1
|
Charng WL, Nikolov M, Shrestha I, Seeley MA, Josyula NS, Justice AE, Dobbs MB, Gurnett CA. Exome sequencing of 1190 non-syndromic clubfoot cases reveals HOXD12 as a novel disease gene. J Med Genet 2024; 61:699-706. [PMID: 38663984 PMCID: PMC11228210 DOI: 10.1136/jmg-2024-109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/20/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Clubfoot, presenting as a rigid inward and downward turning of the foot, is one of the most common congenital musculoskeletal anomalies. The aetiology of clubfoot is poorly understood and variants in known clubfoot disease genes account for only a small portion of the heritability. METHODS Exome sequence data were generated from 1190 non-syndromic clubfoot cases and their family members from multiple ethnicities. Ultra-rare variant burden analysis was performed comparing 857 unrelated clubfoot cases with European ancestry with two independent ethnicity-matched control groups (1043 in-house and 56 885 gnomAD controls). Additional variants in prioritised genes were identified in a larger cohort, including probands with non-European ancestry. Segregation analysis was performed in multiplex families when available. RESULTS Rare variants in 29 genes were enriched in clubfoot cases, including PITX1 (a known clubfoot disease gene), HOXD12, COL12A1, COL9A3 and LMX1B. In addition, rare variants in posterior HOX genes (HOX9-13) were enriched overall in clubfoot cases. In total, variants in these genes were present in 8.4% (100/1190) of clubfoot cases with both European and non-European ancestry. Among these, 3 are de novo and 22 show variable penetrance, including 4 HOXD12 variants that segregate with clubfoot. CONCLUSION We report HOXD12 as a novel clubfoot disease gene and demonstrate a phenotypic expansion of known disease genes (myopathy gene COL12A1, Ehlers-Danlos syndrome gene COL9A3 and nail-patella syndrome gene LMX1B) to include isolated clubfoot.
Collapse
Affiliation(s)
- Wu-Lin Charng
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Momchil Nikolov
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Isabel Shrestha
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Mark A Seeley
- Department of Orthopaedics, Geisinger Medical Center, Danville, Pennsylvania, USA
| | | | - Anne E Justice
- Department of Population Health Sciences, Geisinger, Danville, PA, USA
| | - Matthew B Dobbs
- Paley Orthopedic & Spine Institute, West Palm Beach, Florida, USA
| | - Christina A Gurnett
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
2
|
Inomata Y, Kawatani N, Yamashita H, Hattori F. Lgr6-expressing functional nail stem-like cells differentiated from human-induced pluripotent stem cells. PLoS One 2024; 19:e0303260. [PMID: 38743670 PMCID: PMC11093308 DOI: 10.1371/journal.pone.0303260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
The nail matrix containing stem cell populations produces nails and may contribute to fingertip regeneration. Nails are important tissues that maintain the functions of the hand and foot for handling objects and locomotion. Tumor chemotherapy impairs nail growth and, in many cases, loses them, although not permanently. In this report, we have achieved the successful differentiation of nail stem (NS)-like cells from human-induced pluripotent stem cells (iPSCs) via digit organoids by stepwise stimulation, tracing the molecular processes involved in limb development. Comprehensive mRNA sequencing analysis revealed that the digit organoid global gene expression profile fits human finger development. The NS-like cells expressed Lgr6 mRNA and protein and produced type-I keratin, KRT17, and type-II keratin, KRT81, which are abundant in nails. Furthermore, we succeeded in producing functional Lgr6-reporter human iPSCs. The reporter iPSC-derived Lgr6-positive cells also produced KRT17 and KRT81 proteins in the percutaneously transplanted region. To the best of our knowledge, this is the first report of NS-like cell differentiation from human iPSCs. Our differentiation method and reporter construct enable the discovery of drugs for nail repair and possibly fingertip-regenerative therapy.
Collapse
Affiliation(s)
- Yukino Inomata
- Innovative Regenerative Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
- Osaka College of High-Technology, Osaka City, Osaka, Japan
| | - Nano Kawatani
- Innovative Regenerative Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
- Osaka College of High-Technology, Osaka City, Osaka, Japan
| | - Hiromi Yamashita
- Innovative Regenerative Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Fumiyuki Hattori
- Innovative Regenerative Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| |
Collapse
|
3
|
Flynn CGK, Ginkel PRV, Hubert KA, Guo Q, Hrycaj SM, McDermott AE, Madruga A, Miller AP, Wellik DM. Hox11-expressing interstitial cells contribute to adult skeletal muscle at homeostasis. Development 2023; 150:dev201026. [PMID: 36815629 PMCID: PMC10110422 DOI: 10.1242/dev.201026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023]
Abstract
Interstitial stromal cells play critical roles in muscle development, regeneration and repair and we have previously reported that Hoxa11 and Hoxd11 are expressed in the interstitial cells of muscles attached to the zeugopod, and are crucial for the proper embryonic patterning of these muscles. Hoxa11eGFP expression continues in a subset of muscle interstitial cells through adult stages. The induction of Hoxa11-CreERT2-mediated lineage reporting (Hoxa11iTom) at adult stages in mouse results in lineage induction only in the interstitial cells. However, Hoxa11iTom+ cells progressively contribute to muscle fibers at subsequent stages. The contribution to myofibers exceeds parallel Pax7-CreERT2-mediated lineage labeling. Nuclear-specific lineage labeling demonstrates that Hoxa11-expressing interstitial cells contribute nuclear contents to myofibers. Crucially, at no point after Hoxa11iTom induction are satellite cells lineage labeled. When examined in vitro, isolated Hoxa11iTom+ interstitial cells are not capable of forming myotubes, but Hoxa11iTom+ cells can contribute to differentiating myotubes, supporting Hox-expressing interstitial cells as a new population of muscle progenitors, but not stem cells. This work adds to a small but growing body of evidence that supports a satellite cell-independent source of muscle tissue in vivo.
Collapse
Affiliation(s)
- Corey G. K. Flynn
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul R. Van Ginkel
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Katharine A. Hubert
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Genetics Training Program, University of Wisconsin-Madison, Madison, WI 53703, USA
| | - Qingyuan Guo
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Steven M. Hrycaj
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aubrey E. McDermott
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Angelo Madruga
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Anna P. Miller
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Deneen M. Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
4
|
Shukla H, Suryamohan K, Khan A, Mohan K, Perumal RC, Mathew OK, Menon R, Dixon MD, Muraleedharan M, Kuriakose B, Michael S, Krishnankutty SP, Zachariah A, Seshagiri S, Ramakrishnan U. Near-chromosomal de novo assembly of Bengal tiger genome reveals genetic hallmarks of apex predation. Gigascience 2022; 12:giac112. [PMID: 36576130 PMCID: PMC9795480 DOI: 10.1093/gigascience/giac112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/17/2022] [Accepted: 10/20/2022] [Indexed: 12/29/2022] Open
Abstract
The tiger, a poster child for conservation, remains an endangered apex predator. Continued survival and recovery will require a comprehensive understanding of genetic diversity and the use of such information for population management. A high-quality tiger genome assembly will be an important tool for conservation genetics, especially for the Indian tiger, the most abundant subspecies in the wild. Here, we present high-quality near-chromosomal genome assemblies of a female and a male wild Indian tiger (Panthera tigris tigris). Our assemblies had a scaffold N50 of >140 Mb, with 19 scaffolds corresponding to the 19 numbered chromosomes, containing 95% of the genome. Our assemblies also enabled detection of longer stretches of runs of homozygosity compared to previous assemblies, which will help improve estimates of genomic inbreeding. Comprehensive genome annotation identified 26,068 protein-coding genes, including several gene families involved in key morphological features such as the teeth, claws, vision, olfaction, taste, and body stripes. We also identified 301 microRNAs, 365 small nucleolar RNAs, 632 transfer RNAs, and other noncoding RNA elements, several of which are predicted to regulate key biological pathways that likely contribute to the tiger's apex predatory traits. We identify signatures of positive selection in the tiger genome that are consistent with the Panthera lineage. Our high-quality genome will enable use of noninvasive samples for comprehensive assessment of genetic diversity, thus supporting effective conservation and management of wild tiger populations.
Collapse
Affiliation(s)
- Harsh Shukla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Kushal Suryamohan
- MedGenome Inc., Department of Research and Development, Foster City, CA 94404, USA
- SciGenom Research Foundation, Narayana Health City, Bangalore, Karnataka 560099, India
| | - Anubhab Khan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Krishna Mohan
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Rajadurai C Perumal
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Oommen K Mathew
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Ramesh Menon
- MedGenome Labs Ltd., Narayana Health City, Bangalore, Karnataka 560099, India
| | - Mandumpala Davis Dixon
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Megha Muraleedharan
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Boney Kuriakose
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Saju Michael
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Sajesh P Krishnankutty
- Department of Research and Development, AgriGenome Labs Private Ltd, Kochi, Kerala 682030, India
| | - Arun Zachariah
- SciGenom Research Foundation, Narayana Health City, Bangalore, Karnataka 560099, India
- Wayanad Wildlife Sanctuary, Sultan Bathery, Kerala 673592, India
| | - Somasekar Seshagiri
- SciGenom Research Foundation, Narayana Health City, Bangalore, Karnataka 560099, India
- MedGenome Labs Ltd., Narayana Health City, Bangalore, Karnataka 560099, India
| | - Uma Ramakrishnan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
5
|
Shaping Hox gene activity to generate morphological diversity across vertebrate phylogeny. Essays Biochem 2022; 66:717-726. [PMID: 35924372 DOI: 10.1042/ebc20220050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023]
Abstract
The importance of Hox genes for the development and evolution of the vertebrate axial skeleton and paired appendages has been recognized for already several decades. The steady growth of genomic sequence data from an increasing number of vertebrate species, together with the improvement of methods to analyze genomic structure and interactions, as well as to control gene activity in various species has refined our understanding of Hox gene activity in development and evolution. Here, I will review recent data addressing the influence of Hox regulatory processes in the evolution of the fins and the emergence of the tetrapod limb. In addition, I will discuss the involvement of posterior Hox genes in the control of vertebrate axial extension, focusing on an apparently divergent activity that Hox13 paralog group genes have on the regulation of tail bud development in mouse and zebrafish embryos.
Collapse
|
6
|
The molecular genetics of human appendicular skeleton. Mol Genet Genomics 2022; 297:1195-1214. [PMID: 35907958 DOI: 10.1007/s00438-022-01930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
Disorders that result from de-arrangement of growth, development and/or differentiation of the appendages (limbs and digit) are collectively called as inherited abnormalities of human appendicular skeleton. The bones of appendicular skeleton have central role in locomotion and movement. The different types of appendicular skeletal abnormalities are well described in the report of "Nosology and Classification of Genetic skeletal disorders: 2019 Revision". In the current article, we intend to present the embryology, developmental pathways, disorders and the molecular genetics of the appendicular skeletal malformations. We mainly focused on the polydactyly, syndactyly, brachydactyly, split-hand-foot malformation and clubfoot disorders. To our knowledge, only nine genes of polydactyly, five genes of split-hand-foot malformation, nine genes for syndactyly, eight genes for brachydactyly and only single gene for clubfoot have been identified to be involved in disease pathophysiology. The current molecular genetic data will help life sciences researchers working on the rare skeletal disorders. Moreover, the aim of present systematic review is to gather the published knowledge on molecular genetics of appendicular skeleton, which would help in genetic counseling and molecular diagnosis.
Collapse
|
7
|
Trofka A, Huang BL, Zhu J, Heinz WF, Magidson V, Shibata Y, Shi YB, Tarchini B, Stadler HS, Kabangu M, Al Haj Baddar NW, Voss SR, Mackem S. Genetic basis for an evolutionary shift from ancestral preaxial to postaxial limb polarity in non-urodele vertebrates. Curr Biol 2021; 31:4923-4934.e5. [PMID: 34610275 DOI: 10.1016/j.cub.2021.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/30/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022]
Abstract
In most tetrapod vertebrates, limb skeletal progenitors condense with postaxial dominance. Posterior elements (such as ulna and fibula) appear prior to their anterior counterparts (radius and tibia), followed by digit-appearance order with continuing postaxial polarity. The only exceptions are urodele amphibians (salamanders), whose limb elements develop with preaxial polarity and who are also notable for their unique ability to regenerate complete limbs as adults. The mechanistic basis for this preaxial dominance has remained an enigma and has even been proposed to relate to the acquisition of novel genes involved in regeneration. However, recent fossil evidence suggests that preaxial polarity represents an ancestral rather than derived state. Here, we report that 5'Hoxd (Hoxd11-d13) gene deletion in mouse is atavistic and uncovers an underlying preaxial polarity in mammalian limb formation. We demonstrate this shift from postaxial to preaxial dominance in mouse results from excess Gli3 repressor (Gli3R) activity due to the loss of 5'Hoxd-Gli3 antagonism and is associated with cell-cycle changes promoting precocious cell-cycle exit in the anterior limb bud. We further show that Gli3 knockdown in axolotl results in a shift to postaxial dominant limb skeleton formation, as well as expanded paddle-shaped limb-bud morphology and ensuing polydactyly. Evolutionary changes in Gli3R activity level, which also played a key role in the fin-to-limb transition, appear to be fundamental to the shift from preaxial to postaxial polarity in formation of the tetrapod limb skeleton.
Collapse
Affiliation(s)
- Anna Trofka
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Bau-Lin Huang
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Jianjian Zhu
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yuki Shibata
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver NICHD, Bethesda, MD, USA
| | - Yun-Bo Shi
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver NICHD, Bethesda, MD, USA
| | | | - H Scott Stadler
- Division of Skeletal Biology, Shriners Hospitals for Children, Portland, OR, USA; Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, OR, USA
| | - Mirindi Kabangu
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, USA
| | - Nour W Al Haj Baddar
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, USA
| | - S Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, USA.
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA.
| |
Collapse
|
8
|
Yogosawa S, Ohkido M, Horii T, Okazaki Y, Nakayama J, Yoshida S, Toyokuni S, Hatada I, Morimoto M, Yoshida K. Mice lacking DYRK2 exhibit congenital malformations with lung hypoplasia and altered Foxf1 expression gradient. Commun Biol 2021; 4:1204. [PMID: 34671097 PMCID: PMC8528819 DOI: 10.1038/s42003-021-02734-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
Congenital malformations cause life-threatening diseases in pediatrics, yet the molecular mechanism of organogenesis is poorly understood. Here we show that Dyrk2-deficient mice display congenital malformations in multiple organs. Transcriptome analysis reveals molecular pathology of Dyrk2-deficient mice, particularly with respect to Foxf1 reduction. Mutant pups exhibit sudden death soon after birth due to respiratory failure. Detailed analyses of primordial lungs at the early developmental stage demonstrate that Dyrk2 deficiency leads to altered airway branching and insufficient alveolar development. Furthermore, the Foxf1 expression gradient in mutant lung mesenchyme is disrupted, reducing Foxf1 target genes, which are necessary for proper airway and alveolar development. In ex vivo lung culture system, we rescue the expression of Foxf1 and its target genes in Dyrk2-deficient lung by restoring Shh signaling activity. Taken together, we demonstrate that Dyrk2 is essential for embryogenesis and its disruption results in congenital malformation.
Collapse
Affiliation(s)
- Satomi Yogosawa
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Makiko Ohkido
- Department of Molecular Biology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
9
|
Delgado I, López-Delgado AC, Roselló-Díez A, Giovinazzo G, Cadenas V, Fernández-de-Manuel L, Sánchez-Cabo F, Anderson MJ, Lewandoski M, Torres M. Proximo-distal positional information encoded by an Fgf-regulated gradient of homeodomain transcription factors in the vertebrate limb. SCIENCE ADVANCES 2020; 6:eaaz0742. [PMID: 32537491 PMCID: PMC7269661 DOI: 10.1126/sciadv.aaz0742] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/10/2020] [Indexed: 05/16/2023]
Abstract
The positional information theory proposes that a coordinate system provides information to embryonic cells about their position and orientation along a patterning axis. Cells interpret this information to produce the appropriate pattern. During development, morphogens and interpreter transcription factors provide this information. We report a gradient of Meis homeodomain transcription factors along the mouse limb bud proximo-distal (PD) axis antiparallel to and shaped by the inhibitory action of distal fibroblast growth factor (FGF). Elimination of Meis results in premature limb distalization and HoxA expression, proximalization of PD segmental borders, and phocomelia. Our results show that Meis transcription factors interpret FGF signaling to convey positional information along the limb bud PD axis. These findings establish a new model for the generation of PD identities in the vertebrate limb and provide a molecular basis for the interpretation of FGF signal gradients during axial patterning.
Collapse
Affiliation(s)
- Irene Delgado
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Alejandra C. López-Delgado
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Alberto Roselló-Díez
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Giovanna Giovinazzo
- Pluripotent Cell Technology Unit, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Vanessa Cadenas
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | | | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Matthew J. Anderson
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Mark Lewandoski
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
- Corresponding author.
| |
Collapse
|
10
|
Li J, Shang S, Fang N, Zhu Y, Zhang J, Irwin DM, Zhang S, Wang Z. Accelerated Evolution of Limb-Related Gene Hoxd11 in the Common Ancestor of Cetaceans and Ruminants (Cetruminantia). G3 (BETHESDA, MD.) 2020; 10:515-524. [PMID: 31792005 PMCID: PMC7003097 DOI: 10.1534/g3.119.400512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/24/2019] [Indexed: 11/18/2022]
Abstract
Reduced numbers of carpal and tarsal bones (wrist and ankle joints) are extensively observed in the clade of Cetacea and Ruminantia (Cetruminantia). Homebox D11 (Hoxd11) is one of the important genes required for limb development in mammals. Mutations in Hoxd11 can lead to defects in particular bones of limbs, including carpus and tarsus. To test whether evolutionary changes in Hoxd11 underlie the loss of these bones in Cetruminantia, we sequenced and analyzed Hoxd11 coding sequences and compared them with other 5' HoxA and HoxD genes in a taxonomic coverage of Cetacea, Ruminantia and other mammalian relatives. Statistical tests on the Hoxd11 sequences found an accelerated evolution in the common ancestor of cetaceans and ruminants, which coincided with the reduction of carpal and tarsal bones in this clade. Five amino acid substitutions (G222S, G227A, G229S, A240T and G261V) and one amino acid deletion (G254Del) occurred in this lineage. In contrast, other 5' HoxA and HoxD genes do not show this same evolutionary pattern, but instead display a highly conserved pattern of evolution in this lineage. Accelerated evolution of Hoxd11, but not other 5' HoxA and HoxD genes, is probably related to the reduction of the carpal and tarsal bones in Cetruminantia. Moreover, we found two amino acid substitutions (G110S and D223N) in Hoxd11 that are unique to the lineage of Cetacea, which coincided with hindlimb loss in the common ancestor of cetaceans. Our results give molecular evidence of Hoxd11 adaptive evolution in cetaceans and ruminants, which could be correlated with limb morphological adaptation.
Collapse
Affiliation(s)
- Jun Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Songyang Shang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Na Fang
- State Key Laboratory of Estuarine and Coastal Research, Institute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China, and
| | - Yubo Zhu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhe Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China,
| |
Collapse
|
11
|
Abstract
Vertebrate Hox genes are clustered. This organization has a functional relevance, as the transcription of each gene in time and space depends upon its relative position within the gene cluster. Hox clusters display a high organization, and all genes are transcribed from the same DNA strand. Here, we investigate the importance of this uniform transcriptional polarity by engineering alleles where one or several transcription units are inverted, with or without a CTCF site. We observe that inversions are likely detrimental to the proper implementation of this genetic system. We propose that the enhanced organization of Hox clusters in vertebrates evolved in conjunction with the emergence of global gene regulation to optimize a coordinated response of selected subsets of target genes. In many animal species with a bilateral symmetry, Hox genes are clustered either at one or at several genomic loci. This organization has a functional relevance, as the transcriptional control applied to each gene depends upon its relative position within the gene cluster. It was previously noted that vertebrate Hox clusters display a much higher level of genomic organization than their invertebrate counterparts. The former are always more compact than the latter, they are generally devoid of repeats and of interspersed genes, and all genes are transcribed by the same DNA strand, suggesting that particular factors constrained these clusters toward a tighter structure during the evolution of the vertebrate lineage. Here, we investigate the importance of uniform transcriptional orientation by engineering several alleles within the HoxD cluster, such as to invert one or several transcription units, with or without a neighboring CTCF site. We observe that the association between the tight structure of mammalian Hox clusters and their regulation makes inversions likely detrimental to the proper implementation of this complex genetic system. We propose that the consolidation of Hox clusters in vertebrates, including transcriptional polarity, evolved in conjunction with the emergence of global gene regulation via the flanking regulatory landscapes, to optimize a coordinated response of selected subsets of target genes in cis.
Collapse
|
12
|
Paralogous HOX13 Genes in Human Cancers. Cancers (Basel) 2019; 11:cancers11050699. [PMID: 31137568 PMCID: PMC6562813 DOI: 10.3390/cancers11050699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/17/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Hox genes (HOX in humans), an evolutionary preserved gene family, are key determinants of embryonic development and cell memory gene program. Hox genes are organized in four clusters on four chromosomal loci aligned in 13 paralogous groups based on sequence homology (Hox gene network). During development Hox genes are transcribed, according to the rule of “spatio-temporal collinearity”, with early regulators of anterior body regions located at the 3’ end of each Hox cluster and the later regulators of posterior body regions placed at the distal 5’ end. The onset of 3’ Hox gene activation is determined by Wingless-type MMTV integration site family (Wnt) signaling, whereas 5’ Hox activation is due to paralogous group 13 genes, which act as posterior-inhibitors of more anterior Hox proteins (posterior prevalence). Deregulation of HOX genes is associated with developmental abnormalities and different human diseases. Paralogous HOX13 genes (HOX A13, HOX B13, HOX C13 and HOX D13) also play a relevant role in tumor development and progression. In this review, we will discuss the role of paralogous HOX13 genes regarding their regulatory mechanisms during carcinogenesis and tumor progression and their use as biomarkers for cancer diagnosis and treatment.
Collapse
|
13
|
Anatomic Origin of Osteochondrogenic Progenitors Impacts Sensitivity to EWS-FLI1-Induced Transformation. Cancers (Basel) 2019; 11:cancers11030313. [PMID: 30845695 PMCID: PMC6468467 DOI: 10.3390/cancers11030313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
Ewing sarcomas predominantly arise in pelvic and stylopod bones (i.e., femur and humerus), likely as a consequence of EWS-FLI1 oncogene-induced transformation of mesenchymal stem/progenitor cells (MSCs). MSCs located in the embryonic superficial zone cells (eSZ) of limbs express anatomically distinct posterior Hox genes. Significantly, high expression of posterior HOXD genes, especially HOXD13, is a hallmark of Ewing sarcoma. These data drove our hypothesis that Hox genes in posterior skeleton MSCs contribute to Ewing sarcoma tumorigenesis. We isolated eSZ cells from stylopod and zeugopod (i.e., tibia/fibula, radius/ulna) bones, from wild-type and Hoxd13 mutant embryos, and tested the impact of EWS-FLI1 transduction on cell proliferation, gene expression, and tumorigenicity. Our data demonstrate that both stylopod and zeugopod eSZ cells tolerate EWS-FLI1 but that stylopod eSZ cells are relatively more susceptible, demonstrating changes in proliferation and gene expression consistent with initiation of malignant transformation. Significantly, loss of Hoxd13 had no impact, showing that it is dispensable for the initiation of EWS-FLI1-induced transformation in mouse MSCs. These findings show that MSCs from anatomically distinct sites are differentially susceptible to EWS-FLI1-induced transformation, supporting the premise that the dominant presentation of Ewing sarcoma in pelvic and stylopod bones is attributable to anatomically-defined differences in MSCs.
Collapse
|
14
|
Lasierra MAR, Fernández-Guerrero M, Delisle L, Yakushiji-Kaminatsui N, Darbellay F, Pérez-Gómez R, Duboule D. Role of Hoxcgenes in the development of the limb integumentary organ (nail, claw, or hoof). FASEB J 2018. [DOI: 10.1096/fasebj.2018.32.1_supplement.20.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Lucille Delisle
- School of Life Sciences, Federal Institute of Technology, Lausanne, Switzerland
| | | | - Fabrice Darbellay
- School of Life Sciences, Federal Institute of Technology, Lausanne, Switzerland
| | - Rocío Pérez-Gómez
- Instituto de Biomedicina y Biotecnologia de Cantabria, Santander, Spain
| | - Denis Duboule
- School of Life Sciences, Federal Institute of Technology, Lausanne, Switzerland
| |
Collapse
|
15
|
Sheth R, Barozzi I, Langlais D, Osterwalder M, Nemec S, Carlson HL, Stadler HS, Visel A, Drouin J, Kmita M. Distal Limb Patterning Requires Modulation of cis-Regulatory Activities by HOX13. Cell Rep 2017; 17:2913-2926. [PMID: 27974206 PMCID: PMC5697718 DOI: 10.1016/j.celrep.2016.11.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 01/12/2023] Open
Abstract
The combinatorial expression of Hox genes along the body axes is a major determinant of cell fate and plays a pivotal role in generating the animal body plan. Loss of HOXA13 and HOXD13 transcription factors (HOX13) leads to digit agenesis in mice, but how HOX13 proteins regulate transcriptional outcomes and confer identity to the distal-most limb cells has remained elusive. Here, we report on the genome-wide profiling of HOXA13 and HOXD13 in vivo binding and changes of the transcriptome and chromatin state in the transition from the early to the late-distal limb developmental program, as well as in Hoxa13−/−; Hoxd13−/−limbs. Our results show that proper termination of the early limb transcriptional program and activation of the late-distal limb program are coordinated by the dual action of HOX13 on cis-regulatory modules.
Collapse
Affiliation(s)
- Rushikesh Sheth
- Laboratory of Genetics and Development, Institut de Recherches Cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, QC H2W1R7, Canada.
| | - Iros Barozzi
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David Langlais
- Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montréal, H3G0B1 QC, Canada
| | | | - Stephen Nemec
- Laboratory of Molecular Genetics, Institut de Recherches Cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, H2W1R7 QC, Canada
| | - Hanqian L Carlson
- Department of Skeletal Biology, Shriners Hospital for Children, 3101 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - H Scott Stadler
- Department of Skeletal Biology, Shriners Hospital for Children, 3101 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Axel Visel
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, CA 95340, USA
| | - Jacques Drouin
- Laboratory of Molecular Genetics, Institut de Recherches Cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, H2W1R7 QC, Canada; Department of Medicine, Université de Montréal, Montréal, H3T1J4 QC, Canada
| | - Marie Kmita
- Laboratory of Genetics and Development, Institut de Recherches Cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, QC H2W1R7, Canada; Department of Medicine, Université de Montréal, Montréal, H3T1J4 QC, Canada.
| |
Collapse
|
16
|
Zhu J, Mackem S. John Saunders' ZPA, Sonic hedgehog and digit identity - How does it really all work? Dev Biol 2017; 429:391-400. [PMID: 28161524 PMCID: PMC5540801 DOI: 10.1016/j.ydbio.2017.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 01/02/2023]
Abstract
Among John Saunders' many seminal contributions to developmental biology, his discovery of the limb 'zone of polarizing activity' (ZPA) is arguably one of the most memorable and ground-breaking. This discovery introduced the limb as a premier model for understanding developmental patterning and promoted the concept of patterning by a morphogen gradient. In the 50 years since the discovery of the ZPA, Sonic hedgehog (Shh) has been identified as the ZPA factor and the basic components of the signaling pathway and many aspects of its regulation have been elucidated. Although much has also been learned about how it regulates growth, the mechanism by which Shh patterns the limb, how it acts to instruct digit 'identity', nevertheless remains an enigma. This review focuses on what has been learned about Shh function in the limb and the outstanding puzzles that remain to be solved.
Collapse
Affiliation(s)
- Jianjian Zhu
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, United States
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, United States.
| |
Collapse
|
17
|
Agostini G, Rasoazanabary E, Godfrey LR. The befuddling nature of mouse lemur hands and feet at Bezà Mahafaly, SW Madagascar. Am J Primatol 2017; 79. [PMID: 28605033 DOI: 10.1002/ajp.22680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/14/2017] [Accepted: 05/15/2017] [Indexed: 11/11/2022]
Abstract
The reddish-gray mouse lemur (Microcebus griseorufus) possesses striking phenotypic and behavioral variation. This project investigates differences in autopod proportions in neighboring populations of M. griseorufus from the Special Reserve at Bezà Mahafaly in southwest Madagascar. One population resides in an environment generally preferred by M. griseorufus-a spiny forest with large-trunked trees, vertically-oriented supports, and more open ground, while the other resides in a gallery forest with abundant small, often horizontal peripheral branches in high canopy. We demonstrate significant interpopulation differences in autopod morphophology despite no evidence of divergence in mitochondrial cytochrome b. We test two hypotheses regarding ultimate causation. The first, based on the Fine Branch Arborealism Hypothesis (FBAH), holds that autopod differences are related to different locomotor practices in the two environments, and the second, based on the Narrow Niche Hypothesis (NNH), holds that the observed differences reflect a relaxation (from ancestral to descendant conditions) of selective pressure for terrestrial locomotion and/or use of large, vertical supports combined with positive selection for locomoting in peripheral branch settings. Our data conform well to FBAH expectations and show some support for the NNH. Individuals from the gallery forest possess disproportionally long posterior digits that facilitate locomotion on small, flexible canopy supports while individuals from the spiny forest possess shorter posterior digits and a longer pollex/hallux that increase functional grasping diameter for large vertical supports and facilitate efficient ground locomotion. Focal individual data confirm differences in how often individuals descend to the ground and use vertical supports. We further show that predispersal juveniles, like adults, possess autopod morphologies suited to their natal forest. We explore two proximate mechanisms that could generate these cheiridial differences. The first posits an in vivo plastic response to different locomotor behaviors, the second posits differences that manifest in early development.
Collapse
Affiliation(s)
- Gina Agostini
- Department of Anthropology, University of Massachusetts Amherst, Amherst, Massachusetts
| | | | - Laurie R Godfrey
- Department of Anthropology, University of Massachusetts Amherst, Amherst, Massachusetts
| |
Collapse
|
18
|
Huang BL, Trofka A, Furusawa A, Norrie JL, Rabinowitz AH, Vokes SA, Mark Taketo M, Zakany J, Mackem S. An interdigit signalling centre instructs coordinate phalanx-joint formation governed by 5'Hoxd-Gli3 antagonism. Nat Commun 2016; 7:12903. [PMID: 27713395 PMCID: PMC5059757 DOI: 10.1038/ncomms12903] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 08/12/2016] [Indexed: 12/20/2022] Open
Abstract
The number of phalanges and joints are key features of digit 'identity' and are central to limb functionality and evolutionary adaptation. Prior chick work indicated that digit phalanges and their associated joints arise in a different manner than the more sparsely jointed long bones, and their identity is regulated by differential signalling from adjacent interdigits. Currently, there is no genetic evidence for this model, and the molecular mechanisms governing digit joint specification remain poorly understood. Using genetic approaches in mouse, here we show that functional 5'Hoxd-Gli3 antagonism acts indirectly, through Bmp signalling from the interdigital mesenchyme, to regulate specification of joint progenitors, which arise in conjunction with phalangeal precursors at the digit tip. Phalanx number, although co-regulated, can be uncoupled from joint specification. We propose that 5'Hoxd genes and Gli3 are part of an interdigital signalling centre that sets net Bmp signalling levels from different interdigits to coordinately regulate phalanx and joint formation.
Collapse
Affiliation(s)
- Bau-Lin Huang
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| | - Anna Trofka
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| | - Aki Furusawa
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| | - Jacqueline L. Norrie
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Adam H. Rabinowitz
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Steven A. Vokes
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - M. Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606–8501, Japan
| | - Jozsef Zakany
- Department of Genetics and Evolution, University of Geneva, Geneva 4 1211, Switzerland
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| |
Collapse
|
19
|
Reno PL, Kjosness KM, Hines JE. The Role of Hox in Pisiform and Calcaneus Growth Plate Formation and the Nature of the Zeugopod/Autopod Boundary. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:303-21. [DOI: 10.1002/jez.b.22688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 06/13/2016] [Accepted: 06/28/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Philip L. Reno
- Department of Anthropology; The Pennsylvania State University; University Park Pennsylvania
| | - Kelsey M. Kjosness
- Department of Anthropology; The Pennsylvania State University; University Park Pennsylvania
| | - Jasmine E. Hines
- Department of Anthropology; The Pennsylvania State University; University Park Pennsylvania
| |
Collapse
|
20
|
Carlson HL, Quinn JJ, Yang YW, Thornburg CK, Chang HY, Stadler HS. LncRNA-HIT Functions as an Epigenetic Regulator of Chondrogenesis through Its Recruitment of p100/CBP Complexes. PLoS Genet 2015; 11:e1005680. [PMID: 26633036 PMCID: PMC4669167 DOI: 10.1371/journal.pgen.1005680] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/27/2015] [Indexed: 01/23/2023] Open
Abstract
Gene expression profiling in E 11 mouse embryos identified high expression of the long noncoding RNA (lncRNA), LNCRNA-HIT in the undifferentiated limb mesenchyme, gut, and developing genital tubercle. In the limb mesenchyme, LncRNA-HIT was found to be retained in the nucleus, forming a complex with p100 and CBP. Analysis of the genome-wide distribution of LncRNA-HIT-p100/CBP complexes by ChIRP-seq revealed LncRNA-HIT associated peaks at multiple loci in the murine genome. Ontological analysis of the genes contacted by LncRNA-HIT-p100/CBP complexes indicate a primary role for these loci in chondrogenic differentiation. Functional analysis using siRNA-mediated reductions in LncRNA-HIT or p100 transcripts revealed a significant decrease in expression of many of the LncRNA-HIT-associated loci. LncRNA-HIT siRNA treatments also impacted the ability of the limb mesenchyme to form cartilage, reducing mesenchymal cell condensation and the formation of cartilage nodules. Mechanistically the LncRNA-HIT siRNA treatments impacted pro-chondrogenic gene expression by reducing H3K27ac or p100 activity, confirming that LncRNA-HIT is essential for chondrogenic differentiation in the limb mesenchyme. Taken together, these findings reveal a fundamental epigenetic mechanism functioning during early limb development, using LncRNA-HIT and its associated proteins to promote the expression of multiple genes whose products are necessary for the formation of cartilage. A fundamental problem studied by skeletal biologists is the development of regenerative therapies to replace cartilage tissues impacted by injury or disease, which for individuals affected by osteoarthritis represents nearly half of all of all adults over the age of sixty five. To date, no therapies exist to promote sustained cartilage regeneration, as we have not been able to recapitulate the programming events necessary to instruct cells to form articular cartilage without these cells continuing to differentiate into bone. Our analysis of the early programming events occurring during cartilage formation led to the identification of LncRNA-HIT a long noncoding RNA that is essential for the differentiation of the embryonic limb mesenchyme into cartilage. A genome wide analysis of LncRNA-HIT’s distribution in the mesenchyme revealed strong association between LncRNA-HIT and numerous genes whose products facilitate cartilage formation. In the absence of LncRNA-HIT, the expression of these chondrogenic genes is severely reduced, impacting the differentiation of these cells into cartilage. Mechanistically, LncRNA-HIT regulates these pro-chondrogenic genes by recruiting p100 and CBP to these loci, facilitating H3K27ac and transcriptional activation. LncRNA-HIT also appears to be present in most vertebrate species, suggesting that the epigenetic program regulated by this lncRNA may represent a fundamental mechanism used by many species to promote cartilage formation.
Collapse
Affiliation(s)
- Hanqian L. Carlson
- Skeletal Biology Program, Shriners Hospitals for Children, Portland, Oregon, United States of America
| | - Jeffrey J. Quinn
- Program in Epithelial Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yul W. Yang
- Program in Epithelial Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Chelsea K. Thornburg
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Howard Y. Chang
- Program in Epithelial Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - H. Scott Stadler
- Skeletal Biology Program, Shriners Hospitals for Children, Portland, Oregon, United States of America
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
21
|
Huang AH, Riordan TJ, Pryce B, Weibel JL, Watson SS, Long F, Lefebvre V, Harfe BD, Stadler HS, Akiyama H, Tufa SF, Keene DR, Schweitzer R. Musculoskeletal integration at the wrist underlies the modular development of limb tendons. Development 2015; 142:2431-41. [PMID: 26062940 DOI: 10.1242/dev.122374] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/02/2015] [Indexed: 01/18/2023]
Abstract
The long tendons of the limb extend from muscles that reside in the zeugopod (arm/leg) to their skeletal insertions in the autopod (paw). How these connections are established along the length of the limb remains unknown. Here, we show that mouse limb tendons are formed in modular units that combine to form a functional contiguous structure; in muscle-less limbs, tendons develop in the autopod but do not extend into the zeugopod, and in the absence of limb cartilage the zeugopod segments of tendons develop despite the absence of tendons in the autopod. Analyses of cell lineage and proliferation indicate that distinct mechanisms govern the growth of autopod and zeugopod tendon segments. To elucidate the integration of these autopod and zeugopod developmental programs, we re-examined early tendon development. At E12.5, muscles extend across the full length of a very short zeugopod and connect through short anlagen of tendon progenitors at the presumptive wrist to their respective autopod tendon segment, thereby initiating musculoskeletal integration. Zeugopod tendon segments are subsequently generated by proximal elongation of the wrist tendon anlagen, in parallel with skeletal growth, underscoring the dependence of zeugopod tendon development on muscles for tendon anchoring. Moreover, a subset of extensor tendons initially form as fused structures due to initial attachment of their respective wrist tendon anlage to multiple muscles. Subsequent individuation of these tendons depends on muscle activity. These results establish an integrated model for limb tendon development that provides a framework for future analyses of tendon and musculoskeletal phenotypes.
Collapse
Affiliation(s)
- Alice H Huang
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Timothy J Riordan
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Brian Pryce
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Jennifer L Weibel
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Spencer S Watson
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Fanxin Long
- Department of Orthopaedics, Washington University, St Louis, MO 63110, USA
| | - Veronique Lefebvre
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian D Harfe
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - H Scott Stadler
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Haruhiko Akiyama
- Department of Orthopaedics, Gifu University, Gifu City, 501-1193, Japan
| | - Sara F Tufa
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Douglas R Keene
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| |
Collapse
|
22
|
Kjosness KM, Hines JE, Lovejoy CO, Reno PL. The pisiform growth plate is lost in humans and supports a role for Hox in growth plate formation. J Anat 2014; 225:527-38. [PMID: 25279687 PMCID: PMC4292754 DOI: 10.1111/joa.12235] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2014] [Indexed: 12/29/2022] Open
Abstract
The human pisiform is a small, nodular, although functionally significant, bone of the wrist. In most other mammals, including apes and Australopithecus afarensis, pisiforms are elongate. An underappreciated fact is that the typical mammalian pisiform forms from two ossification centers. We hypothesize that: (i) the presence of a secondary ossification center in mammalian pisiforms indicates the existence of a growth plate; and (ii) human pisiform reduction results from growth plate loss. To address these hypotheses, we surveyed African ape pisiform ossification and confirmed the presence of a late-forming secondary ossification center in chimpanzees and gorillas. Identification of the initial ossification center occurs substantially earlier in apes relative to humans, raising questions concerning the homology of the human pisiform and the two mammalian ossification centers. Second, we conducted histological and immunohistochemical analyses of pisiform ossification in mice. We confirm the presence of two ossification centers separated by organized columnar and hypertrophic chondrocyte zones. Flattened chondrocytes were highly mitotic, indicating the presence of a growth plate. Hox genes have been proposed to play a fundamental role in growth plate patterning. The existence of a pisiform growth plate presents an interesting test case for the association between Hox expression and growth plate formation, and could explain the severe effects on the pisiform observed in Hoxa11 and Hoxd11 knockout mice. Consistent with this hypothesis, we show that Hoxd11 is expressed adjacent to the pisiform in late-stage embryonic mouse limbs supporting a role for Hox genes in growth plate specification. This raises questions concerning the mechanisms regulating Hox expression in the developing carpus.
Collapse
Affiliation(s)
- Kelsey M Kjosness
- Department of Anthropology, The Pennsylvania State University, University Park, PA, USA
| | | | | | | |
Collapse
|
23
|
Introduction to Evolutionary Teratology, with an Application to the Forelimbs of Tyrannosauridae and Carnotaurinae (Dinosauria: Theropoda). Evol Biol 2014. [DOI: 10.1007/s11692-014-9296-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
González-Martín MC, Mallo M, Ros MA. Long bone development requires a threshold of Hox function. Dev Biol 2014; 392:454-65. [PMID: 24930703 DOI: 10.1016/j.ydbio.2014.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/30/2014] [Accepted: 06/04/2014] [Indexed: 11/30/2022]
Abstract
The Hoxd(Del(11-13)) mutant is one of the animal models for human synpolydactyly, characterized by short and syndactylous digits. Here we have characterized in detail the cartilage and bone defects in these mutants. We report two distinct phenotypes: (i) a delay and change in pattern of chondrocyte maturation of metacarpals/metatarsals and (ii) formation of a poor and not centrally positioned primary ossification center in the proximal-intermediate phalanx. In the metacarpals of Hoxd(Del(11-13)) mutants, ossification occurs postnataly, in the absence of significant Ihh expression and without the establishment of growth plates, following patterns similar to those of short bones. The strong downregulation in Ihh expression is associated with a corresponding increase of the repressor form of Gli3. To evaluate the contribution of this alteration to the phenotype, we generated double Hoxd(Del(11-13));Gli3 homozygous mutants. Intriguingly, these double mutants showed a complete rescue of the phenotype in metatarsals but only partial phenotypic rescue in metacarpals. Our results support Hox genes being required in a dose-dependent manner for long bone cartilage maturation and suggest that and excess of Gli3R mediates a significant part of the Hoxd(Del(11-13)) chondrogenic phenotype.
Collapse
Affiliation(s)
- Ma Carmen González-Martín
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN., 39011 Santander, Spain
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN., 39011 Santander, Spain; Dpto. de Anatomía y Biología Celular, Universidad de Cantabria, 39011 Santander, Spain.
| |
Collapse
|
25
|
Wang Z, Dai M, Wang Y, Cooper KL, Zhu T, Dong D, Zhang J, Zhang S. Unique expression patterns of multiple key genes associated with the evolution of mammalian flight. Proc Biol Sci 2014; 281:20133133. [PMID: 24695426 DOI: 10.1098/rspb.2013.3133] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bats are the only mammals capable of true flight. Critical adaptations for flight include a pair of dramatically elongated hands with broad wing membranes. To study the molecular mechanisms of bat wing evolution, we perform genomewide mRNA sequencing and in situ hybridization for embryonic bat limbs. We identify seven key genes that display unique expression patterns in embryonic bat wings and feet, compared with mouse fore- and hindlimbs. The expression of all 5'HoxD genes (Hoxd9-13) and Tbx3, six known crucial transcription factors for limb and digit development, is extremely high and prolonged in the elongating wing area. The expression of Fam5c, a tumour suppressor, in bat limbs is bat-specific and significantly high in all short digit regions (the thumb and foot digits). These results suggest multiple genetic changes occurred independently during the evolution of bat wings to elongate the hand digits, promote membrane growth and keep other digits short. Our findings also indicate that the evolution of limb morphology depends on the complex integration of multiple gene regulatory networks and biological processes that control digit formation and identity, chondrogenesis, and interdigital regression or retention.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Molecular Ecology and Evolution (iAIR), East China Normal University, , Shanghai 200062, People's Republic of China, Division of Biological Sciences, University of California, , San Diego, CA 92093, USA, Department of Genetics, Harvard Medical School, , Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The Hox genes are an evolutionarily conserved family of genes, which encode a class of important transcription factors that function in numerous developmental processes. Following their initial discovery, a substantial amount of information has been gained regarding the roles Hox genes play in various physiologic and pathologic processes. These processes range from a central role in anterior-posterior patterning of the developing embryo to roles in oncogenesis that are yet to be fully elucidated. In vertebrates there are a total of 39 Hox genes divided into 4 separate clusters. Of these, mutations in 10 Hox genes have been found to cause human disorders with significant variation in their inheritance patterns, penetrance, expressivity and mechanism of pathogenesis. This review aims to describe the various phenotypes caused by germline mutation in these 10 Hox genes that cause a human phenotype, with specific emphasis paid to the genotypic and phenotypic differences between allelic disorders. As clinical whole exome and genome sequencing is increasingly utilized in the future, we predict that additional Hox gene mutations will likely be identified to cause distinct human phenotypes. As the known human phenotypes closely resemble gene-specific murine models, we also review the homozygous loss-of-function mouse phenotypes for the 29 Hox genes without a known human disease. This review will aid clinicians in identifying and caring for patients affected with a known Hox gene disorder and help recognize the potential for novel mutations in patients with phenotypes informed by mouse knockout studies.
Collapse
Affiliation(s)
- Shane C Quinonez
- University of Michigan, Department of Pediatrics, Division of Pediatric Genetics, 1500 East Medical Center Drive, D5240 MPB/Box 5718, Ann Arbor, MI 48109-5718, USA.
| | - Jeffrey W Innis
- University of Michigan, Department of Pediatrics, Division of Pediatric Genetics, 1500 East Medical Center Drive, D5240 MPB/Box 5718, Ann Arbor, MI 48109-5718, USA; University of Michigan, Department of Human Genetics, 1241 E. Catherine, 4909 Buhl Building, Ann Arbor, MI 48109-5618, USA.
| |
Collapse
|
27
|
Brison N, Debeer P, Tylzanowski P. Joining the fingers: AHOXD13story. Dev Dyn 2013; 243:37-48. [DOI: 10.1002/dvdy.24037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022] Open
Affiliation(s)
- Nathalie Brison
- Center for Human Genetics; University Hospitals Leuven, University of Leuven; Belgium
| | - Philippe Debeer
- Department of Development and Regeneration; University of Leuven; Belgium
| | | |
Collapse
|
28
|
Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum). Proc Natl Acad Sci U S A 2013; 110:16044-9. [PMID: 24043829 DOI: 10.1073/pnas.1315760110] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclostomes, comprising jawless vertebrates such as lampreys and hagfishes, are the sister group of living jawed vertebrates (gnathostomes) and hence an important group for understanding the origin and diversity of vertebrates. In vertebrates and other metazoans, Hox genes determine cell fate along the anteroposterior axis of embryos and are implicated in driving morphological diversity. Invertebrates contain a single Hox cluster (either intact or fragmented), whereas elephant shark, coelacanth, and tetrapods contain four Hox clusters owing to two rounds of whole-genome duplication ("1R" and "2R") during early vertebrate evolution. By contrast, most teleost fishes contain up to eight Hox clusters because of an additional "teleost-specific" genome duplication event. By sequencing bacterial artificial chromosome (BAC) clones and the whole genome, here we provide evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum). This suggests that the lamprey lineage has experienced an additional genome duplication after 1R and 2R. The relative age of lamprey and human paralogs supports this hypothesis. Compared with gnathostome Hox clusters, lamprey Hox clusters are unusually large. Several conserved noncoding elements (CNEs) were predicted in the Hox clusters of lamprey, elephant shark, and human. Transgenic zebrafish assay indicated the potential of CNEs to function as enhancers. Interestingly, CNEs in individual lamprey Hox clusters are frequently conserved in multiple Hox clusters in elephant shark and human, implying a many-to-many orthology relationship between lamprey and gnathostome Hox clusters. Such a relationship suggests that the first two rounds of genome duplication may have occurred independently in the lamprey and gnathostome lineages.
Collapse
|
29
|
Davis MC. The Deep Homology of the Autopod: Insights from Hox Gene Regulation. Integr Comp Biol 2013; 53:224-32. [DOI: 10.1093/icb/ict029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Soshnikova N, Dewaele R, Janvier P, Krumlauf R, Duboule D. Duplications of hox gene clusters and the emergence of vertebrates. Dev Biol 2013; 378:194-9. [PMID: 23501471 DOI: 10.1016/j.ydbio.2013.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/05/2013] [Indexed: 11/27/2022]
Abstract
The vertebrate body plan is characterized by an increased complexity relative to that of all other chordates and large-scale gene amplifications have been associated with key morphological innovations leading to their remarkable evolutionary success. Here, we use compound full Hox clusters deletions to investigate how Hox genes duplications may have contributed to the emergence of vertebrate-specific innovations. We show that the combined deletion of HoxA and HoxB leads to an atavistic heart phenotype, suggesting that the ancestral HoxA/B cluster was co-opted to help in diversifying the complex organ in vertebrates. Other phenotypic effects observed seem to illustrate the resurgence of ancestral (plesiomorphic) features. This indicates that the duplications of Hox clusters were associated with the recruitment or formation of novel cis-regulatory controls, which were key to the evolution of many vertebrate features and hence to the evolutionary radiation of this group.
Collapse
Affiliation(s)
- Natalia Soshnikova
- Department of Genetics and Evolution, University of Geneva, Sciences III, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Sheth R, Marcon L, Bastida MF, Junco M, Quintana L, Dahn R, Kmita M, Sharpe J, Ros MA. Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 2012; 338:1476-80. [PMID: 23239739 DOI: 10.1126/science.1226804] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The formation of repetitive structures (such as stripes) in nature is often consistent with a reaction-diffusion mechanism, or Turing model, of self-organizing systems. We used mouse genetics to analyze how digit patterning (an iterative digit/nondigit pattern) is generated. We showed that the progressive reduction in Hoxa13 and Hoxd11-Hoxd13 genes (hereafter referred to as distal Hox genes) from the Gli3-null background results in progressively more severe polydactyly, displaying thinner and densely packed digits. Combined with computer modeling, our results argue for a Turing-type mechanism underlying digit patterning, in which the dose of distal Hox genes modulates the digit period or wavelength. The phenotypic similarity with fish-fin endoskeleton patterns suggests that the pentadactyl state has been achieved through modification of an ancestral Turing-type mechanism.
Collapse
Affiliation(s)
- Rushikesh Sheth
- Facultad de Medicina, Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-Sociedad para el Desarrollo Regional de Cantabria-Universidad de Cantabria, 39011 Santander, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Illig R, Fritsch H, Schwarzer C. Spatio-temporal expression ofHOXgenes in human hindgut development. Dev Dyn 2012; 242:53-66. [DOI: 10.1002/dvdy.23893] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2012] [Indexed: 01/06/2023] Open
|
33
|
Kachgal S, Mace KA, Boudreau NJ. The dual roles of homeobox genes in vascularization and wound healing. Cell Adh Migr 2012; 6:457-70. [PMID: 23076135 PMCID: PMC3547888 DOI: 10.4161/cam.22164] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Homeobox genes represent a family of highly conserved transcription factors originally discovered to regulate organ patterning during development. More recently, several homeobox genes were shown to affect processes in adult tissue, including angiogenesis and wound healing. Whereas a subset of members of the Hox-family of homeobox genes activate growth and migration to promote angiogenesis or wound healing, other Hox genes function to restore or maintain quiescent, differentiated tissue function. Pathological tissue remodeling is linked to differential expression of activating or stabilizing Hox genes and dysregulation of Hox expression can contribute to disease progression. Studies aimed at understanding the role and regulation of Hox genes have provided insight into how these potent morphoregulatory genes can be applied to enhance tissue engineering or limit cancer progression.
Collapse
Affiliation(s)
- Suraj Kachgal
- Surgical Research Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA USA
| | | | | |
Collapse
|
34
|
Kamiyama N, Seki R, Yokoyama H, Tamura K. Heterochronically early decline of Hox expression prior to cartilage formation in the avian hindlimb zeugopod. Dev Growth Differ 2012; 54:619-32. [PMID: 22708793 DOI: 10.1111/j.1440-169x.2012.01359.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/01/2012] [Accepted: 05/01/2012] [Indexed: 12/19/2022]
Abstract
The fibula, a zeugopod bone in the hindlimb, exhibits various morphologies in tetrapod species. The fibula in some species has a similar length with the other zeugopod element, the tibia, while other species have obvious differences in the sizes of the two elements. In the avian hindlimb, for example, the fibula is extremely short, thin, and truncated. Basic morphology of the fibula is established during development, and cartilage primordium of the bone emerges in a certain region defined by a distinct combination of expression of Hox genes (Hox code). In order to elucidate how the different morphologies are produced from a region that is defined as the fixed Hox code, we examined spatial and temporal patterns of Hoxd11/Hoxd12 expression in the developing limb bud, which defines the region from which the fibula emerges, in comparison with the sites of precartilaginous mesenchymal condensations representing regions for cartilage formation among chick, mouse, and gecko embryos. We found that in the chick hindlimb, expression of Hoxd11/Hoxd12 decreased and disappeared from the presumptive zeugopod region before cartilage formation. This heterochronically early decline of expression of Hox genes is strongly correlated with the peculiar trait of the fibula in the avian hindlimb, since in the other species examined, expression of those genes continued after the onset of cartilage formation. This is morphological phenotype-related because the early disappearance was not seen in the chick forelimb. Our results suggest that temporal change of the Hox code governs diversification in morphology of homologous structures among related species.
Collapse
Affiliation(s)
- Namiko Kamiyama
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | | | | | | |
Collapse
|
35
|
Association analysis between HOXD9 genes and the development of developmental dysplasia of the hip in Chinese female Han population. BMC Musculoskelet Disord 2012; 13:59. [PMID: 22520331 PMCID: PMC3404944 DOI: 10.1186/1471-2474-13-59] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 04/20/2012] [Indexed: 01/08/2023] Open
Abstract
Background Developmental dysplasia of the hip (DDH) is a congenital or acquired deformation or misalignment of the hip joint which affects mainly females. We hypothesized that HOXD9 gene could be regulated in acetabular size or shape and related in DDH developing. Methods Two hundred and nine Chinese Han female DDH patients and 173 ethnic, age matched healthy female controls were genotyped for HOXD9 two tag SNPs using sequenom method. Results One of the two tag SNPs, rs711822, was not shown significantly differences in genotypic or allelic distribution between case and control group. Comparing the genotypic distribution of rs711819, there was significant differences between DDH patients group and control group (χ2 = 7.54, df =2, P =0.023), and the association to DDH developing reached significance (P =0.045, OR =1.79, 95 % CI: 1.01-3.17 by dominant mode). Conclusion In conclusion, the association between one tag SNP of HOXD9 gene and the development of DDH reach significant in our study population, this result indicate the positive correlation between HOXD9 gene and DDH developing. Further study in larger sample size and different population as well as functional studies will help to understand the pathogenesis of DDH.
Collapse
|
36
|
Delpretti S, Zakany J, Duboule D. A function for all posterior Hoxd genes during digit development? Dev Dyn 2012; 241:792-802. [PMID: 22374744 DOI: 10.1002/dvdy.23756] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Four posterior Hoxd genes, from Hoxd13 to Hoxd10, are collectively regulated during the development of tetrapod digits. Besides the well-documented role of Hoxd13, the function of the neighboring genes has been difficult to evaluate due to the close genetic linkage and potential regulatory interferences. We used a combination of five small nested deletions in cis, involving from two to four consecutive genes of the Hoxd13 to Hoxd9 loci, in mice, to evaluate their combined functional importance. RESULTS We show that deletions leading to a gain of function of Hoxd13, via regulatory re-allocation, generate abnormal phenotypes, in agreement with the dominant negative role of this gene. We also show that Hoxd10, Hoxd11, and Hoxd12 all seem to play a genuine role in digit development, though less compelling than that of Hoxd13. In contrast, the nearby Hoxd9 contributed no measurable function in digits. CONCLUSIONS We conclude that a slight and transient deregulation of Hoxd13 expression can readily affect the relative lengths of limb segments and that all posterior Hoxd genes likely contribute to the final limb morphology. We discuss the difficulty to clearly assess the functional share of individual genes within such a gene family, where closely located neighbors, coding for homologous proteins, are regulated by a unique circuitry and all contribute to shape the distal parts of our appendages.
Collapse
Affiliation(s)
- Saskia Delpretti
- National Research Centre Frontiers in Genetics, School of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, Switzerland
| | | | | |
Collapse
|
37
|
Limb skeletal malformations – What the HOX is going on? Eur J Med Genet 2012; 55:1-7. [DOI: 10.1016/j.ejmg.2011.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/10/2011] [Indexed: 11/21/2022]
|
38
|
Huber L, Ferdin M, Holzmann J, Stubbusch J, Rohrer H. HoxB8 in noradrenergic specification and differentiation of the autonomic nervous system. Dev Biol 2011; 363:219-33. [PMID: 22236961 DOI: 10.1016/j.ydbio.2011.12.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 10/25/2022]
Abstract
Different prespecification of mesencephalic and trunk neural crest cells determines their response to environmental differentiation signals and contributes to the generation of different autonomic neuron subtypes, parasympathetic ciliary neurons in the head and trunk noradrenergic sympathetic neurons. The differentiation of ciliary and sympathetic neurons shares many features, including the initial BMP-induced expression of noradrenergic characteristics that is, however, subsequently lost in ciliary but maintained in sympathetic neurons. The molecular basis of specific prespecification and differentiation patterns has remained unclear. We show here that HoxB gene expression in trunk neural crest is maintained in sympathetic neurons. Ectopic expression of a single HoxB gene, HoxB8, in mesencephalic neural crest results in a strongly increased expression of sympathetic neuron characteristics like the transcription factor Hand2, tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) in ciliary neurons. Other subtype-specific properties like RGS4 and RCad are not induced. HoxB8 has only minor effects in postmitotic ciliary neurons and is unable to induce TH and DBH in the enteric nervous system. Thus, we conclude that HoxB8 acts by maintaining noradrenergic properties transiently expressed in ciliary neuron progenitors during normal development. HoxC8, HoxB9, HoxB1 and HoxD10 elicit either small and transient or no effects on noradrenergic differentiation, suggesting a selective effect of HoxB8. These results implicate that Hox genes contribute to the differential development of autonomic neuron precursors by maintaining noradrenergic properties in the trunk sympathetic neuron lineage.
Collapse
Affiliation(s)
- Leslie Huber
- Research Group Developmental Neurobiology, Max Planck Institute for Brain Research, Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
39
|
van de Ven C, Bialecka M, Neijts R, Young T, Rowland JE, Stringer EJ, Van Rooijen C, Meijlink F, Nóvoa A, Freund JN, Mallo M, Beck F, Deschamps J. Concerted involvement of Cdx/Hox genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone. Development 2011; 138:3451-62. [DOI: 10.1242/dev.066118] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Decrease in Cdx dosage in an allelic series of mouse Cdx mutants leads to progressively more severe posterior vertebral defects. These defects are corrected by posterior gain of function of the Wnt effector Lef1. Precocious expression of Hox paralogous 13 genes also induces vertebral axis truncation by antagonizing Cdx function. We report here that the phenotypic similarity also applies to patterning of the caudal neural tube and uro-rectal tracts in Cdx and Wnt3a mutants, and in embryos precociously expressing Hox13 genes. Cdx2 inactivation after placentation leads to posterior defects, including incomplete uro-rectal septation. Compound mutants carrying one active Cdx2 allele in the Cdx4-null background (Cdx2/4), transgenic embryos precociously expressing Hox13 genes and a novel Wnt3a hypomorph mutant all manifest a comparable phenotype with similar uro-rectal defects. Phenotype and transcriptome analysis in early Cdx mutants, genetic rescue experiments and gene expression studies lead us to propose that Cdx transcription factors act via Wnt signaling during the laying down of uro-rectal mesoderm, and that they are operative in an early phase of these events, at the site of tissue progenitors in the posterior growth zone of the embryo. Cdx and Wnt mutations and premature Hox13 expression also cause similar neural dysmorphology, including ectopic neural structures that sometimes lead to neural tube splitting at caudal axial levels. These findings involve the Cdx genes, canonical Wnt signaling and the temporal control of posterior Hox gene expression in posterior morphogenesis in the different embryonic germ layers. They shed a new light on the etiology of the caudal dysplasia or caudal regression range of human congenital defects.
Collapse
Affiliation(s)
- Cesca van de Ven
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Monika Bialecka
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Roel Neijts
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Teddy Young
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | | | - Emma J. Stringer
- Biochemistry Department, University of Leicester, Leicester LE1 9HN, UK
| | - Carina Van Rooijen
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Frits Meijlink
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Ana Nóvoa
- Insituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | - Jean-Noel Freund
- INSERM, U682, Université de Strasbourg, Faculté de Médecine, Strasbourg, F-67200, France
| | - Moises Mallo
- Insituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
- Faculdade de Medicina, Universidade de Lisboa, 1600 Lisboa, Portugal
| | - Felix Beck
- Biochemistry Department, University of Leicester, Leicester LE1 9HN, UK
| | - Jacqueline Deschamps
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| |
Collapse
|
40
|
Liang D, Wu R, Geng J, Wang C, Zhang P. A general scenario of Hox gene inventory variation among major sarcopterygian lineages. BMC Evol Biol 2011; 11:25. [PMID: 21266090 PMCID: PMC3038165 DOI: 10.1186/1471-2148-11-25] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 01/26/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hox genes are known to play a key role in shaping the body plan of metazoans. Evolutionary dynamics of these genes is therefore essential in explaining patterns of evolutionary diversity. Among extant sarcopterygians comprising both lobe-finned fishes and tetrapods, our knowledge of the Hox genes and clusters has largely been restricted in several model organisms such as frogs, birds and mammals. Some evolutionary gaps still exist, especially for those groups with derived body morphology or occupying key positions on the tree of life, hindering our understanding of how Hox gene inventory varied along the sarcopterygian lineage. RESULTS We determined the Hox gene inventory for six sarcopterygian groups: lungfishes, caecilians, salamanders, snakes, turtles and crocodiles by comprehensive PCR survey and genome walking. Variable Hox genes in each of the six sarcopterygian group representatives, compared to the human Hox gene inventory, were further validated for their presence/absence by PCR survey in a number of related species representing a broad evolutionary coverage of the group. Turtles, crocodiles, birds and placental mammals possess the same 39 Hox genes. HoxD12 is absent in snakes, amphibians and probably lungfishes. HoxB13 is lost in frogs and caecilians. Lobe-finned fishes, amphibians and squamate reptiles possess HoxC3. HoxC1 is only present in caecilians and lobe-finned fishes. Similar to coelacanths, lungfishes also possess HoxA14, which is only found in lobe-finned fishes to date. Our Hox gene variation data favor the lungfish-tetrapod, turtle-archosaur and frog-salamander relationships and imply that the loss of HoxD12 is not directly related to digit reduction. CONCLUSIONS Our newly determined Hox inventory data provide a more complete scenario for evolutionary dynamics of Hox genes along the sarcopterygian lineage. Limbless, worm-like caecilians and snakes possess similar Hox gene inventories to animals with less derived body morphology, suggesting changes to their body morphology are likely due to other modifications rather than changes to Hox gene numbers. Furthermore, our results provide basis for future sequencing of the entire Hox clusters of these animals.
Collapse
Affiliation(s)
- Dan Liang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Riga Wu
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jie Geng
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chaolin Wang
- Alligator Research Center of Anhui Province, Xuanzhou 242000, Anhui, China
| | - Peng Zhang
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
41
|
Lee GS, Liao X, Shimizu H, Collins MD. Genetic and pathologic aspects of retinoic acid-induced limb malformations in the mouse. ACTA ACUST UNITED AC 2010; 88:863-82. [DOI: 10.1002/bdra.20712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Villavicencio-Lorini P, Kuss P, Friedrich J, Haupt J, Farooq M, Türkmen S, Duboule D, Hecht J, Mundlos S. Homeobox genes d11-d13 and a13 control mouse autopod cortical bone and joint formation. J Clin Invest 2010; 120:1994-2004. [PMID: 20458143 DOI: 10.1172/jci41554] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 03/17/2010] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanisms that govern bone and joint formation are complex, involving an integrated network of signaling pathways and gene regulators. We investigated the role of Hox genes, which are known to specify individual segments of the skeleton, in the formation of autopod limb bones (i.e., the hands and feet) using the mouse mutant synpolydactyly homolog (spdh), which encodes a polyalanine expansion in Hoxd13. We found that no cortical bone was formed in the autopod in spdh/spdh mice; instead, these bones underwent trabecular ossification after birth. Spdh/spdh metacarpals acquired an ovoid shape and developed ectopic joints, indicating a loss of long bone characteristics and thus a transformation of metacarpals into carpal bones. The perichondrium of spdh/spdh mice showed abnormal morphology and decreased expression of Runt-related transcription factor 2 (Runx2), which was identified as a direct Hoxd13 transcriptional target. Hoxd11-/-Hoxd12-/-Hoxd13-/- triple-knockout mice and Hoxd13-/-Hoxa13+/- mice exhibited similar but less severe defects, suggesting that these Hox genes have similar and complementary functions and that the spdh allele acts as a dominant negative. This effect was shown to be due to sequestration of other polyalanine-containing transcription factors by the mutant Hoxd13 in the cytoplasm, leading to their degradation. These data indicate that Hox genes not only regulate patterning but also directly influence bone formation and the ossification pattern of bones, in part via Runx2.
Collapse
|
43
|
Koyama E, Yasuda T, Wellik DM, Pacifici M. Hox11 paralogous genes are required for formation of wrist and ankle joints and articular surface organization. Ann N Y Acad Sci 2010; 1192:307-16. [PMID: 20392252 DOI: 10.1111/j.1749-6632.2009.05234.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Limb skeletal elements are connected by distinct synovial joints, but the mechanisms regulating joint formation, diversity, and organization remain unclear. Previous studies showed that Hox11 mouse mutants have severe developmental defects in radius and ulna and tibia and fibula, but wrist and ankle joint formation and characteristics were not examined in detail. We now find that E11.5 and E12.5 triple Hox11aaccdd mutants exhibit a significant reduction in prospective carpal and tarsal mesenchyme. Although the mesenchyme became segmented into individual carpal and tarsal skeletal elements with further development, the elements were ill defined and the more proximal elements (radiale, ulnare, talus, and calcaneous) actually underwent involution and/or fusion. Wild-type carpal and tarsal elements displayed a thick articulating superficial zone at their outer perimeter that expressed genes typical of developing joint interzones and articulating cells, including Gdf5, Erg, Gli3, collagen IIA, and lubricin, and defined each element anatomically. In mutant wrists and ankles, the superficial zone around each element was thin and ill defined, and expression of several of those genes was low and often interrupted. These and other data provide novel and clear evidence that Hox11 paralogous genes regulate wrist and ankle joint organization and are essential for establishing carpal and tarsal element boundary and maintaining their articulating surface tissue.
Collapse
Affiliation(s)
- Eiki Koyama
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, USA
| | | | | | | |
Collapse
|
44
|
|
45
|
Di-Poï N, Koch U, Radtke F, Duboule D. Additive and global functions of HoxA cluster genes in mesoderm derivatives. Dev Biol 2010; 341:488-98. [PMID: 20303345 DOI: 10.1016/j.ydbio.2010.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 01/31/2023]
Abstract
Hox genes encode transcription factors that play a central role in the specification of regional identities along the anterior to posterior body axis. In the developing mouse embryo, Hox genes from all four genomic clusters are involved in range of developmental processes, including the patterning of skeletal structures and the formation of several organs. However, the functional redundancy observed either between paralogous genes, or among neighboring genes from the same cluster, has hampered functional analyses, in particular when synergistic, cluster-specific functions are considered. Here, we report that mutant mice lacking the entire HoxA cluster in mesodermal lineages display the expected spectrum of postnatal respiratory, cardiac and urogenital defects, previously reported for single gene mutations. Likewise, mild phenotypes are observed in both appendicular and axial skeleton. However, a striking effect was uncovered in the hematopoietic system, much stronger than that seen for Hoxa9 inactivation alone, which involves stem cells (HSCs) as well as the erythroid lineage, indicating that several Hoxa genes are necessary for normal hematopoiesis to occur. Finally, the combined deletions of Hoxa and Hoxd genes reveal abnormalities in axial elongation as well as skin morphogenesis that are likely the results of defects in epithelial-mesenchymal interactions.
Collapse
Affiliation(s)
- Nicolas Di-Poï
- National Research Center Frontiers in Genetics, Department of Zoology and Animal Biology, University of Geneva, Sciences III, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
46
|
HOXD13 binds DNA replication origins to promote origin licensing and is inhibited by geminin. Mol Cell Biol 2009; 29:5775-88. [PMID: 19703996 DOI: 10.1128/mcb.00509-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
HOX DNA-binding proteins control patterning during development by regulating processes such as cell aggregation and proliferation. Recently, a possible involvement of HOX proteins in replication origin activity was suggested by results showing that a number of HOX proteins interact with the DNA replication licensing regulator geminin and bind a characterized human origin of replication. The functional significance of these observations, however, remained unclear. We show that HOXD13, HOXD11, and HOXA13 bind in vivo all characterized human replication origins tested. We furthermore show that HOXD13 interacts with the CDC6 loading factor, promotes pre-replication complex (pre-RC) proteins assembly at origins, and stimulates DNA synthesis in an in vivo replication assay. HOXD13 expression in cultured cells accelerates DNA synthesis initiation in correlation with the earlier pre-RC recruitment onto origins during G(1) phase. Geminin, which interacts with HOXD13 as well, blocks HOXD13-mediated assembly of pre-RC proteins and inhibits HOXD13-induced DNA replication. Our results uncover a function for Hox proteins in the regulation of replication origin activity and reveal an unforeseen role for the inhibition of HOX protein activity by geminin in the context of replication origin licensing.
Collapse
|
47
|
Iacovino M, Hernandez C, Xu Z, Bajwa G, Prather M, Kyba M. A conserved role for Hox paralog group 4 in regulation of hematopoietic progenitors. Stem Cells Dev 2009; 18:783-92. [PMID: 18808325 DOI: 10.1089/scd.2008.0227] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Regulatory circuits that control stem cell fate decisions can be identified and understood by manipulating individual regulatory elements genetically. While impractical in the rare somatic stem cells of primary tissue, this approach is feasible in embryonic stem cells differentiated in vitro into the somatic stem cell type of interest. We present an improved highly efficient targeting system allowing genes to be integrated into a predetermined, doxycycline-inducible locus, and corresponding inducible embryonic stem cell lines to be generated rapidly. We apply this system to evaluate a key hematopoietic progenitor cell regulatory element, HoxB4, and its mammalian paralogs, whose effects have not yet been tested in this context. We show that all Hox paralog group 4 members, A4, B4, C4, and D4, have similar effects on hematopoietic stem and progenitor self-renewal in vitro, and thus classify Hox paralog group 4 as promoting self-renewal. Each paralog group 4 member both promotes proliferation and inhibits differentiation, enabling the exponential expansion of hematopoietic progenitors from the c-kit(+)/CD41(+) cell fraction of day 6 murine embryoid bodies. By evaluating a set of deletion mutants we show that sequences in addition to the homeodomain and hexapeptide motif are required for this activity. These results highlight the utility of this expression system to perform functional and structural analyses of genetic regulators of cell fate decisions.
Collapse
Affiliation(s)
- Michelina Iacovino
- Department of Pediatrics and Lillehei Heart Institute, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
48
|
Fork stalling and template switching as a mechanism for polyalanine tract expansion affecting the DYC mutant of HOXD13, a new murine model of synpolydactyly. Genetics 2009; 183:23-30. [PMID: 19546318 DOI: 10.1534/genetics.109.104695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyalanine expansion diseases are proposed to result from unequal crossover of sister chromatids that increases the number of repeats. In this report we suggest an alternative mechanism we put forward while we investigated a new spontaneous mutant that we named "Dyc" for "Digit in Y and Carpe" phenotype. Phenotypic analysis revealed an abnormal limb patterning similar to that of the human inherited congenital disease synpolydactyly (SPD) and to the mouse mutant model Spdh. Both human SPD and mouse Spdh mutations affect the Hoxd13 gene within a 15-residue polyalanine-encoding repeat in the first exon of the gene, leading to a dominant negative HOXD13. Genetic analysis of the Dyc mutant revealed a trinucleotide expansion in the polyalanine-encoding region of the Hoxd13 gene resulting in a 7-alanine expansion. However, unlike the Spdh mutation, this expansion cannot result from a simple duplication of a short segment. Instead, we propose the fork stalling and template switching (FosTeS) described for generation of nonrecurrent genomic rearrangements as a possible mechanism for the Dyc polyalanine extension, as well as for other polyalanine expansions described in the literature and that could not be explained by unequal crossing over.
Collapse
|
49
|
Savory JG, Pilon N, Grainger S, Sylvestre JR, Béland M, Houle M, Oh K, Lohnes D. Cdx1 and Cdx2 are functionally equivalent in vertebral patterning. Dev Biol 2009; 330:114-22. [DOI: 10.1016/j.ydbio.2009.03.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 03/16/2009] [Accepted: 03/16/2009] [Indexed: 11/27/2022]
|
50
|
|