1
|
Villamil CI, Middleton ER. Conserved patterns and locomotor-related evolutionary constraints in the hominoid vertebral column. J Hum Evol 2024; 190:103528. [PMID: 38579429 DOI: 10.1016/j.jhevol.2024.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
The evolution of the hominoid lineage is characterized by pervasive homoplasy, notably in regions such as the vertebral column, which plays a central role in body support and locomotion. Few isolated and fewer associated vertebrae are known for most fossil hominoid taxa, but identified specimens indicate potentially high levels of convergence in terms of both form and number. Homoplasy thus complicates attempts to identify the anatomy of the last common ancestor of hominins and other taxa and stymies reconstructions of evolutionary scenarios. One way to clarify the role of homoplasy is by investigating constraints via phenotypic integration, which assesses covariation among traits, shapes evolutionary pathways, and itself evolves in response to selection. We assessed phenotypic integration and evolvability across the subaxial (cervical, thoracic, lumbar, sacral) vertebral column of macaques (n = 96), gibbons (n = 77), chimpanzees (n = 92), and modern humans (n = 151). We found a mid-cervical cluster that may have shifted cranially in hominoids, a persistent thoracic cluster that is most marked in chimpanzees, and an expanded lumbosacral cluster in hominoids that is most expanded in gibbons. Our results highlight the highly conserved nature of the vertebral column. Taxa appear to exploit existing patterns of integration and ontogenetic processes to shift, expand, or reduce cluster boundaries. Gibbons appear to be the most highly derived taxon in our sample, possibly in response to their highly specialized locomotion.
Collapse
Affiliation(s)
- Catalina I Villamil
- School of Chiropractic, Universidad Central del Caribe, Puerto Rico, PO Box 60327, Bayamón, USA.
| | - Emily R Middleton
- Department of Anthropology, University of Wisconsin-Milwaukee, 3413 N. Downer Ave., Sabin Hall 390, Milwaukee, WI, USA
| |
Collapse
|
2
|
Murakami T, Ruengsinpinya L, Takahata Y, Nakaminami Y, Hata K, Nishimura R. HOXA10 promotes Gdf5 expression in articular chondrocytes. Sci Rep 2023; 13:22778. [PMID: 38123662 PMCID: PMC10733362 DOI: 10.1038/s41598-023-50318-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
Growth differentiation factor 5 (GDF5), a BMP family member, is highly expressed in the surface layer of articular cartilage. The GDF5 gene is a key risk locus for osteoarthritis and Gdf5-deficient mice show abnormal joint development, indicating that GDF5 is essential in joint development and homeostasis. In this study, we aimed to identify transcription factors involved in Gdf5 expression by performing two-step screening. We first performed microarray analyses to find transcription factors specifically and highly expressed in the superficial zone (SFZ) cells of articular cartilage, and isolated 11 transcription factors highly expressed in SFZ cells but not in costal chondrocytes. To further proceed with the identification, we generated Gdf5-HiBiT knock-in (Gdf5-HiBiT KI) mice, by which we can easily and reproducibly monitor Gdf5 expression, using CRISPR/Cas9 genome editing. Among the 11 transcription factors, Hoxa10 clearly upregulated HiBiT activity in the SFZ cells isolated from Gdf5-HiBiT KI mice. Hoxa10 overexpression increased Gdf5 expression while Hoxa10 knockdown decreased it in the SFZ cells. Moreover, ChIP and promoter assays proved the direct regulation of Gdf5 expression by HOXA10. Thus, our results indicate the important role played by HOXA10 in Gdf5 regulation and the usefulness of Gdf5-HiBiT KI mice for monitoring Gdf5 expression.
Collapse
Affiliation(s)
- Tomohiko Murakami
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| | - Lerdluck Ruengsinpinya
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Yoshifumi Takahata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yuri Nakaminami
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Takahashi I, Watanabe Y, Sonoda H, Tsunoda D, Amano I, Koibuchi N, Iizuka H, Shimokawa N. Calcium sensing and signaling are impaired in the lumbar spine of a rat model of congenital kyphosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:3403-3412. [PMID: 37555955 DOI: 10.1007/s00586-023-07877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/07/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE Kyphosis involves spines curving excessively backward beyond their physiological curvature. Although the normal structure of the spinal vertebrae is extremely important for maintaining posture and the normal function of the thoracic and abdominal organs, our knowledge concerning the pathogenesis of the disease is insufficient. We herein report that the downregulation of the calcium signaling pathway is involved in the pathogenesis of congenital kyphosis. METHODS The third to fifth lumbar spine segments, the kyphotic region of Ishibashi (IS) rats, which are used as a model of congenital kyphoscoliosis, were collected. A DNA microarray, quantitative PCR, Western blotting, and immunohistochemistry were used to measure the expression of genes and proteins related to intracellular calcium signaling. RESULTS We found that the expression of calcium-sensing receptor (CaSR) and transient receptor potential vanilloid 1 (Trpv1)-two receptors involved in the calcium signaling-was decreased in the lumbar spine of IS rats. We also observed that the number of CaSR-immunoreactive and Trpv1-immunoreactive cells in the lumbar spine of IS rats was lower than in wild-type rats. Furthermore, the expression of intracellular molecules downstream of these receptors, such as phosphorylated protein kinase C, c-Jun N-terminal kinase, and neural EGFL-like 1, was also reduced. In fact, the calcium content in the lumbar spine of IS rats was significantly lower than that in wild-type rats. CONCLUSION These results indicate that adequate calcium signaling is extremely important for the regulation of normal bone formation and may also be a key factor for understanding the pathogenesis of congenital kyphosis.
Collapse
Affiliation(s)
- Itsuki Takahashi
- Department of Nutrition, Takasaki University Graduate Scholl of Health and Welfare, 37-1 Nakaorui-Machi, Takasaki, Gunma, 370-0033, Japan
| | - Yusuke Watanabe
- Department of Nutrition, Takasaki University Graduate Scholl of Health and Welfare, 37-1 Nakaorui-Machi, Takasaki, Gunma, 370-0033, Japan
| | - Hiroyuki Sonoda
- Orthopaedic Surgery, Japanese Red Cross Maebashi Hospital, Maebashi, Gunma, Japan
| | - Daisuke Tsunoda
- Spine Surgery, Higashi-Maebashi Orthopaedic Hospital, Maebashi, Gunma, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Haku Iizuka
- Orthopedic Surgery, Isesaki Municipal Hospital, Isesaki, Gunma, Japan.
| | - Noriaki Shimokawa
- Department of Nutrition, Takasaki University Graduate Scholl of Health and Welfare, 37-1 Nakaorui-Machi, Takasaki, Gunma, 370-0033, Japan.
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| |
Collapse
|
4
|
Ogut E. Is the third trochanter of the femur a developmental anomaly, a functional marker, or an evolutionary adaptation? CANADIAN SOCIETY OF FORENSIC SCIENCE JOURNAL 2023; 56:123-142. [DOI: 10.1080/00085030.2022.2104563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Eren Ogut
- Department of Anatomy, Bahçeşehir University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
5
|
Ogut E. Is the third trochanter of the femur a developmental anomaly, a functional marker, or an evolutionary adaptation? CANADIAN SOCIETY OF FORENSIC SCIENCE JOURNAL 2023; 56:123-142. [DOI: https:/doi.org/10.1080/00085030.2022.2104563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 07/22/2023]
Affiliation(s)
- Eren Ogut
- Department of Anatomy, Bahçeşehir University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
6
|
Leclerc K, Remark LH, Ramsukh M, Josephson AM, Palma L, Parente PEL, Sambon M, Lee S, Lopez EM, Morgani SM, Leucht P. Hox genes are crucial regulators of periosteal stem cell identity. Development 2023; 150:dev201391. [PMID: 36912250 PMCID: PMC10112919 DOI: 10.1242/dev.201391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 03/14/2023]
Abstract
Periosteal stem and progenitor cells (PSPCs) are major contributors to bone maintenance and repair. Deciphering the molecular mechanisms that regulate their function is crucial for the successful generation and application of future therapeutics. Here, we pinpoint Hox transcription factors as necessary and sufficient for periosteal stem cell function. Hox genes are transcriptionally enriched in periosteal stem cells and their overexpression in more committed progenitors drives reprogramming to a naïve, self-renewing stem cell-like state. Crucially, individual Hox family members are expressed in a location-specific manner and their stem cell-promoting activity is only observed when the Hox gene is matched to the anatomical origin of the PSPC, demonstrating a role for the embryonic Hox code in adult stem cells. Finally, we demonstrate that Hoxa10 overexpression partially restores the age-related decline in fracture repair. Together, our data highlight the importance of Hox genes as key regulators of PSPC identity in skeletal homeostasis and repair.
Collapse
Affiliation(s)
- Kevin Leclerc
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Lindsey H. Remark
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Malissa Ramsukh
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Anne Marie Josephson
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Laura Palma
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo E. L. Parente
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Margaux Sambon
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Sooyeon Lee
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm 89081, Germany
| | - Emma Muiños Lopez
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Sophie M. Morgani
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| | - Philipp Leucht
- Department of Orthopedic Surgery, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Robert I. Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
7
|
Serres-Armero A, Davis BW, Povolotskaya IS, Morcillo-Suarez C, Plassais J, Juan D, Ostrander EA, Marques-Bonet T. Copy number variation underlies complex phenotypes in domestic dog breeds and other canids. Genome Res 2021; 31:762-774. [PMID: 33863806 PMCID: PMC8092016 DOI: 10.1101/gr.266049.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 02/26/2021] [Indexed: 01/02/2023]
Abstract
Extreme phenotypic diversity, a history of artificial selection, and socioeconomic value make domestic dog breeds a compelling subject for genomic research. Copy number variation (CNV) is known to account for a significant part of inter-individual genomic diversity in other systems. However, a comprehensive genome-wide study of structural variation as it relates to breed-specific phenotypes is lacking. We have generated whole genome CNV maps for more than 300 canids. Our data set extends the canine structural variation landscape to more than 100 dog breeds, including novel variants that cannot be assessed using microarray technologies. We have taken advantage of this data set to perform the first CNV-based genome-wide association study (GWAS) in canids. We identify 96 loci that display copy number differences across breeds, which are statistically associated with a previously compiled set of breed-specific morphometrics and disease susceptibilities. Among these, we highlight the discovery of a long-range interaction involving a CNV near MED13L and TBX3, which could influence breed standard height. Integration of the CNVs with chromatin interactions, long noncoding RNA expression, and single nucleotide variation highlights a subset of specific loci and genes with potential functional relevance and the prospect to explain trait variation between dog breeds.
Collapse
Affiliation(s)
- Aitor Serres-Armero
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, Barcelona 08003, Spain
| | - Brian W Davis
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843, USA
| | - Inna S Povolotskaya
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Carlos Morcillo-Suarez
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, Barcelona 08003, Spain
| | - Jocelyn Plassais
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David Juan
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, Barcelona 08003, Spain
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tomas Marques-Bonet
- IBE, Institut de Biologia Evolutiva (Universitat Pompeu Fabra/CSIC), Ciencies Experimentals i de la Salut, Barcelona 08003, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia 08010, Spain.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia 08201, Spain
| |
Collapse
|
8
|
Wang K, Wang Y, Hu Z, Zhang L, Li G, Dang L, Tan Y, Cao X, Shi F, Zhang S, Zhang G. Bone-targeted lncRNA OGRU alleviates unloading-induced bone loss via miR-320-3p/Hoxa10 axis. Cell Death Dis 2020; 11:382. [PMID: 32427900 PMCID: PMC7237470 DOI: 10.1038/s41419-020-2574-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 01/13/2023]
Abstract
Unloading-induced bone loss is a threat to human health and can eventually result in osteoporotic fractures. Although the underlying molecular mechanism of unloading-induced bone loss has been broadly elucidated, the pathophysiological role of long noncoding RNAs (lncRNAs) in this process is unknown. Here, we identified a novel lncRNA, OGRU, a 1816-nucleotide transcript with significantly decreased levels in bone specimens from hindlimb-unloaded mice and in MC3T3-E1 cells under clinorotation-unloading conditions. OGRU overexpression promoted osteoblast activity and matrix mineralization under normal loading conditions, and attenuated the suppression of MC3T3-E1 cell differentiation induced by clinorotation unloading. Furthermore, this study found that supplementation of pcDNA3.1(+)–OGRU via (DSS)6–liposome delivery to the bone-formation surfaces of hindlimb-unloaded (HLU) mice partially alleviated unloading-induced bone loss. Mechanistic investigations demonstrated that OGRU functions as a competing endogenous RNA (ceRNA) to facilitate the protein expression of Hoxa10 by competitively binding miR-320-3p and subsequently promote osteoblast differentiation and bone formation. Taken together, the results of our study provide the first clarification of the role of lncRNA OGRU in unloading-induced bone loss through the miR-320-3p/Hoxa10 axis, suggesting an efficient anabolic strategy for osteoporosis treatment.
Collapse
Affiliation(s)
- Ke Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Gaozhi Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Lei Dang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China.
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China.
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
9
|
Mucenski ML, Mahoney R, Adam M, Potter AS, Potter SS. Single cell RNA-seq study of wild type and Hox9,10,11 mutant developing uterus. Sci Rep 2019; 9:4557. [PMID: 30872674 PMCID: PMC6418183 DOI: 10.1038/s41598-019-40923-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
The uterus is a remarkable organ that must guard against infections while maintaining the ability to support growth of a fetus without rejection. The Hoxa10 and Hoxa11 genes have previously been shown to play essential roles in uterus development and function. In this report we show that the Hoxa9,10,11, Hoxc9,10,11, Hoxd9,10,11 genes play a redundant role in the formation of uterine glands. In addition, we use single cell RNA-seq to create a high resolution gene expression atlas of the developing wild type mouse uterus. Cell types and subtypes are defined, for example dividing endothelial cells into arterial, venous, capillary, and lymphatic, while epithelial cells separate into luminal and glandular subtypes. Further, a surprising heterogeneity of stromal and myocyte cell types are identified. Transcription factor codes and ligand/receptor interactions are characterized. We also used single cell RNA-seq to globally define the altered gene expression patterns in all developing uterus cell types for two Hox mutants, with 8 or 9 mutant Hox genes. The mutants show a striking disruption of Wnt signaling as well as the Cxcl12/Cxcr4 ligand/receptor axis.
Collapse
Affiliation(s)
- Michael L Mucenski
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Robert Mahoney
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Andrew S Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
10
|
Ueda S, Cordeiro IR, Moriyama Y, Nishimori C, Kai KI, Yu R, Nakato R, Shirahige K, Tanaka M. Cux2 refines the forelimb field by controlling expression of Raldh2 and Hox genes. Biol Open 2019; 8:bio.040584. [PMID: 30651234 PMCID: PMC6398465 DOI: 10.1242/bio.040584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In vertebrates, two pairs of buds that give rise to the fore- and hindlimbs form at discrete positions along the rostral-caudal axis of the body. The mechanism responsible for the positioning of the limb buds is still largely unknown. Here we show a novel function for Cut homeobox transcription factor 2 (Cux2), the ortholog of Drosophila cut, in refining the forelimb field during chick development. Cux2 is expressed in the forelimb field before the emergence of the limb buds. Knocking down the expression of Cux2 using small interfering RNA (siRNA) resulted in a caudal shift of the forelimb bud, whereas misexpression of Cux2 or the constitutively active Cux2-VP16 caused a rostral shift of the forelimb bud or reduction of the forelimb field along the anterior-posterior axis. Further functional analyses revealed that expression of Hoxb genes and retinaldehyde dehydrogenase 2 (Raldh2), which are involved in limb positioning, are directly activated by Cux2 in the lateral plate mesoderm. Our data suggest that Cux2 in the lateral plate mesoderm refines the forelimb field via regulation of Raldh2 and Hoxb genes in chicken embryos. Summary: Cux2 in the lateral plate mesoderm refines the forelimb field via regulation of Raldh2 and Hoxb genes in chicken embryos.
Collapse
Affiliation(s)
- Shogo Ueda
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Ingrid Rosenburg Cordeiro
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Yuuta Moriyama
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Chika Nishimori
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Kei-Ichi Kai
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Reiko Yu
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| | - Ryoichiro Nakato
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Mikiko Tanaka
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
11
|
Godfrey TC, Wildman BJ, Beloti MM, Kemper AG, Ferraz EP, Roy B, Rehan M, Afreen LH, Kim E, Lengner CJ, Hassan Q. The microRNA-23a cluster regulates the developmental HoxA cluster function during osteoblast differentiation. J Biol Chem 2018; 293:17646-17660. [PMID: 30242124 DOI: 10.1074/jbc.ra118.003052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRs) and Hox transcription factors have decisive roles in postnatal bone formation and homeostasis. In silico analysis identified extensive interaction between HOXA cluster mRNA and microRNAs from the miR-23a cluster. However, Hox regulation by the miR-23a cluster during osteoblast differentiation remains undefined. We examined this regulation in preosteoblasts and in a novel miR-23a cluster knockdown mouse model. Overexpression and knockdown of the miR-23a cluster in preosteoblasts decreased and increased, respectively, the expression of the proteins HOXA5, HOXA10, and HOXA11; these proteins' mRNAs exhibited significant binding with the miR-23a cluster miRNAs, and miRNA 3'-UTR reporter assays confirmed repression. Importantly, during periods correlating with development and differentiation of bone cells, we found an inverse pattern of expression between HoxA factors and members of the miR-23a cluster. HOXA5 and HOXA11 bound to bone-specific promoters, physically interacted with transcription factor RUNX2, and regulated bone-specific genes. Depletion of HOXA5 or HOXA11 in preosteoblasts also decreased cellular differentiation. Additionally, stable overexpression of the miR-23a cluster in osteoblasts decreased the recruitment of HOXA5 and HOXA11 to osteoblast gene promoters, significantly inhibiting histone H3 acetylation. Heterozygous miR-23a cluster knockdown female mice (miR-23a ClWT/ZIP) had significantly increased trabecular bone mass when compared with WT mice. Furthermore, miR-23a cluster knockdown in calvarial osteoblasts of these mice increased the recruitment of HOXA5 and HOXA11, with a substantial enrichment of promoter histone H3 acetylation. Taken together, these findings demonstrate that the miR-23a cluster is required for maintaining stage-specific HoxA factor expression during osteogenesis.
Collapse
Affiliation(s)
- Tanner C Godfrey
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Benjamin J Wildman
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Marcio M Beloti
- the School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil, and
| | - Austin G Kemper
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Emanuela P Ferraz
- the School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil, and
| | - Bhaskar Roy
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Mohammad Rehan
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Lubana H Afreen
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Eddy Kim
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Christopher J Lengner
- the Department of Biomedical Sciences, School of Veterinary Medicine, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Quamarul Hassan
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294,
| |
Collapse
|
12
|
Drake KA, Adam M, Mahoney R, Potter SS. Disruption of Hox9,10,11 function results in cellular level lineage infidelity in the kidney. Sci Rep 2018; 8:6306. [PMID: 29679048 PMCID: PMC5910417 DOI: 10.1038/s41598-018-24782-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/10/2018] [Indexed: 01/09/2023] Open
Abstract
Hox genes are important regulators of development. The 39 mammalian Hox genes have considerable functional overlap, greatly confounding their study. In this report, we generated mice with multiple combinations of paralogous and flanking Abd-B Hox gene mutations to investigate functional redundancies in kidney development. The resulting mice developed a number of kidney abnormalities, including hypoplasia, agenesis, and severe cysts, with distinct Hox functions observed in early metanephric kidney formation and nephron progenitor maintenance. Most surprising, however, was that extensive removal of Hox shared function in these kidneys resulted in cellular level lineage infidelity. Strikingly, mutant nephron tubules consisted of intermixed cells with proximal tubule, loop of Henle, and collecting duct identities, with some single cells expressing markers associated with more than one nephron segment. These results indicate that Hox genes are required for proper lineage selection/maintenance and full repression of genes involved in cell fate restriction in the developing kidney.
Collapse
Affiliation(s)
- Keri A Drake
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Robert Mahoney
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
13
|
Magella B, Mahoney R, Adam M, Potter SS. Reduced Abd-B Hox function during kidney development results in lineage infidelity. Dev Biol 2018; 438:84-93. [PMID: 29596840 DOI: 10.1016/j.ydbio.2018.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/28/2018] [Accepted: 03/21/2018] [Indexed: 02/05/2023]
Abstract
Hox genes can function as key drivers of segment identity, with Hox mutations in Drosophila often resulting in dramatic homeotic transformations. In addition, however, they can serve other essential functions. In mammals, the study of Hox gene roles in development is complicated by the presence of four Hox clusters with a total of 39 genes showing extensive functional overlap. In this study, in order to better understand shared core Hox functions, we examined kidney development in mice with frameshift mutations of multiple Abd-B type Hox genes. The resulting phenotypes included dramatically reduced branching morphogenesis of the ureteric bud, premature depletion of nephron progenitors and abnormal development of the stromal compartment. Most unexpected, however, we also observed a cellular level lineage infidelity in nephron segments. Scattered cells within the proximal tubules, for example, expressed genes normally expressed only in collecting ducts. Multiple combinations of inappropriate nephron segment specific marker expression were found. In some cases, cells within a tubule showed incorrect identity, while in other cases cells showed ambiguous character, with simultaneous expression of genes associated with more than one nephron segment. These results give evidence that Hox genes have an overlapping core function at the cellular level in driving and/or maintaining correct differentiation decisions.
Collapse
Affiliation(s)
- Bliss Magella
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Robert Mahoney
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States.
| |
Collapse
|
14
|
Sheth R, Barozzi I, Langlais D, Osterwalder M, Nemec S, Carlson HL, Stadler HS, Visel A, Drouin J, Kmita M. Distal Limb Patterning Requires Modulation of cis-Regulatory Activities by HOX13. Cell Rep 2017; 17:2913-2926. [PMID: 27974206 PMCID: PMC5697718 DOI: 10.1016/j.celrep.2016.11.039] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 01/12/2023] Open
Abstract
The combinatorial expression of Hox genes along the body axes is a major determinant of cell fate and plays a pivotal role in generating the animal body plan. Loss of HOXA13 and HOXD13 transcription factors (HOX13) leads to digit agenesis in mice, but how HOX13 proteins regulate transcriptional outcomes and confer identity to the distal-most limb cells has remained elusive. Here, we report on the genome-wide profiling of HOXA13 and HOXD13 in vivo binding and changes of the transcriptome and chromatin state in the transition from the early to the late-distal limb developmental program, as well as in Hoxa13−/−; Hoxd13−/−limbs. Our results show that proper termination of the early limb transcriptional program and activation of the late-distal limb program are coordinated by the dual action of HOX13 on cis-regulatory modules.
Collapse
Affiliation(s)
- Rushikesh Sheth
- Laboratory of Genetics and Development, Institut de Recherches Cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, QC H2W1R7, Canada.
| | - Iros Barozzi
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David Langlais
- Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montréal, H3G0B1 QC, Canada
| | | | - Stephen Nemec
- Laboratory of Molecular Genetics, Institut de Recherches Cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, H2W1R7 QC, Canada
| | - Hanqian L Carlson
- Department of Skeletal Biology, Shriners Hospital for Children, 3101 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - H Scott Stadler
- Department of Skeletal Biology, Shriners Hospital for Children, 3101 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Axel Visel
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, CA 95340, USA
| | - Jacques Drouin
- Laboratory of Molecular Genetics, Institut de Recherches Cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, H2W1R7 QC, Canada; Department of Medicine, Université de Montréal, Montréal, H3T1J4 QC, Canada
| | - Marie Kmita
- Laboratory of Genetics and Development, Institut de Recherches Cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, QC H2W1R7, Canada; Department of Medicine, Université de Montréal, Montréal, H3T1J4 QC, Canada.
| |
Collapse
|
15
|
Tague RG. Proximate cause, anatomical correlates, and obstetrical implication of a supernumerary lumbar vertebra in humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 165:444-456. [PMID: 29159938 DOI: 10.1002/ajpa.23361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Three issues are considered on variation in number of presacral vertebrae (PSV) in humans: (1) sexual difference in number of PSV, (2) inactivation of Hoxd-11 gene as etiology for a supernumerary lumbar vertebra, and (3) anatomical correlates of a supernumerary lumbar vertebra, including lumbar-sacral nearthrosis, and pelvic size. MATERIALS AND METHODS Sample was 407 skeletonized females and 1,318 males from United States; ages at death were 20 to 49 years. Two subsamples of males were used: (1) 98 with modal numbers of cervical, thoracic, lumbar, and sacral vertebrae (PSV = 24) and (2) 45 with a supernumerary lumbar vertebra but modal numbers for other vertebral segments (PSV = 25). Measurements were taken of ulna, second metacarpal, vertebrae, femur, and pelvis; presence of lumbar-sacral nearthrosis was observed. RESULTS Although 90% of females and males have 24 PSV, females have higher frequency of 23 PSV and males have higher frequency of 25 PSV. Compared to males with 24 PSV, males with 25 PSV and supernumerary lumbar vertebra show (1) no difference in anatomies associated with inactivation of Hoxd-11, and (2) higher frequency of lumbar-sacral nearthrosis and smaller pelvic inlet circumference. DISCUSSION Sexual difference in number of PSV may be due to tempo of somite formation and Hox gene activation. Hypothesis is not supported that a supernumerary lumbar vertebra is due to inactivation of Hoxd-11. The presence of a supernumerary lumbar vertebra is associated with small pelvic inlet circumference, which can be obstetrically disadvantageous.
Collapse
Affiliation(s)
- Robert G Tague
- Department of Geography and Anthropology, Louisiana State University, Baton Rouge, Louisiana, 70803
| |
Collapse
|
16
|
Nemeschkal HL. MORPHOMETRIC CORRELATION PATTERNS OF ADULT BIRDS (FRINGILLIDAE: PASSERIFORMES AND COLUMBIFORMES) MIRROR THE EXPRESSION OF DEVELOPMENTAL CONTROL GENES. Evolution 2017; 53:899-918. [DOI: 10.1111/j.1558-5646.1999.tb05384.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/1998] [Accepted: 12/22/1998] [Indexed: 11/27/2022]
Affiliation(s)
- Hans L. Nemeschkal
- Institute of Zoology, University of Vienna, Austria; Althanstrasse 14 A-1090 Vienna Austria
| |
Collapse
|
17
|
Diogo R, Guinard G, Diaz RE. Dinosaurs, Chameleons, Humans, and Evo-Devo Path: Linking Étienne Geoffroy's Teratology, Waddington's Homeorhesis, Alberch's Logic of "Monsters," and Goldschmidt Hopeful "Monsters". JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:207-229. [PMID: 28422426 DOI: 10.1002/jez.b.22709] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
Since the rise of evo-devo (evolutionary developmental biology) in the 1980s, few authors have attempted to combine the increasing knowledge obtained from the study of model organisms and human medicine with data from comparative anatomy and evolutionary biology in order to investigate the links between development, pathology, and macroevolution. Fortunately, this situation is slowly changing, with a renewed interest in evolutionary developmental pathology (evo-devo-path) in the past decades, as evidenced by the idea to publish this special, and very timely, issue on "Developmental Evolution in Biomedical Research." As all of us have recently been involved, independently, in works related in some way or another with evolution and developmental anomalies, we decided to join our different perspectives and backgrounds in the present contribution for this special issue. Specifically, we provide a brief historical account on the study of the links between evolution, development, and pathologies, followed by a review of the recent work done by each of us, and then by a general discussion on the broader developmental and macroevolutionary implications of our studies and works recently done by other authors. Our primary aims are to highlight the strength of studying developmental anomalies within an evolutionary framework to understand morphological diversity and disease by connecting the recent work done by us and others with the research done and broader ideas proposed by authors such as Étienne Geoffroy Saint-Hilaire, Waddington, Goldschmidt, Gould, and Per Alberch, among many others to pave the way for further and much needed work regarding abnormal development and macroevolution.
Collapse
Affiliation(s)
- Rui Diogo
- Department of Anatomy, College of Medicine, Howard University, Washington, District of Columbia
| | - Geoffrey Guinard
- UMR CNRS 5561, Biogéosciences, Université de Bourgogne, Dijon, France
| | - Raul E Diaz
- Department of Biology, La Sierra University, Riverside, California.,Natural History Museum of Los Angeles County, Los Angeles, California
| |
Collapse
|
18
|
Machnicki AL, Lovejoy CO, Reno PL. Developmental identity versus typology: Lucy has only four sacral segments. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 160:729-39. [DOI: 10.1002/ajpa.22997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 02/25/2016] [Accepted: 03/31/2016] [Indexed: 12/28/2022]
Affiliation(s)
| | - C. Owen Lovejoy
- Department of Anthropology and School of Biomedical SciencesKent State UniversityKent OH
| | - Philip L. Reno
- Department of AnthropologyPennsylvania State UniversityUniversity Park PA
| |
Collapse
|
19
|
Independent regulation of vertebral number and vertebral identity by microRNA-196 paralogs. Proc Natl Acad Sci U S A 2015; 112:E4884-93. [PMID: 26283362 DOI: 10.1073/pnas.1512655112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Hox genes play a central role in patterning the embryonic anterior-to-posterior axis. An important function of Hox activity in vertebrates is the specification of different vertebral morphologies, with an additional role in axis elongation emerging. The miR-196 family of microRNAs (miRNAs) are predicted to extensively target Hox 3' UTRs, although the full extent to which miR-196 regulates Hox expression dynamics and influences mammalian development remains to be elucidated. Here we used an extensive allelic series of mouse knockouts to show that the miR-196 family of miRNAs is essential both for properly patterning vertebral identity at different axial levels and for modulating the total number of vertebrae. All three miR-196 paralogs, 196a1, 196a2, and 196b, act redundantly to pattern the midthoracic region, whereas 196a2 and 196b have an additive role in controlling the number of rib-bearing vertebra and positioning of the sacrum. Independent of this, 196a1, 196a2, and 196b act redundantly to constrain total vertebral number. Loss of miR-196 leads to a collective up-regulation of numerous trunk Hox target genes with a concomitant delay in activation of caudal Hox genes, which are proposed to signal the end of axis extension. Additionally, we identified altered molecular signatures associated with the Wnt, Fgf, and Notch/segmentation pathways and demonstrate that miR-196 has the potential to regulate Wnt activity by multiple mechanisms. By feeding into, and thereby integrating, multiple genetic networks controlling vertebral number and identity, miR-196 is a critical player defining axial formulae.
Collapse
|
20
|
Raines AM, Magella B, Adam M, Potter SS. Key pathways regulated by HoxA9,10,11/HoxD9,10,11 during limb development. BMC DEVELOPMENTAL BIOLOGY 2015; 15:28. [PMID: 26186931 PMCID: PMC4506574 DOI: 10.1186/s12861-015-0078-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/07/2015] [Indexed: 11/17/2022]
Abstract
Background The 39 mammalian Hox genes show problematic patterns of functional overlap. In order to more fully define the developmental roles of Hox genes it is necessary to remove multiple combinations of paralogous and flanking genes. In addition, the downstream molecular pathways regulated by Hox genes during limb development remain incompletely delineated. Results In this report we examine limb development in mice with frameshift mutations in six Hox genes, Hoxa9,10,11 and Hoxd9,10,11. The mice were made with a novel recombineering method that allows the simultaneous targeting of frameshift mutations into multiple flanking genes. The Hoxa9,10,11−/−/Hoxd9,10,11−/− mutant mice show a reduced ulna and radius that is more severe than seen in Hoxa11−/−/Hoxd11−/− mice, indicating a minor role for the flanking Hox9,10 genes in zeugopod development, as well as their primary function in stylopod development. The mutant mice also show severe reduction of Shh expression in the zone of polarizing activity, and decreased Fgf8 expression in the apical ectodermal ridge, thereby better defining the roles of these specific Hox genes in the regulation of critical signaling centers during limb development. Importantly, we also used laser capture microdissection coupled with RNA-Seq to characterize the gene expression programs in wild type and mutant limbs. Resting, proliferative and hypertrophic compartments of E15.5 forelimb zeugopods were examined. The results provide an RNA-Seq characterization of the progression of gene expression patterns during normal endochondral bone formation. In addition of the Hox mutants showed strongly altered expression of Pknox2, Zfp467, Gdf5, Bmpr1b, Dkk3, Igf1, Hand2, Shox2, Runx3, Bmp7 and Lef1, all of which have been previously shown to play important roles in bone formation. Conclusions The recombineering based frameshift mutation of the six flanking and paralogous Hoxa9,10,11 and Hoxd9,10,11 genes provides a resource for the analysis of their overlapping functions. Analysis of the Hoxa9,10,11−/−/Hoxd9,10,11−/− mutant limbs confirms and extends the results of previous studies using mice with Hox mutations in single paralogous groups or with entire Hox cluster deletions. The RNA-Seq analysis of specific compartments of the normal and mutant limbs defines the multiple key perturbed pathways downstream of these Hox genes. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0078-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna M Raines
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| | - Bliss Magella
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| |
Collapse
|
21
|
Kjosness KM, Hines JE, Lovejoy CO, Reno PL. The pisiform growth plate is lost in humans and supports a role for Hox in growth plate formation. J Anat 2014; 225:527-38. [PMID: 25279687 PMCID: PMC4292754 DOI: 10.1111/joa.12235] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2014] [Indexed: 12/29/2022] Open
Abstract
The human pisiform is a small, nodular, although functionally significant, bone of the wrist. In most other mammals, including apes and Australopithecus afarensis, pisiforms are elongate. An underappreciated fact is that the typical mammalian pisiform forms from two ossification centers. We hypothesize that: (i) the presence of a secondary ossification center in mammalian pisiforms indicates the existence of a growth plate; and (ii) human pisiform reduction results from growth plate loss. To address these hypotheses, we surveyed African ape pisiform ossification and confirmed the presence of a late-forming secondary ossification center in chimpanzees and gorillas. Identification of the initial ossification center occurs substantially earlier in apes relative to humans, raising questions concerning the homology of the human pisiform and the two mammalian ossification centers. Second, we conducted histological and immunohistochemical analyses of pisiform ossification in mice. We confirm the presence of two ossification centers separated by organized columnar and hypertrophic chondrocyte zones. Flattened chondrocytes were highly mitotic, indicating the presence of a growth plate. Hox genes have been proposed to play a fundamental role in growth plate patterning. The existence of a pisiform growth plate presents an interesting test case for the association between Hox expression and growth plate formation, and could explain the severe effects on the pisiform observed in Hoxa11 and Hoxd11 knockout mice. Consistent with this hypothesis, we show that Hoxd11 is expressed adjacent to the pisiform in late-stage embryonic mouse limbs supporting a role for Hox genes in growth plate specification. This raises questions concerning the mechanisms regulating Hox expression in the developing carpus.
Collapse
Affiliation(s)
- Kelsey M Kjosness
- Department of Anthropology, The Pennsylvania State University, University Park, PA, USA
| | | | | | | |
Collapse
|
22
|
Introduction to Evolutionary Teratology, with an Application to the Forelimbs of Tyrannosauridae and Carnotaurinae (Dinosauria: Theropoda). Evol Biol 2014. [DOI: 10.1007/s11692-014-9296-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
|
24
|
Abstract
The Hox genes are an evolutionarily conserved family of genes, which encode a class of important transcription factors that function in numerous developmental processes. Following their initial discovery, a substantial amount of information has been gained regarding the roles Hox genes play in various physiologic and pathologic processes. These processes range from a central role in anterior-posterior patterning of the developing embryo to roles in oncogenesis that are yet to be fully elucidated. In vertebrates there are a total of 39 Hox genes divided into 4 separate clusters. Of these, mutations in 10 Hox genes have been found to cause human disorders with significant variation in their inheritance patterns, penetrance, expressivity and mechanism of pathogenesis. This review aims to describe the various phenotypes caused by germline mutation in these 10 Hox genes that cause a human phenotype, with specific emphasis paid to the genotypic and phenotypic differences between allelic disorders. As clinical whole exome and genome sequencing is increasingly utilized in the future, we predict that additional Hox gene mutations will likely be identified to cause distinct human phenotypes. As the known human phenotypes closely resemble gene-specific murine models, we also review the homozygous loss-of-function mouse phenotypes for the 29 Hox genes without a known human disease. This review will aid clinicians in identifying and caring for patients affected with a known Hox gene disorder and help recognize the potential for novel mutations in patients with phenotypes informed by mouse knockout studies.
Collapse
Affiliation(s)
- Shane C Quinonez
- University of Michigan, Department of Pediatrics, Division of Pediatric Genetics, 1500 East Medical Center Drive, D5240 MPB/Box 5718, Ann Arbor, MI 48109-5718, USA.
| | - Jeffrey W Innis
- University of Michigan, Department of Pediatrics, Division of Pediatric Genetics, 1500 East Medical Center Drive, D5240 MPB/Box 5718, Ann Arbor, MI 48109-5718, USA; University of Michigan, Department of Human Genetics, 1241 E. Catherine, 4909 Buhl Building, Ann Arbor, MI 48109-5618, USA.
| |
Collapse
|
25
|
Switching axial progenitors from producing trunk to tail tissues in vertebrate embryos. Dev Cell 2013; 25:451-62. [PMID: 23763947 DOI: 10.1016/j.devcel.2013.05.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/30/2013] [Accepted: 05/10/2013] [Indexed: 11/21/2022]
Abstract
The vertebrate body is made by progressive addition of new tissue from progenitors at the posterior embryonic end. Axial extension involves different mechanisms that produce internal organs in the trunk but not in the tail. We show that Gdf11 signaling is a major coordinator of the trunk-to-tail transition. Without Gdf11 signaling, the switch from trunk to tail is significantly delayed, and its premature activation brings the hindlimbs and cloaca next to the forelimbs, leaving extremely short trunks. Gdf11 activity includes activation of Isl1 to promote formation of the hindlimbs and cloaca-associated mesoderm as the most posterior derivatives of lateral mesoderm progenitors. Gdf11 also coordinates reallocation of bipotent neuromesodermal progenitors from the anterior primitive streak to the tail bud, in part by reducing the retinoic acid available to the progenitors. Our findings provide a perspective to understand the evolution of the vertebrate body plan.
Collapse
|
26
|
Soshnikova N, Dewaele R, Janvier P, Krumlauf R, Duboule D. Duplications of hox gene clusters and the emergence of vertebrates. Dev Biol 2013; 378:194-9. [PMID: 23501471 DOI: 10.1016/j.ydbio.2013.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/05/2013] [Indexed: 11/27/2022]
Abstract
The vertebrate body plan is characterized by an increased complexity relative to that of all other chordates and large-scale gene amplifications have been associated with key morphological innovations leading to their remarkable evolutionary success. Here, we use compound full Hox clusters deletions to investigate how Hox genes duplications may have contributed to the emergence of vertebrate-specific innovations. We show that the combined deletion of HoxA and HoxB leads to an atavistic heart phenotype, suggesting that the ancestral HoxA/B cluster was co-opted to help in diversifying the complex organ in vertebrates. Other phenotypic effects observed seem to illustrate the resurgence of ancestral (plesiomorphic) features. This indicates that the duplications of Hox clusters were associated with the recruitment or formation of novel cis-regulatory controls, which were key to the evolution of many vertebrate features and hence to the evolutionary radiation of this group.
Collapse
Affiliation(s)
- Natalia Soshnikova
- Department of Genetics and Evolution, University of Geneva, Sciences III, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Illig R, Fritsch H, Schwarzer C. Spatio-temporal expression ofHOXgenes in human hindgut development. Dev Dyn 2012; 242:53-66. [DOI: 10.1002/dvdy.23893] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2012] [Indexed: 01/06/2023] Open
|
28
|
Kachgal S, Mace KA, Boudreau NJ. The dual roles of homeobox genes in vascularization and wound healing. Cell Adh Migr 2012; 6:457-70. [PMID: 23076135 PMCID: PMC3547888 DOI: 10.4161/cam.22164] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Homeobox genes represent a family of highly conserved transcription factors originally discovered to regulate organ patterning during development. More recently, several homeobox genes were shown to affect processes in adult tissue, including angiogenesis and wound healing. Whereas a subset of members of the Hox-family of homeobox genes activate growth and migration to promote angiogenesis or wound healing, other Hox genes function to restore or maintain quiescent, differentiated tissue function. Pathological tissue remodeling is linked to differential expression of activating or stabilizing Hox genes and dysregulation of Hox expression can contribute to disease progression. Studies aimed at understanding the role and regulation of Hox genes have provided insight into how these potent morphoregulatory genes can be applied to enhance tissue engineering or limit cancer progression.
Collapse
Affiliation(s)
- Suraj Kachgal
- Surgical Research Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA USA
| | | | | |
Collapse
|
29
|
Ruschke K, Hiepen C, Becker J, Knaus P. BMPs are mediators in tissue crosstalk of the regenerating musculoskeletal system. Cell Tissue Res 2012; 347:521-44. [PMID: 22327483 DOI: 10.1007/s00441-011-1283-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/10/2011] [Indexed: 12/22/2022]
Abstract
The musculoskeletal system is a tight network of many tissues. Coordinated interplay at a biochemical level between tissues is essential for development and repair. Traumatic injury usually affects several tissues and represents a large challenge in clinical settings. The current demand for potent growth factors in such applications thus accompanies the keen interest in molecular mechanisms and orchestration of tissue formation. Of special interest are multitasking growth factors that act as signals in a variety of cell types, both in a paracrine and in an autocrine manner, thereby inducing cell differentiation and coordinating not only tissue assembly at specific sites but also maturation and homeostasis. We concentrate here on bone morphogenetic proteins (BMPs), which are important crosstalk mediators known for their irreplaceable roles in vertebrate development. The molecular crosstalk during embryonic musculoskeletal tissue formation is recapitulated in adult repair. BMPs act at different levels from the initiation to maturation of newly formed tissue. Interestingly, this is influenced by the spatiotemporal expression of different BMPs, their receptors and co-factors at the site of repair. Thus, the regenerative potential of BMPs needs to be evaluated in the context of highly connected tissues such as muscle and bone and might indeed be different in more poorly connected tissues such as cartilage. This highlights the need for an understanding of BMP signaling across tissues in order to eventually improve BMP regenerative potential in clinical applications. In this review, the distinct members of the BMP family and their individual contribution to musculoskeletal tissue repair are summarized by focusing on their paracrine and autocrine functions.
Collapse
Affiliation(s)
- Karen Ruschke
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
30
|
Huber L, Ferdin M, Holzmann J, Stubbusch J, Rohrer H. HoxB8 in noradrenergic specification and differentiation of the autonomic nervous system. Dev Biol 2011; 363:219-33. [PMID: 22236961 DOI: 10.1016/j.ydbio.2011.12.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 10/25/2022]
Abstract
Different prespecification of mesencephalic and trunk neural crest cells determines their response to environmental differentiation signals and contributes to the generation of different autonomic neuron subtypes, parasympathetic ciliary neurons in the head and trunk noradrenergic sympathetic neurons. The differentiation of ciliary and sympathetic neurons shares many features, including the initial BMP-induced expression of noradrenergic characteristics that is, however, subsequently lost in ciliary but maintained in sympathetic neurons. The molecular basis of specific prespecification and differentiation patterns has remained unclear. We show here that HoxB gene expression in trunk neural crest is maintained in sympathetic neurons. Ectopic expression of a single HoxB gene, HoxB8, in mesencephalic neural crest results in a strongly increased expression of sympathetic neuron characteristics like the transcription factor Hand2, tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) in ciliary neurons. Other subtype-specific properties like RGS4 and RCad are not induced. HoxB8 has only minor effects in postmitotic ciliary neurons and is unable to induce TH and DBH in the enteric nervous system. Thus, we conclude that HoxB8 acts by maintaining noradrenergic properties transiently expressed in ciliary neuron progenitors during normal development. HoxC8, HoxB9, HoxB1 and HoxD10 elicit either small and transient or no effects on noradrenergic differentiation, suggesting a selective effect of HoxB8. These results implicate that Hox genes contribute to the differential development of autonomic neuron precursors by maintaining noradrenergic properties in the trunk sympathetic neuron lineage.
Collapse
Affiliation(s)
- Leslie Huber
- Research Group Developmental Neurobiology, Max Planck Institute for Brain Research, Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
31
|
Proximal radio-ulnar synostosis with bone marrow failure syndrome in an infant without a HOXA11 mutation. J Pediatr Hematol Oncol 2010; 32:479-85. [PMID: 20562651 DOI: 10.1097/mph.0b013e3181e5129d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This report summarizes the clinical management of an infant with a proximal radio-ulnar synostosis and inherited bone marrow failure syndrome (PRUS/IBMFS). Molecular studies were negative for the characteristic HOXA11 mutation described earlier. He was successfully treated with a non-myeloablative hematopoietic stem cell transplantation from an human leukocyte antigen-identical sibling donor at the age of 3 months. We reviewed the literature on PRUS/IBMFS with an emphasis on the current understanding of the molecular mechanisms involved in the disease pathogenesis. Absence of the HOXA11 mutation in this case implies that molecular mechanisms beyond the HOXA11 gene, yet to be discovered, may contribute for the development of PRUS/IBMFS.
Collapse
|
32
|
Di-Poï N, Koch U, Radtke F, Duboule D. Additive and global functions of HoxA cluster genes in mesoderm derivatives. Dev Biol 2010; 341:488-98. [PMID: 20303345 DOI: 10.1016/j.ydbio.2010.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 01/31/2023]
Abstract
Hox genes encode transcription factors that play a central role in the specification of regional identities along the anterior to posterior body axis. In the developing mouse embryo, Hox genes from all four genomic clusters are involved in range of developmental processes, including the patterning of skeletal structures and the formation of several organs. However, the functional redundancy observed either between paralogous genes, or among neighboring genes from the same cluster, has hampered functional analyses, in particular when synergistic, cluster-specific functions are considered. Here, we report that mutant mice lacking the entire HoxA cluster in mesodermal lineages display the expected spectrum of postnatal respiratory, cardiac and urogenital defects, previously reported for single gene mutations. Likewise, mild phenotypes are observed in both appendicular and axial skeleton. However, a striking effect was uncovered in the hematopoietic system, much stronger than that seen for Hoxa9 inactivation alone, which involves stem cells (HSCs) as well as the erythroid lineage, indicating that several Hoxa genes are necessary for normal hematopoiesis to occur. Finally, the combined deletions of Hoxa and Hoxd genes reveal abnormalities in axial elongation as well as skin morphogenesis that are likely the results of defects in epithelial-mesenchymal interactions.
Collapse
Affiliation(s)
- Nicolas Di-Poï
- National Research Center Frontiers in Genetics, Department of Zoology and Animal Biology, University of Geneva, Sciences III, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
33
|
A case of congenital bone marrow failure with radio-ulnar synostosis. Int J Hematol 2010; 91:331-2. [PMID: 20091385 DOI: 10.1007/s12185-010-0494-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/06/2009] [Accepted: 01/04/2010] [Indexed: 01/05/2023]
|
34
|
Brochhausen C, Lehmann M, Halstenberg S, Meurer A, Klaus G, Kirkpatrick CJ. Signalling molecules and growth factors for tissue engineering of cartilage-what can we learn from the growth plate? J Tissue Eng Regen Med 2009; 3:416-29. [DOI: 10.1002/term.192] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
35
|
A Molecular Footprint of Limb Loss: Sequence Variation of the Autopodial Identity Gene Hoxa-13. J Mol Evol 2008; 67:581-93. [DOI: 10.1007/s00239-008-9156-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
|
36
|
Hoxd13 binds in vivo and regulates the expression of genes acting in key pathways for early limb and skeletal patterning. Dev Biol 2008; 317:497-507. [PMID: 18407260 DOI: 10.1016/j.ydbio.2008.02.048] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 02/21/2008] [Accepted: 02/22/2008] [Indexed: 11/24/2022]
Abstract
5' HoxD genes are required for the correct formation of limb skeletal elements. Hoxd13, the most 5'-located HoxD gene, is important for patterning the most distal limb region, and its mutation causes human limb malformation syndromes. The mechanisms underlying the control of developmental processes by Hoxd13, and by Hox genes in general, are still elusive, due to the limited knowledge on their direct downstream target genes. We identified by ChIP-on-chip 248 known gene loci bound invivo by Hoxd13. Genes relevant to limb patterning and skeletogenesis were further analysed. We found that Hoxd13 binds invivo, in developing limbs, the loci of Hand2, a gene crucial to limb AP axis patterning, of Meis1 and Meis2, involved in PD patterning, of the Sfrp1, Barx1, and Fbn1 genes, involved in skeletogenesis, and of the Dach1, Bmp2, Bmp4, andEmx2 genes. We show that Hoxd13 misexpression in developing chick limbs alters the expression of the majority of these genes, supporting the conclusion that Hoxd13 directly regulates their transcription. Our results indicate that 5' Hox proteins regulate directly both key genes for early limb AP and PD axis patterning and genes involved, at later stages, in skeletal patterning.
Collapse
|
37
|
Kappen C, Neubüser A, Balling R, Finnell R. Molecular basis for skeletal variation: insights from developmental genetic studies in mice. BIRTH DEFECTS RESEARCH. PART B, DEVELOPMENTAL AND REPRODUCTIVE TOXICOLOGY 2007; 80:425-50. [PMID: 18157899 PMCID: PMC3938168 DOI: 10.1002/bdrb.20136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Skeletal variations are common in humans, and potentially are caused by genetic as well as environmental factors. We here review molecular principles in skeletal development to develop a knowledge base of possible alterations that could explain variations in skeletal element number, shape or size. Environmental agents that induce variations, such as teratogens, likely interact with the molecular pathways that regulate skeletal development.
Collapse
Affiliation(s)
- C Kappen
- Center for Human Molecular Genetics, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | | | | | | |
Collapse
|
38
|
MacDonald BT, Joiner DM, Oyserman SM, Sharma P, Goldstein SA, He X, Hauschka PV. Bone mass is inversely proportional to Dkk1 levels in mice. Bone 2007; 41:331-9. [PMID: 17613296 PMCID: PMC2865902 DOI: 10.1016/j.bone.2007.05.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 05/18/2007] [Accepted: 05/22/2007] [Indexed: 12/15/2022]
Abstract
The Wnt/beta-catenin signaling pathway has emerged as a key regulator in bone development and bone homeostasis. Loss-of-function mutations in the Wnt co-receptor LRP5 result in osteoporosis and "activating" mutations in LRP5 result in high bone mass. Dickkopf-1 (DKK1) is a secreted Wnt inhibitor that binds LRP5 and LRP6 during embryonic development, therefore it is expected that a decrease in DKK1 will result in an increase in Wnt activity and a high bone mass phenotype. Dkk1-/- knockout mice are embryonic lethal, but mice with hypomorphic Dkk1d (doubleridge) alleles that express low amounts of Dkk1 are viable. In this study we generated an allelic series by crossing Dkk1+/- and Dkk1+/d mice resulting in the following genotypes with decreasing Dkk1 expression levels: +/+, +/d, +/- and d/-. Using muCT imaging we scanned dissected left femora and calvariae from 8-week-old mice (n=60). We analyzed the distal femur to represent trabecular bone and the femur diaphysis for cortical endochondral bone. A region of the parietal bones was used to analyze intramembranous bone of the calvaria. We found that trabecular bone volume is increased in Dkk1 mutant mice in a manner that is inversely proportional to the level of Dkk1 expression. Trabeculae number and thickness were significantly higher in the low Dkk1 expressing genotypes from both female and male mice. Similar results were found in cortical bone with an increase in cortical thickness and cross sectional area of the femur diaphysis that correlated with lower Dkk1 expression. No consistent differences were found in the calvaria measurements. Our results indicate that the progressive Dkk1 reduction increases trabecular and cortical bone mass and that even a 25% reduction in Dkk1 expression could produce significant increases in trabecular bone volume fraction. Thus DKK1 is a negative regulator of normal bone homeostasis in vivo. Our study suggests that manipulation of DKK1 function or expression may have therapeutic significance for the treatment of low bone mass disorders.
Collapse
Affiliation(s)
- Bryan T MacDonald
- Division of Neuroscience, Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Danese M Joiner
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Sivan M Oyserman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Parul Sharma
- Department of Orthopedic Surgery, Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Steven A Goldstein
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Xi He
- Division of Neuroscience, Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Peter V Hauschka
- Department of Orthopedic Surgery, Children’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
39
|
Knosp WM, Saneyoshi C, Shou S, Bächinger HP, Stadler HS. Elucidation, Quantitative Refinement, and in Vivo Utilization of the HOXA13 DNA Binding Site. J Biol Chem 2007; 282:6843-53. [PMID: 17200107 DOI: 10.1074/jbc.m610775200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mutations in Hoxa13 cause malformations of the appendicular skeleton and genitourinary tract, including digit loss, syndactyly, and hypospadias. To determine the molecular basis for these defects, the DNA sequences bound by HOXA13 were empirically determined, revealing a novel high affinity binding site. Correlating the utilization of this high affinity binding site with genes exhibiting perturbed expression in Hoxa13 mutant limbs, we identified that HOXA13 suppresses the expression of the BMP antagonist, Sostdc1. In the absence of HOXA13 function, Sostdc1 is ectopically expressed in the distal limb, causing reduced expression of BMP-activated genes and decreased SMAD phosphorylation. Limb chromatin immunoprecipitation revealed HOXA13 binding at its high affinity site in two conserved Sostdc1 regulatory sites in vivo. In vitro, HOXA13 represses gene expression through the Sostdc1 high affinity binding sites in a dosage-dependent manner. Together, these findings confirm that the high affinity HOXA13 binding site deduced by quantitative analyses is used in vivo to facilitate HOXA13 target gene regulation, providing a critical advance toward understanding the molecular basis for defects associated with the loss of HOXA13 function.
Collapse
Affiliation(s)
- Wendy M Knosp
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
40
|
Hassan MQ, Tare R, Lee SH, Mandeville M, Weiner B, Montecino M, van Wijnen AJ, Stein JL, Stein GS, Lian JB. HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes. Mol Cell Biol 2007; 27:3337-52. [PMID: 17325044 PMCID: PMC1899966 DOI: 10.1128/mcb.01544-06] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
HOXA10 is necessary for embryonic patterning of skeletal elements, but its function in bone formation beyond this early developmental stage is unknown. Here we show that HOXA10 contributes to osteogenic lineage determination through activation of Runx2 and directly regulates osteoblastic phenotypic genes. In response to bone morphogenic protein BMP2, Hoxa10 is rapidly induced and functions to activate the Runx2 transcription factor essential for bone formation. A functional element with the Hox core motif was characterized for the bone-related Runx2 P1 promoter. HOXA10 also activates other osteogenic genes, including the alkaline phosphatase, osteocalcin, and bone sialoprotein genes, and temporally associates with these target gene promoters during stages of osteoblast differentiation prior to the recruitment of RUNX2. Exogenous expression and small interfering RNA knockdown studies establish that HOXA10 mediates chromatin hyperacetylation and trimethyl histone K4 (H3K4) methylation of these genes, correlating to active transcription. HOXA10 therefore contributes to early expression of osteogenic genes through chromatin remodeling. Importantly, HOXA10 can induce osteoblast genes in Runx2 null cells, providing evidence for a direct role in mediating osteoblast differentiation independent of RUNX2. We propose that HOXA10 activates RUNX2 in mesenchymal cells, contributing to the onset of osteogenesis, and that HOXA10 subsequently supports bone formation by direct regulation of osteoblast phenotypic genes.
Collapse
Affiliation(s)
- Mohammad Q Hassan
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655-0106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Khan IM, Redman SN, Williams R, Dowthwaite GP, Oldfield SF, Archer CW. The development of synovial joints. Curr Top Dev Biol 2007; 79:1-36. [PMID: 17498545 DOI: 10.1016/s0070-2153(06)79001-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During vertebrate evolution, successful adaptation of animal limbs to a variety of ecological niches depended largely on the formation and positioning of synovial joints. The function of a joint is to allow smooth articulation between opposing skeletal elements and to transmit biomechanical loads through the structure, and this is achieved through covering the ends of bones with articular cartilage, lubricating the joint with synovial fluid, using ligaments to bind the skeletal elements together, and encapsulating the joint in a protective fibrous layer of tissue. The diversity of limb generation has been proposed to occur through sequential branching and segmentation of precartilaginous skeletal elements along the proximodistal axis of the limb. The position of future joints is first delimited by areas of higher cell density called interzones initially through an as yet unidentified inductive signal, subsequently specification of these regions is controlled hierarchically by wnt14 and gdf5, respectively. Joint-forming cell fate although specified is not fixed, and joints will fuse if growth factor signaling is perturbed. Cavitation, the separation of the two opposing skeletal elements, and joint morphogenesis, the process whereby the joint cells organize and mature to establish a functional interlocking and reciprocally shaped joint, are slowly being unraveled through studying the plethora of molecules that make up the unique extracellular matrix of the forming structure. The joint lining tissue, articular cartilage, is avascular, and this limits its reparative capacity such that arthritis and associated joint pathologies are the single largest cause of disability in the adult population. Recent discoveries of adult stem cells and more specifically the isolation of chondroprogenitor cells from articular cartilage are extending available therapeutic options, though only with a more complete understanding of synovial joint development can such options have greater chances of success.
Collapse
Affiliation(s)
- I M Khan
- Cardiff School of Biosciences, Cardiff University, Cardiff CF103US, Wales, United Kingdom
| | | | | | | | | | | |
Collapse
|
42
|
Borday-Birraux V, Van der Heyden C, Debiais-Thibaud M, Verreijdt L, Stock DW, Huysseune A, Sire JY. Expression of Dlx genes during the development of the zebrafish pharyngeal dentition: evolutionary implications. Evol Dev 2006; 8:130-41. [PMID: 16509892 DOI: 10.1111/j.1525-142x.2006.00084.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to investigate similarities and differences in genetic control of development among teeth within and between species, we determined the expression pattern of all eight Dlx genes of the zebrafish during development of the pharyngeal dentition and compared these data with that reported for mouse molar tooth development. We found that (i) dlx1a and dlx6a are not expressed in teeth, in contrast to their murine orthologs, Dlx1 and Dlx6; (ii) the expression of the six other zebrafish Dlx genes overlaps in time and space, particularly during early morphogenesis; (iii) teeth in different locations and generations within the zebrafish dentition differ in the number of genes expressed; (iv) expression similarities and differences between zebrafish Dlx genes do not clearly follow phylogenetic and linkage relationships; and (v) similarities and differences exist in the expression of zebrafish and mouse Dlx orthologs. Taken together, these results indicate that the Dlx gene family, despite having been involved in vertebrate tooth development for over 400 million years, has undergone extensive diversification of expression of individual genes both within and between dentitions. The latter type of difference may reflect the highly specialized dentition of the mouse relative to that of the zebrafish, and/or genome duplication in the zebrafish lineage facilitating a redistribution of Dlx gene function during odontogenesis.
Collapse
|
43
|
Moens CB, Selleri L. Hox cofactors in vertebrate development. Dev Biol 2006; 291:193-206. [PMID: 16515781 DOI: 10.1016/j.ydbio.2005.10.032] [Citation(s) in RCA: 385] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Revised: 10/17/2005] [Accepted: 10/24/2005] [Indexed: 11/18/2022]
Abstract
Hox genes encode homeodomain-containing transcription factors that pattern the body axes of animal embryos. It is well established that the exquisite DNA-binding specificity that allows different Hox proteins to specify distinct structures along the body axis is frequently dependent on interactions with other DNA-binding proteins which act as Hox cofactors. These include the PBC and MEIS classes of TALE (Three Amino acid Loop Extension) homeodomain proteins. The PBC class comprises fly Extradenticle (Exd) and vertebrate Pbx homeoproteins, whereas the MEIS class includes fly Homothorax (Hth) and vertebrate Meis and Prep homeoproteins. Exd was first implicated as a Hox cofactor based on mutant phenotypes in the fly. In vertebrates, PBC and MEIS homeobox proteins play important roles in development and disease. In this review, we describe the evidence that these functions reflect a requirement for Pbx and Meis/Prep proteins as Hox cofactors. However, there is mounting evidence that, like in the fly, Pbx and Meis/Prep proteins function more broadly, and we also discuss how "Hox cofactors" function as partners for other, non-Hox transcription factors during development. Conversely, we review the evidence that Hox proteins have functions that are independent of Pbx and Meis/Prep cofactors and discuss the possibility that other proteins may participate in the DNA-bound Hox complex, contributing to DNA-binding specificity in the absence of, or in addition to, Pbx and Meis/Prep.
Collapse
Affiliation(s)
- Cecilia B Moens
- Division of Basic Science and HHMI, Fred Hutchinson Cancer Research Center, Seattle, WA 98115, USA.
| | | |
Collapse
|
44
|
Pilon N, Oh K, Sylvestre JR, Bouchard N, Savory J, Lohnes D. Cdx4 is a direct target of the canonical Wnt pathway. Dev Biol 2005; 289:55-63. [PMID: 16309666 DOI: 10.1016/j.ydbio.2005.10.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 10/03/2005] [Accepted: 10/04/2005] [Indexed: 12/22/2022]
Abstract
There is considerable evidence that the Cdx gene products impact on vertebral patterning by direct regulation of Hox gene expression. Data from a number of vertebrate model systems also suggest that Cdx1, Cdx2 and Cdx4 are targets of caudalizing signals such as RA, Wnt and FGF. These observations have lead to the hypothesis that Cdx members serve to relay information from signaling pathways involved in posterior patterning to the Hox genes. Regulation of Cdx1 expression by RA and Wnt in the mouse has been well characterized; however, the means by which Cdx2 and Cdx4 are regulated is less well understood. In the present study, we present data suggesting that Cdx4 is a direct target of the canonical Wnt pathway. We found that Cdx4 responds to exogenous Wnt3a in mouse embryos ex vivo, and conversely, that its expression is down-regulated in Wnt3a(vt/vt) embryos and in embryos cultured in the presence of Wnt inhibitors. We also found that the Cdx4 promoter responds to Wnt signaling in P19 embryocarcinoma cells and have identified several putative LEF/TCF response elements mediating this effect. Consistent with these data, chromatin immunoprecipitation assays from either embryocarcinoma cells or from the tail bud of embryos revealed that LEF1 and beta-catenin co-localize with the Cdx4 promoter. Taken together, these results suggest that Cdx4, like Cdx1, is a direct Wnt target.
Collapse
Affiliation(s)
- Nicolas Pilon
- Institut de Recherches Cliniques de Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Stopper GF, Wagner GP. Of chicken wings and frog legs: a smorgasbord of evolutionary variation in mechanisms of tetrapod limb development. Dev Biol 2005; 288:21-39. [PMID: 16246321 DOI: 10.1016/j.ydbio.2005.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 09/06/2005] [Accepted: 09/06/2005] [Indexed: 01/24/2023]
Abstract
The tetrapod limb, which has served as a paradigm for the study of development and morphological evolution, is becoming a paradigm for developmental evolution as well. In its origin and diversification, the tetrapod limb has undergone a great deal of remodeling. These morphological changes and other evolutionary phenomena have produced variation in mechanisms of tetrapod limb development. Here, we review that variation in the four major clades of limbed tetrapods. Comparisons in a phylogenetic context reveal details of development and evolution that otherwise may have been unclear. Such details include apparent differences in the mechanisms of dorsal-ventral patterning and limb identity specification between mouse and chick and mechanistic novelties in amniotes, anurans, and urodeles. As we gain a better understanding of the details of limb development, further differences among taxa will be revealed. The use of appropriate comparative techniques in a phylogenetic context thus sheds light on evolutionary transitions in limb morphology and the generality of developmental models across species and is therefore important to both evolutionary and developmental biologists.
Collapse
Affiliation(s)
- Geffrey F Stopper
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06520, USA.
| | | |
Collapse
|
46
|
Carapuço M, Nóvoa A, Bobola N, Mallo M. Hox genes specify vertebral types in the presomitic mesoderm. Genes Dev 2005; 19:2116-21. [PMID: 16166377 PMCID: PMC1221883 DOI: 10.1101/gad.338705] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We show here that expression of Hoxa10 in the presomitic mesoderm is sufficient to confer a Hox group 10 patterning program to the somite, producing vertebrae without ribs, an effect not achieved when Hoxa10 is expressed in the somites. In addition, Hox group 11-dependent vertebral sacralization requires Hoxa11 expression in the presomitic mesoderm, while their caudal differentiation requires that Hoxa11 is expressed in the somites. Therefore, Hox gene patterning activity is different in the somites and presomitic mesoderm, the latter being very prominent for Hox gene-mediated patterning of the axial skeleton. This is further supported by our finding that inactivation of Gbx2, a homeobox-containing gene expressed in the presomitic mesoderm but not in the somites, produced Hox-like phenotypes in the axial skeleton without affecting Hox gene expression.
Collapse
Affiliation(s)
- Marta Carapuço
- Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | | | | | | |
Collapse
|
47
|
Wéry N, Foulon O, Blacker A, Picard JJ, Gofflot F. Vertebral malformations induced by sodium salicylate correlate with shifts in expression domains of Hox genes. Reprod Toxicol 2005; 20:39-45. [PMID: 15808784 DOI: 10.1016/j.reprotox.2004.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 11/08/2004] [Accepted: 12/08/2004] [Indexed: 11/19/2022]
Abstract
Several embryotoxic agents, which includes sodium salicylate, were reported to induce vertebral variations in the form of supernumerary ribs (SNR) when administered to pregnant rodents. Because the biological significance of SNR in toxicological studies is still a matter of debate, we investigated the molecular basis of this defect by analyzing the possible involvement of Hox genes, known to specify vertebrae identity. Sodium salicylate (300mg/kg) was administered to pregnant rats on gestational day 9 (GD 9). On GD 13, the expression of several Hox genes, selected according to the position of their anterior limit of expression, namely upstream (Hoxa9), at the level (Hoxa10) and downstream (Hoxd9) to the morphological alteration, were analyzed. Posterior shifts in the anterior limit of expression of Hoxa10 and Hoxd9 were observed following exposure to salicylate, which could explain an effect at the level of the axial skeleton. This finding suggests that the appearance of ectopic ribs can be attributed to an anterior transformation of lumbar vertebrae identity into thoracic vertebrae identity. Whether this transformation occurs with all compounds inducing SNR in rats remains to be determined.
Collapse
Affiliation(s)
- Nathalie Wéry
- Unit of Developmental Genetics, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
48
|
Kmita M, Tarchini B, Zàkàny J, Logan M, Tabin CJ, Duboule D. Early developmental arrest of mammalian limbs lacking HoxA/HoxD gene function. Nature 2005; 435:1113-6. [PMID: 15973411 DOI: 10.1038/nature03648] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 04/18/2005] [Indexed: 11/09/2022]
Abstract
Vertebrate HoxA and HoxD cluster genes are required for proper limb development. However, early lethality, compensation and redundancy have made a full assessment of their function difficult. Here we describe mice that are lacking all Hoxa and Hoxd functions in their forelimbs. We show that such limbs are arrested early in their developmental patterning and display severe truncations of distal elements, partly owing to the absence of Sonic hedgehog expression. These results indicate that the evolutionary recruitment of Hox gene function into growing appendages might have been crucial in implementing hedgehog signalling, subsequently leading to the distal extension of tetrapod appendages. Accordingly, these mutant limbs may be reminiscent of an ancestral trunk extension, related to that proposed for arthropods.
Collapse
Affiliation(s)
- Marie Kmita
- Department of Zoology and Animal Biology and National Research Centre Frontiers in Genetics, University of Geneva, Sciences III, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
49
|
Williams TM, Williams ME, Kuick R, Misek D, McDonagh K, Hanash S, Innis JW. Candidate downstream regulated genes of HOX group 13 transcription factors with and without monomeric DNA binding capability. Dev Biol 2005; 279:462-80. [PMID: 15733672 DOI: 10.1016/j.ydbio.2004.12.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 11/24/2004] [Accepted: 12/06/2004] [Indexed: 12/24/2022]
Abstract
Hox genes encode transcription factors that regulate the morphogenesis of developing embryos. In mammals, knowledge of the genetic pathways, including the possible direct or indirect targets, regulated by HOX proteins is extremely limited. To identify the downstream genes regulated by posterior HOX proteins, we expressed HOXA13 in mouse embryonic fibroblasts lacking paralog group 13 expression using a bicistronic HOXA13/EGFP retroviral vector. Microarray analysis identified 68 genes with significant, reproducible RNA expression changes (50 activated; 18 repressed) in stable HOXA13-expressing cells. Genes with the GO annotation terms "extracellular matrix" and "basement membrane" were greatly overrepresented, and several were shown to be regulated by HOX proteins in other studies. Among the genes strongly activated by HOXA13 were Enpp2, a bifunctional enzyme known to modulate tumor and normal cell motility and which is expressed in precartilaginous condensations; Fhl1, a transcription factor implicated in muscle cell differentiation and development; and M32486, a putative integral membrane molecule expressed in the female reproductive tract. Expression differences in the HOXA13-expressing cells were confirmed for selected downstream genes using semi-quantitative RT-PCR, and in vivo coexpression with Hoxa13 in the limb interdigital mesenchyme was demonstrated for many. For two candidates, Igfbp4 and Fstl, interdigital limb bud expression was reduced in Hoxa13 mutants. To explore whether paralogous and nonparalogous HOX proteins could regulate the same genes, we created new HOX cell lines and examined the expression of selected genes identified by the HOXA13 screen. HOXD13 similarly activated/repressed 6 tested candidates, demonstrating that multiple downstream genetic pathways may be regulated by paralog HOX proteins. In contrast, HOXA9 was only able to repress expression of some gene targets. A HOXD13 mutant, HOXD13(IQN >)(AAA), incapable of monomeric DNA-binding, activated the expression of 5 HOXA13-upregulated genes; but was incapable of repressing the expression of Ngef and Casp8ap2. Our results suggest that HOX protein-protein interactions without direct HOX DNA-binding may play a larger role in HOX transcriptional regulation than generally assumed, and DNA-binding appears critical for repression.
Collapse
Affiliation(s)
- Thomas M Williams
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0618, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Ohya YK, Kuraku S, Kuratani S. Hox code in embryos of Chinese soft-shelled turtlePelodiscus sinensis correlates with the evolutionary innovation in the turtle. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:107-18. [PMID: 15643629 DOI: 10.1002/jez.b.21027] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Turtles have the most unusual body plan of the amniotes, with a dorsal shell consisting of modified ribs. Because this morphological change in the ribs can be described as an axial-level specific alteration, the evolution of the turtle carapace should depend on changes in the Hox code. To identify turtle-specific changes in developmental patterns, we cloned several Hox genes from the Chinese soft-shelled turtle, Pelodiscus sinensis, examined their expression patterns during embryogenesis, and compared them with those of chicken and mouse embryos. We detected possibly turtle-specific derived traits in Hoxc-6 expression, which is restricted to the paraxial part of the embryo; in the expression of Hoxa-5 and Hoxb-5, the transcripts of which were detected only at the cervical level; and in Hoxc-8 and Hoxa-7 expression, which is shifted anteriorly relative to that of the other two amniote groups. From the known functions of the Hox orthologs in model animals, these P. sinensis-specific changes apparently correlate with specializations in the turtle-specific body plan.
Collapse
Affiliation(s)
- Yoshie Kawashima Ohya
- Laboratory for Evolutionary Morphology, Center for Developmental Biology (CDB), RIKEN, Kobe 650-0047, Japan
| | | | | |
Collapse
|