1
|
Tharshan Jeyakanesh J, Nadarajapillai K, Tharanga EMT, Park C, Jo Y, Jeong T, Wan Q, Lee J. Amphiprion clarkii DDX41 modulates fish immune responses: Characterization by expression profiling, antiviral assay, and macrophage polarization analysis. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109365. [PMID: 38199263 DOI: 10.1016/j.fsi.2024.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
DDX41, a member of the DEAD-box helicase family, serves as a vital cytosolic DNA sensor and plays a pivotal role in controlling the activation of type I interferon responses in mammals. However, the functional aspects of fish DDX41 remain relatively unexplored. In this study, we identified and characterized the DDX41 gene in Amphiprion clarkii transcriptomes and designated the gene as AcDDX41. The complete open reading frame of AcDDX41 encoded a putative protein comprising 617 amino acids. Notably, the predicted AcDDX41 protein shared several structural features that are conserved in DDX41, including DEXDc, HELICc, and zinc finger domains, as well as conserved sequence "Asp-Glu-Ala-Asp (D-E-A-D)." AcDDX41 exhibited the highest sequence homology (99.68 % similarity) with DDX41 from Acanthochromis polyacanthus. Phylogenetic analysis revealed that DDX41s from fish formed a branch distinct from that in other animals. All investigated tissues were shown to express AcDDX41 constitutively, with blood showing the highest expression levels, followed by the brain. Furthermore, AcDDX41 expression was significantly induced upon stimulation with poly I:C, lipopolysaccharide, and Vibrio harveyi, indicating its responsiveness to immune stimuli. We confirmed the antiviral function of AcDDX41 by analyzing gene expression and viral replication during viral hemorrhagic septicemia virus infection. Additionally, using a luciferase reporter assay, we validated the ability of AcDDX41 to activate the NF-κB signaling pathway upon stimulation with poly I:C. Finally, AcDDX41 influenced cytokine gene expression and played a regulatory role in macrophage M1 polarization in RAW 264.7 cells. Collectively, these results highlight the significance of AcDDX41 as an immune-related gene that contributes substantially to antiviral defense and regulation of NF-κB activity.
Collapse
Affiliation(s)
- Jeganathan Tharshan Jeyakanesh
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - E M T Tharanga
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Cheonguk Park
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yuhwan Jo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea.
| |
Collapse
|
2
|
Qin XW, Luo ZY, Pan WQ, He J, Li ZM, Yu Y, Liu C, Weng SP, He JG, Guo CJ. The Interaction of Mandarin Fish DDX41 with STING Evokes type I Interferon Responses Inhibiting Ranavirus Replication. Viruses 2022; 15:58. [PMID: 36680100 PMCID: PMC9862065 DOI: 10.3390/v15010058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
DDX41 is an intracellular DNA sensor that evokes type I interferon (IFN-I) production via the adaptor stimulator of interferon gene (STING), triggering innate immune responses against viral infection. However, the regulatory mechanism of the DDX41-STING pathway in teleost fish remains unclear. The mandarin fish (Siniperca chuatsi) is a cultured freshwater fish species that is popular in China because of its high market value. With the development of a high-density cultural mode in mandarin fish, viral diseases have increased and seriously restricted the development of aquaculture, such as ranavirus and rhabdovirus. Herein, the role of mandarin fish DDX41 (scDDX41) and its DEAD and HELIC domains in the antiviral innate immune response were investigated. The level of scDDX41 expression was up-regulated following treatment with poly(dA:dT) or Mandarin fish ranavirus (MRV), suggesting that scDDX41 might be involved in fish innate immunity. The overexpression of scDDX41 significantly increased the expression levels of IFN-I, ISGs, and pro-inflammatory cytokine genes. Co-immunoprecipitation and pull-down assays showed that the DEAD domain of scDDX41 recognized the IFN stimulatory DNA and interacted with STING to activate IFN-I signaling pathway. Interestingly, the HELIC domain of scDDX41 could directly interact with the N-terminal of STING to induce the expression levels of IFN-I and ISGs genes. Furthermore, the scDDX41 could enhance the scSTING-induced IFN-I immune response and significantly inhibit MRV replication. Our work would be beneficial to understand the roles of teleost fish DDX41 in the antiviral innate immune response.
Collapse
Affiliation(s)
- Xiao-Wei Qin
- State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Zhi-Yong Luo
- State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Wei-Qiang Pan
- State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Jian He
- State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Zhi-Min Li
- State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Yang Yu
- State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Chang Liu
- State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Shao-Ping Weng
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Jian-Guo He
- State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| | - Chang-Jun Guo
- State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, and Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China
| |
Collapse
|
3
|
Weinreb JT, Bowman TV. Clinical and mechanistic insights into the roles of DDX41 in haematological malignancies. FEBS Lett 2022; 596:2736-2745. [PMID: 36036093 PMCID: PMC9669125 DOI: 10.1002/1873-3468.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022]
Abstract
DEAD-box Helicase 41 (DDX41) is a member of the DExD/H-box helicase family that has a variety of cellular functions. Of note, germline and somatic mutations in the DDX41 gene are prevalently found in myeloid malignancies. Here, we present a comprehensive and analytic review covering relevant clinical, translational and basic science findings on DDX41. We first describe the initial characterisation of DDX41 mutations in patients affected by myelodysplastic syndromes, their associated clinical characteristics, and current treatment modalities. We then cover the known cellular functions of DDX41, spanning from its discovery in Drosophila as a neuroregulator through its more recently described roles in inflammatory signalling, R-loop metabolism and snoRNA processing. We end with a summary of the identified basic functions of DDX41 that when perturbed may contribute to the underlying pathology of haematologic neoplasms.
Collapse
Affiliation(s)
- Joshua T. Weinreb
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA
- Albert Einstein College of Medicine, Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
| | - Teresa V. Bowman
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA
- Albert Einstein College of Medicine, Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
- Albert Einstein College of Medicine and the Montefiore Medical Center, Department of Oncology, Bronx, NY, USA
| |
Collapse
|
4
|
Friedrich M. Coming into clear sight at last: Ancestral and derived events during chelicerate visual system development. Bioessays 2022; 44:e2200163. [DOI: 10.1002/bies.202200163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences Wayne State University Detroit Michigan USA
- Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University School of Medicine Detroit Michigan USA
| |
Collapse
|
5
|
Lovejoy PC, Foley KE, Conti MM, Meadows SM, Bishop C, Fiumera AC. Genetic basis of susceptibility to low-dose paraquat and variation between the sexes in Drosophila melanogaster. Mol Ecol 2021; 30:2040-2053. [PMID: 33710693 DOI: 10.1111/mec.15878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 02/23/2021] [Indexed: 12/18/2022]
Abstract
Toxicant resistance is a complex trait, affected both by genetics and the environment. Like most complex traits, it can exhibit sexual dimorphism, yet sex is often overlooked as a factor in studies of toxicant resistance. Paraquat, one such toxicant, is a commonly used herbicide and is known to produce mitochondrial oxidative stress, decrease dopaminergic neurons and dopamine (DA) levels, and decrease motor ability. While the main effects of paraquat are well-characterized, less is known about the naturally occurring variation in paraquat susceptibility. The purpose of this study was to map the genes contributing to low-dose paraquat susceptibility in Drosophila melanogaster, and to determine if susceptibility differs between the sexes. One hundred of the Drosophila Genetic Reference Panel (DGRP) lines were scored for susceptibility via climbing ability and used in a genome-wide association study (GWAS). Variation in seventeen genes in females and thirty-five genes in males associated with paraquat susceptibility. Only two candidate genes overlapped between the sexes despite a significant positive correlation between male and female susceptibilities. Many associated polymorphisms had significant interactions with sex, with most having conditionally neutral effects. Conditional neutrality between the sexes probably stems from sex-biased expression which may result from partial resolution of sexual conflict. Candidate genes were verified with RNAi knockdowns, gene expression analyses, and DA quantification. Several of these genes are novel associations with paraquat susceptibility. This research highlights the importance of assessing both sexes when studying toxicant susceptibility.
Collapse
Affiliation(s)
- Pamela C Lovejoy
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.,Department of Biology, St. Joseph's College, Brooklyn, NY, USA
| | - Kate E Foley
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Melissa M Conti
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | | | | | - Anthony C Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
6
|
Hu J, Xu X, Wang S, Ge G. Ctenopharyngodon idellus DDX41 initiates IFN I and ISG15 expression in response to GCRV infection. FISH & SHELLFISH IMMUNOLOGY 2020; 106:149-160. [PMID: 32781207 DOI: 10.1016/j.fsi.2020.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
As a member of DExD/H-box helicase family, DDX41 (DEAD box polypeptide 41) acts as an intracellular DNA sensor that induces type I IFN expression in mammals. Fish DDX41 shares some similar properties with the mammalian counterparts. In this study, a DDX41 orthologous gene from grass carp (Ctenopharyngodon idellus) (CiDDX41) was cloned and characterized. The ORF of CiDDX41 encodes a polypeptide of 614 amino acids. Multiple alignments showed that DDX41 is highly conserved among different species. Phylogenetic tree analysis revealed that CiDDX41 shares a high degree of homology with Sinocyclocheilus rhinocerous DDX41. CiDDX41 is highly expressed in kidney, intestines, liver and spleen. Their expressions are up-regulated more obviously after the treatment with GCRV. Over-expression of CiDDX41 in CIK cells increases the transcription level of grass carp IFN I and ISG15. On the contrary, knockdown of CiDDX41 inhibits the IFN I and ISG15 transcription. Moreover, a part of CiDDX41 translocates from the nuclear to cytoplasm to interact with grass carp STING (CiSTING). In CIK cells, overexpression of CiDDX41 and CiSTING can promote the phosphorylation and nuclear-cytoplasm translocation of grass carp IRF7 (CiIRF7) and then acutely up-regulate the IFN I and ISG15 expression. However, the knockdown of CiDDX41 inhibits the phosphorylation IRF7. Taken together, all these results above suggested that CiDDX41 performs as an activator for innate immune through STING-IRF7 mediated signaling pathway.
Collapse
Affiliation(s)
- Jihuan Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shanghong Wang
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Gang Ge
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
7
|
Ma JX, Li JY, Fan DD, Feng W, Lin AF, Xiang LX, Shao JZ. Identification of DEAD-Box RNA Helicase DDX41 as a Trafficking Protein That Involves in Multiple Innate Immune Signaling Pathways in a Zebrafish Model. Front Immunol 2018; 9:1327. [PMID: 29942316 PMCID: PMC6005158 DOI: 10.3389/fimmu.2018.01327] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
DDX41 is an important sensor for host recognition of DNA viruses and initiation of nuclear factor-κB (NF-κB) and IFN signaling pathways in mammals. However, its occurrence and functions in other vertebrates remain poorly defined. Here, a DDX41 ortholog [Danio rerio DDX41 (DrDDX41)] with various conserved structural features to its mammalian counterparts was identified from a zebrafish model. This DrDDX41 was found to be a trafficking protein distributed in the nucleus of resting cells but transported into the cytoplasm under DNA stimulation. Two nuclear localization signal motifs were localized beside the coiled-coil domain, whereas one nuclear export signal motif existed in the DEADc domain. DrDDX41 acts as an initiator for the activation of NF-κB and IFN signaling pathways in a Danio rerio STING (DrSTING)-dependent manner through its DEADc domain, which is a typical performance of mammalian DDX41. These observations suggested the conservation of DDX41 proteins throughout the vertebrate evolution, making zebrafish an alternative model in understanding DDX41-mediated immunology. With this model system, we found that DrDDX41 contributes to DrSTING–Danio rerio STAT6 (DrSTAT6)-mediated chemokine (Danio rerio CCL20) production through its DEADc domain. To the best of our knowledge, this work is the first report showing that DDX41 is an upstream initiator in this newly identified signaling pathway. The DrDDX41-mediated signaling pathways play important roles in innate antibacterial immunity because knockdown of either DrDDX41 or DrSTING/DrSTAT6 significantly reduced the survival of zebrafish under Aeromonas hydrophilia or Edwardsiella tarda infection. Our findings would enrich the current knowledge of DDX41-mediated immunology and the evolutionary history of the DDX41 family.
Collapse
Affiliation(s)
- Jun-Xia Ma
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiang-Yuan Li
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Dong-Dong Fan
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Wei Feng
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ai-Fu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Li-Xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Soponpong S, Amparyup P, Tassanakajon A. A cytosolic sensor, PmDDX41, mediates antiviral immune response in black tiger shrimp Penaeus monodon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:291-302. [PMID: 29248385 DOI: 10.1016/j.dci.2017.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
DEAD (Asp-Glu-Ala-Asp)-box polypeptide 41 (DDX41), a receptor belonging to the DExD family, has recently been identified as an intracellular DNA sensor in vertebrates. Here, we report on the identification and functional characterization of PmDDX41, the first cytosolic DNA sensor in shrimp. By searching a Penaeus monodon expressed sequence tag (EST) database (http://pmonodon.biotec.or.th), three cDNA fragments exhibiting similarity to DDX41 in various species were identified and assembled, resulting in a complete open reading frame of PmDDX41 that contains 1863-bp and encodes a putative protein of 620 amino acids. PmDDX41 shares 83% and 79% similarity to DDX41 homolog from the bee Apis florea and fruit fly Drosophila melanogaster, respectively and contains three conserved domains in the protein: DEADc domain, HELICc domain, and zinc finger domain. The transcript of PmDDX41 was detected in all tested tissues and was up-regulated upon infection with a DNA virus, white spot syndrome virus (WSSV). However, PmDDX41 mRNA expression was not significantly changed and down-regulated in response to a bacterium, Vibrio harveyi, or an RNA virus, yellow head virus (YHV), respectively, compared with the control phosphate-buffered saline-injected shrimp. Furthermore, the suppression of PmDDX41 by dsRNA-mediated gene silencing resulted in more rapid death of WSSV-infected shrimp and a significant decrease in the mRNA expression levels of several immune-related genes (PmIKKβ, PmIKKɛ, PmRelish, PmCactus, PmDorsal, PmPEN3, PmPEN5, and ALFPm6). These results suggest that PmDDX41 is involved in the antiviral response, probably via a DNA-sensing pathway that is triggered through the IκB kinase complex and leads to the activation of several immune-related genes.
Collapse
Affiliation(s)
- Suthinee Soponpong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piti Amparyup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
9
|
|
10
|
Jiang Y, Zhu Y, Liu ZJ, Ouyang S. The emerging roles of the DDX41 protein in immunity and diseases. Protein Cell 2017; 8:83-89. [PMID: 27502187 PMCID: PMC5291771 DOI: 10.1007/s13238-016-0303-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022] Open
Abstract
RNA helicases are involved in almost every aspect of RNA, from transcription to RNA decay. DExD/H-box helicases comprise the largest SF2 helicase superfamily, which are characterized by two conserved RecA-like domains. In recent years, an increasing number of unexpected functions of these proteins have been discovered. They play important roles not only in innate immune response but also in diseases like cancers and chronic hepatitis C. In this review, we summarize the recent literatures on one member of the SF2 superfamily, the DEAD-box protein DDX41. After bacterial or viral infection, DNA or cyclic-di-GMP is released to cells. After phosphorylation of Tyr414 by BTK kinase, DDX41 will act as a sensor to recognize the invaders, followed by induction of type I interferons (IFN). After the immune response, DDX41 is degraded by the E3 ligase TRIM21, using Lys9 and Lys115 of DDX41 as the ubiquitination sites. Besides the roles in innate immunity, DDX41 is also related to diseases. An increasing number of both inherited and acquired mutations in DDX41 gene are identified from myelodysplastic syndrome and/or acute myeloid leukemia (MDS/AML) patients. The review focuses on DDX41, as well as its homolog Abstrakt in Drosophila, which is important for survival at all stages throughout the life cycle of the fly.
Collapse
Affiliation(s)
- Yan Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- iHuman Institute, Shanghai Tech University, Shanghai, 201210, China
| | - Songying Ouyang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
11
|
Won JH, Tsogtbartarr O, Son W, Singh A, Choi KW, Cho KO. Cell type-specific responses to wingless, hedgehog and decapentaplegic are essential for patterning early eye-antenna disc in Drosophila. PLoS One 2015; 10:e0121999. [PMID: 25849899 PMCID: PMC4388393 DOI: 10.1371/journal.pone.0121999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/25/2015] [Indexed: 01/15/2023] Open
Abstract
The Drosophila eye-antenna imaginal disc (ead) is a flattened sac of two-layered epithelia, from which most head structures are derived. Secreted morphogens like Wingless (Wg), Hedgehog (Hh), and Decapentaplegic (Dpp) are important for early patterning of ead, but the underlying mechanisms are still largely unknown. To understand how these morphogens function in the ead of early larval stages, we used wg-LacZ and dpp-Gal4 markers for the examination of wild-type and mutant eads. We found that the ead immediately after hatching was crescent-shaped with the Bolwig's nerve at the ventral edge, suggesting that it consists of dorsal domain. In a subsequent step, transcriptional induction of dpp in the cells along the Bolwig's nerve was followed by rapid growth of the ventral domain. Both Wg and Hh were required for the formation of the ventral domain. Wg was crucial for the growth of the entire ead, but Hh was essential for cell division only in the dorsal domain. In the ventral domain, Hh regulated dpp transcription. Based on these data, we propose that signaling among distinct groups of cells expressing Wg, Dpp, or Hh in the ead of the first-instar larvae are critical for coordinated growth and patterning of ead.
Collapse
Affiliation(s)
- Jong-Hoon Won
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Orkhon Tsogtbartarr
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Wonseok Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Amit Singh
- Department of Biology, Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, 300 College Park, Dayton, Ohio 45469-2320, United States of America
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Kyung-Ok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
- * E-mail:
| |
Collapse
|
12
|
Pilon M. Developmental genetics of the Caenorhabditis elegans pharynx. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:263-80. [PMID: 25262818 PMCID: PMC4314705 DOI: 10.1002/wdev.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/03/2014] [Accepted: 04/15/2014] [Indexed: 11/07/2022]
Abstract
The Caenorhabditis elegans pharynx is a rhythmically pumping organ composed initially of 80 cells that, through fusions, amount to 62 cells in the adult worm. During the first 100 min of development, most future pharyngeal cells are born and gather into a double-plate primordium surrounded by a basal lamina. All pharyngeal cells express the transcription factor PHA-4, of which the concentration increases throughout development, triggering a sequential activation of genes with promoters responding differentially to PHA-4 protein levels. The oblong-shaped pharyngeal primordium becomes polarized, many cells taking on wedge shapes with their narrow ends toward the center, hence forming an epithelial cyst. The primordium then elongates, and reorientations of the cells at the anterior and posterior ends form the mouth and pharyngeal-intestinal openings, respectively. The 20 pharyngeal neurons establish complex but reproducible trajectories using 'fishing line' and growth cone-driven mechanisms, and the gland cells also similarly develop their processes. The genetics behind many fate decisions and morphogenetic processes are being elucidated, and reveal the pharynx to be a fruitful model for developmental biologists.
Collapse
Affiliation(s)
- Marc Pilon
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburg, Sweden
| |
Collapse
|
13
|
Sun M, Xie W. Cell adhesion molecules in Drosophila synapse development and function. SCIENCE CHINA-LIFE SCIENCES 2012; 55:20-6. [PMID: 22314487 DOI: 10.1007/s11427-012-4273-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/15/2011] [Indexed: 12/11/2022]
Abstract
Synapse is a highly specialized inter-cellular structure between neurons or between a neuron and its target cell that mediates cell-cell communications. Ample results indicate that synaptic adhesion molecules are critically important in modulating the complexity and specificity of the synapse. And disruption of adhesive properties of synapses may lead to neurodevelopmental or neurodegenerative diseases. In this review, we will use the Drosophila NMJ as a model system for glutamatergic synapses to discuss the structure and function of homophilic and heterophilic synaptic adhesion molecules with special focus on recent findings in neurexins and neuroligins in Drosophila.
Collapse
Affiliation(s)
- Mingkuan Sun
- Key Laboratory of DGHD, MOE, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| | | |
Collapse
|
14
|
Hinnemann A, Niederegger S, Hanslik U, Heinzel HG, Spiess R. See the light: electrophysiological characterization of the Bolwig organ's light response of Calliphora vicina 3rd instar larvae. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1651-1658. [PMID: 20603127 DOI: 10.1016/j.jinsphys.2010.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/23/2010] [Accepted: 06/23/2010] [Indexed: 05/29/2023]
Abstract
The anatomy and development of the larval cyclorraphous Diptera visual system is well established. It consists of the internal Bolwig organ (BO), and the associated nerve connecting it to the brain. The BO contributes to various larval behaviors but was never electrophysiologically characterized. We recorded extracellulary from the Bolwig nerve of 3rd instar Calliphora vicina larvae to quantify the sensory response caused by BO stimulation with light stimuli of different wavelengths, intensities and directions. Consistent with previous behavioral experiments we found the BO most sensitive to white and green, followed by blue, yellow, violet and red light. The BO showed a phasic-tonic response curve. Increasing light intensity produced a sigmoid response curve with an approximate threshold of 0.0105 nW/cm(2) and a dynamic range from 0.105 nW/cm(2) to 52.5 nW/cm(2). No differences exist between feeding and wandering larvae which display opposed phototaxis. This excludes reduced BO sensitivity from causing the switch in behavior. Correlating to the morphology of the BO frontal light evoked the maximal reaction, while lateral light reduced the neural response asymmetrically: Light applied ipsilaterally to the recorded BO always produced a stronger response than when applied from the contralateral side. This implies that phototacic behavior is based on a tropotactic mechanism.
Collapse
Affiliation(s)
- Axel Hinnemann
- Zoologisches Institut der Universität Bonn, Abteilung Neurobiologie, Bonn, Germany
| | | | | | | | | |
Collapse
|
15
|
Edwards TN, Meinertzhagen IA. The functional organisation of glia in the adult brain of Drosophila and other insects. Prog Neurobiol 2010; 90:471-97. [PMID: 20109517 DOI: 10.1016/j.pneurobio.2010.01.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 12/24/2022]
Abstract
This review annotates and categorises the glia of adult Drosophila and other model insects and analyses the developmental origins of these in the Drosophila optic lobe. The functions of glia in the adult vary depending upon their sub-type and location in the brain. The task of annotating glia is essentially complete only for the glia of the fly's lamina, which comprise: two types of surface glia-the pseudocartridge and fenestrated glia; two types of cortex glia-the distal and proximal satellite glia; and two types of neuropile glia-the epithelial and marginal glia. We advocate that the term subretinal glia, as used to refer to both pseudocartridge and fenestrated glia, be abandoned. Other neuropiles contain similar glial subtypes, but other than the antennal lobes these have not been described in detail. Surface glia form the blood brain barrier, regulating the flow of substances into and out of the nervous system, both for the brain as a whole and the optic neuropiles in particular. Cortex glia provide a second level of barrier, wrapping axon fascicles and isolating neuronal cell bodies both from neighbouring brain regions and from their underlying neuropiles. Neuropile glia can be generated in the adult and a subtype, ensheathing glia, are responsible for cleaning up cellular debris during Wallerian degeneration. Both the neuropile ensheathing and astrocyte-like glia may be involved in clearing neurotransmitters from the extracellular space, thus modifying the levels of histamine, glutamate and possibly dopamine at the synapse to ultimately affect behaviour.
Collapse
Affiliation(s)
- Tara N Edwards
- Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, NS, Canada, B3H 4J1.
| | | |
Collapse
|
16
|
Kristiansen LV, Hortsch M. Fasciclin II: the NCAM ortholog in Drosophila melanogaster. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:387-401. [PMID: 20017035 DOI: 10.1007/978-1-4419-1170-4_24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lars V Kristiansen
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, 3063 Biomedical Sciences Research Bldg (BSRB), Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
17
|
Heiman MG, Shaham S. Twigs into branches: how a filopodium becomes a dendrite. Curr Opin Neurobiol 2009; 20:86-91. [PMID: 19939665 DOI: 10.1016/j.conb.2009.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 01/25/2023]
Abstract
A dendrite grows by sprouting filopodia, some of which mature into stable dendrite branches that bear synapses and sprout filopodia of their own. Recent work has shown that a filopodium begins deciding to become a stable branch within 1min of contacting a presynaptic partner, but what triggers this decision remains unknown. We consider the evidence for three possible triggers: activity of neurotransmitter receptors, signaling through adhesion proteins, and heightened membrane tension as the filopodium attempts to retract but is held in place by adhesive contacts with the target. Of these, membrane tension-induced signaling is especially appealing, as it would serve as a general reporter of attachment, independent of which specific adhesion molecules are used.
Collapse
Affiliation(s)
- Maxwell G Heiman
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
18
|
Schoofs A, Niederegger S, Spiess R. From behavior to fictive feeding: anatomy, innervation and activation pattern of pharyngeal muscles of Calliphora vicina 3rd instar larvae. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:218-230. [PMID: 19100742 DOI: 10.1016/j.jinsphys.2008.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/18/2008] [Accepted: 11/18/2008] [Indexed: 05/27/2023]
Abstract
A description of the muscles and nerves involved in feeding of larval Calliphora vicina is given as a prerequisite to establish fictive feeding patterns recorded from the isolated central nervous system. Feeding Diptera larvae show a repetitive sequence of pro- and retraction of the cephalopharyngeal skeleton (CPS), elevation and depression of the mouth hooks and food ingestion. The corresponding pharyngeal muscles are protractors, mouth hook elevators and depressors, the labial retractor and cibarial dilator muscles. These muscles are innervated by the prothoracic accessory nerve (PaN), maxillary nerve (MN) and antennal nerve (AN) as shown electrophysiologically by recording action potentials from the respective nerve that correlate to post-synaptic potentials on the muscles. All three nerves show considerably more complex branching patterns than indicated in the literature. Extracellular recordings from the stumps of PaN, MN and AN connected to an isolated CNS show spontaneous rhythmic motor patterns that reflect the feeding sequence in intact larvae. Variability of the feeding pattern observed in behavioral experiments is also evident from the level of motor output from an isolated CNS. The data obtained from Calliphora will facilitate electrophysiological investigations dealing with the genetic background of feeding behavior in Drosophila larvae.
Collapse
Affiliation(s)
- Andreas Schoofs
- Institut für Zoologie, Abteilung Neurobiologie, Universität Bonn, Poppelsdorfer Schloss, 53115 Bonn, Germany
| | | | | |
Collapse
|
19
|
Pilon M. Fishing lines, time-delayed guideposts, and other tricks used by developing pharyngeal neurons in Caenorhabditis elegans. Dev Dyn 2008; 237:2073-80. [PMID: 18651660 DOI: 10.1002/dvdy.21636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The 20 neurons that innervate the Caenorhabditis elegans pharynx form a simple nervous system that develops and operates in near complete isolation from the rest of the worm body and, therefore, offers a manageable degree of complexity for developmental genetics studies. This review discusses the progress that has been made in determining the mechanisms by which 4 of the 20 pharyngeal neurons develop, and emphasizes surprising processes that add to the classic growth cone guidance model which is usually thought to explain how most axons establish their trajectories.
Collapse
Affiliation(s)
- Marc Pilon
- Department of Cell Molecular Biology, University of Göteborg, Göteborg, Sweden.
| |
Collapse
|
20
|
|
21
|
Sprecher SG, Pichaud F, Desplan C. Adult and larval photoreceptors use different mechanisms to specify the same Rhodopsin fates. Genes Dev 2007; 21:2182-95. [PMID: 17785526 PMCID: PMC1950857 DOI: 10.1101/gad.1565407] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 07/16/2007] [Indexed: 11/25/2022]
Abstract
Although development of the adult Drosophila compound eye is very well understood, little is known about development of photoreceptors (PRs) in the simple larval eye. We show here that the larval eye is composed of 12 PRs, four of which express blue-sensitive rhodopsin5 (rh5) while the other eight contain green-sensitive rh6. This is similar to the 30:70 ratio of adult blue and green R8 cells. However, the stochastic choice of adult color PRs and the bistable loop of the warts and melted tumor suppressor genes that unambiguously specify rh5 and rh6 in R8 PRs are not involved in specification of larval PRs. Instead, primary PR precursors signal via EGFR to surrounding tissue to develop as secondary precursors, which will become Rh6-expressing PRs. EGFR signaling is required for the survival of the Rh6 subtype. Primary precursors give rise to the Rh5 subtype. Furthermore, the combinatorial action of the transcription factors Spalt, Seven-up, and Orthodenticle specifies the two PR subtypes. Therefore, even though the larval PRs and adult R8 PRs express the same rhodopsins (rh5 and rh6), they use very distinct mechanisms for their specification.
Collapse
Affiliation(s)
- Simon G. Sprecher
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Franck Pichaud
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Claude Desplan
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
22
|
Sánchez-Soriano N, Tear G, Whitington P, Prokop A. Drosophila as a genetic and cellular model for studies on axonal growth. Neural Dev 2007; 2:9. [PMID: 17475018 PMCID: PMC1876224 DOI: 10.1186/1749-8104-2-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Accepted: 05/02/2007] [Indexed: 11/10/2022] Open
Abstract
One of the most fascinating processes during nervous system development is the establishment of stereotypic neuronal networks. An essential step in this process is the outgrowth and precise navigation (pathfinding) of axons and dendrites towards their synaptic partner cells. This phenomenon was first described more than a century ago and, over the past decades, increasing insights have been gained into the cellular and molecular mechanisms regulating neuronal growth and navigation. Progress in this area has been greatly assisted by the use of simple and genetically tractable invertebrate model systems, such as the fruit fly Drosophila melanogaster. This review is dedicated to Drosophila as a genetic and cellular model to study axonal growth and demonstrates how it can and has been used for this research. We describe the various cellular systems of Drosophila used for such studies, insights into axonal growth cones and their cytoskeletal dynamics, and summarise identified molecular signalling pathways required for growth cone navigation, with particular focus on pathfinding decisions in the ventral nerve cord of Drosophila embryos. These Drosophila-specific aspects are viewed in the general context of our current knowledge about neuronal growth.
Collapse
Affiliation(s)
- Natalia Sánchez-Soriano
- The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Guy Tear
- MRC Centre for Developmental Neurobiology, Guy's Campus, King's College, London, UK
| | - Paul Whitington
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria, Australia
| | - Andreas Prokop
- The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
23
|
Friedrich M. Ancient mechanisms of visual sense organ development based on comparison of the gene networks controlling larval eye, ocellus, and compound eye specification in Drosophila. ARTHROPOD STRUCTURE & DEVELOPMENT 2006; 35:357-378. [PMID: 18089081 DOI: 10.1016/j.asd.2006.08.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 08/10/2006] [Indexed: 05/25/2023]
Abstract
Key mechanisms of development are strongly constrained, and hence often shared in the formation of highly diversified homologous organs. This diagnostic is applied to uncovering ancient gene activities in the control of visual sense organ development by comparing the gene networks, which regulate larval eye, ocellus and compound eye specification in Drosophila. The comparison reveals a suite of shared aspects that are likely to predate the diversification of arthropod visual sense organs and, consistent with this, have notable similarities in the developing vertebrate visual system: (I) Pax-6 genes participate in the patterning of primordia of complex visual organs. (II) Primordium determination and differentiation depends on formation of a transcription factor complex that contains the products of the selector genes Eyes absent and Sine oculis. (III) The TGF-beta signaling factor Decapentaplegic exerts transcriptional activation of eyes absent and sine oculis. (IV) Canonical Wnt signaling contributes to primordium patterning by repression of eyes absent and sine oculis. (V) Initiation of determination and differentiation is controlled by hedgehog signaling. (VI) Egfr signaling drives retinal cell fate specification. (VII) The proneural transcription factor atonal regulates photoreceptor specification. (VII) The zinc finger gene glass regulates photoreceptor specification and differentiation.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| |
Collapse
|
24
|
Liu Z, Yang X, Dong Y, Friedrich M. Tracking down the "head blob": comparative analysis of wingless expression in the developing insect procephalon reveals progressive reduction of embryonic visual system patterning in higher insects. ARTHROPOD STRUCTURE & DEVELOPMENT 2006; 35:341-356. [PMID: 18089080 DOI: 10.1016/j.asd.2006.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 07/05/2006] [Indexed: 05/25/2023]
Abstract
The evolution of larval head morphology in holometabolous insects is characterized by reduction of antennal appendages and the visual system components. Little insight has been gained into molecular developmental changes underlying this morphological diversification. Here we compare the expression of the segment polarity gene wingless (wg) in the pregnathal head of fruit fly, flour beetle and grasshopper embryos. We provide evidence that wg activity contributes to segment border formation, and, subsequently, the separation of the visual system and protocerebrum anlagen in the anterior procephalon. In directly developing insects like grasshopper, seven expression domains are formed during this process. The activation of four of these, which correspond to polar expression pairs in the optic lobe anlagen and the protocerebral ectoderm, has shifted to postembryonic stages in flour beetle and Drosophila. The remaining three domains map to the protocerebral neuroectoderm, and form by disintegration of a large precursor domain in flour beetle and grasshopper. In Drosophila, the precursor domain remains intact, constituting the previously described "head blob". These data document major changes in the expression of an early patterning gene correlated with the dramatic evolution of embryonic visual system development in the Holometabola.
Collapse
Affiliation(s)
- Zhenyi Liu
- Department of Molecular Biology and Pharmacology, Washington University in St Louis School of Medicine, 3600 Cancer Research Building, 660 S. Euclid Ave, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
25
|
Gamberi C, Johnstone O, Lasko P. Drosophila RNA Binding Proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:43-139. [PMID: 16487790 DOI: 10.1016/s0074-7696(06)48002-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA binding proteins are fundamental mediators of gene expression. The use of the model organism Drosophila has helped to elucidate both tissue-specific and ubiquitous functions of RNA binding proteins. These proteins mediate all aspects of the mRNA lifespan including splicing, nucleocytoplasmic transport, localization, stability, translation, and degradation. Most RNA binding proteins fall into several major groups, based on their RNA binding domains. As well, experimental data have revealed several proteins that can bind RNA but lack canonical RNA binding motifs, suggesting the presence of as yet uncharacterized RNA binding domains. Here, we present the major classes of Drosophila RNA binding proteins with special focus on those with functional information.
Collapse
Affiliation(s)
- Chiara Gamberi
- Department of Biology, McGill University, Montreal, Québec, Canada
| | | | | |
Collapse
|
26
|
Abdelhaleem M. RNA helicases: regulators of differentiation. Clin Biochem 2005; 38:499-503. [PMID: 15885226 DOI: 10.1016/j.clinbiochem.2005.01.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 01/04/2005] [Accepted: 01/17/2005] [Indexed: 11/17/2022]
Abstract
RNA helicases are highly conserved enzymes that utilize the energy derived from NTP hydrolysis to modulate the structure of RNA. RNA helicases participate in all biological processes that involve RNA, including transcription, splicing and translation. Based on the sequence of the helicase domain, they are classified into families, such as DDX and DHX families of human RNA helicases. The specificity of RNA helicases to their targets is likely due to several factors, such as the sequence, interacting molecules, subcellular localization and the expression pattern of the helicases. There are several examples of the involvement of RNA helicases in differentiation. Human DDX3 has two closely related genes designated DDX3Y and DDX3X, which are localized to the Y and X chromosomes, respectively. DDX3Y protein is specifically expressed in germ cells and is essential for spermatogenesis. DDX25 is another RNA helicase which has been shown to be required for spermatogenesis. DDX4 shows specific expression in germ cells. The Drosophila ortholog of DDX4, known as vasa, is required for the formation of germ cells and oogenesis by a mechanism that involves regulating the translation of mRNAs essential for differentiation. Abstrakt is the Drosphila ortholog of DDX41, which has been shown to be involved in visual and CNS system development. DDX5 (p68) and its related DDX17 (p72) have also been implicated in organ/tissue differentiation. The ability of RNA helicases to modulate the structure and thus availability of critical RNA molecules for processing leading to protein expression is the likely mechanism by which RNA helicases contribute to differentiation.
Collapse
Affiliation(s)
- Mohamed Abdelhaleem
- Division of Haematopathology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, University of Toronto, Room 3691 Atrium, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8.
| |
Collapse
|
27
|
Abstract
RNA-binding proteins play a major part in the control of gene expression during early development. At this stage, the majority of regulation occurs at the levels of translation and RNA localization. These processes are, in general, mediated by RNA-binding proteins interacting with specific sequence motifs in the 3'-untranslated regions of their target RNAs. Although initial work concentrated on the analysis of these sequences and their trans-acting factors, we are now beginning to gain an understanding of the mechanisms by which some of these proteins function. In this review, we will describe a number of different families of RNA-binding proteins, grouping them together on the basis of common regulatory strategies, and emphasizing the recurrent themes that occur, both across different species and as a response to different biological problems.
Collapse
|
28
|
Pilon M, Mörck C. Development of Caenorhabditis elegans pharynx, with emphasis on its nervous system. Acta Pharmacol Sin 2005; 26:396-404. [PMID: 15780187 DOI: 10.1111/j.1745-7254.2005.00070.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The Caenorhabditis elegans pharynx is a neuromuscular tube of which the function is to pump and crush bacteria, and inject them into the intestine. The 80-cell pharynx develops via the morphogenesis and differentiation of the cells that compose its semi-spherical primordium, and requires the activity of several evolutionarily conserved genes, such as pha-4 (the homolog to the Drosophila forkhead and vertebrate FoxA), ceh-22 (the homolog to the Drosophila tinman and vertebrate Nkx2.5), and pha-2 (the homolog to the vertebrate Hex). There are 20 neurons in the pharynx, each with a reproducible unique trajectory. Developmental genetic analysis of axon guidance in the pharynx indicates that some axon trajectories are in part established without growth cones, whereas other parts necessitate growth cone function and guidance. Here we provide an overview of the developmental genetics of the Caenorhabditis elegans pharynx, with an emphasis on its nervous system.
Collapse
Affiliation(s)
- Marc Pilon
- Lundberg Laboratory, Chalmers University, Göteborg S-405 30, Sweden.
| | | |
Collapse
|
29
|
Ye B, Petritsch C, Clark IE, Gavis ER, Jan LY, Jan YN. Nanos and Pumilio are essential for dendrite morphogenesis in Drosophila peripheral neurons. Curr Biol 2004; 14:314-21. [PMID: 14972682 DOI: 10.1016/j.cub.2004.01.052] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2003] [Revised: 10/15/2003] [Accepted: 12/30/2003] [Indexed: 11/23/2022]
Abstract
Much attention has focused on dendritic translational regulation of neuronal signaling and plasticity. For example, long-term memory in adult Drosophila requires Pumilio (Pum), an RNA binding protein that interacts with the RNA binding protein Nanos (Nos) to form a localized translation repression complex essential for anterior-posterior body patterning in early embryogenesis. Whether dendrite morphogenesis requires similar translational regulation is unknown. Here we report that nos and pum control the elaboration of high-order dendritic branches of class III and IV, but not class I and II, dendritic arborization (da) neurons. Analogous to their function in body patterning, nos and pum require each other to control dendrite morphogenesis, a process likely to involve translational regulation of nos itself. The control of dendrite morphogenesis by Nos/Pum, however, does not require hunchback, which is essential for body patterning. Interestingly, Nos protein is localized to RNA granules in the dendrites of da neurons, raising the possibility that the Nos/Pum translation repression complex operates in dendrites. This work serves as an entry point for future studies of dendritic translational control of dendrite morphogenesis.
Collapse
Affiliation(s)
- Bing Ye
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA 94143-0725, USA
| | | | | | | | | | | |
Collapse
|
30
|
Araújo SJ, Tear G. Axon guidance mechanisms and molecules: lessons from invertebrates. Nat Rev Neurosci 2003; 4:910-22. [PMID: 14595402 DOI: 10.1038/nrn1243] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sofia J Araújo
- Molecular Neurobiology Department, Medical Research Council Centre for Developmental Neurobiology, New Hunts House, Guy's Campus, King's College, London, SE1 1UL, UK
| | | |
Collapse
|
31
|
Schweers BA, Walters KJ, Stern M. The Drosophila melanogaster translational repressor pumilio regulates neuronal excitability. Genetics 2002; 161:1177-85. [PMID: 12136020 PMCID: PMC1462161 DOI: 10.1093/genetics/161.3.1177] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maintenance of proper neuronal excitability is vital to nervous system function and normal behavior. A subset of Drosophila mutants that exhibit altered behavior also exhibit defective motor neuron excitability, which can be monitored with electrophysiological methods. One such mutant is the P-element insertion mutant bemused (bem). The bem mutant exhibits female sterility, sluggishness, and increased motor neuron excitability. The bem P element is located in the large intron of the previously characterized translational repressor gene pumilio (pum). Here, by several criteria, we show that bem is a new allele of pum. First, ovary-specific expression of pum partially rescues bem female sterility. Second, pum null mutations fail to complement bem female sterility, behavioral defects, and neuronal hyperexcitability. Third, heads from bem mutant flies exhibit greatly reduced levels of Pum protein and the absence of two pum transcripts. Fourth, two previously identified pum mutants exhibit neuronal hyperexcitability. Fifth, overexpression of pum in the nervous system reduces neuronal excitability, which is the opposite phenotype to pum loss of function. Collectively, these findings describe a new role of pum in the regulation of neuronal excitability and may afford the opportunity to study the role of translational regulation in the maintenance of proper neuronal excitability.
Collapse
Affiliation(s)
- Brett A Schweers
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| | | | | |
Collapse
|
32
|
Sullivan KMC, Rubin GM. The Ca(2+)-calmodulin-activated protein phosphatase calcineurin negatively regulates EGF receptor signaling in Drosophila development. Genetics 2002; 161:183-93. [PMID: 12019233 PMCID: PMC1462097 DOI: 10.1093/genetics/161.1.183] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calcineurin is a Ca(2+)-calmodulin-activated, Ser-Thr protein phosphatase that is essential for the translation of Ca(2+) signals into changes in cell function and development. We carried out a dominant modifier screen in the Drosophila eye using an activated form of the catalytic subunit to identify new targets, regulators, and functions of calcineurin. An examination of 70,000 mutagenized flies yielded nine specific complementation groups, four that enhanced and five that suppressed the activated calcineurin phenotype. The gene canB2, which encodes the essential regulatory subunit of calcineurin, was identified as a suppressor group, demonstrating that the screen was capable of identifying genes relevant to calcineurin function. We demonstrated that a second suppressor group was sprouty, a negative regulator of receptor tyrosine kinase signaling. Wing and eye phenotypes of ectopic activated calcineurin and genetic interactions with components of signaling pathways suggested a role for calcineurin in repressing Egf receptor/Ras signal transduction. On the basis of our results, we propose that calcineurin, upon activation by Ca(2+)-calmodulin, cooperates with other factors to negatively regulate Egf receptor signaling at the level of sprouty and the GTPase-activating protein Gap1.
Collapse
Affiliation(s)
- Kathleen M C Sullivan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA.
| | | |
Collapse
|
33
|
Mollaaghababa R, Sipos L, Tiong SY, Papoulas O, Armstrong JA, Tamkun JW, Bender W. Mutations in Drosophila heat shock cognate 4 are enhancers of Polycomb. Proc Natl Acad Sci U S A 2001; 98:3958-63. [PMID: 11274417 PMCID: PMC31161 DOI: 10.1073/pnas.061497798] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2000] [Indexed: 11/18/2022] Open
Abstract
The homeotic genes controlling segment identity in Drosophila are repressed by the Polycomb group of genes (PcG) and are activated by genes of the trithorax group (trxG). An F(1) screen for dominant enhancers of Polycomb yielded a point mutation in the heat shock cognate gene, hsc4, along with mutations corresponding to several known PcG loci. The new mutation is a more potent enhancer of Polycomb phenotypes than an apparent null allele of hsc4 is, although even the null allele occasionally displays homeotic phenotypes associated with the PcG. Previous biochemical results had suggested that HSC4 might interact with BRAHMA, a trxG member. Further analyses now show that there is no physical or genetic interaction between HSC4 and the Brahma complex. HSC4 might be needed for the proper folding of a component of the Polycomb repression complex, or it may be a functional member of that complex.
Collapse
Affiliation(s)
- R Mollaaghababa
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 2000; 101:671-84. [PMID: 10892653 DOI: 10.1016/s0092-8674(00)80878-8] [Citation(s) in RCA: 738] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A Drosophila homolog of human Down syndrome cell adhesion molecule (DSCAM), an immunoglobulin superfamily member, was isolated by its affinity to Dock, an SH3/SH2 adaptor protein required for axon guidance. Dscam binds directly to both Dock's SH2 and SH3 domains. Genetic studies revealed that Dscam, Dock and Pak, a serine/threonine kinase, act together to direct pathfinding of Bolwig's nerve, containing a subclass of sensory axons, to an intermediate target in the embryo. Dscam also is required for the formation of axon pathways in the embryonic central nervous system. cDNA and genomic analyses reveal the existence of multiple forms of Dscam with a conserved architecture containing variable Ig and transmembrane domains. Alternative splicing can potentially generate more than 38,000 Dscam isoforms. This molecular diversity may contribute to the specificity of neuronal connectivity.
Collapse
Affiliation(s)
- D Schmucker
- Howard Hughes Medical Institute, Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Suzuki T, Saigo K. Transcriptional regulation of atonal required for Drosophila larval eye development by concerted action of eyes absent, sine oculis and hedgehog signaling independent of fused kinase and cubitus interruptus. Development 2000; 127:1531-40. [PMID: 10704398 DOI: 10.1242/dev.127.7.1531] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bolwig's organ is the larval light-sensing system consisting of 12 photoreceptors and its development requires atonal activity. Here, we showed that Bolwig's organ formation and atonal expression are controlled by the concerted function of hedgehog, eyes absent and sine oculis. Bolwig's organ primordium was first detected as a cluster of about 14 Atonal-positive cells at the posterior edge of the ocular segment in embryos and hence, atonal expression may define the region from which a few Atonal-positive founder cells (future primary photoreceptor cells) are generated by lateral specification. In Bolwig's organ development, neural differentiation precedes photoreceptor specification, since Elav, a neuron-specific antigen, whose expression is under the control of atonal, is expressed in virtually all early-Atonal-positive cells prior to the establishment of founder cells. Neither Atonal expression nor Bolwig's organ formation occurred in the absence of hedgehog, eyes absent or sine oculis activity. Genetic and histochemical analyses indicated that (1) responsible Hedgehog signals derive from the ocular segment, (2) Eyes absent and Sine oculis act downstream of or in parallel with Hedgehog signaling and (3) the Hedgehog signaling pathway required for Bolwig's organ development is a new type and lacks Fused kinase and Cubitus interruptus as downstream components.
Collapse
Affiliation(s)
- T Suzuki
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
36
|
Schmucker D, Vorbrüggen G, Yeghiayan P, Fan HQ, Jäckle H, Gaul U. The Drosophila gene abstrakt, required for visual system development, encodes a putative RNA helicase of the DEAD box protein family. Mech Dev 2000; 91:189-96. [PMID: 10704843 DOI: 10.1016/s0925-4773(99)00298-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The molecular mechanisms underlying axonal pathfinding are not well understood. In a genetic screen for mutations affecting the projection of the larval optic nerve we isolated the abstrakt locus. abstrakt is required for pathfinding of the larval optic nerve, and it also affects development in both the adult visual system and the embryonic CNS. Here we report the molecular characterization of abstrakt. It encodes a putative ATP-dependent RNA helicase of the DEAD box protein family, with two rare substitutions in the PTRELA and the RG-D motifs, thought to be involved in oligonucleotide binding: serine for threonine, and lysine for arginine, respectively. Two mutant alleles of abstrakt show amino acid exchanges in highly conserved positions. A glycine to serine exchange in the HRIGR motif, which is involved in RNA binding and ATP hydrolysis, results in a complete loss of protein function; and a proline to leucine exchange located between the highly conserved ATPase A and PTRELA motifs results in temperature-sensitive protein function. Both the broad requirement for abstrakt gene function and its ubiquitous expression are consistent with a molecular function of the abstrakt protein in mRNA splicing or translational control.
Collapse
Affiliation(s)
- D Schmucker
- Laboratory of Developmental Neurogenetics, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
37
|
Irion U, Leptin M. Developmental and cell biological functions of the Drosophila DEAD-box protein abstrakt. Curr Biol 1999; 9:1373-81. [PMID: 10607561 DOI: 10.1016/s0960-9822(00)80082-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND DEAD-box proteins are a large family of proteins found in bacteria, plants and animals, but only few have been analysed functionally. They are involved in the regulation of various aspects of RNA processing and metabolism, including splicing, transport and translation. The study of their function in multicellular organisms has been restricted to a few special cases, such as the Vasa protein in the fruit fly Drosophila. RESULTS We show that abstrakt, a gene originally identified genetically by its effect on axon outgrowth and fasciculation of the Bolwig nerve, encodes a new Drosophila DEAD-box protein of which the closest homologue is a human gene of unknown function. Using temperature-sensitive alleles to assay its function, we found that abstrakt is essential for survival at all stages throughout the life cycle of the fly. Mutants show specific defects in many developmental processes, including cell-shape changes, localisation of RNA and apoptosis. CONCLUSIONS Abstrakt is not globally required for RNA splicing, transport, subcellular localisation or translation. Nevertheless, there is a widespread requirement for Abstrakt during post-transcriptional gene expression. Abstrakt must affect processing of specific subsets of RNAs, suggesting that differential post-translational control during development is more common than previously suspected.
Collapse
Affiliation(s)
- U Irion
- Institute of Genetics, University of Cologne, Wellcome/CRC Institute, Cologne, Cambridge, D-50931, CB2 1QR, Germany, UK
| | | |
Collapse
|
38
|
Lee KJ, Mukhopadhyay M, Pelka P, Campos AR, Steller H. Autoregulation of the Drosophila disconnected gene in the developing visual system. Dev Biol 1999; 214:385-98. [PMID: 10525342 DOI: 10.1006/dbio.1999.9420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Drosophila disconnected (disco) gene is required for the formation of appropriate connections between the larval optic nerve and its target cells in the brain. The disco gene encodes a nuclear protein with two zinc fingers, which suggests that the gene product is a transcription factor. Here, we present data supporting this notion. We find that disco expression in the optic lobe primordium, a group of cells contacted by the developing optic nerve, depends on an autoregulatory feedback loop. We show that wild-type disco function is required for maintenance of disco mRNA and protein expression in the developing optic lobe. In addition, we demonstrate that ubiquitous Disco activity supplied by a heat-inducible gene construct activates expression from the endogenous disco gene specifically in the optic lobe primordium. Consistent with a role of Disco as a transcriptional regulatory protein, we show that portions of the Disco protein are capable of activating the transcription of reporter constructs in a heterologous system. Moreover, we find that the zinc finger portion of Disco binds in vitro to sequences located near the disco transcription unit, suggesting that Disco autoregulates its transcription in the optic lobe primordium by direct binding to a regulatory element in its own promoter.
Collapse
Affiliation(s)
- K J Lee
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
39
|
Spradling AC, Stern D, Beaton A, Rhem EJ, Laverty T, Mozden N, Misra S, Rubin GM. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics 1999; 153:135-77. [PMID: 10471706 PMCID: PMC1460730 DOI: 10.1093/genetics/153.1.135] [Citation(s) in RCA: 614] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A fundamental goal of genetics and functional genomics is to identify and mutate every gene in model organisms such as Drosophila melanogaster. The Berkeley Drosophila Genome Project (BDGP) gene disruption project generates single P-element insertion strains that each mutate unique genomic open reading frames. Such strains strongly facilitate further genetic and molecular studies of the disrupted loci, but it has remained unclear if P elements can be used to mutate all Drosophila genes. We now report that the primary collection has grown to contain 1045 strains that disrupt more than 25% of the estimated 3600 Drosophila genes that are essential for adult viability. Of these P insertions, 67% have been verified by genetic tests to cause the associated recessive mutant phenotypes, and the validity of most of the remaining lines is predicted on statistical grounds. Sequences flanking >920 insertions have been determined to exactly position them in the genome and to identify 376 potentially affected transcripts from collections of EST sequences. Strains in the BDGP collection are available from the Bloomington Stock Center and have already assisted the research community in characterizing >250 Drosophila genes. The likely identity of 131 additional genes in the collection is reported here. Our results show that Drosophila genes have a wide range of sensitivity to inactivation by P elements, and provide a rationale for greatly expanding the BDGP primary collection based entirely on insertion site sequencing. We predict that this approach can bring >85% of all Drosophila open reading frames under experimental control.
Collapse
Affiliation(s)
- A C Spradling
- Department of Embryology, Howard Hughes Medical Institute Research Laboratories, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Namba R, Minden JS. Fate mapping of Drosophila embryonic mitotic domain 20 reveals that the larval visual system is derived from a subdomain of a few cells. Dev Biol 1999; 212:465-76. [PMID: 10433835 DOI: 10.1006/dbio.1999.9349] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In an attempt to study the fates of cells in the dorsal head region of Drosophila embryos at gastrulation, we used the photoactivated gene expression system to mark small numbers of cells in selected mitotic domains. We found that mitotic domain 20, which is a cluster of approximately 30 cells on the dorsal posterior surface, gives rise to various ectodermal cell types in the head, including dorsal pouch epithelium, the optic lobe, and head sensory organs, including Bolwig's organ, the larval photoreceptor organ. We found that the optic lobe and larval photoreceptors share the same origin of a few adjacent cells near the center of mitotic domain 20, suggesting that within the mitotic domain, there is a subdomain from which the larval visual system is specified. In addition to the components of the larval visual system, this central region of mitotic domain 20 also generates a part of the eye-antennal disc placode; cells that gives rise to the adult visual system. We also observed that a significant amount of cell death occurred within this domain and used cell ablation experiments to determine the ability of the embryo to compensate for cell loss.
Collapse
Affiliation(s)
- R Namba
- Department of Biological Sciences and Center for Light Microscope Imaging and Biotechnology, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | | |
Collapse
|
41
|
Elefant F, Palter KB. Tissue-specific expression of dominant negative mutant Drosophila HSC70 causes developmental defects and lethality. Mol Biol Cell 1999; 10:2101-17. [PMID: 10397752 PMCID: PMC25422 DOI: 10.1091/mbc.10.7.2101] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Drosophila melanogaster HSC3 and HSC4 genes encode Hsc70 proteins homologous to the mammalian endoplasmic reticulum (ER) protein BiP and the cytoplasmic clathrin uncoating ATPase, respectively. These proteins possess ATP binding/hydrolysis activities that mediate their ability to aid in protein folding by coordinating the sequential binding and release of misfolded proteins. To investigate the roles of HSC3 (Hsc3p) and HSC4 (Hsc4p) proteins during development, GAL4-targeted gene expression was used to analyze the effects of producing dominant negatively acting Hsc3p (D231S, K97S) and Hsc4p (D206S, K71S) proteins, containing single amino acid substitutions in their ATP-binding domains, in specific tissues of Drosophila throughout development. We show that the production of each mutant protein results in lethality over a range of developmental stages, depending on the levels of protein produced and which tissues are targeted. We demonstrate that the functions of both Hsc3p and Hsc4p are required for proper tissue establishment and maintenance. Production of mutant Hsc4p, but not Hsc3p, results in induction of the stress-inducible Hsp70 at normal temperatures. Evidence is presented that lethality is caused by tissue-specific defects that result from a global accumulation of misfolded protein caused by lack of functional Hsc70. We show that both mutant Hsc3ps are defective in ATP-induced substrate release, although Hsc3p(D231S) does undergo an ATP-induced conformational change. We believe that the amino acid substitutions in Hsc3p interfere with the structural coupling of ATP binding to substrate release, and this defect is the basis for the mutant proteins' dominant negative effects in vivo.
Collapse
Affiliation(s)
- F Elefant
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | |
Collapse
|
42
|
Abstract
In the ventral nerve cord of Drosophila most axons are organized in a simple, ladder-like pattern. Two segmental commissures connect the hemisegments along the mediolateral and two longitudinal connectives connect individual neuromeres along the anterior-posterior axis. Cells located at the midline of the developing CNS first guide commissural growth cones toward and across the midline. In later stages, midline glial cells are required to separate anterior and posterior commissures into distinct axon bundles. To unravel the genes underlying the formation of axon pattern in the embryonic ventral nerve cord, we conducted a saturating ethylmethane sulfonate mutagenesis, screening for mutations which disrupt this process. Subsequent genetic and phenotypic analyses support a sequential model of axon pattern formation in the embryonic ventral nerve cord. Specification of midline cell lineages is brought about by the action of segment polarity genes. Five genes are necessary for the establishment of the commissures. In addition to commissureless, the netrin genes, and the netrin receptor encoded by the frazzled gene, two gene functions are required for the initial formation of commissural tracts. Over 20 genes appear to be required for correct development of the midline glial cells which are necessary for the formation of distinct segmental commissures.
Collapse
Affiliation(s)
- T Hummel
- Institut für Neurobiologie, Universität Münster, Badestrasse 9, D-48149 Münster, Germany
| | | | | |
Collapse
|
43
|
Abstract
Remarkable advances have been made recently to identify the molecules required for the development of neural connections within the brain. A range of ligands and receptors have been uncovered that guide extending neurons to appropriate targets and away from inappropriate areas. These molecules point to the signalling mechanisms that guide the neurons and provide entry points for the further dissection of this process. Here I highlight the part genetic screens and analyses have played in revealing some of the key players in neuronal guidance.
Collapse
Affiliation(s)
- G Tear
- Department of Biochemistry, Imperial College, London, UK.
| |
Collapse
|
44
|
Holmes AL, Heilig JS. Fasciclin II and Beaten path modulate intercellular adhesion in Drosophila larval visual organ development. Development 1999; 126:261-72. [PMID: 9847240 DOI: 10.1242/dev.126.2.261] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies demonstrated that Fasciclin II and Beaten path are necessary for regulating cell adhesion events that are important for motoneuron development in Drosophila. We observe that the cell adhesion molecule Fasciclin II and the secreted anti-adhesion molecule Beaten path have additional critical roles in the development of at least one set of sensory organs, the larval visual organs. Taken together, phenotypic analysis, genetic interactions, expression studies and rescue experiments suggest that, in normal development, secretion of Beaten path by cells of the optic lobes allows the Fasciclin II-expressing larval visual organ cells to detach from the optic lobes as a cohesive cell cluster. Our results also demonstrate that mechanisms guiding neuronal development may be shared between motoneurons and sensory organs, and provide evidence that titration of adhesion and anti-adhesion is critical for early steps in development of the larval visual system.
Collapse
Affiliation(s)
- A L Holmes
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347, USA
| | | |
Collapse
|
45
|
Abstract
To identify genes necessary for establishing connections in the Drosophila sensory nervous system, we designed a screen for mutations affecting development of the larval visual system. The larval visual system has a simple and stereotypic morphology, can be recognized histologically by a variety of techniques, and is unnecessary for viability. Therefore, it provides an opportunity to identify genes involved in all stages of development of a simple, specific neuronal connection. By direct observation of the larval visual system in mutant embryos, we identified 24 mutations affecting its development; 13 of these are larval visual system-specific. These 13 mutations can be grouped phenotypically into five classes based on their effects on location, path or morphology of the larval visual system nerves and organs. These mutants and phenotypic classifications provide a context for further analysis of neuronal development, pathfinding and target recognition.
Collapse
Affiliation(s)
- A L Holmes
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347, USA
| | | | | |
Collapse
|
46
|
Klämbt C, Schimmelpfeng K, Hummel T. Genetic analysis of axon pattern formation in the embryonic CNS of Drosophila. INVERTEBRATE NEUROSCIENCE : IN 1997; 3:165-74. [PMID: 9783441 DOI: 10.1007/bf02480371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The major axon tracts in the embryonic CNS of Drosophila are organised in a simple, ladder-like pattern. Each neuromere contains two commissures which connect the contra-lateral sides and two longitudinal connectives which connect the different neuromeres along the anterior-posterior axis. The commissures form in close association with only few cells located at the CNS midline. The formation of longitudinal connectives depends in part on the presence of specific lateral glial cells. To unravel the genes underlying the formation of the embryonic CNS axon pattern, we conducted a saturating F2 EMS mutagenesis, screening for mutations, which disrupt this process. The analyses of the identified mutations lead to a simple sequential model on axon pattern formation in embryonic CNS.
Collapse
Affiliation(s)
- C Klämbt
- Institut für Neurobiologie, Universität Münster, Germany.
| | | | | |
Collapse
|