scholpp S. Transport and gradient formation of Wnt and Fgf in the early zebrafish gastrula. Curr Top Dev Biol 2023; 157:125-153. [PMID: 38556457 DOI: 10.1016/bs.ctdb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Within embryonic development, the occurrence of gastrulation is critical in the formation of multiple germ layers with many differentiative abilities. These cells are instructed through exposure to signalling molecules called morphogens. The secretion of morphogens from a source tissue creates a concentration gradient that allows distinct pattern formation in the receiving tissue. This review focuses on the morphogens Wnt and Fgf in zebrafish development. Wnt has been shown to have critical roles throughout gastrulation, including in anteroposterior patterning and neural posterisation. Fgf is also a vital signal, contributing to involution and mesodermal specification. Both morphogens have also been found to work in finely balanced synergy for processes such as neural induction. Thus, the signalling range of Wnts and Fgfs must be strictly controlled to target the correct target cells. Fgf and Wnts signal to local cells as well as to cells in the distance in a highly regulated way, requiring specific dissemination mechanisms that allow efficient and precise signalling over short and long distances. Multiple transportation mechanisms have been discovered to aid in producing a stable morphogen gradient, including short-range diffusion, filopodia-like extensions called cytonemes and extracellular vesicles, mainly exosomes. These mechanisms are specific to the morphogen that they transport and the intended signalling range. This review article discusses how spreading mechanisms in these two morphogenetic systems differ and the consequences on paracrine signalling, hence tissue patterning.
Collapse
Affiliation(s)
- Emma J Cooper
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Steffen Scholpp
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
3
|
Slack J. The organizer: What it meant, and still means, to developmental biology. Curr Top Dev Biol 2023; 157:1-42. [PMID: 38556456 DOI: 10.1016/bs.ctdb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
This article is about how the famous organizer experiment has been perceived since it was first published in 1924. The experiment involves the production of a secondary embryo under the influence of a graft of a dorsal lip from an amphibian gastrula to a host embryo. The early experiments of Spemann and his school gave rise to a view that the whole early amphibian embryo was "indifferent" in terms of determination, except for a special region called "the organizer". This was viewed mainly as an agent of neural induction, also having the ability to generate an anteroposterior body pattern. Early biochemical efforts to isolate a factor emitted by the organizer were not successful but culminated in the definition of "neuralizing (N)" and "mesodermalizing (M)" factors present in a wide variety of animal tissues. By the 1950s this view became crystallized as a "two gradient" model involving the N and M factors, which explained the anteroposterior patterning effect. In the 1970s, the phenomenon of mesoderm induction was characterized as a process occurring before the commencement of gastrulation. Reinvestigation of the organizer effect using lineage labels gave rise to a more precise definition of the sequence of events. Since the 1980s, modern research using the tools of molecular biology, combined with microsurgery, has explained most of the processes involved. The organizer graft should now be seen as an experiment which involves multiple interactions: dorsoventral polarization following fertilization, mesoderm induction, the dorsalizing signal responsible for neuralization and dorsoventral patterning of the mesoderm, and additional factors responsible for anteroposterior patterning.
Collapse
Affiliation(s)
- Jonathan Slack
- Department of Life Sciences, University of Bath, Bath, United Kingdom.
| |
Collapse
|
4
|
Cowell LM, King M, West H, Broadsmith M, Genever P, Pownall ME, Isaacs HV. Regulation of gene expression downstream of a novel Fgf/Erk pathway during Xenopus development. PLoS One 2023; 18:e0286040. [PMID: 37856433 PMCID: PMC10586617 DOI: 10.1371/journal.pone.0286040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/08/2023] [Indexed: 10/21/2023] Open
Abstract
Activation of Map kinase/Erk signalling downstream of fibroblast growth factor (Fgf) tyrosine kinase receptors regulates gene expression required for mesoderm induction and patterning of the anteroposterior axis during Xenopus development. We have proposed that a subset of Fgf target genes are activated in the embyo in response to inhibition of a transcriptional repressor. Here we investigate the hypothesis that Cic (Capicua), which was originally identified as a transcriptional repressor negatively regulated by receptor tyrosine kinase/Erk signalling in Drosophila, is involved in regulating Fgf target gene expression in Xenopus. We characterise Xenopus Cic and show that it is widely expressed in the embryo. Fgf overexpression or ectodermal wounding, both of which potently activate Erk, reduce Cic protein levels in embryonic cells. In keeping with our hypothesis, we show that Cic knockdown and Fgf overexpression have overlapping effects on embryo development and gene expression. Transcriptomic analysis identifies a cohort of genes that are up-regulated by Fgf overexpression and Cic knockdown. We investigate two of these genes as putative targets of the proposed Fgf/Erk/Cic axis: fos and rasl11b, which encode a leucine zipper transcription factor and a ras family GTPase, respectively. We identify Cic consensus binding sites in a highly conserved region of intron 1 in the fos gene and Cic sites in the upstream regions of several other Fgf/Cic co-regulated genes, including rasl11b. We show that expression of fos and rasl11b is blocked in the early mesoderm when Fgf and Erk signalling is inhibited. In addition, we show that fos and rasl11b expression is associated with the Fgf independent activation of Erk at the site of ectodermal wounding. Our data support a role for a Fgf/Erk/Cic axis in regulating a subset of Fgf target genes during gastrulation and is suggestive that Erk signalling is involved in regulating Cic target genes at the site of ectodermal wounding.
Collapse
Affiliation(s)
- Laura M. Cowell
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Michael King
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Helena West
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Matthew Broadsmith
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Paul Genever
- Department of Biology, University of York, Heslington, York, United Kingdom
| | | | - Harry V. Isaacs
- Department of Biology, University of York, Heslington, York, United Kingdom
| |
Collapse
|
5
|
Afzal Z, Lange JJ, Nolte C, McKinney S, Wood C, Paulson A, De Kumar B, Unruh J, Slaughter BD, Krumlauf R. Shared retinoic acid responsive enhancers coordinately regulate nascent transcription of Hoxb coding and non-coding RNAs in the developing mouse neural tube. Development 2023; 150:dev201259. [PMID: 37102683 PMCID: PMC10233718 DOI: 10.1242/dev.201259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Signaling pathways regulate the patterns of Hox gene expression that underlie their functions in the specification of axial identity. Little is known about the properties of cis-regulatory elements and underlying transcriptional mechanisms that integrate graded signaling inputs to coordinately control Hox expression. Here, we optimized a single molecule fluorescent in situ hybridization (smFISH) technique with probes spanning introns to evaluate how three shared retinoic acid response element (RARE)-dependent enhancers in the Hoxb cluster regulate patterns of nascent transcription in vivo at the level of single cells in wild-type and mutant embryos. We predominately detect nascent transcription of only a single Hoxb gene in each cell, with no evidence for simultaneous co-transcriptional coupling of all or specific subsets of genes. Single and/or compound RARE mutations indicate that each enhancer differentially impacts global and local patterns of nascent transcription, suggesting that selectivity and competitive interactions between these enhancers is important to robustly maintain the proper levels and patterns of nascent Hoxb transcription. This implies that rapid and dynamic regulatory interactions potentiate transcription of genes through combined inputs from these enhancers in coordinating the retinoic acid response.
Collapse
Affiliation(s)
- Zainab Afzal
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Anatomy and Cell Biology Department, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christof Nolte
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christopher Wood
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Anatomy and Cell Biology Department, Kansas University Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
6
|
Anand GM, Megale HC, Murphy SH, Weis T, Lin Z, He Y, Wang X, Liu J, Ramanathan S. Controlling organoid symmetry breaking uncovers an excitable system underlying human axial elongation. Cell 2023; 186:497-512.e23. [PMID: 36657443 PMCID: PMC10122509 DOI: 10.1016/j.cell.2022.12.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/28/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023]
Abstract
The human embryo breaks symmetry to form the anterior-posterior axis of the body. As the embryo elongates along this axis, progenitors in the tail bud give rise to tissues that generate spinal cord, skeleton, and musculature. This raises the question of how the embryo achieves axial elongation and patterning. While ethics necessitate in vitro studies, the variability of organoid systems has hindered mechanistic insights. Here, we developed a bioengineering and machine learning framework that optimizes organoid symmetry breaking by tuning their spatial coupling. This framework enabled reproducible generation of axially elongating organoids, each possessing a tail bud and neural tube. We discovered that an excitable system composed of WNT/FGF signaling drives elongation by inducing a neuromesodermal progenitor-like signaling center. We discovered that instabilities in the excitable system are suppressed by secreted WNT inhibitors. Absence of these inhibitors led to ectopic tail buds and branches. Our results identify mechanisms governing stable human axial elongation.
Collapse
Affiliation(s)
- Giridhar M Anand
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Heitor C Megale
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sean H Murphy
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Theresa Weis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zuwan Lin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
| | - Yichun He
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
| | - Xiao Wang
- Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02138, USA
| | - Jia Liu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Sharad Ramanathan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
Hudson DT, Bromell JS, Day RC, McInnes T, Ward JM, Beck CW. Gene expression analysis of the Xenopus laevis early limb bud proximodistal axis. Dev Dyn 2022; 251:1880-1896. [PMID: 35809036 PMCID: PMC9796579 DOI: 10.1002/dvdy.517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Limb buds develop as bilateral outgrowths of the lateral plate mesoderm and are patterned along three axes. Current models of proximal to distal patterning of early amniote limb buds suggest that two signals, a distal organizing signal from the apical epithelial ridge (AER, Fgfs) and an opposing proximal (retinoic acid [RA]) act early on pattern this axis. RESULTS Transcriptional analysis of stage 51 Xenopus laevis hindlimb buds sectioned along the proximal-distal axis showed that the distal region is distinct from the rest of the limb. Expression of capn8.3, a novel calpain, was located in cells immediately flanking the AER. The Wnt antagonist Dkk1 was AER-specific in Xenopus limbs. Two transcription factors, sall1 and zic5, were expressed in distal mesenchyme. Zic5 has no described association with limb development. We also describe expression of two proximal genes, gata5 and tnn, not previously associated with limb development. Differentially expressed genes were associated with Fgf, Wnt, and RA signaling as well as differential cell adhesion and proliferation. CONCLUSIONS We identify new candidate genes for early proximodistal limb patterning. Our analysis of RA-regulated genes supports a role for transient RA gradients in early limb bud in proximal-to-distal patterning in this anamniote model organism.
Collapse
Affiliation(s)
- Daniel T. Hudson
- Department of ZoologyUniversity of OtagoDunedinNew Zealand,Oritain GlobalDunedinNew Zealand
| | - Jessica S. Bromell
- Department of ZoologyUniversity of OtagoDunedinNew Zealand,Dairy Goat Co‐operativeHamiltonNew Zealand
| | - Robert C. Day
- Department of BiochemistryUniversity of OtagoDunedinNew Zealand
| | - Tyler McInnes
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| | - Joanna M. Ward
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| | | |
Collapse
|
8
|
Hongo I, Okamoto H. FGF/MAPK/Ets signaling in Xenopus ectoderm contributes to neural induction and patterning in an autonomous and paracrine manner, respectively. Cells Dev 2022; 170:203769. [DOI: 10.1016/j.cdev.2022.203769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/16/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
|
9
|
Foley T, Lohnes D. Cdx regulates gene expression through PRC2-mediated epigenetic mechanisms. Dev Biol 2021; 483:22-33. [PMID: 34973175 DOI: 10.1016/j.ydbio.2021.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/03/2022]
Abstract
The extra-embryonic yolk sac contains adjacent layers of mesoderm and visceral endoderm. The mesodermal layer serves as the first site of embryonic hematopoiesis, while the visceral endoderm provides a means of exchanging nutrients and waste until the development of the chorioallantoic placenta. While defects in chorioallantoic fusion and yolk sac hematopoiesis have been described in Cdx mutant mouse models, little is known about the gene targets and molecular mechanisms through which Cdx members regulate these processes. To this end, we used RNA-seq to examine Cdx-dependent gene expression changes in the yolk sac. We find that loss of Cdx function impacts the expression of genes involved in yolk sac hematopoiesis, as previously described, as well as novel Cdx2 target genes. In addition, we observed Cdx-dependent changes in PRC2 subunit expression accompanied by altered H3K27me3 deposition at a subset of Cdx target genes as early as E7.5 in the embryo proper. This study identifies additional Cdx target genes and provides further evidence for Cdx-dependent epigenetic regulation of gene expression in the early embryo, and that this regulation is required to maintain gene expression programs in the extra-embryonic yolk sac at later developmental stages.
Collapse
Affiliation(s)
- Tanya Foley
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada, K1H 8M5.
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada, K1H 8M5.
| |
Collapse
|
10
|
Functional Roles of FGF Signaling in Early Development of Vertebrate Embryos. Cells 2021; 10:cells10082148. [PMID: 34440915 PMCID: PMC8391977 DOI: 10.3390/cells10082148] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factors (FGFs) comprise a large family of growth factors, regulating diverse biological processes including cell proliferation, migration, and differentiation. Each FGF binds to a set of FGF receptors to initiate certain intracellular signaling molecules. Accumulated evidence suggests that in early development and adult state of vertebrates, FGFs also play exclusive and context dependent roles. Although FGFs have been the focus of research for therapeutic approaches in cancer, cardiovascular disease, and metabolic syndrome, in this review, we mainly focused on their role in germ layer specification and axis patterning during early vertebrate embryogenesis. We discussed the functional roles of FGFs and their interacting partners as part of the gene regulatory network for germ layer specification, dorsal-ventral (DV), and anterior-posterior (AP) patterning. Finally, we briefly reviewed the regulatory molecules and pharmacological agents discovered that may allow modulation of FGF signaling in research.
Collapse
|
11
|
The cytokine FAM3B/PANDER is an FGFR ligand that promotes posterior development in Xenopus. Proc Natl Acad Sci U S A 2021; 118:2100342118. [PMID: 33975953 PMCID: PMC8158011 DOI: 10.1073/pnas.2100342118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
How distinct body regions form along the anterior–posterior axis in vertebrate embryos is a fascinating and incompletely understood developmental process. FAM3B/PANDER is a secreted protein involved in glucose metabolism and type 2 diabetes pathogenesis in mammals, but its receptor has been unknown. Here, we report that FAM3B binds to transmembrane fibroblast growth factor receptors (FGFRs) and activates their downstream signaling pathway. In frog embryos, gain-of-function of FAM3B impairs head development and induces ectopic tail-like structures, whereas loss-of-function of FAM3B promotes head development. FGFR is required downstream of FAM3B for head-to-tail patterning. Our results reveal that FAM3B functions by activating the FGFR pathway in frog embryos and mammalian cells and shed light on its possible role in human diseases. Fibroblast growth factor (FGF)/extracellular signal-regulated kinase (ERK) signaling plays a crucial role in anterior–posterior (A–P) axial patterning of vertebrate embryos by promoting posterior development. In our screens for novel developmental regulators in Xenopus embryos, we identified Fam3b as a secreted factor regulated in ectodermal explants. Family with sequence similarity 3 member B (FAM3B)/PANDER (pancreatic-derived factor) is a cytokine involved in glucose metabolism, type 2 diabetes, and cancer in mammals. However, the molecular mechanism of FAM3B action in these processes remains poorly understood, largely because its receptor is still unidentified. Here we uncover an unexpected role of FAM3B acting as a FGF receptor (FGFR) ligand in Xenopus embryos. fam3b messenger RNA (mRNA) is initially expressed maternally and uniformly in the early Xenopus embryo and then in the epidermis at neurula stages. Overexpression of Xenopus fam3b mRNA inhibited cephalic structures and induced ectopic tail-like structures. Recombinant human FAM3B protein was purified readily from transfected tissue culture cells and, when injected into the blastocoele cavity, also caused outgrowth of tail-like structures at the expense of anterior structures, indicating FGF-like activity. Depletion of fam3b by specific antisense morpholino oligonucleotides in Xenopus resulted in macrocephaly in tailbud tadpoles, rescuable by FAM3B protein. Mechanistically, FAM3B protein bound to FGFR and activated the downstream ERK signaling in an FGFR-dependent manner. In Xenopus embryos, FGFR activity was required epistatically downstream of Fam3b to mediate its promotion of posterior cell fates. Our findings define a FAM3B/FGFR/ERK-signaling pathway that is required for axial patterning in Xenopus embryos and may provide molecular insights into FAM3B-associated human diseases.
Collapse
|
12
|
Stapornwongkul KS, Vincent JP. Generation of extracellular morphogen gradients: the case for diffusion. Nat Rev Genet 2021; 22:393-411. [PMID: 33767424 DOI: 10.1038/s41576-021-00342-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Cells within developing tissues rely on morphogens to assess positional information. Passive diffusion is the most parsimonious transport model for long-range morphogen gradient formation but does not, on its own, readily explain scaling, robustness and planar transport. Here, we argue that diffusion is sufficient to ensure robust morphogen gradient formation in a variety of tissues if the interactions between morphogens and their extracellular binders are considered. A current challenge is to assess how the affinity for extracellular binders, as well as other biophysical and cell biological parameters, determines gradient dynamics and shape in a diffusion-based transport system. Technological advances in genome editing, tissue engineering, live imaging and in vivo biophysics are now facilitating measurement of these parameters, paving the way for mathematical modelling and a quantitative understanding of morphogen gradient formation and modulation.
Collapse
|
13
|
Exner CRT, Willsey HR. Xenopus leads the way: Frogs as a pioneering model to understand the human brain. Genesis 2021; 59:e23405. [PMID: 33369095 PMCID: PMC8130472 DOI: 10.1002/dvg.23405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
From its long history in the field of embryology to its recent advances in genetics, Xenopus has been an indispensable model for understanding the human brain. Foundational studies that gave us our first insights into major embryonic patterning events serve as a crucial backdrop for newer avenues of investigation into organogenesis and organ function. The vast array of tools available in Xenopus laevis and Xenopus tropicalis allows interrogation of developmental phenomena at all levels, from the molecular to the behavioral, and the application of CRISPR technology has enabled the investigation of human disorder risk genes in a higher-throughput manner. As the only major tetrapod model in which all developmental stages are easily manipulated and observed, frogs provide the unique opportunity to study organ development from the earliest stages. All of these features make Xenopus a premier model for studying the development of the brain, a notoriously complex process that demands an understanding of all stages from fertilization to organogenesis and beyond. Importantly, core processes of brain development are conserved between Xenopus and human, underlining the advantages of this model. This review begins by summarizing discoveries made in amphibians that form the cornerstones of vertebrate neurodevelopmental biology and goes on to discuss recent advances that have catapulted our understanding of brain development in Xenopus and in relation to human development and disease. As we engage in a new era of patient-driven gene discovery, Xenopus offers exceptional potential to uncover conserved biology underlying human brain disorders and move towards rational drug design.
Collapse
Affiliation(s)
- Cameron R T Exner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
14
|
Zhong Y, Herrera-Úbeda C, Garcia-Fernàndez J, Li G, Holland PWH. Mutation of amphioxus Pdx and Cdx demonstrates conserved roles for ParaHox genes in gut, anus and tail patterning. BMC Biol 2020; 18:68. [PMID: 32546156 PMCID: PMC7296684 DOI: 10.1186/s12915-020-00796-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The homeobox genes Pdx and Cdx are widespread across the animal kingdom and part of the small ParaHox gene cluster. Gene expression patterns suggest ancient roles for Pdx and Cdx in patterning the through-gut of bilaterian animals although functional data are available for few lineages. To examine evolutionary conservation of Pdx and Cdx gene functions, we focus on amphioxus, small marine animals that occupy a pivotal position in chordate evolution and in which ParaHox gene clustering was first reported. RESULTS Using transcription activator-like effector nucleases (TALENs), we engineer frameshift mutations in the Pdx and Cdx genes of the amphioxus Branchiostoma floridae and establish mutant lines. Homozygous Pdx mutants have a defect in amphioxus endoderm, manifest as loss of a midgut region expressing endogenous GFP. The anus fails to open in homozygous Cdx mutants, which also have defects in posterior body extension and epidermal tail fin development. Treatment with an inverse agonist of retinoic acid (RA) signalling partially rescues the axial and tail fin phenotypes indicating they are caused by increased RA signalling. Gene expression analyses and luciferase assays suggest that posterior RA levels are kept low in wild type animals by a likely direct transcriptional regulation of a Cyp26 gene by Cdx. Transcriptome analysis reveals extensive gene expression changes in mutants, with a disproportionate effect of Pdx and Cdx on gut-enriched genes and a colinear-like effect of Cdx on Hox genes. CONCLUSIONS These data reveal that amphioxus Pdx and Cdx have roles in specifying middle and posterior cell fates in the endoderm of the gut, roles that likely date to the origin of Bilateria. This conclusion is consistent with these two ParaHox genes playing a role in the origin of the bilaterian through-gut with a distinct anus, morphological innovations that contributed to ecological change in the Cambrian. In addition, we find that amphioxus Cdx promotes body axis extension through a molecular mechanism conserved with vertebrates. The axial extension role for Cdx dates back at least to the origin of Chordata and may have facilitated the evolution of the post-anal tail and active locomotion in chordates.
Collapse
Affiliation(s)
- Yanhong Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Carlos Herrera-Úbeda
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK.,Department of Genetics, Microbiology & Statistics, and Institute of Biomedicine (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology & Statistics, and Institute of Biomedicine (IBUB), University of Barcelona, 08028, Barcelona, Spain
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | | |
Collapse
|
15
|
Parker HJ, Krumlauf R. A Hox gene regulatory network for hindbrain segmentation. Curr Top Dev Biol 2020; 139:169-203. [DOI: 10.1016/bs.ctdb.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Virgirinia RP, Jahan N, Okada M, Takebayashi‐Suzuki K, Yoshida H, Nakamura M, Akao H, Yoshimoto Y, Fatchiyah F, Ueno N, Suzuki A. Cdc2‐like kinase 2 (Clk2) promotes early neural development inXenopusembryos. Dev Growth Differ 2019; 61:365-377. [DOI: 10.1111/dgd.12619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Regina Putri Virgirinia
- Amphibian Research Center Graduate School of Science Hiroshima University Higashi-Hiroshima Japan
| | - Nusrat Jahan
- Amphibian Research Center Graduate School of Science Hiroshima University Higashi-Hiroshima Japan
| | - Maya Okada
- Amphibian Research Center Graduate School of Science Hiroshima University Higashi-Hiroshima Japan
| | | | - Hitoshi Yoshida
- Amphibian Research Center Graduate School of Science Hiroshima University Higashi-Hiroshima Japan
| | - Makoto Nakamura
- Amphibian Research Center Graduate School of Science Hiroshima University Higashi-Hiroshima Japan
| | - Hajime Akao
- Amphibian Research Center Graduate School of Science Hiroshima University Higashi-Hiroshima Japan
| | - Yuta Yoshimoto
- Amphibian Research Center Graduate School of Science Hiroshima University Higashi-Hiroshima Japan
| | - Fatchiyah Fatchiyah
- Department of Biology Faculty of Mathematics and Natural Sciences Brawijaya University Malang Indonesia
| | - Naoto Ueno
- Division of Morphogenesis National Institute for Basic Biology Okazaki Japan
| | - Atsushi Suzuki
- Amphibian Research Center Graduate School of Science Hiroshima University Higashi-Hiroshima Japan
| |
Collapse
|
17
|
Durston AJ. What are the roles of retinoids, other morphogens, and Hox genes in setting up the vertebrate body axis? Genesis 2019; 57:e23296. [PMID: 31021058 PMCID: PMC6767176 DOI: 10.1002/dvg.23296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/24/2019] [Accepted: 03/29/2019] [Indexed: 01/09/2023]
Abstract
This article is concerned with the roles of retinoids and other known anterior-posterior morphogens in setting up the embryonic vertebrate anterior-posterior axis. The discussion is restricted to the very earliest events in setting up the anterior-posterior axis (from blastula to tailbud stages in Xenopus embryos). In these earliest developmental stages, morphogen concentration gradients are not relevant for setting up this axis. It emerges that at these stages, the core patterning mechanism is timing: BMP-anti BMP mediated time space translation that regulates Hox temporal and spatial collinearities and Hox-Hox auto- and cross- regulation. The known anterior-posterior morphogens and signaling pathways--retinoids, FGF's, Cdx, Wnts, Gdf11 and others--interact with this core mechanism at and after space-time defined "decision points," leading to the separation of distinct axial domains. There are also other roles for signaling pathways. Besides the Hox regulated hindbrain/trunk part of the axis, there is a rostral part (including the anterior part of the head and the extreme anterior domain [EAD]) that appears to be regulated by additional mechanisms. Key aspects of anterior-posterior axial patterning, including: the nature of different phases in early patterning and in the whole process; the specificities of Hox action and of intercellular signaling; and the mechanisms of Hox temporal and spatial collinearities, are discussed in relation to the facts and hypotheses proposed above.
Collapse
|
18
|
Nolte C, De Kumar B, Krumlauf R. Hox genes: Downstream "effectors" of retinoic acid signaling in vertebrate embryogenesis. Genesis 2019; 57:e23306. [PMID: 31111645 DOI: 10.1002/dvg.23306] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
Abstract
One of the major regulatory challenges of animal development is to precisely coordinate in space and time the formation, specification, and patterning of cells that underlie elaboration of the basic body plan. How does the vertebrate plan for the nervous and hematopoietic systems, heart, limbs, digestive, and reproductive organs derive from seemingly similar population of cells? These systems are initially established and patterned along the anteroposterior axis (AP) by opposing signaling gradients that lead to the activation of gene regulatory networks involved in axial specification, including the Hox genes. The retinoid signaling pathway is one of the key signaling gradients coupled to the establishment of axial patterning. The nested domains of Hox gene expression, which provide a combinatorial code for axial patterning, arise in part through a differential response to retinoic acid (RA) diffusing from anabolic centers established within the embryo during development. Hence, Hox genes are important direct effectors of retinoid signaling in embryogenesis. This review focuses on describing current knowledge on the complex mechanisms and regulatory processes, which govern the response of Hox genes to RA in several tissue contexts including the nervous system during vertebrate development.
Collapse
Affiliation(s)
- Christof Nolte
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas
| |
Collapse
|
19
|
Foley TE, Hess B, Savory JGA, Ringuette R, Lohnes D. Role of Cdx factors in early mesodermal fate decisions. Development 2019; 146:146/7/dev170498. [PMID: 30936115 DOI: 10.1242/dev.170498] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/01/2019] [Indexed: 12/30/2022]
Abstract
Murine cardiac and hematopoietic progenitors are derived from Mesp1+ mesoderm. Cdx function impacts both yolk sac hematopoiesis and cardiogenesis in zebrafish, suggesting that Cdx family members regulate early mesoderm cell fate decisions. We found that Cdx2 occupies a number of transcription factor loci during embryogenesis, including key regulators of both cardiac and blood development, and that Cdx function is required for normal expression of the cardiogenic transcription factors Nkx2-5 and Tbx5 Furthermore, Cdx and Brg1, an ATPase subunit of the SWI/SNF chromatin remodeling complex, co-occupy a number of loci, suggesting that Cdx family members regulate target gene expression through alterations in chromatin architecture. Consistent with this, we demonstrate loss of Brg1 occupancy and altered chromatin structure at several cardiogenic genes in Cdx-null mutants. Finally, we provide evidence for an onset of Cdx2 expression at E6.5 coinciding with egression of cardiac progenitors from the primitive streak. Together, these findings suggest that Cdx functions in multi-potential mesoderm to direct early cell fate decisions through transcriptional regulation of several novel target genes, and provide further insight into a potential epigenetic mechanism by which Cdx influences target gene expression.
Collapse
Affiliation(s)
- Tanya E Foley
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Bradley Hess
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Joanne G A Savory
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Randy Ringuette
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
20
|
Durston AJ. Two Tier Hox Collinearity Mediates Vertebrate Axial Patterning. Front Cell Dev Biol 2018; 6:102. [PMID: 30234110 PMCID: PMC6131192 DOI: 10.3389/fcell.2018.00102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/10/2018] [Indexed: 12/04/2022] Open
Abstract
A two tier mechanism mediates Hox collinearity. Besides the familiar collinear chromatin modification within each Hox cluster (nanocollinearity), there is also a macrocollinearity tier. Individual Hox clusters and individual cells are coordinated and synchronized to generate multiscale (macro and nano) collinearity in the early vertebrate embryo. Macro-collinearity is mediated by three non-cell autonomous Hox–Hox interactions. These mediate temporal collinearity in early NOM (non-organizer mesoderm), time space translation where temporal collinearity is translated to spatial collinearity along the early embryo’s main body axis and neural transformation, where Hox expression is copied monospecifically from NOM mesoderm to overlying neurectoderm in the late gastrula. Unlike nanocollinearity, which is Hox cluster restricted, axial macrocollinearity extends into the head and EAD domains, thus covering the whole embryonic anterior-posterior (A-P) axis. EAD: extreme anterior domain, the only A-P axial domain anterior to the head. The whole time space translation mechanism interacts with A-P signaling pathways via “decision points,” separating different domains on the axis.
Collapse
Affiliation(s)
- Antony J Durston
- Faculty of Science, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
21
|
Takebayashi-Suzuki K, Konishi H, Miyamoto T, Nagata T, Uchida M, Suzuki A. Coordinated regulation of the dorsal-ventral and anterior-posterior patterning ofXenopusembryos by the BTB/POZ zinc finger protein Zbtb14. Dev Growth Differ 2018; 60:158-173. [DOI: 10.1111/dgd.12431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/09/2018] [Accepted: 02/22/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Kimiko Takebayashi-Suzuki
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Hidenori Konishi
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Tatsuo Miyamoto
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Tomoko Nagata
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Misa Uchida
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Atsushi Suzuki
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| |
Collapse
|
22
|
Yoshida H, Okada M, Takebayashi-Suzuki K, Ueno N, Suzuki A. Involvement of JunB Proto-Oncogene in Tail Formation During Early Xenopus Embryogenesis. Zoolog Sci 2016; 33:282-9. [PMID: 27268982 DOI: 10.2108/zs150136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Integration of signaling pathways is important for the establishment of the body plan during embryogenesis. However, little is known about how the multiple signals interact to regulate morphogenesis. Here, we show that junb is expressed in the posterior neural plate and the caudal fin during Xenopus embryogenesis and that overexpression of wild-type JunB induces small head phenotypes and ectopic tail-like structures. A mutant form of JunB that lacked GSK3 and MAPK phosphorylation sites showed stronger tail-like structure-inducing activity than wild-type JunB. Moreover, the mutant JunB induced expression of tailbud and neural marker genes, but not somite and chordoneural hinge (CNH) marker genes in ectopic tail-like structures. In ectodermal explants of Xenopus embryos, overexpression of JunB increased the expression of tailbud and posterior marker genes including fgf3, xbra (t) and wnt8. These results indicate that JunB is capable of inducing the ectopic formation of tissues similar to the tailbud, and that the tailbud-inducing activity of JunB is likely to be regulated by FGF and Wnt pathways. Overall, our results suggest that JunB is a regulator of tail organization possibly through integration of several morphogen signaling pathways.
Collapse
Affiliation(s)
- Hitoshi Yoshida
- 1 Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Maya Okada
- 1 Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Kimiko Takebayashi-Suzuki
- 1 Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Naoto Ueno
- 2 Division of Morphogenesis, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.,3 Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Atsushi Suzuki
- 1 Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
23
|
Tsai YH, Nattiv R, Dedhia PH, Nagy MS, Chin AM, Thomson M, Klein OD, Spence JR. In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development 2016; 144:1045-1055. [PMID: 27927684 PMCID: PMC5358103 DOI: 10.1242/dev.138453] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022]
Abstract
The intestine plays a central role in digestion, nutrient absorption and metabolism, with individual regions of the intestine having distinct functional roles. Many examples of region-specific gene expression in the adult intestine are known, but how intestinal regional identity is established during development is a largely unresolved issue. Here, we have identified several genes that are expressed in a region-specific manner in the developing human intestine. Using human embryonic stem cell-derived intestinal organoids, we demonstrate that the duration of exposure to active FGF and WNT signaling controls regional identity. Short-term exposure to FGF4 and CHIR99021 (a GSK3β inhibitor that stabilizes β-catenin) resulted in organoids with gene expression patterns similar to developing human duodenum, whereas longer exposure resulted in organoids similar to ileum. When region-specific organoids were transplanted into immunocompromised mice, duodenum-like organoids and ileum-like organoids retained their regional identity, demonstrating that regional identity of organoids is stable after initial patterning occurs. This work provides insights into the mechanisms that control regional specification of the developing human intestine and provides new tools for basic and translational research. Summary: Human embryonic stem cell-derived intestinal organoids can be patterned into duodenum-like or ileum-like tissue, recapitulating in vivo human development.
Collapse
Affiliation(s)
- Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Roy Nattiv
- Institute for Human Genetics and Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA.,Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Priya H Dedhia
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Melinda S Nagy
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alana M Chin
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthew Thomson
- Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ophir D Klein
- Institute for Human Genetics and Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA .,Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA .,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Abstract
The nature of cells in early embryos may be respecified simply by exposure to inducing factors. In later stage embryos, determined cell populations do not respond to inducing factors but may be respecified by other stimuli, especially the introduction of specific transcription factors. Fully differentiated cell types are hard to respecify by any method, but some degree of success can be achieved using selected combinations of transcription factors, and this may have clinical significance in the future.
Collapse
|
25
|
Carron C, Shi DL. Specification of anteroposterior axis by combinatorial signaling during Xenopus development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:150-68. [PMID: 26544673 DOI: 10.1002/wdev.217] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/01/2015] [Accepted: 09/12/2015] [Indexed: 01/08/2023]
Abstract
The specification of anteroposterior (AP) axis is a fundamental and complex patterning process that sets up the embryonic polarity and shapes a multicellular organism. This process involves the integration of distinct signaling pathways to coordinate temporal-spatial gene expression and morphogenetic movements. In the frog Xenopus, extensive embryological and molecular studies have provided major advance in understanding the mechanism implicated in AP patterning. Following fertilization, cortical rotation leads to the transport of maternal determinants to the dorsal region and creates the primary dorsoventral (DV) asymmetry. The activation of maternal Wnt/ß-catenin signaling and a high Nodal signal induces the formation of the Nieuwkoop center in the dorsal-vegetal cells, which then triggers the formation of the Spemann organizer in the overlying dorsal marginal zone. It is now well established that the Spemann organizer plays a central role in building the vertebrate body axes because it provides patterning information for both DV and AP polarities. The antagonistic interactions between signals secreted in the Spemann organizer and the opposite ventral region pattern the mesoderm along the DV axis, and this DV information is translated into AP positional values during gastrulation. The formation of anterior neural tissue requires simultaneous inhibition of zygotic Wnt and bone morphogenetic protein (BMP) signals, while an endogenous gradient of Wnt, fibroblast growth factors (FGFs), retinoic acid (RA) signaling, and collinearly expressed Hox genes patterns the trunk and posterior regions. Collectively, DV asymmetry is mostly coupled to AP polarity, and cell-cell interactions mediated essentially by the same regulatory networks operate in DV and AP patterning. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Clémence Carron
- Laboratory of Developmental Biology, Sorbonne Universités, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | - De-Li Shi
- Laboratory of Developmental Biology, Sorbonne Universités, Institut de Biologie Paris-Seine (IBPS), Paris, France.,School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
26
|
Marlétaz F, Maeso I, Faas L, Isaacs HV, Holland PWH. Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution. BMC Biol 2015; 13:56. [PMID: 26231746 PMCID: PMC4522105 DOI: 10.1186/s12915-015-0165-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/08/2015] [Indexed: 01/03/2023] Open
Abstract
Background The functional consequences of whole genome duplications in vertebrate evolution are not fully understood. It remains unclear, for instance, why paralogues were retained in some gene families but extensively lost in others. Cdx homeobox genes encode conserved transcription factors controlling posterior development across diverse bilaterians. These genes are part of the ParaHox gene cluster. Multiple Cdx copies were retained after genome duplication, raising questions about how functional divergence, overlap, and redundancy respectively contributed to their retention and evolutionary fate. Results We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xenopus tropicalis followed by RNA-seq. We found that one paralogue, Cdx4, has a much stronger effect on gene expression than the others, including a strong regulatory effect on FGF and Wnt genes. Functional annotation revealed distinct and overlapping roles and subtly different temporal windows of action for each gene. The data also reveal a colinear-like effect of Cdx genes on Hox genes, with repression of Hox paralogy groups 1 and 2, and activation increasing from Hox group 5 to 11. We also highlight cases in which duplicated genes regulate distinct paralogous targets revealing pathway elaboration after whole genome duplication. Conclusions Despite shared core pathways, Cdx paralogues have acquired distinct regulatory roles during development. This implies that the degree of functional overlap between paralogues is relatively low and that gene expression pattern alone should be used with caution when investigating the functional evolution of duplicated genes. We therefore suggest that developmental programmes were extensively rewired after whole genome duplication in the early evolution of vertebrates. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0165-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| | - Ignacio Maeso
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK. .,Present address: Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Sevilla, Spain.
| | - Laura Faas
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK.
| | - Harry V Isaacs
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK.
| | - Peter W H Holland
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
27
|
Abstract
Anterior-posterior (A-P) patterning of the vertebrate main body axis regulated by timing. Anterior structures are specified early, posterior late. (1) Timing involves timed decision points as emphasised by the Wnt studies of Sokol and colleagues. It also involves complex timers, where large parts of the axis are patterned sequentially by a common upstream mechanism (articles by Durston et al., Mullins et al., Oates et al.,). (2) A gastrula BMP-anti BMP dependent time-space translation (TST) mechanism was demonstrated for the trunk section of the axis (Durston). (3) Thisses' studies emphasise the importance of BMP-anti BMP and the organiser inducing factor nodal for A-P patterning. (4) Meinhardt's interesting studies on the organiser and A-P patterning are reviewed in relation to TST. (5) Mullins' investigations show that anti-BMP dependent TST starts earlier (at the blastula stage) and extends further anteriorly (to the anterior head). Sive's studies imply it may extend further still to the "extreme anterior domain" (EAD). (6) The somitogenesis timer (clock) is presented. Stern's and Oates' findings are discussed. (7) Relations between somitogenesis and axial TST are discussed. (8) Relations of classical axial patterning pathways to TST decision points and somitogenesis are inventarised. In conclusion, all of these findings point to an integral BMP-anti BMP dependent A-P TST mechanism, running from cement gland in the EAD, Six3 and the anterior tip of the forebrain at blastula stages to Hox13 and the tip of the tail by the mid neurula stage. TST acts via sequential timed transitions between ventral (unstable, timed) and dorsal (stabilised) states. In the trunk-tail, the timer is thought to be Hox temporal collinearity and TST depends on Hox function. In the head, TST is under investigation. The somitogenesis clock is upstream of the TST timer, providing precision in the posterior part of the axis at least. Classical A-P signalling pathways: retinoids, FGFs and Wnts, change behaviour at functional decision points on the axis.
Collapse
|
28
|
Wang Y, Beck C. Distinct patterns of endosulfatase gene expression during Xenopus laevis limb development and regeneration. ACTA ACUST UNITED AC 2015; 2:19-25. [PMID: 27499864 PMCID: PMC4895329 DOI: 10.1002/reg2.27] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 12/20/2022]
Abstract
The heparan sulfate 6‐O‐endosulfatases sulf1 and sulf2 regulate multiple cellular processes and organ development. Sulfs modulate a range of heparan‐sulfate‐dependent extracellular pathways, including the fibroblast growth factor, bone morphogenetic protein, and wingless/wnt signaling pathways. Known patterns of sulf transcript expression together with functional experiments have implicated the sulfs in chondrogenesis and muscle regeneration in mammals. Here, we describe the expression patterns of Xenopus laevis sulf1 and sulf2 in developing forelimbs and hindlimbs and demonstrate novel expression of the sulf transcripts in the regenerating hindlimbs, with prominent sulf2 expression in the proliferating blastema and transient expression of sulf1 in the redeveloping apical epidermal ridge. These findings further suggest involvement of the sulfs in successful limb regeneration in amphibians.
Collapse
Affiliation(s)
- Yi‐Hsuan Wang
- Department of ZoologyUniversity of OtagoPO Box 56DunedinNew Zealand
| | - Caroline Beck
- Department of ZoologyUniversity of OtagoPO Box 56DunedinNew Zealand
| |
Collapse
|
29
|
Fellgett SW, Maguire RJ, Pownall ME. Sulf1 has ligand-dependent effects on canonical and non-canonical Wnt signalling. J Cell Sci 2015; 128:1408-21. [PMID: 25681501 PMCID: PMC4379729 DOI: 10.1242/jcs.164467] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Wnt signalling plays essential roles during embryonic development and is known to be mis-regulated in human disease. There are many molecular mechanisms that ensure tight regulation of Wnt activity. One such regulator is the heparan-sulfate-specific 6-O-endosulfatase Sulf1. Sulf1 acts extracellularly to modify the structure of heparan sulfate chains to affect the bio-availability of Wnt ligands. Sulf1 could, therefore, influence the formation of Wnt signalling complexes to modulate the activation of both canonical and non-canonical pathways. In this study, we use well-established assays in Xenopus to investigate the ability of Sulf1 to modify canonical and non-canonical Wnt signalling. In addition, we model the ability of Sulf1 to influence morphogen gradients using fluorescently tagged Wnt ligands in ectodermal explants. We show that Sulf1 overexpression has ligand-specific effects on Wnt signalling: it affects membrane accumulation and extracellular levels of tagged Wnt8a and Wnt11b ligands differently, and inhibits the activity of canonical Wnt8a but enhances the activity of non-canonical Wnt11b.
Collapse
|
30
|
Vertical signalling involves transmission of Hox information from gastrula mesoderm to neurectoderm. PLoS One 2014; 9:e115208. [PMID: 25514127 PMCID: PMC4267835 DOI: 10.1371/journal.pone.0115208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/19/2014] [Indexed: 11/23/2022] Open
Abstract
Development and patterning of neural tissue in the vertebrate embryo involves a set of molecules and processes whose relationships are not fully understood. Classical embryology revealed a remarkable phenomenon known as vertical signalling, a gastrulation stage mechanism that copies anterior-posterior positional information from mesoderm to prospective neural tissue. Vertical signalling mediates unambiguous copying of complex information from one tissue layer to another. In this study, we report an investigation of this process in recombinates of mesoderm and ectoderm from gastrulae of Xenopus laevis. Our results show that copying of positional information involves non cell autonomous autoregulation of particular Hox genes whose expression is copied from mesoderm to neurectoderm in the gastrula. Furthermore, this information sharing mechanism involves unconventional translocation of the homeoproteins themselves. This conserved primitive mechanism has been known for three decades but has only recently been put into any developmental context. It provides a simple, robust way to pattern the neurectoderm using the Hox pattern already present in the mesoderm during gastrulation. We suggest that this mechanism was selected during evolution to enable unambiguous copying of rather complex information from cell to cell and that it is a key part of the original ancestral mechanism mediating axial patterning by the highly conserved Hox genes.
Collapse
|
31
|
Teven CM, Farina EM, Rivas J, Reid RR. Fibroblast growth factor (FGF) signaling in development and skeletal diseases. Genes Dis 2014; 1:199-213. [PMID: 25679016 PMCID: PMC4323088 DOI: 10.1016/j.gendis.2014.09.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factors (FGF) and their receptors serve many functions in both the developing and adult organism. Humans contain 18 FGF ligands and four FGF receptors (FGFR). FGF ligands are polypeptide growth factors that regulate several developmental processes including cellular proliferation, differentiation, and migration, morphogenesis, and patterning. FGF-FGFR signaling is also critical to the developing axial and craniofacial skeleton. In particular, the signaling cascade has been implicated in intramembranous ossification of cranial bones as well as cranial suture homeostasis. In the adult, FGFs and FGFRs are crucial for tissue repair. FGF signaling generally follows one of three transduction pathways: RAS/MAP kinase, PI3/AKT, or PLCγ. Each pathway likely regulates specific cellular behaviors. Inappropriate expression of FGF and improper activation of FGFRs are associated with various pathologic conditions, unregulated cell growth, and tumorigenesis. Additionally, aberrant signaling has been implicated in many skeletal abnormalities including achondroplasia and craniosynostosis. The biology and mechanisms of the FGF family have been the subject of significant research over the past 30 years. Recently, work has focused on the therapeutic targeting and potential of FGF ligands and their associated receptors. The majority of FGF-related therapy is aimed at age-related disorders. Increased understanding of FGF signaling and biology may reveal additional therapeutic roles, both in utero and postnatally. This review discusses the role of FGF signaling in general physiologic and pathologic embryogenesis and further explores it within the context of skeletal development.
Collapse
Affiliation(s)
- Chad M Teven
- The Laboratory of Craniofacial Biology, Section of Plastic & Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC 6035, Chicago, IL 60637, USA
| | - Evan M Farina
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Jane Rivas
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Russell R Reid
- The Laboratory of Craniofacial Biology, Section of Plastic & Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC 6035, Chicago, IL 60637, USA
| |
Collapse
|
32
|
Distal expression of sprouty (spry) genes during Xenopus laevis limb development and regeneration. Gene Expr Patterns 2014; 15:61-6. [DOI: 10.1016/j.gep.2014.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/03/2014] [Accepted: 04/25/2014] [Indexed: 11/23/2022]
|
33
|
A Cdx4-Sall4 regulatory module controls the transition from mesoderm formation to embryonic hematopoiesis. Stem Cell Reports 2013; 1:425-36. [PMID: 24286030 PMCID: PMC3841246 DOI: 10.1016/j.stemcr.2013.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 12/26/2022] Open
Abstract
Deletion of caudal/cdx genes alters hox gene expression and causes defects in posterior tissues and hematopoiesis. Yet, the defects in hox gene expression only partially explain these phenotypes. To gain deeper insight into Cdx4 function, we performed chromatin immunoprecipitation sequencing (ChIP-seq) combined with gene-expression profiling in zebrafish, and identified the transcription factor spalt-like 4 (sall4) as a Cdx4 target. ChIP-seq revealed that Sall4 bound to its own gene locus and the cdx4 locus. Expression profiling showed that Cdx4 and Sall4 coregulate genes that initiate hematopoiesis, such as hox, scl, and lmo2. Combined cdx4/sall4 gene knockdown impaired erythropoiesis, and overexpression of the Cdx4 and Sall4 target genes scl and lmo2 together rescued the erythroid program. These findings suggest that auto- and cross-regulation of Cdx4 and Sall4 establish a stable molecular circuit in the mesoderm that facilitates the activation of the blood-specific program as development proceeds. Cdx4 and Sall4 bind to each other’s genomic loci Cdx4 and Sall4 coregulate genes responsible for the mesoderm-to-blood transition Scl and Lmo2 overexpression rescues blood defects in cdx4/sall4 double morphants
Collapse
|
34
|
Warga RM, Mueller RL, Ho RK, Kane DA. Zebrafish Tbx16 regulates intermediate mesoderm cell fate by attenuating Fgf activity. Dev Biol 2013; 383:75-89. [PMID: 24008197 DOI: 10.1016/j.ydbio.2013.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/04/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Progenitors of the zebrafish pronephros, red blood and trunk endothelium all originate from the ventral mesoderm and often share lineage with one another, suggesting that their initial patterning is linked. Previous studies have shown that spadetail (spt) mutant embryos, defective in tbx16 gene function, fail to produce red blood cells, but retain the normal number of endothelial and pronephric cells. We report here that spt mutants are deficient in all the types of early blood, have fewer endothelial cells as well as far more pronephric cells compared to wildtype. In vivo cell tracing experiments reveal that blood and endothelium originate in spt mutants almost exclusive from the dorsal mesoderm whereas, pronephros and tail originate from both dorsal and ventral mesoderm. Together these findings suggest possible defects in posterior patterning. In accord with this, gene expression analysis shows that mesodermal derivatives within the trunk and tail of spt mutants have acquired more posterior identity. Secreted signaling molecules belonging to the Fgf, Wnt and Bmp families have been implicated as patterning factors of the posterior mesoderm. Further investigation demonstrates that Fgf and Wnt signaling are elevated throughout the nonaxial region of the spt gastrula. By manipulating Fgf signaling we show that Fgfs both promote pronephric fate and repress blood and endothelial fate. We conclude that Tbx16 plays an important role in regulating the balance of intermediate mesoderm fates by attenuating Fgf activity.
Collapse
Affiliation(s)
- Rachel M Warga
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA; Department of Organismal Biology and Anatomy, University of Chicago, 1027 East, 57th Street, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
35
|
Christen B, Rodrigues AMC, Monasterio MB, Roig CF, Izpisua Belmonte JC. Transient downregulation of Bmp signalling induces extra limbs in vertebrates. Development 2012; 139:2557-65. [PMID: 22675213 DOI: 10.1242/dev.078774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone morphogenetic protein (Bmp) signalling has been implicated in setting up dorsoventral patterning of the vertebrate limb and in its outgrowth. Here, we present evidence that Bmp signalling or, more precisely, its inhibition also plays a role in limb and fin bud initiation. Temporary inhibition of Bmp signalling either by overexpression of noggin or using a synthetic Bmp inhibitor is sufficient to induce extra limbs in the Xenopus tadpole or exogenous fins in the Danio rerio embryo, respectively. We further show that Bmp signalling acts in parallel with retinoic acid signalling, possibly by inhibiting the known limb-inducing gene wnt2ba.
Collapse
Affiliation(s)
- Bea Christen
- Center of Regenerative Medicine in Barcelona, Barcelona 08003, Spain
| | | | | | | | | |
Collapse
|
36
|
Xmab21l3 mediates dorsoventral patterning in Xenopus laevis. Mech Dev 2012; 129:136-46. [PMID: 22609272 DOI: 10.1016/j.mod.2012.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 02/05/2023]
Abstract
Specification of the dorsoventral (DV) axis is critical for the subsequent differentiation of regional fate in the primary germ layers of the vertebrate embryo. We have identified a novel factor that is essential for dorsal development in embryos of the frog Xenopus laevis. Misexpression of Xenopus mab21-like 3 (Xmab21l3) dorsalizes gastrula-stage mesoderm and neurula-stage ectoderm, while morpholino-mediated knockdown of Xmab21l3 inhibits dorsal differentiation of these embryonic germ layers. Xmab21l3 is a member of a chordate-specific subclass of a recently characterized gene family, all members of which contain a conserved, but as yet ill-defined, Mab21 domain. Our studies suggest that Xmab21l3 functions to repress ventralizing activity in the early vertebrate embryo, via regulation of BMP/Smad and Ras/ERK signaling.
Collapse
|
37
|
Schyr RB, Shabtai Y, Shashikant CS, Fainsod A. Cdx1 is essential for the initiation of
HoxC8
expression during early embryogenesis. FASEB J 2012; 26:2674-84. [DOI: 10.1096/fj.11-191403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rachel Ben‐Haroush Schyr
- Department of Developmental Biology and Cancer ResearchInstitute for Medical Research Israel‐CanadaFaculty of MedicineHebrew UniversityJerusalemIsrael
| | - Yehuda Shabtai
- Department of Developmental Biology and Cancer ResearchInstitute for Medical Research Israel‐CanadaFaculty of MedicineHebrew UniversityJerusalemIsrael
| | - Cooduvalli S. Shashikant
- Department of Dairy and Animal ScienceCollege of Agricultural SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer ResearchInstitute for Medical Research Israel‐CanadaFaculty of MedicineHebrew UniversityJerusalemIsrael
| |
Collapse
|
38
|
FGF signalling modulates transcriptional repression by Xenopus groucho-related-4. Biol Cell 2012; 101:301-8. [DOI: 10.1042/bc20080136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Identification of phosphorylase kinase as a novel therapeutic target through high-throughput screening for anti-angiogenesis compounds in zebrafish. Oncogene 2011; 31:4333-42. [PMID: 22179836 DOI: 10.1038/onc.2011.594] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Angiogenesis is essential for development and tumor progression. With the aim of identifying new compound inhibitors of the angiogenesis process, we used an established enhanced green fluorescent protein-transgenic zebrafish line to develop an automated assay that enables high-throughput screening of compound libraries in a whole-organism setting. Using this system, we have identified novel kinase inhibitor compounds that show anti-angiogenic properties in both zebrafish in-vivo system and in human endothelial cell in-vitro angiogenesis models. Furthermore, we have determined the kinase target of these compounds and have identified and validated a previously uncharacterized involvement of phosphorylase kinase subunit G1 (PhKG1) in angiogenesis in vivo. In addition, we have found that PhKG1 is upregulated in human tumor samples and that aberrations in gene copy number of PhK subunits are a common feature of human tumors. Our results provide a novel insight into the angiogenesis process, as well as identify new potential targets for anti-angiogenic therapies.
Collapse
|
40
|
Takebayashi-Suzuki K, Kitayama A, Terasaka-Iioka C, Ueno N, Suzuki A. The forkhead transcription factor FoxB1 regulates the dorsal-ventral and anterior-posterior patterning of the ectoderm during early Xenopus embryogenesis. Dev Biol 2011; 360:11-29. [PMID: 21958745 DOI: 10.1016/j.ydbio.2011.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 08/04/2011] [Accepted: 09/05/2011] [Indexed: 12/18/2022]
Abstract
The formation of the dorsal-ventral (DV) and anterior-posterior (AP) axes, fundamental to the body plan of animals, is regulated by several groups of polypeptide growth factors including the TGF-β, FGF, and Wnt families. In order to ensure the establishment of the body plan, the processes of DV and AP axis formation must be linked and coordinately regulated. However, the molecular mechanisms responsible for these interactions remain unclear. Here, we demonstrate that the forkhead box transcription factor FoxB1, which is upregulated by the neuralizing factor Oct-25, plays an important role in the formation of the DV and AP axes. Overexpression of FoxB1 promoted neural induction and inhibited BMP-dependent epidermal differentiation in ectodermal explants, thereby regulating the DV patterning of the ectoderm. In addition, FoxB1 was also found to promote the formation of posterior neural tissue in both ectodermal explants and whole embryos, suggesting its involvement in embryonic AP patterning. Using knockdown analysis, we found that FoxB1 is required for the formation of posterior neural tissues, acting in concert with the Wnt and FGF pathways. Consistent with this, FoxB1 suppressed the formation of anterior structures via a process requiring the function of XWnt-8 and eFGF. Interestingly, while downregulation of FoxB1 had little effect on neural induction, we found that it functionally interacted with its upstream factor Oct-25 and plays a supportive role in the induction and/or maintenance of neural tissue. Our results suggest that FoxB1 is part of a mechanism that fine-tunes, and leads to the coordinated formation of, the DV and AP axes during early development.
Collapse
Affiliation(s)
- Kimiko Takebayashi-Suzuki
- Institute for Amphibian Biology, Hiroshima University Graduate School of Science, Kagamiyama 1-3-1, Higashi-Hiroshima, Japan
| | | | | | | | | |
Collapse
|
41
|
Deimling SJ, Drysdale TA. Fgf is required to regulate anterior-posterior patterning in the Xenopus lateral plate mesoderm. Mech Dev 2011; 128:327-41. [PMID: 21763769 DOI: 10.1016/j.mod.2011.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 11/26/2022]
Abstract
Given that the lateral plate mesoderm (LPM) gives rise to the cardiovascular system, identifying the cascade of signalling events that subdivides the LPM into distinct regions during development is an important question. Retinoic acid (RA) is known to be necessary for establishing the expression boundaries of important transcription factors that demarcate distinct regions along the anterior posterior axis of the LPM. Here, we demonstrate that fibroblast growth factor (Fgf) signalling is also necessary for regulating the expression domains of the same transcription factors (nkx2.5, foxf1, hand1 and sall3) by restricting the RA responsive LPM domains. When Fgf signalling is inhibited in neurula stage embryos, the more posterior LPM expression domains are lost, while the more anterior domains are extended further posterior. The domain changes are maintained throughout development as Fgf inhibition results in similar domain changes in late stage embryos. We also demonstrate that Fgf signalling is necessary for both the initiation of heart specification, and for maintaining heart specification until overt differentiation occurs. Fgf signalling is also necessary to restrict vascular patterning and create a vascular free domain in the posterior end of the LPM that correlates with the expression of hand1. Finally, we show cross talk between the RA and Fgf signalling pathways in the patterning of the LPM. We suggest that this tissue wide patterning event, active during the neurula stage, is an initial step in regional specification of the LPM, and this process is an essential early event in LPM patterning.
Collapse
Affiliation(s)
- Steven J Deimling
- Children's Health Research Institute, 800 Commissioners Road E., London, Ontario, Canada
| | | |
Collapse
|
42
|
Ikuta T. Evolution of invertebrate deuterostomes and Hox/ParaHox genes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2011; 9:77-96. [PMID: 21802045 PMCID: PMC5054439 DOI: 10.1016/s1672-0229(11)60011-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/21/2011] [Indexed: 11/10/2022]
Abstract
Transcription factors encoded by Antennapedia-class homeobox genes play crucial roles in controlling development of animals, and are often found clustered in animal genomes. The Hox and ParaHox gene clusters have been regarded as evolutionary sisters and evolved from a putative common ancestral gene complex, the ProtoHox cluster, prior to the divergence of the Cnidaria and Bilateria (bilaterally symmetrical animals). The Deuterostomia is a monophyletic group of animals that belongs to the Bilateria, and a sister group to the Protostomia. The deuterostomes include the vertebrates (to which we belong), invertebrate chordates, hemichordates, echinoderms and possibly xenoturbellids, as well as acoelomorphs. The studies of Hox and ParaHox genes provide insights into the origin and subsequent evolution of the bilaterian animals. Recently, it becomes apparent that among the Hox and ParaHox genes, there are significant variations in organization on the chromosome, expression pattern, and function. In this review, focusing on invertebrate deuterostomes, I first summarize recent findings about Hox and ParaHox genes. Next, citing unsolved issues, I try to provide clues that might allow us to reconstruct the common ancestor of deuterostomes, as well as understand the roles of Hox and ParaHox genes in the development and evolution of deuterostomes.
Collapse
Affiliation(s)
- Tetsuro Ikuta
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Uruma, Japan.
| |
Collapse
|
43
|
Winterbottom EF, Ramsbottom SA, Isaacs HV. Gsx transcription factors repress Iroquois gene expression. Dev Dyn 2011; 240:1422-9. [DOI: 10.1002/dvdy.22648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2011] [Indexed: 11/10/2022] Open
|
44
|
In der Rieden PMJ, Jansen HJ, Durston AJ. XMeis3 is necessary for mesodermal Hox gene expression and function. PLoS One 2011; 6:e18010. [PMID: 21464931 PMCID: PMC3065463 DOI: 10.1371/journal.pone.0018010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/21/2011] [Indexed: 12/13/2022] Open
Abstract
Hox transcription factors provide positional information during patterning of the anteroposterior axis. Hox transcription factors can co-operatively bind with PBC-class co-factors, enhancing specificity and affinity for their appropriate binding sites. The nuclear localisation of these co-factors is regulated by the Meis-class of homeodomain proteins. During development of the zebrafish hindbrain, Meis3 has previously been shown to synergise with Hoxb1 in the autoregulation of Hoxb1. In Xenopus XMeis3 posteriorises the embryo upon ectopic expression. Recently, an early temporally collinear expression sequence of Hox genes was detected in Xenopus gastrula mesoderm (see intro. P3). There is evidence that this sequence sets up the embryo's later axial Hox expression pattern by time-space translation. We investigated whether XMeis3 is involved in regulation of this early mesodermal Hox gene expression. Here, we present evidence that XMeis3 is necessary for expression of Hoxd1, Hoxb4 and Hoxc6 in mesoderm during gastrulation. In addition, we show that XMeis3 function is necessary for the progression of gastrulation. Finally, we present evidence for synergy between XMeis3 and Hoxd1 in Hoxd1 autoregulation in mesoderm during gastrulation.
Collapse
|
45
|
Nostro MC, Sarangi F, Ogawa S, Holtzinger A, Corneo B, Li X, Micallef SJ, Park IH, Basford C, Wheeler MB, Daley GQ, Elefanty AG, Stanley EG, Keller G. Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 2011; 138:861-71. [PMID: 21270052 DOI: 10.1242/dev.055236] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The generation of insulin-producing β-cells from human pluripotent stem cells is dependent on efficient endoderm induction and appropriate patterning and specification of this germ layer to a pancreatic fate. In this study, we elucidated the temporal requirements for TGFβ family members and canonical WNT signaling at these developmental stages and show that the duration of nodal/activin A signaling plays a pivotal role in establishing an appropriate definitive endoderm population for specification to the pancreatic lineage. WNT signaling was found to induce a posterior endoderm fate and at optimal concentrations enhanced the development of pancreatic lineage cells. Inhibition of the BMP signaling pathway at specific stages was essential for the generation of insulin-expressing cells and the extent of BMP inhibition required varied widely among the cell lines tested. Optimal stage-specific manipulation of these pathways resulted in a striking 250-fold increase in the levels of insulin expression and yielded populations containing up to 25% C-peptide+ cells.
Collapse
Affiliation(s)
- M Cristina Nostro
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Fibroblast growth factor (FGF) signalling has been implicated during several phases of early embryogenesis, including the patterning of the embryonic axes, the induction and/or maintenance of several cell lineages and the coordination of morphogenetic movements. Here, we summarise our current understanding of the regulation and roles of FGF signalling during early vertebrate development.
Collapse
Affiliation(s)
- Karel Dorey
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Enrique Amaya
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
47
|
Savory JGA, Mansfield M, St Louis C, Lohnes D. Cdx4 is a Cdx2 target gene. Mech Dev 2010; 128:41-8. [PMID: 20933081 DOI: 10.1016/j.mod.2010.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/31/2010] [Accepted: 09/29/2010] [Indexed: 11/29/2022]
Abstract
The products of the Cdx genes, Cdx1, Cdx2 and Cdx4, play multiple roles in early vertebrate development, and have been proposed to serve to relay signaling information from Wnt, RA and FGF pathways to orchestrate events related to anterior-posterior vertebral patterning and axial elongation. In addition, Cdx1 and Cdx2 have been reported to both autoregulate and to be subject to cross regulation by other family members. We have now found that Cdx4 expression is significantly down regulated in Cdx2(-/-) mutants suggesting previously unrecognized cross-regulatory interactions. Moreover, we have previously shown that Cdx4 is a direct target of the canonical Wnt signaling pathway, and that Cdx1 physically interacts with LEF/TCF members in an autoregulatory loop. We therefore investigated the means by which Cdx2 impacted on Cdx4 expression and assessed potential interaction between Cdx2 and canonical Wnt signaling on the Cdx4 promoter. We found that the Cdx4 promoter was regulated by Cdx2 in transient transfection assays. Electrophoretic mobility shift assays showed that Cdx2 bound to predicted Cdx response elements in the Cdx4 promoter which, when mutated, significantly reduced activity. Consistent with these data, chromatin immunoprecipitation assays from embryos demonstrated occupancy of the Cdx4 promoter by Cdx2 in vivo. However, we failed to observe an interaction between Cdx2 and components of the canonical Wnt signaling pathway. These findings suggest that, while both canonical Wnt and Cdx2 can regulate the activity of the Cdx4 promoter, they appear to operate through distinct mechanisms.
Collapse
Affiliation(s)
- Joanne G A Savory
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | |
Collapse
|
48
|
Winterbottom EF, Illes JC, Faas L, Isaacs HV. Conserved and novel roles for the Gsh2 transcription factor in primary neurogenesis. Development 2010; 137:2623-31. [DOI: 10.1242/dev.047159] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Gsx genes encode members of the ParaHox family of homeodomain transcription factors, which are expressed in the developing central nervous system in members of all major groups of bilaterians. The Gsx genes in Xenopus show similar patterns of expression to their mammalian homologues during late development. However, they are also expressed from early neurula stages in an intermediate region of the open neural plate where primary interneurons form. The Gsx homologue in the protostome Drosophila is expressed in a corresponding intermediate region of the embryonic neuroectoderm, and is essential for the correct specification of the neuroblasts that arise from it, suggesting that Gsx genes may have played a role in intermediate neural specification in the last common bilaterian ancestor. Here, we show that manipulation of Gsx function disrupts the differentiation of primary interneurons. We demonstrate that, despite their similar expression patterns, the uni-directional system of interactions between homeodomain transcription factors from the Msx, Nkx and Gsx families in the Drosophila neuroectoderm is not conserved between their homologues in the Xenopus open neural plate. Finally, we report the identification of Dbx1 as a direct target of Gsh2-mediated transcriptional repression, and show that a series of cross-repressive interactions, reminiscent of those that exist in the amniote neural tube, act between Gsx, Dbx and Nkx transcription factors to pattern the medial aspect of the central nervous system at open neural plate stages in Xenopus.
Collapse
Affiliation(s)
| | - Jean C. Illes
- Area 11, Department of Biology, University of York, York YO10 5YW, UK
| | - Laura Faas
- Area 11, Department of Biology, University of York, York YO10 5YW, UK
| | - Harry V. Isaacs
- Area 11, Department of Biology, University of York, York YO10 5YW, UK
| |
Collapse
|
49
|
François P, Siggia ED. Predicting embryonic patterning using mutual entropy fitness and in silico evolution. Development 2010; 137:2385-95. [PMID: 20570938 DOI: 10.1242/dev.048033] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During vertebrate embryogenesis, the expression of Hox genes that define anterior-posterior identity follows general rules: temporal colinearity and posterior prevalence. A mathematical measure for the quality or fitness of the embryonic pattern produced by a gene regulatory network is derived. Using this measure and in silico evolution we derive gene interaction networks for anterior-posterior (AP) patterning under two developmental paradigms. For patterning during growth (paradigm I), which is appropriate for vertebrates and short germ-band insects, the algorithm creates gene expression patterns reminiscent of Hox gene expression. The networks operate through a timer gene, the level of which measures developmental progression (a candidate is the widely conserved posterior morphogen Caudal). The timer gene provides a simple mechanism to coordinate patterning with growth rate. The timer, when expressed as a static spatial gradient, functions as a classical morphogen (paradigm II), providing a natural way to derive the AP patterning, as seen in long germ-band insects that express their Hox genes simultaneously, from the ancestral short germ-band system. Although the biochemistry of Hox regulation in higher vertebrates is complex, the actual spatiotemporal expression phenotype is not, and simple activation and repression by Hill functions suffices in our model. In silico evolution provides a quantitative demonstration that continuous positive selection can generate complex phenotypes from simple components by incremental evolution, as Darwin proposed.
Collapse
Affiliation(s)
- Paul François
- Center for studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10065 New York, NY, USA
| | - Eric D. Siggia
- Center for studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10065 New York, NY, USA
| |
Collapse
|
50
|
A PAL for Schistosoma mansoni PHM. Mol Biochem Parasitol 2010; 173:97-106. [PMID: 20488212 DOI: 10.1016/j.molbiopara.2010.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 11/23/2022]
Abstract
Parasitic helminth neuromuscular function is a proven target for chemotherapeutic control. Although neuropeptide signalling plays a key role in helminth motor function, it has not yet provided targets for known anthelmintics. The majority of biologically active neuropeptides display a C-terminal amide (NH(2)) motif, generated exclusively by the sequential action of two enzymes, peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidylglycine alpha-amidating lyase (PAL). Further to our previous description of a monofunctional PHM enzyme (SmPHM) from the human blood fluke Schistosoma mansoni, here we describe a cDNA encoding S. mansoni PAL (SmPAL). SmPAL is a monofunctional enzyme which, following heterologous expression, we find to have functionally similar catalytic activity and optimal pH values, but key catalytic core amino acid substitutions, when compared to other known PALs including those found in humans. We have used in situ hybridisation to demonstrate that in adult schistosomes, SmPAL mRNA (Sm-pal-1) is expressed in neuronal cell bodies of the central nervous system, consistent with a role for amidated neuropeptides in S. mansoni neuromuscular function. In order to validate SmPAL as a putative drug target we applied published RNA interference (RNAi) methods in efforts to trigger knockdown of Sm-pal-1 transcript in larval schistosomula. Although transcript knockdown was recorded on several occasions, silencing was variable and inconsistent and did not associate with any observable aberrant phenotype. The inconsistent outcomes of RNAi suggest that there may be tissue-specific differences in the applicability of RNAi methods for S. mansoni, with neuronal targets proving more difficult or refractory to knockdown. The key role played by schistosome amidating enzymes in neuropeptide maturation make them appealing as drug targets; their validation as such will depend on the development of more robust reverse genetic tools to facilitate efficient neuronal gene function studies.
Collapse
|