1
|
Sahu S, Mishra M. Alteration of Cytoskeletal Proteins Leads to Retinal Degeneration in Drosophila. Cytoskeleton (Hoboken) 2024. [PMID: 39508206 DOI: 10.1002/cm.21955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The eye holds a special fascination for many neuroscientists because of its meticulously organized structure. Vertebrates typically possess a simple camera-type eye, whereas the compound eye structure is predominantly observed in arthropods including model organism Drosophila melanogaster. Cell shape, cell polarization, and tissue integrity are the cell biological processes crucial for shaping the eye, which directly or indirectly depends on the cytoskeleton. Henceforth the cytoskeleton, specifically actin microfilaments, essentially has a dynamic role in the normal development and growth of eye structure. This review provides insight into the roles played by the actin cytoskeleton during the development and maintenance of the Drosophila eye.
Collapse
Affiliation(s)
- Surajita Sahu
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, India
| |
Collapse
|
2
|
Ibar C, Chinthalapudi K, Heissler SM, Irvine KD. Competition between myosin II and β H-spectrin regulates cytoskeletal tension. eLife 2023; 12:RP84918. [PMID: 37367948 DOI: 10.7554/elife.84918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Spectrins are membrane cytoskeletal proteins generally thought to function as heterotetramers comprising two α-spectrins and two β-spectrins. They influence cell shape and Hippo signaling, but the mechanism by which they influence Hippo signaling has remained unclear. We have investigated the role and regulation of the Drosophila β-heavy spectrin (βH-spectrin, encoded by the karst gene) in wing imaginal discs. Our results establish that βH-spectrin regulates Hippo signaling through the Jub biomechanical pathway due to its influence on cytoskeletal tension. While we find that α-spectrin also regulates Hippo signaling through Jub, unexpectedly, we find that βH-spectrin localizes and functions independently of α-spectrin. Instead, βH-spectrin co-localizes with and reciprocally regulates and is regulated by myosin. In vivo and in vitro experiments support a model in which βH-spectrin and myosin directly compete for binding to apical F-actin. This competition can explain the influence of βH-spectrin on cytoskeletal tension and myosin accumulation. It also provides new insight into how βH-spectrin participates in ratcheting mechanisms associated with cell shape change.
Collapse
Affiliation(s)
- Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, United States
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, United States
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| |
Collapse
|
3
|
Cammarota C, Finegan TM, Wilson TJ, Yang S, Bergstralh DT. An Axon-Pathfinding Mechanism Preserves Epithelial Tissue Integrity. Curr Biol 2020; 30:5049-5057.e3. [PMID: 33065006 DOI: 10.1016/j.cub.2020.09.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/21/2020] [Accepted: 09/18/2020] [Indexed: 01/09/2023]
Abstract
Epithelial tissues form the boundaries of organs, where they perform a range of functions, including secretion, absorption, and protection. These tissues are commonly composed of discrete cell layers-sheets of cells that are one-cell thick. In multiple systems examined, epithelial cells round up and move in the apical direction before dividing, likely in response to neighbor-cell crowding [1-6]. Because of this movement, daughter cells may be born displaced from the tissue layer. Reintegration of these displaced cells supports tissue growth and maintains tissue architecture [4]. Two conserved IgCAMs (immunoglobulin superfamily cell adhesion molecules), neuroglian (Nrg) and fasciclin 2 (Fas2), participate in cell reintegration in the Drosophila follicular epithelium [4]. Like their vertebrate orthologs L1CAM and NCAM1/2, respectively, Nrg and Fas2 are cell adhesion molecules primarily studied in the context of nervous system development [7-10]. Consistent with this, we identify another neural IgCAM, Fasciclin 3 (Fas3), as a reintegration factor. Nrg, Fas2, and Fas3 are components of the insect septate junction, the functional equivalent of the vertebrate tight junction, but proliferating follicle cells do not have mature septate junctions, and we find that the septate junction protein neurexin IV does not participate in reintegration [11, 12]. Here, we show that epithelial reintegration works in the same way as IgCAM-mediated axon growth and pathfinding; it relies not only on extracellular adhesion but also mechanical coupling between IgCAMs and the lateral spectrin-based membrane skeleton. Our work indicates that reintegration is mediated by a distinct epithelial adhesion assembly that is compositionally and functionally equivalent to junctions made between axons.
Collapse
Affiliation(s)
- Christian Cammarota
- Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627, USA
| | - Tara M Finegan
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Tyler J Wilson
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Sifan Yang
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Dan T Bergstralh
- Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627, USA; Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14627, USA.
| |
Collapse
|
4
|
Machnicka B, Grochowalska R, Bogusławska DM, Sikorski AF. The role of spectrin in cell adhesion and cell-cell contact. Exp Biol Med (Maywood) 2019; 244:1303-1312. [PMID: 31226892 DOI: 10.1177/1535370219859003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spectrins are proteins that are responsible for many aspects of cell function and adaptation to changing environments. Primarily the spectrin-based membrane skeleton maintains cell membrane integrity and its mechanical properties, together with the cytoskeletal network a support cell shape. The occurrence of a variety of spectrin isoforms in diverse cellular environments indicates that it is a multifunctional protein involved in numerous physiological pathways. Participation of spectrin in cell–cell and cell–extracellular matrix adhesion and formation of dynamic plasma membrane protrusions and associated signaling events is a subject of interest for researchers in the fields of cell biology and molecular medicine. In this mini-review, we focus on data concerning the role of spectrins in cell surface activities such as adhesion, cell–cell contact, and invadosome formation. We discuss data on different adhesion proteins that directly or indirectly interact with spectrin repeats. New findings support the involvement of spectrin in cell adhesion and spreading, formation of lamellipodia, and also the participation in morphogenetic processes, such as eye development, oogenesis, and angiogenesis. Here, we review the role of spectrin in cell adhesion and cell–cell contact.Impact statementThis article reviews properties of spectrins as a group of proteins involved in cell surface activities such as, adhesion and cell–cell contact, and their contribution to morphogenesis. We show a new area of research and discuss the involvement of spectrin in regulation of cell–cell contact leading to immunological synapse formation and in shaping synapse architecture during myoblast fusion. Data indicate involvement of spectrins in adhesion and cell–cell or cell–extracellular matrix interactions and therefore in signaling pathways. There is evidence of spectrin’s contribution to the processes of morphogenesis which are connected to its interactions with adhesion molecules, membrane proteins (and perhaps lipids), and actin. Our aim was to highlight the essential role of spectrin in cell–cell contact and cell adhesion.
Collapse
Affiliation(s)
- Beata Machnicka
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Renata Grochowalska
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Dżamila M Bogusławska
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Aleksander F Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| |
Collapse
|
5
|
Wirshing ACE, Cram EJ. Spectrin regulates cell contractility through production and maintenance of actin bundles in the Caenorhabditis elegans spermatheca. Mol Biol Cell 2018; 29:2433-2449. [PMID: 30091661 PMCID: PMC6233056 DOI: 10.1091/mbc.e18-06-0347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disruption to the contractility of cells, including smooth muscle cells of the cardiovascular system and myoepithelial cells of the glandular epithelium, contributes to the pathophysiology of contractile tissue diseases, including asthma, hypertension, and primary Sjögren's syndrome. Cell contractility is determined by myosin activity and actomyosin network organization and is mediated by hundreds of protein-protein interactions, many directly involving actin. Here we use a candidate RNA interference screen of more than 100 Caenorhabditis elegans genes with predicted actin-binding and regulatory domains to identify genes that contribute to the contractility of the somatic gonad. We identify the spectrin cytoskeleton composed of SPC-1/α-spectrin, UNC-70/β-spectrin, and SMA-1/β heavy-spectrin as required for contractility and actin organization in the myoepithelial cells of the C. elegans spermatheca. We use imaging of fixed and live animals as well as tissue- and developmental-stage-specific disruption of the spectrin cytoskeleton to show that spectrin regulates the production of prominent central actin bundles and is required for maintenance of central actin bundles throughout successive rounds of stretch and contraction. We conclude that the spectrin cytoskeleton contributes to spermathecal contractility by promoting maintenance of the robust actomyosin bundles that drive contraction.
Collapse
Affiliation(s)
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
6
|
Duan R, Kim JH, Shilagardi K, Schiffhauer ES, Lee DM, Son S, Li S, Thomas C, Luo T, Fletcher DA, Robinson DN, Chen EH. Spectrin is a mechanoresponsive protein shaping fusogenic synapse architecture during myoblast fusion. Nat Cell Biol 2018; 20:688-698. [PMID: 29802406 PMCID: PMC6397639 DOI: 10.1038/s41556-018-0106-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 04/18/2018] [Indexed: 12/24/2022]
Abstract
Spectrin is a membrane skeletal protein best known for its structural role in maintaining cell shape and protecting cells from mechanical damage. Here, we report that α/βH-spectrin (βH is also called karst) dynamically accumulates and dissolves at the fusogenic synapse between fusing Drosophila muscle cells, where an attacking fusion partner invades its receiving partner with actin-propelled protrusions to promote cell fusion. Using genetics, cell biology, biophysics and mathematical modelling, we demonstrate that spectrin exhibits a mechanosensitive accumulation in response to shear deformation, which is highly elevated at the fusogenic synapse. The transiently accumulated spectrin network functions as a cellular fence to restrict the diffusion of cell-adhesion molecules and a cellular sieve to constrict the invasive protrusions, thereby increasing the mechanical tension of the fusogenic synapse to promote cell membrane fusion. Our study reveals a function of spectrin as a mechanoresponsive protein and has general implications for understanding spectrin function in dynamic cellular processes.
Collapse
Affiliation(s)
- Rui Duan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Regenerative Medicine in Sports Science, School of Sports Science, South China Normal University, Guangzhou, China
| | - Ji Hoon Kim
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Khurts Shilagardi
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric S Schiffhauer
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donghoon M Lee
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sungmin Son
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Shuo Li
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Claire Thomas
- Departments of Biology and of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Tianzhi Luo
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Daniel A Fletcher
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth H Chen
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Forest E, Logeay R, Géminard C, Kantar D, Frayssinoux F, Heron-Milhavet L, Djiane A. The apical scaffold big bang binds to spectrins and regulates the growth of Drosophila melanogaster wing discs. J Cell Biol 2018; 217:1047-1062. [PMID: 29326287 PMCID: PMC5839784 DOI: 10.1083/jcb.201705107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/22/2017] [Accepted: 01/02/2018] [Indexed: 12/05/2022] Open
Abstract
During development, cell proliferation is regulated, ensuring that tissues reach their correct size and shape. Forest et al. show that the Drosophila melanogaster scaffold protein big bang (Bbg) controls epithelial tissue growth without affecting epithelial polarity and architecture. Bbg interacts with spectrins at the apical cortex and promotes Yki signaling and actomyosin contractility. During development, cell numbers are tightly regulated, ensuring that tissues and organs reach their correct size and shape. Recent evidence has highlighted the intricate connections between the cytoskeleton and the regulation of the key growth control Hippo pathway. Looking for apical scaffolds regulating tissue growth, we describe that Drosophila melanogaster big bang (Bbg), a poorly characterized multi-PDZ scaffold, controls epithelial tissue growth without affecting epithelial polarity and architecture. bbg-mutant tissues are smaller, with fewer cells that are less apically constricted than normal. We show that Bbg binds to and colocalizes tightly with the β-heavy–Spectrin/Kst subunit at the apical cortex and promotes Yki activity, F-actin enrichment, and the phosphorylation of the myosin II regulatory light chain Spaghetti squash. We propose a model in which the spectrin cytoskeleton recruits Bbg to the cortex, where Bbg promotes actomyosin contractility to regulate epithelial tissue growth.
Collapse
Affiliation(s)
- Elodie Forest
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | - Rémi Logeay
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | - Charles Géminard
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | - Diala Kantar
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | | | | | - Alexandre Djiane
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| |
Collapse
|
8
|
Khanal I, Elbediwy A, Diaz de la Loza MDC, Fletcher GC, Thompson BJ. Shot and Patronin polarise microtubules to direct membrane traffic and biogenesis of microvilli in epithelia. J Cell Sci 2016; 129:2651-9. [PMID: 27231092 PMCID: PMC4958304 DOI: 10.1242/jcs.189076] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023] Open
Abstract
In epithelial tissues, polarisation of microtubules and actin microvilli occurs along the apical-basal axis of each cell, yet how these cytoskeletal polarisation events are coordinated remains unclear. Here, we examine the hierarchy of events during cytoskeletal polarisation in Drosophila melanogaster epithelia. Core apical-basal polarity determinants polarise the spectrin cytoskeleton to recruit the microtubule-binding proteins Patronin (CAMSAP1, CAMSAP2 and CAMSAP3 in humans) and Shortstop [Shot; MACF1 and BPAG1 (also known as DST) in humans] to the apical membrane domain. Patronin and Shot then act to polarise microtubules along the apical-basal axis to enable apical transport of Rab11 endosomes by the Nuf-Dynein microtubule motor complex. Finally, Rab11 endosomes are transferred to the MyoV (also known as Didum in Drosophila) actin motor to deliver the key microvillar determinant Cadherin 99C to the apical membrane to organise the biogenesis of actin microvilli.
Collapse
Affiliation(s)
- Ichha Khanal
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ahmed Elbediwy
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | - Barry J Thompson
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
9
|
Ng BF, Selvaraj GK, Santa-Cruz Mateos C, Grosheva I, Alvarez-Garcia I, Martín-Bermudo MD, Palacios IM. α-Spectrin and integrins act together to regulate actomyosin and columnarization, and to maintain a monolayered follicular epithelium. Development 2016; 143:1388-99. [PMID: 26952981 PMCID: PMC4852512 DOI: 10.1242/dev.130070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/18/2016] [Indexed: 12/26/2022]
Abstract
The spectrin cytoskeleton crosslinks actin to the membrane, and although it has been greatly studied in erythrocytes, much is unknown about its function in epithelia. We have studied the role of spectrins during epithelia morphogenesis using the Drosophila follicular epithelium (FE). As previously described, we show that α-Spectrin and β-Spectrin are essential to maintain a monolayered FE, but, contrary to previous work, spectrins are not required to control proliferation. Furthermore, spectrin mutant cells show differentiation and polarity defects only in the ectopic layers of stratified epithelia, similar to integrin mutants. Our results identify α-Spectrin and integrins as novel regulators of apical constriction-independent cell elongation, as α-Spectrin and integrin mutant cells fail to columnarize. Finally, we show that increasing and reducing the activity of the Rho1-Myosin II pathway enhances and decreases multilayering of α-Spectrin cells, respectively. Similarly, higher Myosin II activity enhances the integrin multilayering phenotype. This work identifies a primary role for α-Spectrin in controlling cell shape, perhaps by modulating actomyosin. In summary, we suggest that a functional spectrin-integrin complex is essential to balance adequate forces, in order to maintain a monolayered epithelium.
Collapse
Affiliation(s)
- Bing Fu Ng
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Gokul Kannan Selvaraj
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | - Inna Grosheva
- Centro Andaluz de Biología del Desarrollo CSIC-Univ. Pablo de Olavide, Sevilla 41013, Spain
| | - Ines Alvarez-Garcia
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | - Isabel M Palacios
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
10
|
Wan D, Zhang ZC, Zhang X, Li Q, Han J. X chromosome-linked intellectual disability protein PQBP1 associates with and regulates the translation of specific mRNAs. Hum Mol Genet 2015; 24:4599-614. [DOI: 10.1093/hmg/ddv191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/19/2015] [Indexed: 01/08/2023] Open
|
11
|
Fletcher GC, Elbediwy A, Khanal I, Ribeiro PS, Tapon N, Thompson BJ. The Spectrin cytoskeleton regulates the Hippo signalling pathway. EMBO J 2015; 34:940-54. [PMID: 25712476 PMCID: PMC4388601 DOI: 10.15252/embj.201489642] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
The Spectrin cytoskeleton is known to be polarised in epithelial cells, yet its role remains poorly understood. Here, we show that the Spectrin cytoskeleton controls Hippo signalling. In the developing Drosophila wing and eye, loss of apical Spectrins (alpha/beta-heavy dimers) produces tissue overgrowth and mis-regulation of Hippo target genes, similar to loss of Crumbs (Crb) or the FERM-domain protein Expanded (Ex). Apical beta-heavy Spectrin binds to Ex and co-localises with it at the apical membrane to antagonise Yki activity. Interestingly, in both the ovarian follicular epithelium and intestinal epithelium of Drosophila, apical Spectrins and Crb are dispensable for repression of Yki, while basolateral Spectrins (alpha/beta dimers) are essential. Finally, the Spectrin cytoskeleton is required to regulate the localisation of the Hippo pathway effector YAP in response to cell density human epithelial cells. Our findings identify both apical and basolateral Spectrins as regulators of Hippo signalling and suggest Spectrins as potential mechanosensors.
Collapse
Affiliation(s)
- Georgina C Fletcher
- Epithelial Biology Laboratory, Cancer Research UK - London Research Institute, London, UK
| | - Ahmed Elbediwy
- Epithelial Biology Laboratory, Cancer Research UK - London Research Institute, London, UK
| | - Ichha Khanal
- Epithelial Biology Laboratory, Cancer Research UK - London Research Institute, London, UK
| | - Paulo S Ribeiro
- Apoptosis and Cell Proliferation Laboratory, Cancer Research UK - London Research Institute, London, UK Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nic Tapon
- Apoptosis and Cell Proliferation Laboratory, Cancer Research UK - London Research Institute, London, UK
| | - Barry J Thompson
- Epithelial Biology Laboratory, Cancer Research UK - London Research Institute, London, UK
| |
Collapse
|
12
|
Khanna MR, Mattie FJ, Browder KC, Radyk MD, Crilly SE, Bakerink KJ, Harper SL, Speicher DW, Thomas GH. Spectrin tetramer formation is not required for viable development in Drosophila. J Biol Chem 2014; 290:706-15. [PMID: 25381248 DOI: 10.1074/jbc.m114.615427] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The dominant paradigm for spectrin function is that (αβ)2-spectrin tetramers or higher order oligomers form membrane-associated two-dimensional networks in association with F-actin to reinforce the plasma membrane. Tetramerization is an essential event in such structures. We characterize the tetramerization interaction between α-spectrin and β-spectrins in Drosophila. Wild-type α-spectrin binds to both β- and βH-chains with high affinity, resembling other non-erythroid spectrins. However, α-spec(R22S), a tetramerization site mutant homologous to the pathological α-spec(R28S) allele in humans, eliminates detectable binding to β-spectrin and reduces binding to βH-spectrin ∼1000-fold. Even though spectrins are essential proteins, α-spectrin(R22S) rescues α-spectrin mutants to adulthood with only minor phenotypes indicating that tetramerization, and thus conventional network formation, is not the essential function of non-erythroid spectrin. Our data provide the first rigorous test for the general requirement for tetramer-based non-erythroid spectrin networks throughout an organism and find that they have very limited roles, in direct contrast to the current paradigm.
Collapse
Affiliation(s)
- Mansi R Khanna
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Floyd J Mattie
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Kristen C Browder
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Megan D Radyk
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Stephanie E Crilly
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Katelyn J Bakerink
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Sandra L Harper
- the Systems Biology Division, The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - David W Speicher
- the Systems Biology Division, The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Graham H Thomas
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| |
Collapse
|
13
|
Urwyler O, Cortinas-Elizondo F, Suter B. Drosophila sosie functions with β(H)-Spectrin and actin organizers in cell migration, epithelial morphogenesis and cortical stability. Biol Open 2012; 1:994-1005. [PMID: 23213377 PMCID: PMC3507177 DOI: 10.1242/bio.20122154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/26/2012] [Indexed: 11/25/2022] Open
Abstract
Morphogenesis in multicellular organisms requires the careful coordination of cytoskeletal elements, dynamic regulation of cell adhesion and extensive cell migration. sosie (sie) is a novel gene required in various morphogenesis processes in Drosophila oogenesis. Lack of sie interferes with normal egg chamber packaging, maintenance of epithelial integrity and control of follicle cell migration, indicating that sie is involved in controlling epithelial integrity and cell migration. For these functions sie is required both in the germ line and in the soma. Consistent with this, Sosie localizes to plasma membranes in the germ line and in the somatic follicle cells and is predicted to present an EGF-like domain on the extracellular side. Two positively charged residues, C-terminal to the predicted transmembrane domain (on the cytoplasmic side), are required for normal plasma membrane localization of Sosie. Because sie also contributes to normal cortical localization of βH-Spectrin, it appears that cortical βH-Spectrin mediates some of the functions of sosie. sie also interacts with the genes coding for the actin organizers Filamin and Profilin and, in the absence of sie function, F-actin is less well organized and nurse cells frequently fuse.
Collapse
Affiliation(s)
- Olivier Urwyler
- Present address: Vesalius Research Center, Flanders Institute of Biotechnology (VIB), University of Leuven (KUL), 3000 Leuven, Belgium
| | | | | |
Collapse
|
14
|
Tjota M, Lee SK, Wu J, Williams JA, Khanna MR, Thomas GH. Annexin B9 binds to β(H)-spectrin and is required for multivesicular body function in Drosophila. J Cell Sci 2012; 124:2914-26. [PMID: 21878499 DOI: 10.1242/jcs.078667] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the cytoskeleton in protein trafficking is still being defined. Here, we describe a relationship between the small Ca(2+)-dependent membrane-binding protein Annexin B9 (AnxB9), apical β(Heavy)-spectrin (β(H)) and the multivesicular body (MVB) in Drosophila. AnxB9 binds to a subset of β(H) spliceoforms, and loss of AnxB9 results in an increase in basolateral β(H) and its appearance on cytoplasmic vesicles that overlap with the MVB markers Hrs, Vps16 and EPS15. Similar colocalizations are seen when β(H)-positive endosomes are generated either by upregulation of β(H) in pak mutants or through the expression of the dominant-negative version of β(H). In common with other mutations disrupting the MVB, we also show that there is an accumulation of ubiquitylated proteins and elevated EGFR signaling in the absence of AnxB9 or β(H). Loss of AnxB9 or β(H) function also causes the redistribution of the DE-Cadherin (encoded by shotgun) to endosomal vesicles, suggesting a rationale for the previously documented destabilization of the zonula adherens in karst (which encodes β(H)) mutants. Reduction of AnxB9 results in degradation of the apical-lateral boundary and the appearance of the basolateral proteins Coracle and Dlg on internal vesicles adjacent to β(H). These results indicate that AnxB9 and β(H) are intimately involved in endosomal trafficking to the MVB and play a role in maintaining high-fidelity segregation of the apical and lateral domains.
Collapse
Affiliation(s)
- Monika Tjota
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
15
|
Harris TJ. Adherens Junction Assembly and Function in the Drosophila Embryo. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:45-83. [DOI: 10.1016/b978-0-12-394304-0.00007-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Muschalik N, Knust E. Increased levels of the cytoplasmic domain of Crumbs repolarise developing Drosophila photoreceptors. J Cell Sci 2011; 124:3715-25. [PMID: 22025631 DOI: 10.1242/jcs.091223] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Photoreceptor morphogenesis in Drosophila requires remodelling of apico-basal polarity and adherens junctions (AJs), and includes cell shape changes, as well as differentiation and expansion of the apical membrane. The evolutionarily conserved transmembrane protein Crumbs (Crb) organises an apical membrane-associated protein complex that controls photoreceptor morphogenesis. Expression of the small cytoplasmic domain of Crb in crb mutant photoreceptor cells (PRCs) rescues the crb mutant phenotype to the same extent as the full-length protein. Here, we show that overexpression of the membrane-tethered cytoplasmic domain of Crb in otherwise wild-type photoreceptor cells has major effects on polarity and morphogenesis. Whereas early expression causes severe abnormalities in apico-basal polarity and ommatidial integrity, expression at later stages affects the shape and positioning of AJs. This result supports the importance of Crb for junctional remodelling during morphogenetic changes. The most pronounced phenotype observed upon early expression is the formation of ectopic apical membrane domains, which often develop into a complete second apical pole, including ectopic AJs. Induction of this phenotype requires members of the Par protein network. These data point to a close integration of the Crb complex and Par proteins during photoreceptor morphogenesis and underscore the role of Crb as an apical determinant.
Collapse
Affiliation(s)
- Nadine Muschalik
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307-Dresden, Germany
| | | |
Collapse
|
17
|
Rac1 modulation of the apical domain is negatively regulated by β (Heavy)-spectrin. Mech Dev 2010; 128:116-28. [PMID: 21111816 DOI: 10.1016/j.mod.2010.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 12/21/2022]
Abstract
Epithelial polarity and morphogenesis require the careful coordination of signaling and cytoskeletal elements. In this paper, we describe multiple genetic interactions between the apical cytoskeletal protein β(H) and Rac1 signaling in Drosophila: activation of Rac1 signaling by expression of the exchange factor Trio, is strongly enhanced by reducing β(H) levels, and such reductions in β(H) levels alone are shown to cause an increase in GTP-Rac1 levels. In contrast, co-expression of a C-terminal fragment of β(H) (βH33) suppresses the Trio expression phenotype. In addition, sustained expression of βH33 alone in the eye induces a strong dominant phenotype that is similar to the expression of dominant negative Rac1(N17), and this phenotype is also suppressed by the co-expression of Trio or by knockdown of RacGAP50C. We further demonstrate that a loss-of-function allele in pak, a Rac1 effector and negative regulator of β(H)' dominantly suppresses larval lethality arising loss-of-function karst (β(H)) alleles. Furthermore, expression of constitutively active Pak(myr) in the larval salivary gland induces expansion of the apical membrane and destabilization of the apical polarity determinants Crumbs and aPKC. These effects resemble a Rac1 activation phenotype and are suppressed by βH33. Together, our data suggest that apical proteins including β(H) are negatively regulated by Rac1 activation, but that Rac1 signaling is also suppressed by β(H) through its C-terminal domain. Such a system would be bistable with either Rac1 or β(H) predominant. We suggest a model for apical domain maintenance wherein Rac1 down-regulation of β(H) (via Pak) is opposed by β(H)-mediated down-regulation of Rac1 signaling.
Collapse
|
18
|
Baines A. Evolution of the spectrin-based membrane skeleton. Transfus Clin Biol 2010; 17:95-103. [DOI: 10.1016/j.tracli.2010.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 06/23/2010] [Indexed: 12/16/2022]
|
19
|
Baines AJ. The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. PROTOPLASMA 2010; 244:99-131. [PMID: 20668894 DOI: 10.1007/s00709-010-0181-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/05/2010] [Indexed: 05/29/2023]
Abstract
The cells in animals face unique demands beyond those encountered by their unicellular eukaryotic ancestors. For example, the forces engendered by the movement of animals places stresses on membranes of a different nature than those confronting free-living cells. The integration of cells into tissues, as well as the integration of tissue function into whole animal physiology, requires specialisation of membrane domains and the formation of signalling complexes. With the evolution of mammals, the specialisation of cell types has been taken to an extreme with the advent of the non-nucleated mammalian red blood cell. These and other adaptations to animal life seem to require four proteins--spectrin, ankyrin, 4.1 and adducin--which emerged during eumetazoan evolution. Spectrin, an actin cross-linking protein, was probably the earliest of these, with ankyrin, adducin and 4.1 only appearing as tissues evolved. The interaction of spectrin with ankyrin is probably a prerequisite for the formation of tissues; only with the advent of vertebrates did 4.1 acquires the ability to bind spectrin and actin. The latter activity seems to allow the spectrin complex to regulate the cell surface accumulation of a wide variety of proteins. Functionally, the spectrin-ankyrin-4.1-adducin complex is implicated in the formation of apical and basolateral domains, in aspects of membrane trafficking, in assembly of certain signalling and cell adhesion complexes and in providing stability to otherwise mechanically fragile cell membranes. Defects in this complex are manifest in a variety of hereditary diseases, including deafness, cardiac arrhythmia, spinocerebellar ataxia, as well as hereditary haemolytic anaemias. Some of these proteins also function as tumor suppressors. The spectrin-ankyrin-4.1-adducin complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.
Collapse
Affiliation(s)
- Anthony J Baines
- School of Biosciences and Centre for Biomedical Informatics, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
20
|
Lee HG, Zarnescu DC, MacIver B, Thomas GH. The cell adhesion molecule Roughest depends on beta(Heavy)-spectrin during eye morphogenesis in Drosophila. J Cell Sci 2010; 123:277-85. [PMID: 20048344 DOI: 10.1242/jcs.056853] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cell junctions have both structural and morphogenetic roles, and contain complex mixtures of proteins whose interdependencies are still largely unknown. Junctions are also major signaling centers that signify correct integration into a tissue, and modulate cell survival. During Drosophila eye development, the activity of the immunoglobulin cell adhesion molecule Roughest (also known as Irregular chiasm C-roughest protein) mediates interommatidial cell (IOC) reorganization, leading to an apoptotic event that refines the retinal lattice. Roughest and the cadherin-based zonula adherens (ZA) are interdependent and both are modulated by the apical polarity determinant, Crumbs. Here we describe a novel relationship between the Crumbs partner beta(Heavy)-spectrin (beta(H)), the ZA and Roughest. Ectopic expression of the C-terminal segment 33 of beta(H) (betaH33) induces defects in retinal morphogenesis, resulting the preferential loss of IOC. This effect is associated with ZA disruption and Roughest displacement. In addition, loss-of-function karst and roughest mutations interact to cause a synergistic and catastrophic effect on retinal development. Finally, we show that beta(H) coimmunoprecipitates with Roughest and that the distribution of Roughest protein is disrupted in karst mutant tissue. These results suggest that the apical spectrin membrane skeleton helps to coordinate the Cadherin-based ZA with Roughest-based morphogenesis.
Collapse
Affiliation(s)
- Hyun-Gwan Lee
- Department of Biology, Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
21
|
Chen TW, Chen G, Funkhouser LJ, Nam SC. Membrane domain modulation by Spectrins in Drosophila photoreceptor morphogenesis. Genesis 2010; 47:744-50. [PMID: 19672952 DOI: 10.1002/dvg.20555] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spectrins are major proteins in the cytoskeletal network of most cells. In Drosophila, beta(Heavy)-Spectrin encoded by the karst gene functions together with Crb during photoreceptor morphogenesis. However, the roles of two other Spectrins (alpha- and beta-Spectrins) in developing photoreceptor cells have not been studied. Here, we analyzed the effects of spectrin mutations on developing eyes to determine their roles in photoreceptor morphogenesis. We found that the Spectrins are dispensable for retinal differentiation in eye imaginal discs during larval stage. However, photoreceptors deficient in alpha- or beta-Spectrin display dramatic apical membrane expansions including Crb and show morphogenesis defects during pupal eye development, suggesting that alpha- and beta-Spectrins are specifically required for photoreceptor polarity during pupal eye development. Karst localizes apically, whereas beta-Spectrin is preferentially distributed in the basolateral region. We show that overexpression of beta-Spectrin causes a strong shrinkage of apical membrane domains, and loss of beta-Spectrin causes an expansion of apical domains, implying an antagonistic relationship between beta-Spectrin and Karst. These results indicate that Spectrins are required for controlling photoreceptor morphogenesis through the modulations of cell membrane domains.
Collapse
Affiliation(s)
- Tony W Chen
- Department of Biology, Baylor University, Waco, Texas 76798, USA
| | | | | | | |
Collapse
|
22
|
Genetic screen in Drosophila melanogaster uncovers a novel set of genes required for embryonic epithelial repair. Genetics 2009; 184:129-40. [PMID: 19884309 DOI: 10.1534/genetics.109.110288] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The wound healing response is an essential mechanism to maintain the integrity of epithelia and protect all organisms from the surrounding milieu. In the "purse-string" mechanism of wound closure, an injured epithelial sheet cinches its hole closed via an intercellular contractile actomyosin cable. This process is conserved across species and utilized by both embryonic as well as adult tissues, but remains poorly understood at the cellular level. In an effort to identify new players involved in purse-string wound closure we developed a wounding strategy suitable for screening large numbers of Drosophila embryos. Using this methodology, we observe wound healing defects in Jun-related antigen (encoding DJUN) and scab (encoding Drosophila alphaPS3 integrin) mutants and performed a forward genetics screen on the basis of insertional mutagenesis by transposons that led to the identification of 30 lethal insertional mutants with defects in embryonic epithelia repair. One of the mutants identified is an insertion in the karst locus, which encodes Drosophila beta(Heavy)-spectrin. We show beta(Heavy)-spectrin (beta(H)) localization to the wound edges where it presumably exerts an essential function to bring the wound to normal closure.
Collapse
|
23
|
Szafranski P, Goode S. Basolateral junctions are sufficient to suppress epithelial invasion duringDrosophilaoogenesis. Dev Dyn 2007; 236:364-73. [PMID: 17103414 DOI: 10.1002/dvdy.21020] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epithelial junctions play crucial roles during metazoan evolution and development by facilitating tissue formation, maintenance, and function. Little is known about the role of distinct types of junctions in controlling epithelial transformations leading to invasion of neighboring tissues. Discovering the key junction complexes that control these processes and how they function may also provide mechanistic insight into carcinoma cell invasion. Here, using the Drosophila ovary as a model, we show that four proteins of the basolateral junction (BLJ), Fasciclin-2, Neuroglian, Discs-large, and Lethal-giant-larvae, but not proteins of other epithelial junctions, directly suppress epithelial tumorigenesis and invasion. Remarkably, the expression pattern of Fasciclin-2 predicts which cells will invade. We compared the apicobasal polarity of BLJ tumor cells to border cells (BCs), an epithelium-derived cluster that normally migrates during mid-oogenesis. Both tumor cells and BCs differentiate a lateralized membrane pattern that is necessary but not sufficient for invasion. Independent of lateralization, derepression of motility pathways is also necessary, as indicated by a strong linear correlation between faster BC migration and an increased incidence of tumor invasion. However, without membrane lateralization, derepression of motility pathways is also not sufficient for invasion. Our results demonstrate that spatiotemporal patterns of basolateral junction activity directly suppress epithelial invasion by organizing the cooperative activity of distinct polarity and motility pathways.
Collapse
|
24
|
Baumann O, Lutz K. Photoreceptor morphogenesis in the Drosophila compound eye: R1-R6 rhabdomeres become twisted just before eclosion. J Comp Neurol 2006; 498:68-79. [PMID: 16856177 DOI: 10.1002/cne.21030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The photosensitive microvilli of Drosophila photoreceptors R1-R6 are not aligned in parallel over the entire length of the visual cells. In the distal half of each cell, the microvilli are slightly tilted toward one side and, in the proximal half, extremely toward the opposite side. This phenomenon, termed rhabdomere twisting, has been known for several decades, but the developmental and cell biological basis of rhabdomere twisting has not been studied so far. We show that rhabdomere twisting is also manifested as molecular polarization of the visual cell, because phosphotyrosine-containing proteins are selectively partitioned to different sides of the rhabdomere stalk in the distal and proximal sections of each R1-R6 photoreceptor. Both the asymmetrical segregation of phosphotyrosine proteins and the tilting of the microvilli occur shortly before eclosion of the flies, when eye development in all other aspects is considered to be essentially complete. Establishment of rhabdomere twisting occurs in a light-independent manner, because phosphotyrosine staining is unchanged in dark-reared wild-type flies and in mutants with defects in the phototransduction cascade, ninaE(17) and norpA(P24). We conclude that antiphosphotyrosine immunofluorescence can be used as a light microscopic probe for the analysis of rhabdomere twisting and that microvilli tilting represents a type of planar cell polarity that is established by an active process in the last phase of photoreceptor morphogenesis, just prior to eclosion of the flies.
Collapse
Affiliation(s)
- Otto Baumann
- Department of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, 14415 Potsdam, Germany.
| | | |
Collapse
|
25
|
Pielage J, Fetter RD, Davis GW. Presynaptic spectrin is essential for synapse stabilization. Curr Biol 2005; 15:918-28. [PMID: 15916948 DOI: 10.1016/j.cub.2005.04.030] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 03/24/2005] [Accepted: 04/12/2005] [Indexed: 11/30/2022]
Abstract
BACKGROUND Precise neural circuitry is established and maintained through a regulated balance of synapse stabilization and disassembly. Currently, little is known about the molecular mechanisms that specify synapse stability versus disassembly. RESULTS Here, we demonstrate that presynaptic spectrin is an essential scaffold that is required to maintain synapse stability at the Drosophila neuromuscular junction (NMJ). Loss of presynaptic spectrin leads to synapse disassembly and ultimately to the elimination of the NMJ. Synapse elimination is documented through light-level, ultrastructural, and electrophysiological assays. These combined assays reveal that impaired neurotransmission is secondary to synapse retraction. We demonstrate that loss of presynaptic, but not postsynaptic, spectrin leads to the disorganization and elimination of essential synaptic cell-adhesion molecules. In addition, we provide evidence of altered axonal transport and disrupted synaptic microtubules as events that contribute to synapse retraction in animals lacking presynaptic spectrin. CONCLUSIONS Our data suggest that presynaptic spectrin functions as an essential presynaptic scaffold that may link synaptic cell adhesion with the stabilization of the underlying microtubule cytoskeleton.
Collapse
Affiliation(s)
- Jan Pielage
- Department of Biochemistry and Biophysics, Program in Neuroscience, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
26
|
Praitis V, Ciccone E, Austin J. SMA-1 spectrin has essential roles in epithelial cell sheet morphogenesis in C. elegans. Dev Biol 2005; 283:157-70. [PMID: 15890334 DOI: 10.1016/j.ydbio.2005.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 03/24/2005] [Accepted: 04/06/2005] [Indexed: 01/27/2023]
Abstract
During Caenorhabditis elegans development, the embryo acquires its vermiform shape due to changes in the shape of epithelial cells, a process that requires an apically localized actin cytoskeleton. We show that SMA-1, an ortholog of beta(H)-spectrin required for normal morphogenesis, localizes to the apical membrane of epithelial cells when these cells are rapidly elongating. In spc-1 alpha-spectrin mutants, SMA-1 localizes to the apical membrane but its organization is altered, consistent with the hypothesis these proteins act together to form an apically localized spectrin-based membrane skeleton (SBMS). SMA-1 is required to maintain the association between actin and the apical membrane; sma-1 mutant embryos fail to elongate because actin, which provides the driving force for cell shape change, dissociates from the apical membrane skeleton during morphogenesis. Analysis of sma-1 expression constructs and mutant strains indicates SMA-1 maintains the association between actin and the apical membrane via interactions at its N-terminus and this activity is independent of alpha-spectrin. SMA-1 also preserves dynamic changes in the organization of the apical membrane skeleton. Taken together, our results show the SMA-1 SBMS plays a dynamic role in converting changes in actin organization into changes in epithelial cell shape during C. elegans embryogenesis.
Collapse
Affiliation(s)
- Vida Praitis
- Biology Department, Grinnell College, Grinnell, IA 50112, USA.
| | | | | |
Collapse
|
27
|
Ren N, Zhu C, Lee H, Adler PN. Gene expression during Drosophila wing morphogenesis and differentiation. Genetics 2005; 171:625-38. [PMID: 15998724 PMCID: PMC1456776 DOI: 10.1534/genetics.105.043687] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The simple cellular composition and array of distally pointing hairs has made the Drosophila wing a favored system for studying planar polarity and the coordination of cellular and tissue level morphogenesis. We carried out a gene expression screen to identify candidate genes that functioned in wing and wing hair morphogenesis. Pupal wing RNA was isolated from tissue prior to, during, and after hair growth and used to probe Affymetrix Drosophila gene chips. We identified 435 genes whose expression changed at least fivefold during this period and 1335 whose expression changed at least twofold. As a functional validation we chose 10 genes where genetic reagents existed but where there was little or no evidence for a wing phenotype. New phenotypes were found for 9 of these genes, providing functional validation for the collection of identified genes. Among the phenotypes seen were a delay in hair initiation, defects in hair maturation, defects in cuticle formation and pigmentation, and abnormal wing hair polarity. The collection of identified genes should be a valuable data set for future studies on hair and bristle morphogenesis, cuticle synthesis, and planar polarity.
Collapse
Affiliation(s)
- Nan Ren
- Biology Department, Cancer Center and Morphogenesis and Regenerative Medicine Institute, University of Virginia, Charlottesville, 22903, USA
| | | | | | | |
Collapse
|
28
|
Hirota Y, Sawamoto K, Takahashi K, Ueda R, Okano H. The transmembrane protein, Tincar, is involved in the development of the compound eye in Drosophila melanogaster. Dev Genes Evol 2005; 215:90-6. [PMID: 15654626 DOI: 10.1007/s00427-004-0452-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2004] [Accepted: 11/08/2004] [Indexed: 11/29/2022]
Abstract
We previously cloned and characterized the Drosophila gene, tincar (tinc), which encodes a novel protein with eight putative transmembrane domains. Here, we have studied the expression pattern and functions of tinc during developmental processes. tinc mRNA is expressed in the central and peripheral nervous systems, and midgut during embryogenesis. In the third-instar larval eye disc, tinc mRNA is strongly expressed in all the differentiating ommatidial cells within and in the vicinity of the morphogenetic furrow. Loss-of-function analysis using the RNA-interference method revealed severe defects of eye morphogenesis during the late developmental stages. Our results suggested that tinc may have an indispensable role in the normal differentiation of ommatidial cells.
Collapse
Affiliation(s)
- Yuki Hirota
- Department of Physiology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | |
Collapse
|
29
|
Fan SS. Dynactin affects extension and assembly of adherens junctions in Drosophila photoreceptor development. J Biomed Sci 2004; 11:362-9. [PMID: 15067220 DOI: 10.1007/bf02254441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Accepted: 11/19/2003] [Indexed: 10/25/2022] Open
Abstract
Drosophila eye development is a progressive process including cell fate determination, pattern formation, and rhabdomere morphogenesis. During eye development, a dramatic change in cell shape, which involves turning and extension of the photoreceptor apical surface, occurs in the early pupal stages. It is known that assembly and extension of adherens junctions (AJs) play an important role in this process. In the present study, I show that mutation of the largest subunit of dynactin complexes encoded by Glued (Gl) affects the extension and assembly of Ajs in developing photoreceptors. In Gl(1)/(+) mutants and transgenic flies expressing the dominant negative form of Glued, the AJs failed to properly assemble and extend. In addition, the morphogenesis of rhabdomeres was also affected in these flies. Taken together, these results suggest that the extension and assembly of AJs as well as determination of the rhabdomere domain in photoreceptor development are Gl dependent.
Collapse
Affiliation(s)
- Seng-Sheen Fan
- Department of Biology and Life Science Research Center, Tunghai University, Taichung, Taiwan, ROC.
| |
Collapse
|
30
|
Hayashi T, Carthew RW. Surface mechanics mediate pattern formation in the developing retina. Nature 2004; 431:647-52. [PMID: 15470418 DOI: 10.1038/nature02952] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 08/19/2004] [Indexed: 11/09/2022]
Abstract
Pattern formation of biological structures involves organizing different types of cells into a spatial configuration. In this study, we investigate the physical basis of biological patterning of the Drosophila retina in vivo. We demonstrate that E- and N-cadherins mediate apical adhesion between retina epithelial cells. Differential expression of N-cadherin within a sub-group of retinal cells (cone cells) causes them to form an overall shape that minimizes their surface contact with surrounding cells. The cells within this group, in both normal and experimentally manipulated conditions, pack together in the same way as soap bubbles do. The shaping of the cone cell group and packing of its components precisely imitate the physical tendency for surfaces to be minimized. Thus, simple patterned expression of N-cadherin results in a complex spatial pattern of cells owing to cellular surface mechanics.
Collapse
Affiliation(s)
- Takashi Hayashi
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
31
|
Baumann O. Spatial pattern of nonmuscle myosin-II distribution during the development of the Drosophila compound eye and implications for retinal morphogenesis. Dev Biol 2004; 269:519-33. [PMID: 15110717 DOI: 10.1016/j.ydbio.2004.01.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2002] [Revised: 11/24/2003] [Accepted: 01/27/2004] [Indexed: 01/03/2023]
Abstract
Nonmuscle myosin-II is a motor protein that drives cell movement and changes in cell shape during tissue and organ development. This study has determined the dynamic changes in myosin-II distribution during Drosophila compound eye morphogenesis. In photoreceptor neurons, myosin-II is undetectable at the apical domain throughout the first half of pupal life, at which time this membrane domain is involuted into the epithelium and progresses toward the retinal floor. Myosin-II is deployed at the apical surface at about 60% of pupal development, once the developing rhabdomeres reach the retinal floor. Subsequently, myosin-II becomes restricted to two stripes at the sides of the developing rhabdomere, adopting its final position within the visual cells R1-6; here, myosin-II is associated with a set of actin filaments that extend alongside the rhabdomeres. At the midpupal stage, myosin-II is also incorporated into stress-fiber-like arrays within the basal endfeet of the pigment cells that then change their shape. This spatiotemporal pattern of myosin-II localization and the morphological defects observed in the eyes of a myosin-II mutant suggest that the myosin-II/F-actin system is involved in the alignment of the rhabdomeres within the retina and in the flattening of the retinal floor. The observation that the myosin-II/F-actin arrays are incomplete or disorganized in R7/R8 and in rhodopsin-1-null R1-6 suggests further that the establishment and stability of this cytoskeletal system depend on rhodopsin-1 expression.
Collapse
Affiliation(s)
- Otto Baumann
- Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, D-14415 Potsdam, Germany.
| |
Collapse
|
32
|
Médina E, Williams J, Klipfell E, Zarnescu D, Thomas CM, Le Bivic A. Crumbs interacts with moesin and beta(Heavy)-spectrin in the apical membrane skeleton of Drosophila. J Cell Biol 2002; 158:941-51. [PMID: 12213838 PMCID: PMC2173152 DOI: 10.1083/jcb.200203080] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The apical transmembrane protein Crumbs is necessary for both cell polarization and the assembly of the zonula adherens (ZA) in Drosophila epithelia. The apical spectrin-based membrane skeleton (SBMS) is a protein network that is essential for epithelial morphogenesis and ZA integrity, and exhibits close colocalization with Crumbs and the ZA in fly epithelia. These observations suggest that Crumbs may stabilize the ZA by recruiting the SBMS to the junctional region. Consistent with this hypothesis, we report that Crumbs is necessary for the organization of the apical SBMS in embryos and Schneider 2 cells, whereas the localization of Crumbs is not affected in karst mutants that eliminate the apical SBMS. Our data indicate that it is specifically the 4.1 protein/ezrin/radixin/moesin (FERM) domain binding consensus, and in particular, an arginine at position 7 in the cytoplasmic tail of Crumbs that is essential to efficiently recruit both the apical SBMS and the FERM domain protein, DMoesin. Crumbs, Discs lost, betaHeavy-spectrin, and DMoesin are all coimmunoprecipitated from embryos, confirming the existence of a multimolecular complex. We propose that Crumbs stabilizes the apical SBMS via DMoesin and actin, leading to reinforcement of the ZA and effectively coupling epithelial morphogenesis and cell polarity.
Collapse
Affiliation(s)
- Emmanuelle Médina
- Laboratoire de Neurogenèse et Morphogenèse dans le Développement et l'Adulte, Institut de Biologie du Développement de Marseille, Université de la Méditerranée, 13288 Marseille, cedex 09, France
| | - Janice Williams
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Elizabeth Klipfell
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Daniela Zarnescu
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Claire M. Thomas
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - André Le Bivic
- Laboratoire de Neurogenèse et Morphogenèse dans le Développement et l'Adulte, Institut de Biologie du Développement de Marseille, Université de la Méditerranée, 13288 Marseille, cedex 09, France
| |
Collapse
|
33
|
Norman KR, Moerman DG. Alpha spectrin is essential for morphogenesis and body wall muscle formation in Caenorhabditis elegans. J Cell Biol 2002; 157:665-77. [PMID: 11994313 PMCID: PMC2173861 DOI: 10.1083/jcb.200111051] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A common feature of multicellular animals is the ubiquitous presence of the spectrin cytoskeleton. Although discovered over 30 yr ago, the function of spectrin in non-erythrocytes has remained elusive. We have found that the spc-1 gene encodes the only alpha spectrin gene in the Caenorhabditis elegans genome. During embryogenesis, alpha spectrin localizes to the cell membrane in most if not all cells, starting at the first cell stage. Interestingly, this localization is dependent on beta spectrin but not beta(Heavy) spectrin. Furthermore, analysis of spc-1 mutants indicates that beta spectrin requires alpha spectrin to be stably recruited to the cell membrane. Animals lacking functional alpha spectrin fail to complete embryonic elongation and die just after hatching. These mutant animals have defects in the organization of the hypodermal apical actin cytoskeleton that is required for elongation. In addition, we find that the process of elongation is required for the proper differentiation of the body wall muscle. Specifically, when compared with myofilaments in wild-type animals the myofilaments of the body wall muscle in mutant animals are abnormally oriented relative to the longitudinal axis of the embryo, and the body wall muscle cells do not undergo normal cell shape changes.
Collapse
Affiliation(s)
- Kenneth R Norman
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | |
Collapse
|
34
|
Pellikka M, Tanentzapf G, Pinto M, Smith C, McGlade CJ, Ready DF, Tepass U. Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis. Nature 2002; 416:143-9. [PMID: 11850625 DOI: 10.1038/nature721] [Citation(s) in RCA: 334] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The apical transmembrane protein Crumbs is a central regulator of epithelial apical-basal polarity in Drosophila. Loss-of-function mutations in the human homologue of Crumbs, CRB1 (RP12), cause recessive retinal dystrophies, including retinitis pigmentosa. Here we show that Crumbs and CRB1 localize to corresponding subdomains of the photoreceptor apical plasma membrane: the stalk of the Drosophila photoreceptor and the inner segment of mammalian photoreceptors. These subdomains support the morphogenesis and orientation of the photosensitive membrane organelles: rhabdomeres and outer segments, respectively. Drosophila Crumbs is required to maintain zonula adherens integrity during the rapid apical membrane expansion that builds the rhabdomere. Crumbs also regulates stalk development by stabilizing the membrane-associated spectrin cytoskeleton, a function mechanistically distinct from its role in epithelial apical-basal polarity. We propose that Crumbs is a central component of a molecular scaffold that controls zonula adherens assembly and defines the stalk as an apical membrane subdomain. Defects in such scaffolds may contribute to human CRB1-related retinal dystrophies.
Collapse
Affiliation(s)
- Milena Pellikka
- Department of Zoology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The polarized architecture of epithelial cells and tissues is a fundamental determinant of animal anatomy and physiology. Recent progress made in the genetic and molecular analysis of epithelial polarity and cellular junctions in Drosophila has led to the most detailed understanding of these processes in a whole animal model system to date. Asymmetry of the plasma membrane and the differentiation of membrane domains and cellular junctions are controlled by protein complexes that assemble around transmembrane proteins such as DE-cadherin, Crumbs, and Neurexin IV, or other cytoplasmic protein complexes that associate with the plasma membrane. Much remains to be learned of how these complexes assemble, establish their polarized distribution, and contribute to the asymmetric organization of epithelial cells.
Collapse
Affiliation(s)
- U Tepass
- Department of Zoology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S3G5, Canada.
| | | | | | | |
Collapse
|
36
|
Baumann O. Posterior midgut epithelial cells differ in their organization of the membrane skeleton from other drosophila epithelia. Exp Cell Res 2001; 270:176-87. [PMID: 11640882 DOI: 10.1006/excr.2001.5343] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In epithelial cells, the various components of the membrane skeleton are segregated within specialized subregions of the plasma membrane, thus contributing to the development and stabilization of cell surface polarity. It has previously been shown that, in various Drosophila epithelia, the membrane skeleton components ankyrin and alphabeta-spectrin reside at the lateral surface, whereas alphabeta(H)-spectrin is restricted to the apical domain. By use of confocal immunofluorescence microscopy, the present study characterizes the membrane skeleton of epithelial cells in the posterior midgut, leading to a number of unexpected results. First, ankyrin and alphabeta-spectrin are not detected on the entire lateral surface but appear to be restricted to the apicolateral area, codistributing with fasciclin III at smooth septate junctions. The presumptive ankyrin-binding proteins neuroglian and Na(+),K(+)-ATPase, however, do not colocalize with ankyrin. Second, alphabeta(H)-spectrin is enriched at the apical domain but is also present in lower amounts on the entire lateral surface, colocalizing apicolaterally with ankyrin/alphabeta-spectrin. Finally, despite the absence of zonulae adherentes, F-actin, beta(H)-spectrin, and nonmuscle myosin-II are enriched in the midlateral region. Thus, the model established for the organization of the membrane skeleton in Drosophila epithelia does not hold for the posterior midgut, and there is quite some variability between the different epithelia with respect to the organization of the membrane skeleton.
Collapse
Affiliation(s)
- O Baumann
- Institut für Biochemie und Biologie, Universität Potsdam, Potsdam, 14471, Germany.
| |
Collapse
|
37
|
Bennett V, Baines AJ. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 2001; 81:1353-92. [PMID: 11427698 DOI: 10.1152/physrev.2001.81.3.1353] [Citation(s) in RCA: 720] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The spectrin-based membrane skeleton of the humble mammalian erythrocyte has provided biologists with a set of interacting proteins with diverse roles in organization and survival of cells in metazoan organisms. This review deals with the molecular physiology of spectrin, ankyrin, which links spectrin to the anion exchanger, and two spectrin-associated proteins that promote spectrin interactions with actin: adducin and protein 4.1. The lack of essential functions for these proteins in generic cells grown in culture and the absence of their genes in the yeast genome have, until recently, limited advances in understanding their roles outside of erythrocytes. However, completion of the genomes of simple metazoans and application of homologous recombination in mice now are providing the first glimpses of the full scope of physiological roles for spectrin, ankyrin, and their associated proteins. These functions now include targeting of ion channels and cell adhesion molecules to specialized compartments within the plasma membrane and endoplasmic reticulum of striated muscle and the nervous system, mechanical stabilization at the tissue level based on transcellular protein assemblies, participation in epithelial morphogenesis, and orientation of mitotic spindles in asymmetric cell divisions. These studies, in addition to stretching the erythrocyte paradigm beyond recognition, also are revealing novel cellular pathways essential for metazoan life. Examples are ankyrin-dependent targeting of proteins to excitable membrane domains in the plasma membrane and the Ca(2+) homeostasis compartment of the endoplasmic reticulum. Exciting questions for the future relate to the molecular basis for these pathways and their roles in a clinical context, either as the basis for disease or more positively as therapeutic targets.
Collapse
Affiliation(s)
- V Bennett
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
38
|
Abstract
It has long been speculated that spectrin, the actin crosslinking and molecular scaffold protein, is involved in the development of apicobasal polarity in epithelia. While spectrins can undoubtedly influence the protein content of specific membrane domains, recent genetic evidence indicates that this activity is not necessary for the establishment or maintenance of this axis. Instead, these studies point to critical roles in tissue stability and morphogenesis. A possible role in cellular contractility is highlighted in this review.
Collapse
Affiliation(s)
- G H Thomas
- Departments of Biology, and Biochemistry and Molecular Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| |
Collapse
|
39
|
Liao EC, Paw BH, Peters LL, Zapata A, Pratt SJ, Do CP, Lieschke G, Zon LI. Hereditary spherocytosis in zebrafish riesling illustrates evolution of erythroid beta-spectrin structure, and function in red cell morphogenesis and membrane stability. Development 2000; 127:5123-32. [PMID: 11060238 DOI: 10.1242/dev.127.23.5123] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spectrins are key cytoskeleton proteins with roles in membrane integrity, cell morphology, organelle transport and cell polarity of varied cell types during development. Defects in erythroid spectrins in humans result in congenital hemolytic anemias with altered red cell morphology. Although well characterized in mammals and invertebrates, analysis of the structure and function of non-mammalian vertebrate spectrins has been lacking. The zebrafish riesling (ris) suffers from profound anemia, where the developing red cells fail to assume terminally differentiated erythroid morphology. Using comparative genomics, erythroid beta-spectrin (sptb) was identified as the gene mutated in ris. Zebrafish Sptb shares 62.3% overall identity with the human ortholog and phylogenetic comparisons suggest intragenic duplication and divergence during evolution. Unlike the human and murine orthologs, the pleckstrin homology domain of zebrafish Sptb is not removed in red cells by alternative splicing. In addition, apoptosis and abnormal microtubule marginal band aggregation contribute to hemolysis of mutant erythrocytes, which are features not present in mammalian red cells with sptb defects. This study presents the first genetic characterization of a non-mammalian vertebrate sptb and demonstrates novel features of red cell hemolysis in non-mammalian red cells. Further, we propose that the distinct mammalian erythroid morphology may have evolved from specific modifications of Sptb structure and function.
Collapse
Affiliation(s)
- E C Liao
- Division of Hematology/Oncology, Children's Hospital, Department of Pediatrics and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Tanentzapf G, Smith C, McGlade J, Tepass U. Apical, lateral, and basal polarization cues contribute to the development of the follicular epithelium during Drosophila oogenesis. J Cell Biol 2000; 151:891-904. [PMID: 11076972 PMCID: PMC2169434 DOI: 10.1083/jcb.151.4.891] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2000] [Accepted: 09/28/2000] [Indexed: 11/22/2022] Open
Abstract
Analysis of the mechanisms that control epithelial polarization has revealed that cues for polarization are mediated by transmembrane proteins that operate at the apical, lateral, or basal surface of epithelial cells. Whereas for any given epithelial cell type only one or two polarization systems have been identified to date, we report here that the follicular epithelium in Drosophila ovaries uses three different polarization mechanisms, each operating at one of the three main epithelial surface domains. The follicular epithelium arises through a mesenchymal-epithelial transition. Contact with the basement membrane provides an initial polarization cue that leads to the formation of a basal membrane domain. Moreover, we use mosaic analysis to show that Crumbs (Crb) is required for the formation and maintenance of the follicular epithelium. Crb localizes to the apical membrane of follicle cells that is in contact with germline cells. Contact to the germline is required for the accumulation of Crb in follicle cells. Discs Lost (Dlt), a cytoplasmic PDZ domain protein that was shown to interact with the cytoplasmic tail of Crb, overlaps precisely in its distribution with Crb, as shown by immunoelectron microscopy. Crb localization depends on Dlt, whereas Dlt uses Crb-dependent and -independent mechanisms for apical targeting. Finally, we show that the cadherin-catenin complex is not required for the formation of the follicular epithelium, but only for its maintenance. Loss of cadherin-based adherens junctions caused by armadillo (beta-catenin) mutations results in a disruption of the lateral spectrin and actin cytoskeleton. Also Crb and the apical spectrin cytoskeleton are lost from armadillo mutant follicle cells. Together with previous data showing that Crb is required for the formation of a zonula adherens, these findings indicate a mutual dependency of apical and lateral polarization mechanisms.
Collapse
Affiliation(s)
- G Tanentzapf
- Department of Zoology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | | | | | | |
Collapse
|
41
|
Abstract
The polarised character of a cell is often obvious from its shape and is largely dependent on the actin cytoskeleton and the membrane-associated cell cortex---a dense network comprising spectrin and other related proteins. Spatially and functionally distinct protein scaffolds, assembled from transmembrane and cytoplasmic proteins, provide the cues for polarisation. Recent data have provided new insights into the molecular nature of these cues and the mechanisms by which they may be translated into a polarised phenotype.
Collapse
Affiliation(s)
- E Knust
- Institut für Genetik, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
42
|
Stabach PR, Morrow JS. Identification and characterization of beta V spectrin, a mammalian ortholog of Drosophila beta H spectrin. J Biol Chem 2000; 275:21385-95. [PMID: 10764729 DOI: 10.1074/jbc.c000159200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Four mammalian beta-spectrin genes are currently recognized, all encode proteins of approximately 240-280,000 M(r) and display 17 triple helical homologous approximately 106-residue repeat units. In Drosophila and Caenorhabditis elegans, a variant beta spectrin with unusual properties has been recognized. Termed beta heavy (beta(H)), this spectrin contains 30 spectrin repeats, has a molecular weight in excess of 400,000, and associates with the apical domain of polarized epithelia. We have cloned and characterized from a human retina cDNA library a mammalian ortholog of Drosophila beta(H) spectrin, and in accord with standard spectrin naming conventions we term this new mammalian spectrin beta 5 (betaV). The gene for human betaV spectrin (HUBSPECV) is on chromosome 15q21. The 11, 722-nucleotide cDNA of betaV spectrin is generated from 68 exons and is predicted to encode a protein with a molecular weight of 416,960. Like its fly counterpart, the derived amino acid sequence of this unusual mammalian spectrin displays 30 spectrin repeats, a modestly conserved actin-binding domain, a conserved membrane association domain 1, a conserved self-association domain, and a pleckstrin homology domain near its COOH terminus. Its putative ankyrin-binding domain is poorly conserved and may be inactive. These structural features suggest that betaV spectrin is likely to form heterodimers and oligomers with alpha spectrin and to interact directly with cellular membranes. Unlike its Drosophila ortholog, betaV spectrin does not contain an SH3 domain but displays in repeat 5 a 45-residue insertion that displays 42% identity to amino acids 85-115 of the E4 protein of type 75 human papilloma virus. Human betaV spectrin is expressed at low levels in many tissues. By indirect immunofluorescence, it is detected prominently in the outer segments of photoreceptor rods and cones and in the basolateral membrane and cytosol of gastric epithelial cells. Unlike its Drosophila ortholog, a distinct apical distribution of betaV spectrin is inapparent in the epithelial cell populations examined, although it is confined to the outer segments of photoreceptor cells. The complete cDNA sequence of human betaV spectrin is available from GenBank(TM) as accession number.
Collapse
Affiliation(s)
- P R Stabach
- Department of Pathology and the Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
43
|
Abstract
semang (sag), a mutation isolated as a suppressor of Drosophila Src42A, has previously been shown to affect some receptor tyrosine kinase mediated embryonic processes. Here we show that sag specifically affects the development of R1, R6 and R7 photoreceptor cells in a cell-autonomous manner. These cells are absent in the mutant at the time when they normally appear in the ommatidial pre-clusters. Genetic analyses suggest that sag functions downstream of, or parallel to, Mapk and Yan in the photoreceptor differentiation pathway. The autonomous requirement of sag for R1/R6/R7 development could be explained by a selective impairment of the late, but not early, rounds of Egfr-induced precursor cell assembly by the sag mutations. Egfr signaling is highly regulated by autocrine or paracrine mechanisms in different cells. Knowing that the photoreceptor cluster formation is a complex process involving dynamic changes in cell-cell contact, our hypothesis is that the sag alleles affected certain special aspects of Egfr-signaling that are unique for the recruitment of R1/R6/R7 cells.
Collapse
Affiliation(s)
- Q Zhang
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | | |
Collapse
|
44
|
Moorthy S, Chen L, Bennett V. Caenorhabditis elegans beta-G spectrin is dispensable for establishment of epithelial polarity, but essential for muscular and neuronal function. J Cell Biol 2000; 149:915-30. [PMID: 10811831 PMCID: PMC2174577 DOI: 10.1083/jcb.149.4.915] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The Caenorhabditis elegans genome encodes one alpha spectrin subunit, a beta spectrin subunit (beta-G), and a beta-H spectrin subunit. Our experiments show that the phenotype resulting from the loss of the C. elegans alpha spectrin is reproduced by tandem depletion of both beta-G and beta-H spectrins. We propose that alpha spectrin combines with the beta-G and beta-H subunits to form alpha/beta-G and alpha/beta-H heteromers that perform the entire repertoire of spectrin function in the nematode. The expression patterns of nematode beta-G spectrin and vertebrate beta spectrins exhibit three striking parallels including: (1) beta spectrins are associated with the sites of cell-cell contact in epithelial tissues; (2) the highest levels of beta-G spectrin occur in the nervous system; and (3) beta spectrin-G in striated muscle is associated with points of attachment of the myofilament apparatus to adjacent cells. Nematode beta-G spectrin associates with plasma membranes at sites of cell-cell contact, beginning at the two-cell stage, and with a dramatic increase in intensity after gastrulation when most cell proliferation has been completed. Strikingly, depletion of nematode beta-G spectrin by RNA-mediated interference to undetectable levels does not affect the establishment of structural and functional polarity in epidermis and intestine. Contrary to recent speculation, beta-G spectrin is not associated with internal membranes and depletion of beta-G spectrin was not associated with any detectable defects in secretion. Instead beta-G spectrin-deficient nematodes arrest as early larvae with progressive defects in the musculature and nervous system. Therefore, C. elegans beta-G spectrin is required for normal muscle and neuron function, but is dispensable for embryonic elongation and establishment of early epithelial polarity. We hypothesize that heteromeric spectrin evolved in metazoans in response to the needs of cells in the context of mechanically integrated tissues that can withstand the rigors imposed by an active organism.
Collapse
Affiliation(s)
- Suraj Moorthy
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| | - Lihsia Chen
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| | - Vann Bennett
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
45
|
Hammarlund M, Davis WS, Jorgensen EM. Mutations in beta-spectrin disrupt axon outgrowth and sarcomere structure. J Cell Biol 2000; 149:931-42. [PMID: 10811832 PMCID: PMC2174563 DOI: 10.1083/jcb.149.4.931] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2000] [Accepted: 04/13/2000] [Indexed: 11/24/2022] Open
Abstract
beta-Spectrin is a major component of the membrane skeleton, a structure found at the plasma membrane of most animal cells. beta-Spectrin and the membrane skeleton have been proposed to stabilize cell membranes, generate cell polarity, or localize specific membrane proteins. We demonstrate that the Caenorhabditis elegans homologue of beta-spectrin is encoded by the unc-70 gene. unc-70 null mutants develop slowly, and the adults are paralyzed and dumpy. However, the membrane integrity is not impaired in unc-70 animals, nor is cell polarity affected. Thus, beta-spectrin is not essential for general membrane integrity or for cell polarity. However, beta-spectrin is required for a subset of processes at cell membranes. In neurons, the loss of beta-spectrin leads to abnormal axon outgrowth. In muscles, a loss of beta-spectrin leads to disorganization of the myofilament lattice, discontinuities in the dense bodies, and a reduction or loss of the sarcoplasmic reticulum. These defects are consistent with beta-spectrin function in anchoring proteins at cell membranes.
Collapse
Affiliation(s)
- Marc Hammarlund
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840
| | - Warren S. Davis
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840
| | - Erik M. Jorgensen
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840
| |
Collapse
|
46
|
Dubreuil RR, Wang P, Dahl S, Lee J, Goldstein LS. Drosophila beta spectrin functions independently of alpha spectrin to polarize the Na,K ATPase in epithelial cells. J Cell Biol 2000; 149:647-56. [PMID: 10791978 PMCID: PMC2174857 DOI: 10.1083/jcb.149.3.647] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/1999] [Accepted: 03/23/2000] [Indexed: 11/22/2022] Open
Abstract
Spectrin has been proposed to function as a sorting machine that concentrates interacting proteins such as the Na,K ATPase within specialized plasma membrane domains of polarized cells. However, little direct evidence to support this model has been obtained. Here we used a genetic approach to directly test the requirement for the beta subunit of the alphabeta spectrin molecule in morphogenesis and function of epithelial cells in Drosophila. beta Spectrin mutations were lethal during late embryonic/early larval development and they produced subtle defects in midgut morphology and stomach acid secretion. The polarized distributions of alphabeta(H) spectrin and ankyrin were not significantly altered in beta spectrin mutants, indicating that the two isoforms of Drosophila spectrin assemble independently of one another, and that ankyrin is upstream of alphabeta spectrin in the spectrin assembly pathway. In contrast, beta spectrin mutations had a striking effect on the basolateral accumulation of the Na,K ATPase. The results establish a role for beta spectrin in determining the subcellular distribution of the Na, K ATPase and, unexpectedly, this role is independent of alpha spectrin.
Collapse
Affiliation(s)
- R R Dubreuil
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
47
|
Dubreuil RR, Grushko T. Neuroglian and DE-cadherin activate independent cytoskeleton assembly pathways in Drosophila S2 cells. Biochem Biophys Res Commun 1999; 265:372-5. [PMID: 10558874 DOI: 10.1006/bbrc.1999.1689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytoskeletal proteins spectrin and ankyrin colocalize with sites of E-cadherin-mediated cell-cell adhesion in mammalian cells. Here we examined the effects of Drosophila DE-cadherin expression on spectrin and ankyrin in Drosophila S2 tissue culture cells. DE-cadherin caused a dramatic change in the cytoplasmic concentration and distribution of armadillo, the Drosophila homolog of beta catenin. However, DE-cadherin expression had no detectable effect on the quantity or subcellular distribution of ankyrin or spectrin. In reciprocal experiments, recruitment of ankyrin and alphabeta spectrin to the plasma membrane by another cell adhesion molecule, neuroglian, had no effect on the quantity or distribution of armadillo. The results indicate that DE-cadherin-catenin complexes and neuroglian-spectrin/ankyrin complexes form by nonintersecting pathways. Recruitment of spectrin does not appear to be a conserved feature of DE-cadherin function.
Collapse
Affiliation(s)
- R R Dubreuil
- University of Chicago, 947 E. 58th St., Chicago, Illinois, 60637, USA.
| | | |
Collapse
|
48
|
Buechner M, Hall DH, Bhatt H, Hedgecock EM. Cystic canal mutants in Caenorhabditis elegans are defective in the apical membrane domain of the renal (excretory) cell. Dev Biol 1999; 214:227-41. [PMID: 10491271 DOI: 10.1006/dbio.1999.9398] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The excretory cell extends a tubular process, or canal, along the basolateral surface of the epidermis to form the nematode renal epithelium. This cell can undergo normal tubulogenesis in isolated cell culture. Mutations in 12 genes cause excretory canal cysts in Caenorhabditis elegans. Genetic interactions, and their similar phenotypes, suggest these genes may encode functionally related proteins. Depending upon genotype and individual canal, defects range from focal cysts, flanked by normal width segments, to regional cysts involving the entire tubule. Oftentimes the enlarged regions are convoluted or partially septated. In mutants with very large cysts, renal function is measurably impaired. Based on histology and ultrastructure, canal cysts likely result from defects of the apical membrane domain. These mutants provide a model of tubulocystic disease without hyperplasia or basement membrane abnormalities. Similar apical mechanisms could regulate tubular morphology of vertebrate nephrons.
Collapse
Affiliation(s)
- M Buechner
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
49
|
Zarnescu DC, Thomas CM. Apical spectrin is essential for epithelial morphogenesis but not apicobasal polarity in Drosophila. J Cell Biol 1999; 146:1075-86. [PMID: 10477760 PMCID: PMC2169487 DOI: 10.1083/jcb.146.5.1075] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in cell shape and position drive morphogenesis in epithelia and depend on the polarized nature of its constituent cells. The spectrin-based membrane skeleton is thought to be a key player in the establishment and/or maintenance of cell shape and polarity. We report that apical beta(Heavy)-spectrin (beta(H)), a terminal web protein that is also associated with the zonula adherens, is essential for normal epithelial morphogenesis of the Drosophila follicle cell epithelium during oogenesis. Elimination of beta(H) by the karst mutation prevents apical constriction of the follicle cells during mid-oogenesis, and is accompanied by a gross breakup of the zonula adherens. We also report that the integrity of the migratory border cell cluster, a group of anterior follicle cells that delaminates from the follicle epithelium, is disrupted. Elimination of beta(H) prevents the stable recruitment of alpha-spectrin to the apical domain, but does not result in a loss of apicobasal polarity, as would be predicted from current models describing the role of spectrin in the establishment of cell polarity. These results demonstrate a direct role for apical (alphabeta(H))(2)-spectrin in epithelial morphogenesis driven by apical contraction, and suggest that apical and basolateral spectrin do not play identical roles in the generation of apicobasal polarity.
Collapse
Affiliation(s)
- Daniela C. Zarnescu
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Claire M Thomas
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
50
|
Thomas GH, Williams JA. Dynamic rearrangement of the spectrin membrane skeleton during the generation of epithelial polarity in Drosophila. J Cell Sci 1999; 112 ( Pt 17):2843-52. [PMID: 10444379 DOI: 10.1242/jcs.112.17.2843] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The origin of epithelial cell polarity during development is a fundamental problem in cell biology. Central to this process is the establishment of asymmetric membrane domains that will ultimately form the apical and basolateral surfaces. The spectrin-based membrane skeleton has long been thought to participate in the generation of this asymmetry. Drosophila melanogaster contains two known (beta)-spectrin isoforms: a conventional (beta)-spectrin chain, and the novel isoform (beta)(Heavy)-spectrin. These two proteins are restricted to the basolateral and apical membrane domains, respectively. To assay for the emergence of membrane asymmetry, we have characterized the distribution of these two (beta)-spectrins during the formation of the primary epithelium in the fly embryo. Our results show that the syncytial embryo contains a maternally established apical membrane skeleton containing (beta)(Heavy)-spectrin into which the basolateral (beta)-spectrin membrane skeleton is added. We have called this process basolateral interpolation. Although basolateral membrane skeleton addition begins during cellularization, it does not become fully established until the formation of a mature zonula adherens at mid to late gastrulation. The behavior of (beta)-spectrin is consistent with a primary role in establishing and/or maintaining the basolateral domain while the behavior of (beta)(Heavy)-spectrin suggests that its primary role is associated with a specialized DE-cadherin complex associated with the furrow canals and with the maturation of the zonula adherens. Thus, the apical spectrin membrane skeleton appears to play a distinct rather than analogous role to the basolateral spectrin membrane skeleton, during the emergence of cell polarity. We find that there are several parallels between our observations and previous studies on the establishment of primary epithelial polarity in vertebrates, suggesting that basolateral interpolation of the membrane skeleton may be a common mechanism in many organisms.
Collapse
Affiliation(s)
- G H Thomas
- Department of Biology and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|