1
|
Bloomquist RF. Developmental basis of natural tooth shape variation in cichlid fishes. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2025; 112:12. [PMID: 39869142 PMCID: PMC11772509 DOI: 10.1007/s00114-025-01964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
While most dentate non-mammalian vertebrates possess simple conical teeth, some demonstrate complex tooth shapes. Lake Malawi cichlid fishes are an extreme example of this, exhibiting a myriad of tooth shapes driven by an ecologically derived rapid evolution of closely related but distinct species. Tooth shape in mammals is generally considered to be established by signaling centers called primary and secondary enamel knots, which are not believed to be present in non-mammalian vertebrates. In this study, signaling centers of gene expression with epithelial folding with similar molecular patterns to that of mammalian enamel knots are identified, and differences of asymmetric gene expression are identified between fish that possess species specific polymorphisms of either bicuspid or tricuspid teeth. Gene expression is then manipulated indirectly using a small molecule inhibitor of the Notch pathway, resulting in phenotypical aberrations of tooth shape and patterning, including a mimic of a tricuspid tooth in a fish with a naturally occurring bicuspid dentition. This study provides insight into the evolutionary origins of tooth shape and advances our knowledge of the molecular determinants of dental morphology with translational utility in regenerative dentistry.
Collapse
Affiliation(s)
- Ryan F Bloomquist
- Institute of Bioengineering and Biosciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- School of Medicine, University of South Carolina, 6311 Garners Ferry Rd, Columbia, SC, 29209, USA.
| |
Collapse
|
2
|
Sémon M, Mouginot M, Peltier M, Corneloup C, Veber P, Guéguen L, Pantalacci S. Comparative transcriptomics in serial organs uncovers early and pan-organ developmental changes associated with organ-specific morphological adaptation. Nat Commun 2025; 16:768. [PMID: 39824799 PMCID: PMC11742040 DOI: 10.1038/s41467-025-55826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/24/2024] [Indexed: 01/20/2025] Open
Abstract
Mice have evolved a new dental plan with two additional cusps on the upper molar, while hamsters were retaining the ancestral plan. By comparing the dynamics of molar development with transcriptome time series, we found at least three early changes in mouse upper molar development. Together, they redirect spatio-temporal dynamics to ultimately form two additional cusps. The mouse lower molar has undergone much more limited phenotypic evolution. Nevertheless, its developmental trajectory evolved as much as that of the upper molar and co-evolved with it. Among the coevolving changes, some are clearly involved in the new upper molar phenotype. We found a similar level of coevolution in bat limbs. In conclusion, our study reveals how serial organ morphology has adapted through organ-specific developmental changes, as expected, but also through shared changes that have organ-specific effects on the final phenotype. This highlights the important role of developmental system drift in one organ to accommodate adaptation in another.
Collapse
Affiliation(s)
- Marie Sémon
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| | - Marion Mouginot
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Manon Peltier
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Claudine Corneloup
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Philippe Veber
- Laboratoire de Biometrie et Biologie Evolutive, Universite Claude Bernard Lyon 1, UMR CNRS 5558, 69622, Villeurbanne, France
| | - Laurent Guéguen
- Laboratoire de Biometrie et Biologie Evolutive, Universite Claude Bernard Lyon 1, UMR CNRS 5558, 69622, Villeurbanne, France
| | - Sophie Pantalacci
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| |
Collapse
|
3
|
Sun M, Li N, Zhang W, Li A, Li Y. A double-negative feedback loop mediated by non-coding RNAs contributes to tooth morphogenesis. Cells Dev 2024; 179:203932. [PMID: 38852677 DOI: 10.1016/j.cdev.2024.203932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/19/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Tooth morphogenesis is a critically ordered process manipulated by a range of signaling factors. Particularly, the involvement of fine-tuned signaling mediated by non-coding RNAs has been of longstanding interest. Here, we revealed a double-negative feedback loop acted by a long non-coding RNA (LOC102159588) and a microRNA (miR-133b) that modulated tooth morphogenesis of miniature swine. Mechanistically, miR-133b repressed the transcription of LOC102159588 through downstream target Sp1. Conversely, LOC102159588 not only inhibited the transport of pre-miR-133b from the nucleus to the cytoplasm by regulating exportin-5 but also served as a sponge in the cytoplasm, suppressing functional miR-133b. Together, the double-negative feedback loop maintained normal tooth morphogenesis by modulating endogenous apoptosis. Related disruptions would lead to an arrest of tooth development and may result in tooth malformations.
Collapse
Affiliation(s)
- Meng Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Na Li
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Weixing Zhang
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China.
| | - Ye Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
4
|
Svandova E, Vesela B, Janeckova E, Chai Y, Matalova E. Exploring caspase functions in mouse models. Apoptosis 2024; 29:938-966. [PMID: 38824481 PMCID: PMC11263464 DOI: 10.1007/s10495-024-01976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Caspases are enzymes with protease activity. Despite being known for more than three decades, caspase investigation still yields surprising and fascinating information. Initially associated with cell death and inflammation, their functions have gradually been revealed to extend beyond, targeting pathways such as cell proliferation, migration, and differentiation. These processes are also associated with disease mechanisms, positioning caspases as potential targets for numerous pathologies including inflammatory, neurological, metabolic, or oncological conditions. While in vitro studies play a crucial role in elucidating molecular pathways, they lack the context of the body's complexity. Therefore, laboratory animals are an indispensable part of successfully understanding and applying caspase networks. This paper aims to summarize and discuss recent knowledge, understanding, and challenges in caspase knock-out mice.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic.
| | - Barbora Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
| | - Eva Janeckova
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
- Department of Physiology, University of Veterinary Sciences, Brno, Czech Republic
| |
Collapse
|
5
|
Kenessey DE, Stojanowski CM, Paul KS. Evaluating predictions of the patterning cascade model of crown morphogenesis in the human lower mixed and permanent dentition. PLoS One 2024; 19:e0304455. [PMID: 38935640 PMCID: PMC11210800 DOI: 10.1371/journal.pone.0304455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/13/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE The patterning cascade model of crown morphogenesis has been studied extensively in a variety of organisms to elucidate the evolutionary history surrounding postcanine tooth form. The current research is the first to use a large modern human sample to examine whether the crown configuration of lower deciduous and permanent molars aligns with expectations derived from the model. This study has two main goals: 1) to determine if metameric and antimeric pairs significantly differ in size, accessory trait expression, and relative intercusp spacing, and 2) assess whether the relative distance among early-forming cusps accounts for observed variation in accessory cusp expression. METHODS Tooth size, intercusp distance, and morphological trait expression data were collected from 3D scans of mandibular dental casts representing participants of the Harvard Solomon Islands Project. Paired tests were utilized to compare tooth size, accessory trait expression, and relative intercusp distance between diphyodont metameres and permanent antimeres. Proportional odds logistic regression was implemented to investigate how the odds of greater accessory cusp expression vary as a function of the distance between early-developing cusps. RESULTS/SIGNIFICANCE Comparing paired molars, significant differences were identified for tooth size and cusp 5 expression. Several relative intercusp distances emerged as important predictors of cusp 6 expression, however, results for cusp 5 and cusp 7 did not match expected patterns. These findings support previous quantitative genetic results and suggest the development of neighboring crown structures represents a zero-sum partitioning of cellular territory and resources. As such, this study contributes to a better understanding of the foundations of deciduous and permanent molar crown variation in humans.
Collapse
Affiliation(s)
- Dori E. Kenessey
- Department of Anthropology, U niversity of Nevada, Reno, Nevada, United States of America
| | - Christopher M. Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
| | - Kathleen S. Paul
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
6
|
Shroff NP, Xu P, Kim S, Shelton ER, Gross BJ, Liu Y, Gomez CO, Ye Q, Drennon TY, Hu JK, Green JBA, Campàs O, Klein OD. Proliferation-driven mechanical compression induces signalling centre formation during mammalian organ development. Nat Cell Biol 2024; 26:519-529. [PMID: 38570617 PMCID: PMC11482733 DOI: 10.1038/s41556-024-01380-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/15/2024] [Indexed: 04/05/2024]
Abstract
Localized sources of morphogens, called signalling centres, play a fundamental role in coordinating tissue growth and cell fate specification during organogenesis. However, how these signalling centres are established in tissues during embryonic development is still unclear. Here we show that the main signalling centre orchestrating development of rodent incisors, the enamel knot (EK), is specified by a cell proliferation-driven buildup in compressive stresses (mechanical pressure) in the tissue. Direct mechanical measurements indicate that the stresses generated by cell proliferation are resisted by the surrounding tissue, creating a circular pattern of mechanical anisotropy with a region of high compressive stress at its centre that becomes the EK. Pharmacological inhibition of proliferation reduces stresses and suppresses EK formation, and application of external pressure in proliferation-inhibited conditions rescues the formation of the EK. Mechanical information is relayed intracellularly through YAP protein localization, which is cytoplasmic in the region of compressive stress that establishes the EK and nuclear in the stretched anisotropic cells that resist the pressure buildup around the EK. Together, our data identify a new role for proliferation-driven mechanical compression in the specification of a model signalling centre during mammalian organ development.
Collapse
Affiliation(s)
- Neha Pincha Shroff
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Pengfei Xu
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Sangwoo Kim
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Elijah R Shelton
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Ben J Gross
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Yucen Liu
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Carlos O Gomez
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Qianlin Ye
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Tingsheng Yu Drennon
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Jimmy K Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeremy B A Green
- Centre for Craniofacial Regeneration and Biology, King's College London, London, UK
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA.
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Liu D, Li Z, Tan D, An Y, Chu L, Chen T, Li W, Zhou A, Xiang R, Zhang L, Qu Y, Qi W. BMP-ACVR1 Axis is Critical for Efficacy of PRC2 Inhibitors in B-Cell Lymphoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306499. [PMID: 38229201 DOI: 10.1002/advs.202306499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Indexed: 01/18/2024]
Abstract
EZH2 is the catalytic subunit of the histone methyltransferase Polycomb Repressive Complex 2 (PRC2), and its somatic activating mutations drive lymphoma, particularly the germinal center B-cell type. Although PRC2 inhibitors, such as tazemetostat, have demonstrated anti-lymphoma activity in patients, the clinical efficacy is not limited to EZH2-mutant lymphoma. In this study, Activin A Receptor Type 1 (ACVR1), a type I Bone Morphogenetic Protein (BMP) receptor, is identified as critical for the anti-lymphoma efficacy of PRC2 inhibitors through a whole-genome CRISPR screen. BMP6, BMP7, and ACVR1 are repressed by PRC2-mediated H3K27me3, and PRC2 inhibition upregulates their expression and signaling in cell and patient-derived xenograft models. Through BMP-ACVR1 signaling, PRC2 inhibitors robustly induced cell cycle arrest and B cell lineage differentiation in vivo. Remarkably, blocking ACVR1 signaling using an inhibitor or genetic depletion significantly compromised the in vitro and in vivo efficacy of PRC2 inhibitors. Furthermore, high levels of BMP6 and BMP7, along with ACVR1, are associated with longer survival in lymphoma patients, underscoring the clinical relevance of this study. Altogether, BMP-ACVR1 exhibits anti-lymphoma function and represents a critical PRC2-repressed pathway contributing to the efficacy of PRC2 inhibitors.
Collapse
Affiliation(s)
- Dongdong Liu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Zhen Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Dongxia Tan
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Yang An
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Liping Chu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Tiancheng Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Weijia Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Ailin Zhou
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Ruijie Xiang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Liye Zhang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Yuxiu Qu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Wei Qi
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| |
Collapse
|
8
|
Cano-Fernández H, Tissot T, Brun-Usan M, Salazar-Ciudad I. On the origins of developmental robustness: modeling buffering mechanisms against cell-level noise. Development 2023; 150:dev201911. [PMID: 38032004 DOI: 10.1242/dev.201911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
During development, cells are subject to stochastic fluctuations in their positions (i.e. cell-level noise) that can potentially lead to morphological noise (i.e. stochastic differences between morphologies that are expected to be equal, e.g. the right and left sides of bilateral organisms). In this study, we explore new and existing hypotheses on buffering mechanisms against cell-level noise. Many of these hypotheses focus on how the boundaries between territories of gene expression remain regular and well defined, despite cell-level noise and division. We study these hypotheses and how irregular territory boundaries lead to morphological noise. To determine the consistency of the different hypotheses, we use a general computational model of development: EmbryoMaker. EmbryoMaker can implement arbitrary gene networks regulating basic cell behaviors (contraction, adhesion, etc.), signaling and tissue biomechanics. We found that buffering mechanisms based on the orientation of cell divisions cannot lead to regular boundaries but that other buffering mechanisms can (homotypic adhesion, planar contraction, non-dividing boundaries, constant signaling and majority rule hypotheses). We also explore the effects of the shape and size of the territories on morphological noise.
Collapse
Affiliation(s)
- Hugo Cano-Fernández
- Genomics, Bioinformatics and Evolution group, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Tazzio Tissot
- Electronics and Computer Science Department, University of Southampton, Southampton SO17 1BJ, UK
| | - Miguel Brun-Usan
- Departamento de Biologia, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Isaac Salazar-Ciudad
- Genomics, Bioinformatics and Evolution group, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Centre de Recerca Matemàtica (CRM), Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
9
|
Liu M, Yang Q, Zuo H, Zhang X, Mishina Y, Chen Z, Yang J. Dynamic patterns of histone lactylation during early tooth development in mice. J Mol Histol 2023; 54:665-673. [PMID: 37787911 DOI: 10.1007/s10735-023-10154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Histone lactylation on its lysine (K) residues has been reported to have indispensable roles in lung fibrosis, embryogenesis, neural development, inflammation, and tumors. However, little is known about the lactylation activity towards histone lysine residue during tooth development. We investigated the dynamic patterns of lactate-derived histone lysine lactylation (Kla) using a pan-Kla antibody during murine tooth development, including lower first molar and lower incisor. The results showed that pan-Kla exhibited temporo-spatial patterns in both dental epithelium and mesenchyme cells during development. Notably, pan-Kla was identified in primary enamel knot (PEK), stratum intermedium (SI), stellate reticulum (SR), dental follicle cells, odontoblasts, ameloblasts, proliferating cells in dental mesenchyme, as well as osteoblasts around the tooth germ. More importantly, pan-Kla was also identified to be co-localized with neurofilament during tooth development, suggesting histone lysine lactylation may be involved in neural invasion during tooth development. These findings suggest that histone lysine lactylation may play important roles in regulating tooth development.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Qian Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Huanyan Zuo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Xinye Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Yuji Mishina
- Department of Biologic & Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, MI, 48109, USA
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Jingwen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 430079, Wuhan, China.
| |
Collapse
|
10
|
Su D, Eliason S, Sun Z, Shao F, Amendt BA. Wolf-Hirschhorn syndrome candidate 1 (Whsc1) methyltransferase signals via a Pitx2-miR-23/24 axis to effect tooth development. J Biol Chem 2023; 299:105324. [PMID: 37806494 PMCID: PMC10656234 DOI: 10.1016/j.jbc.2023.105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Wolf-Hirschhorn syndrome (WHS) is a developmental disorder attributed to a partial deletion on the short arm of chromosome 4. WHS patients suffer from oral manifestations including cleft lip and palate, hypodontia, and taurodontism. WHS candidate 1 (WHSC1) gene is a H3K36-specific methyltransferase that is deleted in every reported case of WHS. Mutation in this gene also results in tooth anomalies in patients. However, the correlation between genetic abnormalities and the tooth anomalies has remained controversial. In our study, we aimed to clarify the role of WHSC1 in tooth development. We profiled the Whsc1 expression pattern during mouse incisor and molar development by immunofluorescence staining and found Whsc1 expression is reduced as tooth development proceeds. Using real-time quantitative reverse transcription PCR, Western blot, chromatin immunoprecipitation, and luciferase assays, we determined that Whsc1 and Pitx2, the initial transcription factor involved in tooth development, positively and reciprocally regulate each other through their gene promoters. miRNAs are known to regulate gene expression posttranscriptionally during development. We previously reported miR-23a/b and miR-24-1/2 were highly expressed in the mature tooth germ. Interestingly, we demonstrate here that these two miRs directly target Whsc1 and repress its expression. Additionally, this miR cluster is also negatively regulated by Pitx2. We show the expression of these two miRs and Whsc1 are inversely correlated during mouse mandibular development. Taken together, our results provide new insights into the potential role of Whsc1 in regulating tooth development and a possible molecular mechanism underlying the dental defects in WHS.
Collapse
Affiliation(s)
- Dan Su
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA; Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Steve Eliason
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA; Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Zhao Sun
- College of Medicine, Washington University St Louis, St Louis, Missouri, USA
| | - Fan Shao
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA; Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA; Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
11
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Väänänen V, Christensen MM, Suhonen H, Jernvall J. Gene expression detection in developing mouse tissue using in situ hybridization and µCT imaging. Proc Natl Acad Sci U S A 2023; 120:e2301876120. [PMID: 37279266 PMCID: PMC10268296 DOI: 10.1073/pnas.2301876120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/07/2023] [Indexed: 06/08/2023] Open
Abstract
High resolution and noninvasiveness have made soft-tissue X-ray microtomography (µCT) a widely applicable three-dimensional (3D) imaging method in studies of morphology and development. However, scarcity of molecular probes to visualize gene activity with µCT has remained a challenge. Here, we apply horseradish peroxidase-assisted reduction of silver and catalytic gold enhancement of the silver deposit to in situ hybridization in order to detect gene expression in developing tissues with µCT (here called GECT, gene expression CT). We show that GECT detects expression patterns of collagen type II alpha 1 and sonic hedgehog in developing mouse tissues comparably with an alkaline phosphatase-based detection method. After detection, expression patterns are visualized with laboratory µCT, demonstrating that GECT is compatible with varying levels of gene expression and varying sizes of expression regions. Additionally, we show that the method is compatible with prior phosphotungstic acid staining, a conventional contrast staining approach in µCT imaging of soft tissues. Overall, GECT is a method that can be integrated with existing laboratory routines to obtain spatially accurate 3D detection of gene expression.
Collapse
Affiliation(s)
- Vilma Väänänen
- Institute of Biotechnology, University of Helsinki, HelsinkiFI-00014, Finland
| | - Mona M. Christensen
- Institute of Biotechnology, University of Helsinki, HelsinkiFI-00014, Finland
| | - Heikki Suhonen
- Department of Physics, University of Helsinki, HelsinkiFI-00014, Finland
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, HelsinkiFI-00014, Finland
- Department of Geosciences and Geography, University of Helsinki, HelsinkiFI-00014, Finland
| |
Collapse
|
13
|
Jackson A, Lin SJ, Jones EA, Chandler KE, Orr D, Moss C, Haider Z, Ryan G, Holden S, Harrison M, Burrows N, Jones WD, Loveless M, Petree C, Stewart H, Low K, Donnelly D, Lovell S, Drosou K, The Genomics England Research Consortium AmbroseJ.C.ArumugamP.BeversR.BledaM.Boardman-PrettyF.BoustredC.R.BrittainH.BrownM.A.CaulfieldM.J.ChanG.C.GiessA.GriffinJ.N.HamblinA.HendersonS.HubbardT.J.P.JacksonR.JonesL.J.KasperaviciuteD.KayikciM.KousathanasA.LahnsteinL.LakeyA.LeighS.E.A.LeongI.U.S.LopezF.J.Maleady-CroweF.McEntagartM.MinneciF.MitchellJ.MoutsianasL.MuellerM.MurugaesuN.NeedA.C.O‘DonovanP.OdhamsC.A.PatchC.Perez-GilD.PereiraM.B.PullingerJ.RahimT.RendonA.RogersT.SavageK.SawantK.ScottR.H.SiddiqA.SieghartA.SmithS.C.SosinskyA.StuckeyA.TanguyM.Taylor TavaresA.L.ThomasE.R.A.ThompsonS.R.TucciA.WellandM.J.WilliamsE.WitkowskaK.WoodS.M.ZarowieckiM., Solve-RD consortium RiessOlafHaackTobias B.GraessnerHolmZurekBirteEllwangerKorneliaOssowskiStephanDemidovGermanSturmMarcSchulze-HentrichJulia M.SchüleRebeccaKesslerChristophWayandMelanieSynofzikMatthisWilkeCarloTraschützAndreasSchölsLudgerHengelHolgerHeutinkPeterBrunnerHanSchefferHansHoogerbruggeNicolineHoischenAlexander’t HoenPeter A.C.VissersLisenka E.L.M.GilissenChristianSteyaertWouterSablauskasKarolisde VoerRicharda M.KamsteegErik-Janvan de WarrenburgBartvan OsNienkePaskeIris teJanssenErikde BoerElkeSteehouwerMarloesYaldizBurcuKleefstraTjitskeBrookesAnthony J.VealColinGibsonSpencerWadsleyMarcMehtarizadehMehdiRiazUmarWarrenGregDizjikanFarid YavariShorterThomasTöpfAnaStraubVolkerBettoloChiara MariniSpechtSabineClayton-SmithJillBankaSiddharthAlexanderElizabethJacksonAdamFaivreLaurenceThauvinChristelVitobelloAntonioDenommé-PichonAnne-SophieDuffourdYannisTisserantEmilieBruelAnge-LinePeyronChristinePélissierAuroreBeltranSergiGutIvo GlynneLaurieStevenPisciaDavideMatalongaLesliePapakonstantinouAnastasiosBullichGemmaCorvoAlbertoGarciaCarlesFernandez-CallejoMarcosHernándezCarlesPicóDanielParamonovIdaLochmüllerHannsGumusGulcinBros-FacerVirginieRathAnaHanauerMarcOlryAnnieLagorceDavidHavrylenkoSvitlanaIzemKatiaRigourFannyStevaninGiovanniDurrAlexandraDavoineClaire-SophieGuillot-NoelLénaHeinzmannAnnaCoarelliGiuliaBonneGisèleEvangelistaTeresinhaAllamandValérieNelsonIsabelleBen YaouRabahMetayCorinneEymardBrunoCohenEnzoAtalaiaAntonioStojkovicTanyaMacekMilanJr.TurnovecMarekThomasováDanaKremlikováRadka PourováFrankováVeraHavlovicováMarkétaKremlikVlastimilParkinsonHelenKeaneThomasSpaldingDylanSenfAlexanderRobinsonPeterDanisDanielRobertGlennCostaAlessiaPatchChristineHannaMikeHouldenHenryReillyMaryVandrovcovaJanaMuntoniFrancescoZaharievaIrinaSarkozyAnnaTimmermanVincentBaetsJonathanVan de VondelLiedeweiBeijerDaniquede JonghePeterNigroVincenzoBanfiSandroTorellaAnnalauraMusacchiaFrancescoPilusoGiulioFerliniAlessandraSelvaticiRitaRossiRacheleNeriMarcellaAretzStefanSpierIsabelSommerAnna KatharinaPetersSophiaOliveiraCarlaPelaezJose GarciaMatosAna RitaJoséCelina SãoFerreiraMartaGulloIreneFernandesSusanaGarridoLuziaFerreiraPedroCarneiroFátimaSwertzMorris A.JohanssonLennartvan der VeldeJoeri K.van der VriesGerbenNeerincxPieter B.Roelofs-PrinsDieuwkeKöhlerSebastianMetcalfeAlisonVerloesAlainDrunatSéverineRooryckCarolineTrimouilleAurelienCastelloRaffaeleMorleoManuelaPinelliMicheleVaravalloAlessandraDe la PazManuel PosadaSánchezEva BermejoMartínEstrella LópezDelgadoBeatriz MartínezAlonso García de la RosaF. JavierCiolfiAndreaDallapiccolaBrunoPizziSimoneRadioFrancesca ClementinaTartagliaMarcoRenieriAlessandraBenettiElisaBaliczaPeterMolnarMaria JuditMaverAlesPeterlinBorutMünchauAlexanderLohmannKatjaHerzogRebeccaPaulyMartjeMacayaAlfonsMarcé-GrauAnnaOsorioAndres NascimientoNatera de BenitoDanielLochmüllerHannsThompsonRachelPolavarapuKiranBeesonDavidCossinsJudithRodriguez CruzPedro M.HackmanPeterJohariMridulSavareseMarcoUddBjarneHorvathRitaCapellaGabrielValleLauraHolinski-FederElkeLanerAndreasSteinke-LangeVerenaSchröckEvelinRumpAndreas, Varshney GK, Banka S. Clinical, genetic, epidemiologic, evolutionary, and functional delineation of TSPEAR-related autosomal recessive ectodermal dysplasia 14. HGG ADVANCES 2023; 4:100186. [PMID: 37009414 PMCID: PMC10064225 DOI: 10.1016/j.xhgg.2023.100186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/27/2023] [Indexed: 06/11/2023] Open
Abstract
TSPEAR variants cause autosomal recessive ectodermal dysplasia (ARED) 14. The function of TSPEAR is unknown. The clinical features, the mutation spectrum, and the underlying mechanisms of ARED14 are poorly understood. Combining data from new and previously published individuals established that ARED14 is primarily characterized by dental anomalies such as conical tooth cusps and hypodontia, like those seen in individuals with WNT10A-related odontoonychodermal dysplasia. AlphaFold-predicted structure-based analysis showed that most of the pathogenic TSPEAR missense variants likely destabilize the β-propeller of the protein. Analysis of 100000 Genomes Project (100KGP) data revealed multiple founder TSPEAR variants across different populations. Mutational and recombination clock analyses demonstrated that non-Finnish European founder variants likely originated around the end of the last ice age, a period of major climatic transition. Analysis of gnomAD data showed that the non-Finnish European population TSPEAR gene-carrier rate is ∼1/140, making it one of the commonest AREDs. Phylogenetic and AlphaFold structural analyses showed that TSPEAR is an ortholog of drosophila Closca, an extracellular matrix-dependent signaling regulator. We, therefore, hypothesized that TSPEAR could have a role in enamel knot, a structure that coordinates patterning of developing tooth cusps. Analysis of mouse single-cell RNA sequencing (scRNA-seq) data revealed highly restricted expression of Tspear in clusters representing enamel knots. A tspeara -/-;tspearb -/- double-knockout zebrafish model recapitulated the clinical features of ARED14 and fin regeneration abnormalities of wnt10a knockout fish, thus suggesting interaction between tspear and wnt10a. In summary, we provide insights into the role of TSPEAR in ectodermal development and the evolutionary history, epidemiology, mechanisms, and consequences of its loss of function variants.
Collapse
Affiliation(s)
- Adam Jackson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Sheng-Jia Lin
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Elizabeth A. Jones
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Kate E. Chandler
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - David Orr
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Celia Moss
- Department of Dermatology, Birmingham Children’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Zahra Haider
- Department of Dermatology, Birmingham Children’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Gavin Ryan
- West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Simon Holden
- Clinical Genetics, Addenbrooke’s Hospital, Cambridge, UK
| | - Mike Harrison
- Department of Pediatric Dentistry, Guy’s and St Thomas' Dental Institute, London, UK
| | - Nigel Burrows
- Department of Dermatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Wendy D. Jones
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, Great Ormond Street NHS Foundation Trust, London, UK
| | - Mary Loveless
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Cassidy Petree
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Karen Low
- Department of Clinical Genetics, St Michael’s Hospital, Bristol, UK
| | - Deirdre Donnelly
- Department of Genetic Medicine, Belfast HSC Trust, Lisburn Road, Belfast, UK
| | - Simon Lovell
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Konstantina Drosou
- Department of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 99 Oxford Road, Manchester, UK
| | | | | | - Gaurav K. Varshney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| |
Collapse
|
14
|
Zimm R, Berio F, Debiais-Thibaud M, Goudemand N. A shark-inspired general model of tooth morphogenesis unveils developmental asymmetries in phenotype transitions. Proc Natl Acad Sci U S A 2023; 120:e2216959120. [PMID: 37027430 PMCID: PMC10104537 DOI: 10.1073/pnas.2216959120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/07/2023] [Indexed: 04/08/2023] Open
Abstract
Developmental complexity stemming from the dynamic interplay between genetic and biomechanic factors canalizes the ways genotypes and phenotypes can change in evolution. As a paradigmatic system, we explore how changes in developmental factors generate typical tooth shape transitions. Since tooth development has mainly been researched in mammals, we contribute to a more general understanding by studying the development of tooth diversity in sharks. To this end, we build a general, but realistic, mathematical model of odontogenesis. We show that it reproduces key shark-specific features of tooth development as well as real tooth shape variation in small-spotted catsharks Scyliorhinus canicula. We validate our model by comparison with experiments in vivo. Strikingly, we observe that developmental transitions between tooth shapes tend to be highly degenerate, even for complex phenotypes. We also discover that the sets of developmental parameters involved in tooth shape transitions tend to depend asymmetrically on the direction of that transition. Together, our findings provide a valuable base for furthering our understanding of how developmental changes can lead to both adaptive phenotypic change and trait convergence in complex, phenotypically highly diverse, structures.
Collapse
Affiliation(s)
- Roland Zimm
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Lyon Cedex07 69364, France
| | - Fidji Berio
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Lyon Cedex07 69364, France
- Institut des Sciences de l’Evolution de Montpellier, University of Montpellier, CNRS, Institut de la Recherche pour le Développement, Montpellier34095, France
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l’Evolution de Montpellier, University of Montpellier, CNRS, Institut de la Recherche pour le Développement, Montpellier34095, France
| | - Nicolas Goudemand
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Lyon Cedex07 69364, France
| |
Collapse
|
15
|
Meurman JH, Goldberg M. Irma Thesleff-Orthodontist who became a developmental biologist. Oral Dis 2023; 29 Suppl 1:883-885. [PMID: 36149325 DOI: 10.1111/odi.14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 09/17/2022] [Indexed: 11/27/2022]
Abstract
Irma Thesleff is one of the leading scholars in developmental biology. She and her research group have clarified the mysteries of tooth development. For several decades, her research of very high quality has focused on morphogenesis and resulted in an understanding of the highly complex signaling networks. Irma Thesleff has been duly recognized both in the domestic and international context. Her research continues despite her retirement.
Collapse
Affiliation(s)
- Jukka H Meurman
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Michel Goldberg
- Biomédicale des Saints Pères, Université Paris Descartes, Paris, France
| |
Collapse
|
16
|
Stuhlträger J, Kullmer O, Wittig RM, Kupczik K, Schulz-Kornas E. Variability in molar crown morphology and cusp wear in two Western chimpanzee populations. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181:29-44. [PMID: 36807569 DOI: 10.1002/ajpa.24707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 02/23/2023]
Abstract
OBJECTIVES Chimpanzees (Pan troglodytes) possess a relatively generalized molar morphology allowing them to access a wide range of foods. Comparisons of crown and cusp morphology among the four subspecies have suggested relatively large intraspecific variability. Here, we compare molar crown traits and cusp wear of two geographically close populations of Western chimpanzees, P. t. verus, to provide further information on intraspecific dental variability. MATERIALS AND METHODS Micro-CT reconstructions of high-resolution replicas of first and second molars of two Western chimpanzee populations from Ivory Coast (Taï National Park) and Liberia, respectively were used for this study. First, we analyzed projected tooth and cusp 2D areas as well as the occurrence of cusp six (C6) on lower molars. Second, we quantified the molar cusp wear three-dimensionally to infer how the individual cusps alter with advancing wear. RESULTS Both populations are similar in their molar crown morphology, except for a higher appearance rate of a C6 in Taï chimpanzees. In Taï chimpanzees, lingual cusps of upper molars and buccal cusps of lower molars possess an advanced wear pattern compared to the remaining cusps, while in Liberian chimpanzees this wear gradient is less pronounced. DISCUSSION The similar crown morphology between both populations fits with previous descriptions for Western chimpanzees and provides additional data on dental variation within this subspecies. The wear pattern of the Taï chimpanzees are in concordance with their observed tool rather than tooth use to open nuts/seeds, while the Liberian chimpanzees may have consumed hard food items crushed between their molars.
Collapse
Affiliation(s)
- Julia Stuhlträger
- Former Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Group Animal Husbandry and Ecology, Group Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ottmar Kullmer
- Division of Paleoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Department of Paleobiology and Environment, Institute of Ecology, Evolution, and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Roman M Wittig
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Taï Chimpanzee Project, CSRS, Abidjan, Ivory Coast
- Institute for Cognitive Sciences, CNRS UMR5229 University Claude Bernard Lyon 1, Bron, France
| | - Kornelius Kupczik
- Former Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, Faculty of Social Sciences, University of Chile, Santiago de Chile, Chile
| | - Ellen Schulz-Kornas
- Former Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Cariology, Endodontics and Periodontology, University of Leipzig, Leipzig, Germany
- Section Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change and University of Hamburg, Hamburg, Germany
| |
Collapse
|
17
|
Zhang H, Gong X, Xu X, Wang X, Sun Y. Tooth number abnormality: from bench to bedside. Int J Oral Sci 2023; 15:5. [PMID: 36604408 PMCID: PMC9816303 DOI: 10.1038/s41368-022-00208-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 11/01/2022] [Indexed: 01/07/2023] Open
Abstract
Tooth number abnormality is one of the most common dental developmental diseases, which includes both tooth agenesis and supernumerary teeth. Tooth development is regulated by numerous developmental signals, such as the well-known Wnt, BMP, FGF, Shh and Eda pathways, which mediate the ongoing complex interactions between epithelium and mesenchyme. Abnormal expression of these crutial signalling during this process may eventually lead to the development of anomalies in tooth number; however, the underlying mechanisms remain elusive. In this review, we summarized the major process of tooth development, the latest progress of mechanism studies and newly reported clinical investigations of tooth number abnormality. In addition, potential treatment approaches for tooth number abnormality based on developmental biology are also discussed. This review not only provides a reference for the diagnosis and treatment of tooth number abnormality in clinical practice but also facilitates the translation of basic research to the clinical application.
Collapse
Affiliation(s)
- Han Zhang
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xuyan Gong
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaoqiao Xu
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaogang Wang
- grid.64939.310000 0000 9999 1211Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yao Sun
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
18
|
Zimm R, Oberdick D, Gnetneva A, Schneider P, Cebra-Thomas J, Moustakas-Verho JE. Turing's turtles all the way down: A conserved role of EDAR in the carapacial ridge suggests a deep homology of prepatterns across ectodermal appendages. Anat Rec (Hoboken) 2022; 306:1201-1213. [PMID: 36239299 DOI: 10.1002/ar.25096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
The scutes of the turtle shell are epidermal shields that begin their formation during the early stages of shell development. Like other skin appendages, turtle scutes are hypothesized to be patterned by reaction-diffusion systems. We have previously established ex vivo and in silico systems to study these mechanisms experimentally and have further shown that mathematical models can explain the dynamics of the induction of turtle scute primordia and the generation of final scute architecture. Using these foundations, we expand our current knowledge and test the roles of ectodysplasin and activin signaling in the development of turtle scutes. We find that these molecules play important roles in the prepatterning of scute primordia along the carapacial ridge and show that blocking Edar signaling may lead to a complete loss of marginal scute primordia. We show that it is possible to reproduce these observations using simple mathematical modeling, thereby suggesting a stabilizing role for ectodysplasin within the reaction-diffusion mechanisms. Finally, we argue that our findings further entrench turtle scutes within a class of developmental systems composed of hierarchically nested reaction-diffusion mechanisms, which is conserved across ectodermal organs.
Collapse
Affiliation(s)
- Roland Zimm
- Institute of Functional Genomics, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Danielle Oberdick
- Department of Biology, Millersville University, Millersville, Pennsylvania, USA
| | - Anna Gnetneva
- Zoological Institute of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Pascal Schneider
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Judith Cebra-Thomas
- Department of Biology, Millersville University, Millersville, Pennsylvania, USA
| | | |
Collapse
|
19
|
Paul KS, Stojanowski CM, Hughes T, Brook AH, Townsend GC. Genetic Correlation, Pleiotropy, and Molar Morphology in a Longitudinal Sample of Australian Twins and Families. Genes (Basel) 2022; 13:genes13060996. [PMID: 35741762 PMCID: PMC9222655 DOI: 10.3390/genes13060996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/01/2023] Open
Abstract
This study aims to expand our understanding of the genetic architecture of crown morphology in the human diphyodont dentition. Here, we present bivariate genetic correlation estimates for deciduous and permanent molar traits and evaluate the patterns of pleiotropy within (e.g., m1–m2) and between (e.g., m2–M1) dentitions. Morphology was observed and scored from dental models representing participants of an Australian twin and family study (deciduous n = 290, permanent n = 339). Data collection followed Arizona State University Dental Anthropology System standards. Genetic correlation estimates were generated using maximum likelihood variance components analysis in SOLAR v.8.1.1. Approximately 23% of deciduous variance components models and 30% of permanent variance components models yielded significant genetic correlation estimates. By comparison, over half (56%) of deciduous–permanent homologues (e.g., m2 hypocone–M1 hypocone) were significantly genetically correlated. It is generally assumed that the deciduous and permanent molars represent members of a meristic molar field emerging from the primary dental lamina. However, stronger genetic integration among m2–M1/M2 homologues than among paired deciduous traits suggests the m2 represents the anterior-most member of a “true” molar field. The results indicate genetic factors act at distinct points throughout development to generate homologous molar form, starting with the m2, which is later replaced by a permanent premolariform crown.
Collapse
Affiliation(s)
- Kathleen S. Paul
- Department of Anthropology, University of Arkansas, Fayetteville, AR 72701, USA
- Correspondence: ; Tel.: +1-479-718-1352
| | - Christopher M. Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA;
| | - Toby Hughes
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; (T.H.); (A.H.B.)
| | - Alan H. Brook
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; (T.H.); (A.H.B.)
- Barts and the London Dental Institute, Queen Mary University of London, London EC1M 6AX, UK
| | - Grant C. Townsend
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; (T.H.); (A.H.B.)
| |
Collapse
|
20
|
Thiery AP, Standing AS, Cooper RL, Fraser GJ. An epithelial signalling centre in sharks supports homology of tooth morphogenesis in vertebrates. eLife 2022; 11:73173. [PMID: 35536602 PMCID: PMC9249395 DOI: 10.7554/elife.73173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Development of tooth shape is regulated by the enamel knot signalling centre, at least in mammals. Fgf signalling regulates differential proliferation between the enamel knot and adjacent dental epithelia during tooth development, leading to formation of the dental cusp. The presence of an enamel knot in non-mammalian vertebrates is debated given differences in signalling. Here, we show the conservation and restriction of fgf3, fgf10, and shh to the sites of future dental cusps in the shark (Scyliorhinus canicula), whilst also highlighting striking differences between the shark and mouse. We reveal shifts in tooth size, shape, and cusp number following small molecule perturbations of canonical Wnt signalling. Resulting tooth phenotypes mirror observed effects in mammals, where canonical Wnt has been implicated as an upstream regulator of enamel knot signalling. In silico modelling of shark dental morphogenesis demonstrates how subtle changes in activatory and inhibitory signals can alter tooth shape, resembling developmental phenotypes and cusp shapes observed following experimental Wnt perturbation. Our results support the functional conservation of an enamel knot-like signalling centre throughout vertebrates and suggest that varied tooth types from sharks to mammals follow a similar developmental bauplan. Lineage-specific differences in signalling are not sufficient in refuting homology of this signalling centre, which is likely older than teeth themselves.
Collapse
Affiliation(s)
- Alexandre P Thiery
- Department of Animal and Plant Sciences, King's College London, London, United Kingdom
| | - Ariane S Standing
- Department of Biology, University of Florida, Gainesville, United States
| | - Rory L Cooper
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, United States
| |
Collapse
|
21
|
Chen Z, Wu W, Zheng C, Lan Y, Xie H, Xie Z. KLF6 facilitates differentiation of odontoblasts through modulating the expression of P21 in vitro. Int J Oral Sci 2022; 14:20. [PMID: 35422483 PMCID: PMC9010434 DOI: 10.1038/s41368-022-00172-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Multiple signaling pathways are involved in the regulation of cell proliferation and differentiation in odontogenesis and dental tissue renewal, but the details of these mechanisms remain unknown. Here, we investigated the expression patterns of a transcription factor, Krüppel-like factor 6 (KLF6), during the development of murine tooth germ and its function in odontoblastic differentiation. KLF6 was almost ubiquitously expressed in odontoblasts at various stages, and it was co-expressed with P21 (to varying degrees) in mouse dental germ. To determine the function of Klf6, overexpression and knockdown experiments were performed in a mouse dental papilla cell line (iMDP-3). Klf6 functioned as a promoter of odontoblastic differentiation and inhibited the proliferation and cell cycle progression of iMDP-3 through p21 upregulation. Dual-luciferase reporter assay and chromatin immunoprecipitation showed that Klf6 directly activates p21 transcription. Additionally, the in vivo study showed that KLF6 and P21 were also co-expressed in odontoblasts around the reparative dentin. In conclusion, Klf6 regulates the transcriptional activity of p21, thus promoting the cell proliferation to odontoblastic differentiation transition in vitro. This study provides a theoretical basis for odontoblast differentiation and the formation of reparative dentine regeneration.
Collapse
|
22
|
Evolution and development of the mammalian multicuspid teeth. J Oral Biosci 2022; 64:165-175. [DOI: 10.1016/j.job.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/20/2022]
|
23
|
Hu X, Lin C, Ruan N, Huang Z, Zhang Y, Hu X. Operation of the Atypical Canonical Bone Morphogenetic Protein Signaling Pathway During Early Human Odontogenesis. Front Physiol 2022; 13:823275. [PMID: 35211032 PMCID: PMC8863179 DOI: 10.3389/fphys.2022.823275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling plays essential roles in the regulation of early tooth development. It is well acknowledged that extracellular BMP ligands bind to the type I and type II transmembrane serine/threonine kinase receptor complexes to trigger the BMP signaling pathway. Then, the receptor-activated Smad1/5/8 in cytoplasm binds to Smad4, the central mediator of the canonical BMP signaling pathway, to form transfer complexes for entering the nucleus and regulating target gene expression. However, a recent study revealed the functional operation of a novel BMP-mediated signaling pathway named the atypical BMP canonical signaling pathway in mouse developing tooth, which is Smad1/5/8 dependent but Smad4 independent. In this study, we investigated whether this atypical BMP canonical signaling is conserved in human odontogenesis. We showed that pSMAD1/5/8 is required for the expression of Msh homeobox 1 (MSX1), a well-defined BMP signaling target gene, in human dental mesenchyme, but the typical BMP canonical signaling is in fact not operating in the early human developing tooth, as evidenced by the absence of pSMAD1/5/8-SMAD4 complexes in the dental mesenchyme and translocation of pSMAD1/5/8, and the expression of MSX1 induced by BMP4 is mothers against decapentaplegic homolog 4 (SMAD4)-independent in human dental mesenchymal cells. Moreover, integrative analysis of RNA-Seq data sets comparing the transcriptome profiles of human dental mesenchymal cells with and without SMAD4 knockdown by siRNA displays unchanged expression profiles of pSMAD1/5/8 downstream target genes, further affirming the functional operation of the atypical canonical BMP signaling pathway in a SMAD1/5/8-dependent but SMAD4-independent manner in the dental mesenchyme during early odontogenesis in humans.
Collapse
Affiliation(s)
- Xiaoxiao Hu
- Center for Biomedical Research of South China, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Chensheng Lin
- Center for Biomedical Research of South China, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Ningsheng Ruan
- Center for Biomedical Research of South China, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zhen Huang
- Center for Biomedical Research of South China, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yanding Zhang
- Center for Biomedical Research of South China, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xuefeng Hu
- Center for Biomedical Research of South China, Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
24
|
Kikuchi N, Kitamura K, Kasahara N, Ogawa Y, Ishikawa N, Yamamoto M, Yamamoto H. Three-Dimensional Observation of the Furcation Area during Multi-Rooted Tooth Formation in Rat. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Nobue Kikuchi
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Norio Kasahara
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Yudai Ogawa
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Noboru Ishikawa
- Department of Forensic Odontology and Anthropology, Tokyo Dental College
| | | | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College
| |
Collapse
|
25
|
Hermans F, Hemeryck L, Lambrichts I, Bronckaers A, Vankelecom H. Intertwined Signaling Pathways Governing Tooth Development: A Give-and-Take Between Canonical Wnt and Shh. Front Cell Dev Biol 2021; 9:758203. [PMID: 34778267 PMCID: PMC8586510 DOI: 10.3389/fcell.2021.758203] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Teeth play essential roles in life. Their development relies on reciprocal interactions between the ectoderm-derived dental epithelium and the underlying neural crest-originated mesenchyme. This odontogenic process serves as a prototype model for the development of ectodermal appendages. In the mouse, developing teeth go through distinct morphological phases that are tightly controlled by epithelial signaling centers. Crucial molecular regulators of odontogenesis include the evolutionarily conserved Wnt, BMP, FGF and sonic hedgehog (Shh) pathways. These signaling modules do not act on their own, but are closely intertwined during tooth development, thereby outlining the path to be taken by specific cell populations including the resident dental stem cells. Recently, pivotal Wnt-Shh interaction and feedback loops have been uncovered during odontogenesis, showing conservation in other developing ectodermal appendages. This review provides an integrated overview of the interplay between canonical Wnt and Shh throughout mouse tooth formation stages, extending from the initiation of dental placode to the fully formed adult tooth.
Collapse
Affiliation(s)
- Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium.,Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
26
|
Aryal YP, Kim TY, Lee ES, An CH, Kim JY, Yamamoto H, Lee S, Lee Y, Sohn WJ, Neupane S, Kim JY. Signaling Modulation by miRNA-221-3p During Tooth Morphogenesis in Mice. Front Cell Dev Biol 2021; 9:697243. [PMID: 34513833 PMCID: PMC8424101 DOI: 10.3389/fcell.2021.697243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
miRNAs are conserved short non-coding RNAs that play a role in the modulation of various biological pathways during tissue and organ morphogenesis. In this study, the function of miRNA-221-3p in tooth development, through its loss or gain in function was evaluated. A variety of techniques were utilized to evaluate detailed functional roles of miRNA-221-3p during odontogenesis, including in vitro tooth cultivation, renal capsule transplantation, in situ hybridization, real-time PCR, and immunohistochemistry. Two-day in vitro tooth cultivation at E13 identified altered cellular events, including cellular proliferation, apoptosis, adhesion, and cytoskeletal arrangement, with the loss and gain of miRNA-221-3p. qPCR analysis revealed alterations in gene expression of tooth-related signaling molecules, including β-catenin, Bmp2, Bmp4, Fgf4, Ptch1, and Shh, when inhibited with miRNA-221-3p and mimic. Also, the inhibition of miRNA-221-3p demonstrated increased mesenchymal localizations of pSMAD1/5/8, alongside decreased expression patterns of Shh and Fgf4 within inner enamel epithelium (IEE) in E13 + 2 days in vitro cultivated teeth. Moreover, 1-week renal transplantation of in vitro cultivated teeth had smaller tooth size with reduced enamel and dentin matrices, along with increased cellular proliferation and Shh expression along the Hertwig epithelial root sheath (HERS), within the inhibitor group. Similarly, in 3-week renal calcified teeth, the overexpression of miRNA-221-3p did not affect tooth phenotype, while the loss of function resulted in long and slender teeth with short mesiodistal length. This study provides evidence that a suitable level of miRNA-221-3p is required for the modulation of major signaling pathways, including Wnt, Bmp, and Shh, during tooth morphogenesis.
Collapse
Affiliation(s)
- Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eui-Seon Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, Incheon, South Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Sanggyu Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan-si, South Korea
| | - Sanjiv Neupane
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
27
|
Cryptophthalmos, dental anomalies, oral vestibule defect, and a novel FREM2 mutation. J Hum Genet 2021; 67:115-118. [PMID: 34408272 DOI: 10.1038/s10038-021-00972-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 11/08/2022]
Abstract
FREM2 is a member of the FREM2-FRAS1-FREM1 protein complex which contributes to epithelial-mesenchymal coupling. We report a Thai woman with cryptophthalmos, dental anomalies, and oral vestibule defect. A compound heterozygous mutation (c.6499C>T; p.Arg2167Trp and c.641_642del; p.Glu214GlyfsTer135) in the FREM2 gene was identified. The frameshift variant p.Glu214GlyfsTer135 is de novo and novel. It is predicted to result in the loss of most of the functional domains. The p.Arg2167Trp mutation was predicted to disrupt both Ca2+ binding and conformational change. The Arg2167Trp mutant protein has been shown to cause partial loss of function, decrease its interaction with FREM1 and result in impaired function of the FRAS1-FREM2-FREM1 complex. Frem2 was shown to be expressed in the developing tooth and vestibular lamina. It is hypothesized that these mutations resulted in aberration of the FRAS1-FREM2-FREM1 protein complex, resulting in loss of nephronectin, basement membrane disruption, and abnormal epithelial-mesenchymal interactions leading to dental and oral vestibule malformations.
Collapse
|
28
|
Abramyan J, Geetha-Loganathan P, Šulcová M, Buchtová M. Role of Cell Death in Cellular Processes During Odontogenesis. Front Cell Dev Biol 2021; 9:671475. [PMID: 34222243 PMCID: PMC8250436 DOI: 10.3389/fcell.2021.671475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 01/20/2023] Open
Abstract
The development of a tooth germ in a precise size, shape, and position in the jaw, involves meticulous regulation of cell proliferation and cell death. Apoptosis, as the most common type of programmed cell death during embryonic development, plays a number of key roles during odontogenesis, ranging from the budding of the oral epithelium during tooth initiation, to later tooth germ morphogenesis and removal of enamel knot signaling center. Here, we summarize recent knowledge about the distribution and function of apoptotic cells during odontogenesis in several vertebrate lineages, with a special focus on amniotes (mammals and reptiles). We discuss the regulatory roles that apoptosis plays on various cellular processes during odontogenesis. We also review apoptosis-associated molecular signaling during tooth development, including its relationship with the autophagic pathway. Lastly, we cover apoptotic pathway disruption, and alterations in apoptotic cell distribution in transgenic mouse models. These studies foster a deeper understanding how apoptotic cells affect cellular processes during normal odontogenesis, and how they contribute to dental disorders, which could lead to new avenues of treatment in the future.
Collapse
Affiliation(s)
- John Abramyan
- Department of Natural Sciences, University of Michigan–Dearborn, Dearborn, MI, United States
| | | | - Marie Šulcová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Marcela Buchtová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
29
|
Yamunadevi A, Pratibha R, Rajmohan M, Mahendraperumal S, Ganapathy N, Srivandhana R. First Molars in Permanent Dentition and their Malformations in Various Pathologies: A Review. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2021; 13:S23-S30. [PMID: 34447037 PMCID: PMC8375929 DOI: 10.4103/jpbs.jpbs_744_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 11/19/2022] Open
Abstract
Permanent maxillary and mandibular first molars are the first permanent teeth to erupt into the oral cavity along with the mandibular incisors. It serves as an excellent record of maternal and fetal health, reflecting the prenatal, perinatal, and postnatal health and diseases. This review focuses on the molar morphogenesis, molar malformations, their etiopathogenesis, and pathologies causing specific pattern of molar malformations.
Collapse
Affiliation(s)
- Andamuthu Yamunadevi
- Department of Oral and Maxillofacial Pathology, Vivekanandha Dental College for Women, Namakkal, Tamil Nadu, India
| | - Ramani Pratibha
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College, Chennai, Tamil Nadu, India
| | - Muthusamy Rajmohan
- Department of Oral and Maxillofacial Pathology, KSR Institute of Dental Science and Research, Namakkal, Tamil Nadu, India
| | - Sengottaiyan Mahendraperumal
- Department of Oral and Maxillofacial Surgery, KSR Institute of Dental Science and Research, Namakkal, Tamil Nadu, India
| | - Nalliappan Ganapathy
- Department of Oral and Maxillofacial Pathology, Vivekanandha Dental College for Women, Namakkal, Tamil Nadu, India
| | | |
Collapse
|
30
|
Niki Y, Kobayashi Y, Moriyama K. Expression pattern of transcriptional enhanced associate domain family member 1 (Tead1) in developing mouse molar tooth. Gene Expr Patterns 2021; 40:119182. [PMID: 33984529 DOI: 10.1016/j.gep.2021.119182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/24/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
The Hippo pathway is essential for determining organ size by regulating cell proliferation. Previous reports have shown that impairing this pathway causes abnormal tooth development. However, the precise expression profile of the members of the transcriptional enhanced associate domain family (Tead), which are key transcription factors mediating Yap function, during tooth development is unclear. In this study, among the four isoforms of Tead (Tead1 - 4), only the expression of Tead1 mRNA was observed using semiquantitative RT- PCR in murine developing tooth germ at E16.5. The expression level of Tead1 mRNA in the excised murine mandibular molar tooth germ was significantly higher at E16.5 than at other developmental stages, as determined using quantitative PCR. We found that the mRNA expression of connective tissue growth factor (Ctgf), which is one of the Yap target genes directly controlling cell growth, changed consistently with that of Tead1 in developing molars. Fluorescent immunostaining revealed that Tead1 protein was expressed in both epithelial cells and mesenchymal cells of the dental lamina and dental epithelium, including the primary enamel knot during the cap stage. During the early bell stage (E16.5), Tead1 was expressed intensely in the inner and outer enamel epithelium, including the secondary enamel knot and the neighboring mesenchymal cells. Tead1 then specifically localized to the inner and outer enamel epithelium, which is responsible for enamel formation during the bell stage. These expression patterns were consistent with those of Yap, Taz, and Ctgf protein in developing molars. These results suggest that Tead1 acts as a mediator of the biological functions of Yap, such as the morphogenesis of cusp formation, during tooth development.
Collapse
Affiliation(s)
- Yuki Niki
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Yukiho Kobayashi
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
31
|
Berio F, Debiais-Thibaud M. Evolutionary developmental genetics of teeth and odontodes in jawed vertebrates: a perspective from the study of elasmobranchs. JOURNAL OF FISH BIOLOGY 2021; 98:906-918. [PMID: 31820456 DOI: 10.1111/jfb.14225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Most extant vertebrates display a high variety of tooth and tooth-like organs (odontodes) that vary in shape, position over the body and nature of composing tissues. The development of these structures is known to involve similar genetic cascades and teeth and odontodes are believed to share a common evolutionary history. Gene expression patterns have previously been compared between mammalian and teleost tooth development but we highlight how the comparative framework was not always properly defined to deal with different tooth types or tooth developmental stages. Larger-scale comparative analyses also included cartilaginous fishes: sharks display oral teeth and dermal scales for which the gene expression during development started to be investigated in the small-spotted catshark Scyliorhinus canicula during the past decade. We report several descriptive approaches to analyse the embryonic tooth and caudal scale gene expressions in S. canicula. We compare these expressions wih the ones reported in mouse molars and teleost oral and pharyngeal teeth and highlight contributions and biases that arise from these interspecific comparisons. We finally discuss the evolutionary processes that can explain the observed intra and interspecific similarities and divergences in the genetic cascades involved in tooth and odontode development in jawed vertebrates.
Collapse
Affiliation(s)
- Fidji Berio
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
- University of Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Institut de Génomique Fonctionnelle de Lyon, UMR5242, 46 Allée d'Italie, Lyon, France
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
32
|
Development and regeneration of the crushing dentition in skates (Rajidae). Dev Biol 2020; 466:59-72. [PMID: 32791054 DOI: 10.1016/j.ydbio.2020.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Sharks and rays (elasmobranchs) have the remarkable capacity to continuously regenerate their teeth. The polyphyodont system is considered the ancestral condition of the gnathostome dentition. Despite this shared regenerative ability, sharks and rays exhibit dramatic interspecific variation in their tooth morphology. Ray (batoidea) teeth typically constitute crushing pads of flattened teeth, whereas shark teeth are pointed, multi-cuspid units. Although recent research has addressed the molecular development of the shark dentition, little is known about that of the ray. Furthermore, how dental diversity within the elasmobranch lineage is achieved remains unknown. Here, we examine dental development and regeneration in two Batoid species: the thornback skate (Raja clavata) and the little skate (Leucoraja erinacea). Using in situ hybridization and immunohistochemistry, we examine the expression of a core gnathostome dental gene set during early development of the skate dentition and compare it to development in the shark. Elasmobranch tooth development is highly conserved, with sox2 likely playing an important role in the initiation and regeneration of teeth. Alterations to conserved genes expressed in an enamel knot-like signalling centre may explain the morphological diversity of elasmobranch teeth, thereby enabling sharks and rays to occupy diverse dietary and ecological niches.
Collapse
|
33
|
Sadier A, Santana SE, Sears KE. The role of core and variable Gene Regulatory Network modules in tooth development and evolution. Integr Comp Biol 2020; 63:icaa116. [PMID: 32761089 DOI: 10.1093/icb/icaa116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 02/28/2024] Open
Abstract
Among the developmental processes that have been proposed to influence the direction of evolution, the modular organization of developmental gene regulatory networks (GRNs) has shown particular promise. In theory, GRNs have core modules comprised of essential, conserved circuits of genes, and sub-modules of downstream, secondary circuits of genes that are more susceptible to variation. While this idea has received considerable interest as of late, the field of evo-devo lacks the experimental systems needed to rigorously evaluate this hypothesis. Here, we introduce an experimental system, the vertebrate tooth, that has great potential as a model for testing this hypothesis. Tooth development and its associated GRN have been well studied and modeled in both model and non-model organisms. We propose that the existence of modules within the tooth GRN explains both the conservation of developmental mechanisms and the extraordinary diversity of teeth among vertebrates. Based on experimental data, we hypothesize that there is a conserved core module of genes that is absolutely necessary to ensure tooth or cusp initiation and development. In regard to tooth shape variation between species, we suggest that more relaxed sub-modules activated at later steps of tooth development, e.g., during the morphogenesis of the tooth and its cusps, control the different axes of tooth morphological variation.
Collapse
Affiliation(s)
- Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, California
| | - Sharlene E Santana
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
34
|
Yu W, Sun Z, Sweat Y, Sweat M, Venugopalan SR, Eliason S, Cao H, Paine ML, Amendt BA. Pitx2-Sox2-Lef1 interactions specify progenitor oral/dental epithelial cell signaling centers. Development 2020; 147:dev186023. [PMID: 32439755 PMCID: PMC7286298 DOI: 10.1242/dev.186023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/18/2020] [Indexed: 12/14/2022]
Abstract
Epithelial signaling centers control epithelial invagination and organ development, but how these centers are specified remains unclear. We report that Pitx2 (the first transcriptional marker for tooth development) controls the embryonic formation and patterning of epithelial signaling centers during incisor development. We demonstrate using Krt14Cre /Pitx2flox/flox (Pitx2cKO ) and Rosa26CreERT/Pitx2flox/flox mice that loss of Pitx2 delays epithelial invagination, and decreases progenitor cell proliferation and dental epithelium cell differentiation. Developmentally, Pitx2 regulates formation of the Sox2+ labial cervical loop (LaCL) stem cell niche in concert with two signaling centers: the initiation knot and enamel knot. The loss of Pitx2 disrupted the patterning of these two signaling centers, resulting in tooth arrest at E14.5. Mechanistically, Pitx2 transcriptional activity and DNA binding is inhibited by Sox2, and this interaction controls gene expression in specific Sox2 and Pitx2 co-expression progenitor cell domains. We demonstrate new transcriptional mechanisms regulating signaling centers by Pitx2, Sox2, Lef1 and Irx1.
Collapse
Affiliation(s)
- Wenjie Yu
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Zhao Sun
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
- Division of Nephrology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Yan Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Mason Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | | | - Steven Eliason
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Huojun Cao
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
35
|
Paul KS, Stojanowski CM, Hughes TE, Brook AH, Townsend GC. Patterns of heritability across the human diphyodont dental complex: Crown morphology of Australian twins and families. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 172:447-461. [DOI: 10.1002/ajpa.24019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/31/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Kathleen S. Paul
- Department of Anthropology University of Arkansas Fayetteville Arkansas
| | - Christopher M. Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change Arizona State University Tempe Arizona
| | - Toby E. Hughes
- Adelaide Dental School University of Adelaide Adelaide South Australia
| | - Alan H. Brook
- Adelaide Dental School University of Adelaide Adelaide South Australia
- Institute of Dental Surgery Queen Mary University of London London UK
| | - Grant C. Townsend
- Adelaide Dental School University of Adelaide Adelaide South Australia
| |
Collapse
|
36
|
Abstract
The tooth provides an excellent system for deciphering the molecular mechanisms of organogenesis, and has thus been of longstanding interest to developmental and stem cell biologists studying embryonic morphogenesis and adult tissue renewal. In recent years, analyses of molecular signaling networks, together with new insights into cellular heterogeneity, have greatly improved our knowledge of the dynamic epithelial-mesenchymal interactions that take place during tooth development and homeostasis. Here, we review recent progress in the field of mammalian tooth morphogenesis and also discuss the mechanisms regulating stem cell-based dental tissue homeostasis, regeneration and repair. These exciting findings help to lay a foundation that will ultimately enable the application of fundamental research discoveries toward therapies to improve oral health.
Collapse
Affiliation(s)
- Tingsheng Yu
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
37
|
Nakatsugawa K, Kurosaka H, Inubushi T, Aoyama G, Isogai Y, Usami Y, Toyosawa S, Yamashiro T. Stage- and tissue-specific effect of cyclophosphamide during tooth development. Eur J Orthod 2019; 41:519-530. [PMID: 30715254 DOI: 10.1093/ejo/cjz002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the toxic effect of cyclophosphamide (CPA) in the development of rodent molars. METHODS CPA was administered intraperitoneally in postnatal mice between Day 1 and Day 10, and the morphological phenotype was evaluated at Day 26 using micro-computed tomography and histological analysis, including cell proliferation and cell death analyses. RESULTS M3 molars of the mice who received 100 mg/kg CPA treatment at Day 6 or M2 molars who received treatment at Day 1 resulted in tooth agenesis or marked hypoplasia. Histological observation demonstrated that CPA treatment at Day 6 resulted in shrinkage of the M3 tooth germs, with a significant reduction in the proliferation of apoptotic cells. Conversely, CPA exposure at Day 2, which occurs at around the bud stage of M3, resulted in crown and root hypoplasia, with reduced numbers of cusp and root. In addition, CPA exposure at Day 10, which is the late bell stage of M3, induced root shortening; however, it did not affect crown morphogenesis. LIMITATIONS The timing of CPA administration is limited to after birth. Therefore, its effect during the early stages of M1 and M2 could not be investigated. CONCLUSION Defective phenotypes were evident in both crown and roots due to the effect of CPA. Interestingly, the severity of the phenotypes was associated with the developmental stages of the tooth germs at the time of CPA administration. The cap/early bell stage is the most susceptive timing for tooth agenesis, whereas the late bell stage is predominantly affected in terms of root formation by CPA administration.
Collapse
Affiliation(s)
- Kohei Nakatsugawa
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Gozo Aoyama
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yukako Isogai
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yu Usami
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoru Toyosawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
38
|
Li J, Xu J, Cui Y, Wang L, Wang B, Wang Q, Zhang X, Qiu M, Zhang Z. Mesenchymal Sufu Regulates Development of Mandibular Molars via Shh Signaling. J Dent Res 2019; 98:1348-1356. [PMID: 31499014 DOI: 10.1177/0022034519872679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sonic hedgehog (Shh) in dental epithelium regulates tooth morphogenesis by epithelial-mesenchymal signaling transduction. However, the action of Shh signaling regulation in this process is not well understood. Here we find that mesenchymal Suppressor of Fused (Sufu), a major negative regulator of Shh signaling, plays an important role in modulating the tooth germ morphogenesis during the bud-to-cap stage transition. Deletion of Sufu in dental mesenchyme by Dermo1-Cre mice leads to delayed development of mandibular molar into cap stage with defect of primary enamel knot (EK) formation. We show the disruption of cell proliferation and programmed cell death in dental epithelium and mesenchyme in Sufu mutants. Epithelial-specific adhesion molecule E-cadherin is evidently reduced in the bilateral basal cells of tooth germ at E14.5. The cells in the presumptive EK, predominantly expressing P-cadherin, appear stratified but fail to condense. Moreover, the transcripts of primary EK marker genes, including Shh, Fgf4, and p21, are significantly decreased compared to controls. In contrast, we find that deficiency of Sufu results in elevation of Shh signaling in mesenchyme, indicated by the significant upregulation of Gli1 and Ptch1. Meanwhile, the expression of Bmp4 and Fgf3, the critical factors of mesenchymal-epithelial induction, is significantly inhibited in dental mesenchyme. Furthermore, the expression of Runx2 experiences a transient decrease at the bud stage. Taken together, these data suggest that mesenchymal Sufu is necessary for tuning the Shh signaling, which may act as an upstream modulator of Bmp4 and Fgf3 to coordinate the interplay between the dental mesenchyme and epithelium of tooth germ.
Collapse
Affiliation(s)
- J Li
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - J Xu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Y Cui
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - L Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - B Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Q Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - X Zhang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - M Qiu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Z Zhang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Liu Z, Chen T, Bai D, Tian W, Chen Y. Smad7 Regulates Dental Epithelial Proliferation during Tooth Development. J Dent Res 2019; 98:1376-1385. [PMID: 31499015 DOI: 10.1177/0022034519872487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tooth morphogenesis involves dynamic changes in shape and size as it proceeds through the bud, cap, and bell stages. This process requires exact regulation of cell proliferation and differentiation. Smad7, a general antagonist against transforming growth factor-β (TGF-β) signaling, is necessary for maintaining homeostasis and proper functionality in many organs. While TGF-β signaling is widely involved in tooth morphogenesis, the precise role of Smad7 in tooth development remains unknown. In this study, we showed that Smad7 is expressed in the developing mouse molars with a high level in the dental epithelium but a moderate to weak level in the dental mesenchyme. Smad7 deficiency led to a profound decrease in tooth size primarily due to a severely compromised cell proliferation capability in the dental epithelium. Consistent with the tooth shrinkage phenotype, RNA sequencing (RNA-seq) analysis revealed that Smad7 ablation downregulated genes referred to epithelial cell proliferation and cell cycle G1/S phase transition, whereas the upregulated genes were involved in responding to TGF-β signaling and cell cycle arrest. Among these genes, the expression of Cdkn1a (encoding p21), a negative cell proliferation regulator, was remarkably elevated in parallel with the diminution of Ccnd1 encoding the crucial cell cycle regulator cyclin D1 in the dental epithelium. Meanwhile, the expression level of p-Smad2/3 was ectopically elevated in the developing tooth germ of Smad7 null mice, indicating the hyperactivation of the canonical TGF-β signaling. These effects were reversed by addition of TGF-β signaling inhibitor in cell cultures of Smad7-/- molar tooth germs, with rescued expression of cyclin D1 and cell proliferation rate. In sum, our studies demonstrate that Smad7 functions primarily as a positive regulator of cell proliferation via inhibition of the canonical TGF-β signaling during dental epithelium development and highlight a crucial role for Smad7 in regulating tooth size.
Collapse
Affiliation(s)
- Z Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - T Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - D Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - W Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Y Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
40
|
Marangoni P, Charles C, Ahn Y, Seidel K, Jheon A, Ganss B, Krumlauf R, Viriot L, Klein OD. Downregulation of FGF Signaling by Spry4 Overexpression Leads to Shape Impairment, Enamel Irregularities, and Delayed Signaling Center Formation in the Mouse Molar. JBMR Plus 2019; 3:e10205. [PMID: 31485553 PMCID: PMC6715786 DOI: 10.1002/jbm4.10205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
FGF signaling plays a critical role in tooth development, and mutations in modulators of this pathway produce a number of striking phenotypes. However, many aspects of the role of the FGF pathway in regulating the morphological features and the mineral quality of the dentition remain unknown. Here, we used transgenic mice overexpressing the FGF negative feedback regulator Sprouty4 under the epithelial keratin 14 promoter (K14‐Spry4) to achieve downregulation of signaling in the epithelium. This led to highly penetrant defects affecting both cusp morphology and the enamel layer. We characterized the phenotype of erupted molars, identified a developmental delay in K14‐Spry4 transgenic embryos, and linked this with changes in the tooth developmental sequence. These data further delineate the role of FGF signaling in the development of the dentition and implicate the pathway in the regulation of tooth mineralization. © 2019 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences University of California San Francisco CA USA
| | - Cyril Charles
- Institut de Génomique Fonctionnelle de Lyon Univ Lyon, CNRS UMR 5242, ENS de Lyon, Université Claude Bernard Lyon 1 Lyon France
| | - Youngwook Ahn
- Stowers Institute for Medical Research Kansas City MO USA
| | - Kerstin Seidel
- Program in Craniofacial Biology and Department of Orofacial Sciences University of California San Francisco CA USA
| | - Andrew Jheon
- Program in Craniofacial Biology and Department of Orofacial Sciences University of California San Francisco CA USA
| | | | - Robb Krumlauf
- Stowers Institute for Medical Research Kansas City MO USA.,Department of Anatomy and Cell Biology Kansas University Medical Center Kansas City KS USA
| | - Laurent Viriot
- Institut de Génomique Fonctionnelle de Lyon Univ Lyon, CNRS UMR 5242, ENS de Lyon, Université Claude Bernard Lyon 1 Lyon France
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences University of California San Francisco CA USA.,Department of Pediatrics and Institute for Human Genetics University of California San Francisco CA USA
| |
Collapse
|
41
|
Burroughs RW. Phylogenetic and Developmental Constraints Dictate the Number of Cusps on Molars in Rodents. Sci Rep 2019; 9:10902. [PMID: 31358868 PMCID: PMC6662684 DOI: 10.1038/s41598-019-47469-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 07/04/2019] [Indexed: 11/24/2022] Open
Abstract
Mammal tooth morphology and function correlate strongly with dietary ecology, and convergence is a major feature of mammalian tooth evolution. Yet, function and ecology are insufficient to explain morphological diversification and convergence within mammalian molar evolution; suggesting that development and phylogeny also limit possible structural solutions to selective pressures. Here, I use in silico models and empirical studies of extant and fossil rodent teeth to identify morphogenetic rules that influence molar morphology. Because rodents are the most diverse group of mammals with corresponding dental disparity they represent an excellent system for investigating how genetic interactions limit morphology. I find that lower first molars are limited to a minimum of four cusps and a maximum of nine cusps. Multiple developmental pathways produce the same numbers of cusps, despite highly variable cusp morphologies, indicating the existence of limits on how morphological evolution can fill a morphospace defined by cusp numbers. These constraints are both developmental and phylogenetic in nature and the identification of their influence on rodent molar shape provides a framework for investigation of how tooth batteries evolved an array of functions despite fundamental structural limits. The data presented here increase predictability of cusp number and evolutionary outcomes of rodent cheek dentition.
Collapse
Affiliation(s)
- Robert W Burroughs
- Committee on Evolutionary Biology, The University of Chicago, Chicago, IL, USA.
- Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA.
| |
Collapse
|
42
|
Hardin AM. Genetic correlations in the dental dimensions of
Saguinus fuscicollis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:557-566. [DOI: 10.1002/ajpa.23861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Anna M. Hardin
- Department of Anthropology University of Minnesota Minneapolis Minnesota
- Department of Pathology and Anatomical Sciences University of Missouri Columbia Missouri
| |
Collapse
|
43
|
Wnt/β-catenin signaling, which is activated in odontomas, reduces Sema3A expression to regulate odontogenic epithelial cell proliferation and tooth germ development. Sci Rep 2019; 9:4257. [PMID: 30862786 PMCID: PMC6414619 DOI: 10.1038/s41598-019-39686-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/29/2019] [Indexed: 01/03/2023] Open
Abstract
Odontomas, developmental anomalies of tooth germ, frequently occur in familial adenomatous polyposis patients with activated Wnt/β-catenin signaling. However, roles of Wnt/β-catenin signaling in odontomas or odontogenic cells are unclear. Herein, we investigated β-catenin expression in odontomas and functions of Wnt/β-catenin signaling in tooth germ development. β-catenin frequently accumulated in nucleus and/or cellular cytoplasm of odontogenic epithelial cells in human odontoma specimens, immunohistochemically. Wnt/β-catenin signaling inhibited odontogenic epithelial cell proliferation in both cell line and tooth germ development, while inducing immature epithelial bud formation. We identified Semaphorin 3A (Sema3A) as a downstream molecule of Wnt/β-catenin signaling and showed that Wnt/β-catenin signaling-dependent reduction of Sema3A expression resulted in suppressed odontogenic epithelial cell proliferation. Sema3A expression is required in appropriate epithelial budding morphogenesis. These results suggest that Wnt/β-catenin signaling negatively regulates odontogenic epithelial cell proliferation and tooth germ development through decreased-Sema3A expression, and aberrant activation of Wnt/β-catenin signaling may associate with odontoma formation.
Collapse
|
44
|
Stojanowski CM, Paul KS, Seidel AC, Duncan WN, Guatelli‐Steinberg D. Quantitative genetic analyses of postcanine morphological crown variation. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:606-631. [DOI: 10.1002/ajpa.23778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/20/2018] [Accepted: 12/26/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Christopher M. Stojanowski
- Center for Bioarchaeological Research School of Human Evolution and Social Change, Arizona State University Tempe Arizona
| | - Kathleen S. Paul
- Center for Bioarchaeological Research School of Human Evolution and Social Change, Arizona State University Tempe Arizona
| | - Andrew C. Seidel
- Center for Bioarchaeological Research School of Human Evolution and Social Change, Arizona State University Tempe Arizona
| | - William N. Duncan
- Department of Sociology and Anthropology East Tennessee State University Johnson City Tennessee
| | | |
Collapse
|
45
|
Ishida K, Saito T, Mitsui T. Involvement of selective epithelial cell death in the formation of feather buds on a bioengineered skin. Dev Growth Differ 2019; 61:141-149. [PMID: 30675906 DOI: 10.1111/dgd.12593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/15/2018] [Accepted: 12/04/2018] [Indexed: 11/28/2022]
Abstract
Selective cell death by apoptosis plays important roles in organogenesis. Apoptotic cells are observed in the developmental and homeostatic processes of several ectodermal organs, such as hairs, feathers, and mammary glands. In chick feather development, apoptotic events have been observed during feather morphogenesis, but have not been investigated during early feather bud formation. Previously, we have reported a method for generating feather buds on a bioengineered skin from dissociated skin epithelial and mesenchymal cells in three-dimensional culture. During the development of the bioengineered skin, epithelial cavity formation by apoptosis was observed in the epithelial tissue. In this study, we examined the selective epithelial cell death during the bioengineered skin development. Histological analyses suggest that the selective epithelial cell death in the bioengineered skin was induced by caspase-3-related apoptosis. The formation of feather buds of the bioengineered skin was disturbed by the treatment with a pan-caspase inhibitor. The pan-caspase inhibitor treatment suppressed the rearrangement of the epithelial layer and the formation of dermal condensation, which are thought to be essential step to form feather buds. The suppression of the formation of feather buds on the pan-caspase inhibitor-treated skin was partially compensated by the addition of a GSK-3β inhibitor, which activates Wnt/β-catenin signaling. These results suggest that the epithelial cell death is involved in the formation of feather buds of the bioengineered skin. These observations also suggest that caspase activities and Wnt/β-catenin signaling may contribute to the formation of epithelial and mesenchymal components in the bioengineered skin.
Collapse
Affiliation(s)
- Kentaro Ishida
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa, Japan.,Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuichiro Saito
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshiyuki Mitsui
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa, Japan
| |
Collapse
|
46
|
Insulin-like growth factor 1 modulates bioengineered tooth morphogenesis. Sci Rep 2019; 9:368. [PMID: 30675004 PMCID: PMC6344556 DOI: 10.1038/s41598-018-36863-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/21/2018] [Indexed: 11/08/2022] Open
Abstract
Regenerative therapy to replace missing teeth is a critical area of research. Functional bioengineered teeth have been produced by the organ germ method using mouse tooth germ cells. However, these bioengineered teeth are significantly smaller in size and exhibit an abnormal crown shape when compared with natural teeth. The proper sizes and shapes of teeth contribute to their normal function. Therefore, a method is needed to control the morphology of bioengineered teeth. Here, we investigated whether insulin-like growth factor 1 (IGF1) can regulate the sizes and shapes of bioengineered teeth, and assessed underlying mechanisms of such regulation. IGF1 treatment significantly increased the size of bioengineered tooth germs, while preserving normal tooth histology. IGF1-treated bioengineered teeth, which were developed from bioengineered tooth germs in subrenal capsules and jawbones, showed increased sizes and cusp numbers. IGF1 increased the number of fibroblast growth factor (Fgf4)-expressing enamel knots in bioengineered tooth germs and enhanced the proliferation and differentiation of dental epithelial and mesenchymal cells. This study is the first to reveal that IGF1 increases the sizes and cusp numbers of bioengineered teeth via the induction of enamel knot formation, as well as the proliferation and differentiation of dental epithelial and mesenchymal cells.
Collapse
|
47
|
Calamari ZT, Kuang-Hsien Hu J, Klein OD. Tissue Mechanical Forces and Evolutionary Developmental Changes Act Through Space and Time to Shape Tooth Morphology and Function. Bioessays 2018; 40:e1800140. [PMID: 30387177 PMCID: PMC6516060 DOI: 10.1002/bies.201800140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/06/2018] [Indexed: 12/24/2022]
Abstract
Efforts from diverse disciplines, including evolutionary studies and biomechanical experiments, have yielded new insights into the genetic, signaling, and mechanical control of tooth formation and functions. Evidence from fossils and non-model organisms has revealed that a common set of genes underlie tooth-forming potential of epithelia, and changes in signaling environments subsequently result in specialized dentitions, maintenance of dental stem cells, and other phenotypic adaptations. In addition to chemical signaling, tissue forces generated through epithelial contraction, differential growth, and skeletal constraints act in parallel to shape the tooth throughout development. Here recent advances in understanding dental development from these studies are reviewed and important gaps that can be filled through continued application of evolutionary and biomechanical approaches are discussed.
Collapse
Affiliation(s)
- Zachary T. Calamari
- Department of Natural Sciences, Baruch College, City University of New York, New York City, New York, 10010, USA
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Jimmy Kuang-Hsien Hu
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Ophir D. Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, California, 94143, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
48
|
Balic A. Concise Review: Cellular and Molecular Mechanisms Regulation of Tooth Initiation. Stem Cells 2018; 37:26-32. [DOI: 10.1002/stem.2917] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Anamaria Balic
- Research Program in Developmental Biology; Institute of Biotechnology, University of Helsinki; Helsinki Finland
| |
Collapse
|
49
|
Qian C, Wu Z, Ng RCL, Garcia-Barceló MM, Yuan ZW, Wong KKY, Tam PKH, Lui VCH. Conditional deletion of platelet derived growth factor receptor alpha (Pdgfra) in urorectal mesenchyme causes mesenchyme apoptosis and urorectal developmental anomalies in mice. Cell Death Differ 2018; 26:1396-1410. [PMID: 30323271 DOI: 10.1038/s41418-018-0216-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022] Open
Abstract
In mammals, urorectal development starts at early embryonic stage, defective urorectal development results in anorectal malformations, which are common congenital developmental defects of the anus and the urethra in newborns. The etiology and embryology of the defects are still largely unknown. Platelet-derived growth factor receptor alpha (Pdgfra) is a cell surface receptor tyrosine kinase, upon binding to its ligands (Pdgfa-d), mediates intracellular signaling and regulates embryonic development. The expression of Pdgfra is tightly regulated in the developing urorectal mesenchyme, and its dysregulation is associated with urorectal defects in animals with urorectal defects. Knockout of Pdgfra induces early embryo lethality which precludes investigation of Pdgfra in urorectal development. To address the temporal requirement of Pdgfra in urorectal development, we conditionally deleted Pdgfra in Pdgfra-expressing tissues using a tamoxifen inducible Cre-loxP approach in mice, examined the urorectal development in Pdgfra conditional knockout (Pdgfra-cKO) embryos. We showed that conditional deletion of Pdgfra in Pdgfra-expressing tissues at E10-E11 caused cloaca septation defect, anteriorly displaced anus, defective urogenital folds development and abnormal urethra tubularization in both male and female mice. Furthermore, we showed that Pdgfra was required for the survival of urorectal mesenchyme, deletion of Pdgfra caused apoptosis in the peri-cloacal, the peri-urethra and the urorectal septum mesenchyme of Pdgfra-cKO mutants, associated with an induction of p53, Ndrg1 and activation of caspase-3 in Pdgfra-cKO embryos. In conclusion, Pdgfra is required for the development and survival of the urorectal mesenchyme in embryo, dysregulated Pdgfra signaling induced urorectal defects in mice resembling human congenital diseases of anorectal malformations and hypospadias. Perturbation of PDGFRA signaling may contribute to anorectal malformations and hypospadias in human.
Collapse
Affiliation(s)
- Chen Qian
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.,Department of Obstetrics and Gynecology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhongluan Wu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Roy Chun-Laam Ng
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.,Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Maria-Mercè Garcia-Barceló
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.,Dr Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, China
| | - Zheng-Wei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shengyang, China
| | - Kenneth Kak Yuen Wong
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Paul Kwong Hang Tam
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.,Dr Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, China
| | - Vincent Chi Hang Lui
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China. .,Dr Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, China.
| |
Collapse
|
50
|
Laugel-Haushalter V, Morkmued S, Stoetzel C, Geoffroy V, Muller J, Boland A, Deleuze JF, Chennen K, Pitiphat W, Dollfus H, Niederreither K, Bloch-Zupan A, Pungchanchaikul P. Genetic Evidence Supporting the Role of the Calcium Channel, CACNA1S, in Tooth Cusp and Root Patterning. Front Physiol 2018; 9:1329. [PMID: 30319441 PMCID: PMC6170876 DOI: 10.3389/fphys.2018.01329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/03/2018] [Indexed: 01/08/2023] Open
Abstract
In this study, we report a unique dominantly inherited disorganized supernumerary cusp and single root phenotype presented by 11 affected individuals belonging to 5 north-eastern Thai families. Using whole exome sequencing (WES) we identified a common single missense mutation that segregates with the phenotype in exon 6 of CACNA1S (Cav1.1) (NM_000069.2: c.[865A > G];[=] p.[Ile289Val];[=]), the Calcium Channel, Voltage-Dependent, L Type, Alpha-1s Subunit, OMIM ∗ 114208), affecting a highly conserved amino-acid isoleucine residue within the pore forming subdomain of CACNA1S protein. This is a strong genetic evidence that a voltage-dependent calcium ion channel is likely to play a role in influencing tooth morphogenesis and patterning.
Collapse
Affiliation(s)
- Virginie Laugel-Haushalter
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France
| | - Supawich Morkmued
- Biofilm Research Group, Department of Pediatric Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CERBM, INSERM U 1258, CNRS- UMR 7104, Université de Strasbourg, Strasbourg, France
| | - Corinne Stoetzel
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France
| | - Véronique Geoffroy
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France
| | - Jean Muller
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France.,Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Paris, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Paris, France
| | - Kirsley Chennen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CERBM, INSERM U 1258, CNRS- UMR 7104, Université de Strasbourg, Strasbourg, France.,Department of Computer Science, ICube, CNRS - UMR 7357, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Waranuch Pitiphat
- Department of Community Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France.,Centre de Référence pour les Affections Rares en Génétique Ophtalmologique, Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Karen Niederreither
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CERBM, INSERM U 1258, CNRS- UMR 7104, Université de Strasbourg, Strasbourg, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Agnès Bloch-Zupan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CERBM, INSERM U 1258, CNRS- UMR 7104, Université de Strasbourg, Strasbourg, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-Dentaires Hôpital Civil, Centre de Référence des Maladies Rares Orales et Dentaires, O-Rares, Filière Santé Maladies Rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
| | - Patimaporn Pungchanchaikul
- Biofilm Research Group, Department of Pediatric Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|