1
|
Haniffa M, Maartens A, Winheim E, Jardine L. Decoding the human prenatal immune system with single-cell multi-omics. Nat Rev Immunol 2024:10.1038/s41577-024-01099-1. [PMID: 39482372 DOI: 10.1038/s41577-024-01099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
The human immune system is made up of a huge variety of cell types each with unique functions. Local networks of resident immune cells are poised to sense and protect against pathogen entry, whereas more widespread innate and adaptive immune networks provide first rapid, then long-lasting and targeted responses. However, how we develop such a diverse and complex system remains unknown. Studying human development directly has been challenging in the past, but recent advances in single-cell and spatial genomics, together with the co-ordinated efforts of the Human Cell Atlas and other initiatives, have led to new studies that map the development of the human immune system in unprecedented detail. In this Review, we consider the timings, transitions, cell types and tissue microenvironments that are crucial for building the human immune system. We also compare and contrast the human system with model species and in vitro systems, and discuss how an understanding of prenatal immune system development will improve our knowledge of human disease.
Collapse
Affiliation(s)
- Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- National Institute for Health Research (NIHR) Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
- Department of Dermatology, Newcastle upon Tyne Hospitals Foundation Trust, Newcastle upon Tyne, UK.
| | - Aidan Maartens
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Elena Winheim
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Cain TL, Derecka M, McKinney-Freeman S. The role of the haematopoietic stem cell niche in development and ageing. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00770-8. [PMID: 39256623 DOI: 10.1038/s41580-024-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/12/2024]
Abstract
Blood production depends on rare haematopoietic stem cells (HSCs) and haematopoietic stem and progenitor cells (HSPCs) that ultimately take up residence in the bone marrow during development. HSPCs and HSCs are subject to extrinsic regulation by the bone marrow microenvironment, or niche. Studying the interactions between HSCs and their niche is critical for improving ex vivo culturing conditions and genetic manipulation of HSCs, which is pivotal for improving autologous HSC therapies and transplantations. Additionally, understanding how the complex molecular network in the bone marrow is altered during ageing is paramount for developing novel therapeutics for ageing-related haematopoietic disorders. HSCs are unique amongst stem and progenitor cell pools in that they engage with multiple physically distinct niches during their ontogeny. HSCs are specified from haemogenic endothelium in the aorta, migrate to the fetal liver and, ultimately, colonize their final niche in the bone marrow. Recent studies employing single-cell transcriptomics and microscopy have identified novel cellular interactions that govern HSC specification and engagement with their niches throughout ontogeny. New lineage-tracing models and microscopy tools have raised questions about the numbers of HSCs specified, as well as the functional consequences of HSCs interacting with each developmental niche. Advances have also been made in understanding how these niches are modified and perturbed during ageing, and the role of these altered interactions in haematopoietic diseases. In this Review, we discuss these new findings and highlight the questions that remain to be explored.
Collapse
Affiliation(s)
- Terri L Cain
- Department of Haematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marta Derecka
- Department of Haematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
3
|
Agrawal H, Mehatre SH, Khurana S. The hematopoietic stem cell expansion niche in fetal liver: Current state of the art and the way forward. Exp Hematol 2024; 136:104585. [PMID: 39068980 DOI: 10.1016/j.exphem.2024.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Hematopoietic development goes through a number of embryonic sites that host hematopoietic progenitor and stem cells with function required at specific developmental stages. Among embryonic sites, the fetal liver (FL) hosts definitive hematopoietic stem cells (HSCs) capable of engrafting adult hematopoietic system and supports their rapid expansion. Hence, this site provides an excellent model to understand the cellular and molecular components of the machinery involved in HSC-proliferative events, leading to their overall expansion. It has been unequivocally established that extrinsic regulators orchestrate events that maintain HSC function. Although most studies on extrinsic regulation of HSC function are targeted at adult bone marrow (BM) hematopoiesis, little is known about how FL HSC function is regulated by their microniche. This review provides the current state of our understanding on molecular and cellular niche factors that support FL hematopoiesis.
Collapse
Affiliation(s)
- Harsh Agrawal
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Kerala, India
| | - Shubham Haribhau Mehatre
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Kerala, India
| | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Kerala, India..
| |
Collapse
|
4
|
Weijts B, Robin C. Capturing embryonic hematopoiesis in temporal and spatial dimensions. Exp Hematol 2024; 136:104257. [PMID: 38897373 DOI: 10.1016/j.exphem.2024.104257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Hematopoietic stem cells (HSCs) possess the ability to sustain the continuous production of all blood cell types throughout an organism's lifespan. Although primarily located in the bone marrow of adults, HSCs originate during embryonic development. Visualization of the birth of HSCs, their developmental trajectory, and the specific interactions with their successive niches have significantly contributed to our understanding of the biology and mechanics governing HSC formation and expansion. Intravital techniques applied to live embryos or non-fixed samples have remarkably provided invaluable insights into the cellular and anatomical origins of HSCs. These imaging technologies have also shed light on the dynamic interactions between HSCs and neighboring cell types within the surrounding microenvironment or niche, such as endothelial cells or macrophages. This review delves into the advancements made in understanding the origin, production, and cellular interactions of HSCs, particularly during the embryonic development of mice and zebrafish, focusing on studies employing (live) imaging analysis.
Collapse
Affiliation(s)
- Bart Weijts
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Maéno M, Tanabe M, Ogawa A, Kobayashi H, Izutsu Y, Kato T. Identification and characterization of myeloid cells localized in the tadpole liver cortex in Xenopus laevis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105178. [PMID: 38599553 DOI: 10.1016/j.dci.2024.105178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
In the present study, using transgenic frogs that express GFP specifically in myeloid cells under the myeloperoxidase enhancer sequence, we found that myeloperoxidase-positive cells are localized in the liver cortex at the late tadpole stages. Immunohistochemical analysis revealed that myelopoiesis in the liver cortex became evident after st. 50 and reached its peak by st. 56. Transplantation experiments indicated that cells with a high density at the liver cortex were derived from the dorso-lateral plate tissue in the neurula embryo. Analysis of smear samples of the cells isolated from collagenase-treated liver tissues of the transgenic tadpoles indicated that myeloid cells were the major population of blood cells in the larval liver and that, in addition to myeloid colonies, erythroid colonies expanded in entire liver after metamorphosis. Cells that were purified from the livers of transgenic tadpoles according to the GFP expression exhibited the multi-lobed nuclei. The results of present study provide evidence that the liver cortex of the Xenopus tadpole is a major site of granulopoiesis.
Collapse
Affiliation(s)
- Mitsugu Maéno
- Institute of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan.
| | - Miki Tanabe
- Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Ayame Ogawa
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, TWIns building, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan; Department of Biology, School of Education, Waseda University, Center for Advanced Biomedical Science, TWIns building, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Haruka Kobayashi
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Yumi Izutsu
- Institute of Science and Technology, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Takashi Kato
- Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, TWIns building, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan; Department of Biology, School of Education, Waseda University, Center for Advanced Biomedical Science, TWIns building, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| |
Collapse
|
6
|
Thambyrajah R, Maqueda M, Fadlullah MZ, Proffitt M, Neo WH, Guillén Y, Casado-Pelaez M, Herrero-Molinero P, Brujas C, Castelluccio N, González J, Iglesias A, Marruecos L, Ruiz-Herguido C, Esteller M, Mereu E, Lacaud G, Espinosa L, Bigas A. IκBα controls dormancy in hematopoietic stem cells via retinoic acid during embryonic development. Nat Commun 2024; 15:4673. [PMID: 38824124 PMCID: PMC11144194 DOI: 10.1038/s41467-024-48854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/14/2024] [Indexed: 06/03/2024] Open
Abstract
Recent findings suggest that Hematopoietic Stem Cells (HSC) and progenitors arise simultaneously and independently of each other already in the embryonic aorta-gonad mesonephros region, but it is still unknown how their different features are established. Here, we uncover IκBα (Nfkbia, the inhibitor of NF-κB) as a critical regulator of HSC proliferation throughout development. IκBα balances retinoic acid signaling levels together with the epigenetic silencer, PRC2, specifically in HSCs. Loss of IκBα decreases proliferation of HSC and induces a dormancy related gene expression signature instead. Also, IκBα deficient HSCs respond with superior activation to in vitro culture and in serial transplantation. At the molecular level, chromatin regions harboring binding motifs for retinoic acid signaling are hypo-methylated for the PRC2 dependent H3K27me3 mark in IκBα deficient HSCs. Overall, we show that the proliferation index in the developing HSCs is regulated by a IκBα-PRC2 axis, which controls retinoic acid signaling.
Collapse
Grants
- PID2022-137945OB-I00 Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
- PID2019-104695RB-I00 Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
- 2021SGR00039 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- BP2016(00021) Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- BP2018(00034) Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- CA22/00011 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
Collapse
Affiliation(s)
- Roshana Thambyrajah
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain.
- Josep Carreras Leukemia Research Institute, Barcelona, Spain.
| | - Maria Maqueda
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Muhammad Zaki Fadlullah
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Martin Proffitt
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
| | - Wen Hao Neo
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Yolanda Guillén
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
| | | | | | - Carla Brujas
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
| | - Noemi Castelluccio
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Ghent University Hospital, Ghent, Belgium
| | - Jessica González
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Arnau Iglesias
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Laura Marruecos
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
| | | | - Manel Esteller
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | | | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Lluis Espinosa
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Anna Bigas
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain.
- Josep Carreras Leukemia Research Institute, Barcelona, Spain.
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.
| |
Collapse
|
7
|
Torcq L, Majello S, Vivier C, Schmidt AA. Tuning apicobasal polarity and junctional recycling in the hemogenic endothelium orchestrates the morphodynamic complexity of emerging pre-hematopoietic stem cells. eLife 2024; 12:RP91429. [PMID: 38809590 PMCID: PMC11136496 DOI: 10.7554/elife.91429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Hematopoietic stem cells emerge in the embryo from an aortic-derived tissue called the hemogenic endothelium (HE). The HE appears to give birth to cells of different nature and fate but the molecular principles underlying this complexity are largely unknown. Here we show, in the zebrafish embryo, that two cell types emerge from the aortic floor with radically different morphodynamics. With the support of live imaging, we bring evidence suggesting that the mechanics underlying the two emergence types rely, or not, on apicobasal polarity establishment. While the first type is characterized by reinforcement of apicobasal polarity and maintenance of the apical/luminal membrane until release, the second type emerges via a dynamic process reminiscent of trans-endothelial migration. Interfering with Runx1 function suggests that the balance between the two emergence types depends on tuning apicobasal polarity at the level of the HE. In support of this and unexpectedly, we show that Pard3ba - one of the four Pard3 proteins expressed in the zebrafish - is sensitive to interference with Runx1 activity, in aortic endothelial cells. This supports the idea of a signaling cross talk controlling cell polarity and its associated features, between aortic and hemogenic cells. In addition, using new transgenic fish lines that express Junctional Adhesion Molecules and functional interference, we bring evidence for the essential role of ArhGEF11/PDZ-RhoGEF in controlling the HE-endothelial cell dynamic interface, including cell-cell intercalation, which is ultimately required for emergence completion. Overall, we highlight critical cellular and dynamic events of the endothelial-to-hematopoietic transition that support emergence complexity, with a potential impact on cell fate.
Collapse
Affiliation(s)
- Léa Torcq
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris CitéParisFrance
- Sorbonne UniversitéParisFrance
| | - Sara Majello
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris CitéParisFrance
| | - Catherine Vivier
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris CitéParisFrance
| | - Anne A Schmidt
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris CitéParisFrance
| |
Collapse
|
8
|
Scarfò R, Randolph LN, Abou Alezz M, El Khoury M, Gersch A, Li ZY, Luff SA, Tavosanis A, Ferrari Ramondo G, Valsoni S, Cascione S, Didelon E, Passerini L, Amodio G, Brandas C, Villa A, Gregori S, Merelli I, Freund JN, Sturgeon CM, Tavian M, Ditadi A. CD32 captures committed haemogenic endothelial cells during human embryonic development. Nat Cell Biol 2024; 26:719-730. [PMID: 38594587 PMCID: PMC11098737 DOI: 10.1038/s41556-024-01403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
During embryonic development, blood cells emerge from specialized endothelial cells, named haemogenic endothelial cells (HECs). As HECs are rare and only transiently found in early developing embryos, it remains difficult to distinguish them from endothelial cells. Here we performed transcriptomic analysis of 28- to 32-day human embryos and observed that the expression of Fc receptor CD32 (FCGR2B) is highly enriched in the endothelial cell population that contains HECs. Functional analyses using human embryonic and human pluripotent stem cell-derived endothelial cells revealed that robust multilineage haematopoietic potential is harboured within CD32+ endothelial cells and showed that 90% of CD32+ endothelial cells are bona fide HECs. Remarkably, these analyses indicated that HECs progress through different states, culminating in FCGR2B expression, at which point cells are irreversibly committed to a haematopoietic fate. These findings provide a precise method for isolating HECs from human embryos and human pluripotent stem cell cultures, thus allowing the efficient generation of haematopoietic cells in vitro.
Collapse
Affiliation(s)
- Rebecca Scarfò
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lauren N Randolph
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monah Abou Alezz
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mahassen El Khoury
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Amélie Gersch
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Zhong-Yin Li
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie A Luff
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Tavosanis
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Ferrari Ramondo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Valsoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cascione
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emma Didelon
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Brandas
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Jean-Noël Freund
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
- INSERM U1256-NGERE, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Christopher M Sturgeon
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuela Tavian
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France.
| | - Andrea Ditadi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
9
|
Miladinovic O, Canto PY, Pouget C, Piau O, Radic N, Freschu P, Megherbi A, Brujas Prats C, Jacques S, Hirsinger E, Geeverding A, Dufour S, Petit L, Souyri M, North T, Isambert H, Traver D, Jaffredo T, Charbord P, Durand C. A multistep computational approach reveals a neuro-mesenchymal cell population in the embryonic hematopoietic stem cell niche. Development 2024; 151:dev202614. [PMID: 38451068 PMCID: PMC11057820 DOI: 10.1242/dev.202614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
The first hematopoietic stem and progenitor cells (HSPCs) emerge in the Aorta-Gonad-Mesonephros (AGM) region of the mid-gestation mouse embryo. However, the precise nature of their supportive mesenchymal microenvironment remains largely unexplored. Here, we profiled transcriptomes of laser micro-dissected aortic tissues at three developmental stages and individual AGM cells. Computational analyses allowed the identification of several cell subpopulations within the E11.5 AGM mesenchyme, with the presence of a yet unidentified subpopulation characterized by the dual expression of genes implicated in adhesive or neuronal functions. We confirmed the identity of this cell subset as a neuro-mesenchymal population, through morphological and lineage tracing assays. Loss of function in the zebrafish confirmed that Decorin, a characteristic extracellular matrix component of the neuro-mesenchyme, is essential for HSPC development. We further demonstrated that this cell population is not merely derived from the neural crest, and hence, is a bona fide novel subpopulation of the AGM mesenchyme.
Collapse
Affiliation(s)
- Olivera Miladinovic
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Pierre-Yves Canto
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Claire Pouget
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Olivier Piau
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
- Centre de Recherche Saint-Antoine-Team Proliferation and Differentiation of Stem Cells, Institut Universitaire de Cancérologie, Sorbonne Université, Inserm, UMR-S 938,F-75012 Paris, France
| | - Nevenka Radic
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Priscilla Freschu
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Alexandre Megherbi
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Carla Brujas Prats
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Sebastien Jacques
- Plateforme de génomique, Université de Paris, Institut Cochin, Inserm, CNRS, F-75014 Paris, France
| | - Estelle Hirsinger
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Audrey Geeverding
- Service de microscopie électronique, Fr3631 Institut de Biologie Paris Seine, Sorbonne Université, CNRS, 7-9Quai St-Bernard, 75005 Paris, France
| | - Sylvie Dufour
- Université Paris-Est Créteil, Inserm, IMRB, F94010 Créteil, France
| | - Laurence Petit
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Michele Souyri
- Université de Paris, Inserm UMR 1131, Institut de Recherche Saint Louis, Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Trista North
- Stem Cell Program, Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Hervé Isambert
- Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - David Traver
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Thierry Jaffredo
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Pierre Charbord
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Charles Durand
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| |
Collapse
|
10
|
Yoneda Y, Kato H, Maezawa Y, Yokote K, Nakanishi M. Real-time imaging of human endothelial-to-hematopoietic transition in vitro using pluripotent stem cell derived hemogenic endothelium. Biophys Physicobiol 2024; 21:e211015. [PMID: 39175869 PMCID: PMC11339020 DOI: 10.2142/biophysico.bppb-v21.s015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/19/2024] [Indexed: 08/24/2024] Open
Abstract
During embryogenesis, human hematopoietic stem cells (HSCs) first emerge in the aorta-gonad-mesonephros (AGM) region via transformation of specialized hemogenic endothelial (HE) cells into premature HSC precursors. This process is termed endothelial-to-hematopoietic transition (EHT), in which the HE cells undergo drastic functional and morphological changes from flat, anchorage-dependent endothelial cells to free-floating round hematopoietic cells. Despite its essential role in human HSC development, molecular mechanisms underlying the EHT are largely unknown. This is due to lack of methods to visualize the emergence of human HSC precursors in real time in contrast to mouse and other model organisms. In this study, by inducing HE from human pluripotent stem cells in feeder-free monolayer cultures, we achieved real-time observation of the human EHT in vitro. By continuous observation and single-cell tracking in the culture, it was possible to visualize a process that a single endothelial cell gives rise to a hematopoietic cell and subsequently form a hematopoietic-cell cluster. The EHT was also confirmed by a drastic HE-to-HSC switching in molecular marker expressions. Notably, HSC precursor emergence was not linked to asymmetric cell division, whereas the hematopoietic cell cluster was formed through proliferation and assembling of the floating cells after the EHT. These results reveal unappreciated dynamics in the human EHT, and we anticipate that our human EHT model in vitro will provide an opportunity to improve our understanding of the human HSC development.
Collapse
Affiliation(s)
- Yuriko Yoneda
- Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Hisaya Kato
- Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Yoshiro Maezawa
- Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Koutaro Yokote
- Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| | - Mio Nakanishi
- Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan.
| |
Collapse
|
11
|
Popravko A, Mackintosh L, Dzierzak E. A life-time of hematopoietic cell function: ascent, stability, and decline. FEBS Lett 2024. [PMID: 38439688 DOI: 10.1002/1873-3468.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Aging is a set of complex processes that occur temporally and continuously. It is generally a unidirectional progression of cellular and molecular changes occurring during the life stages of cells, tissues and ultimately the whole organism. In vertebrate organisms, this begins at conception from the first steps in blastocyst formation, gastrulation, germ layer differentiation, and organogenesis to a continuum of embryonic, fetal, adolescent, adult, and geriatric stages. Tales of the "fountain of youth" and songs of being "forever young" are dominant ideas informing us that growing old is something science should strive to counteract. Here, we discuss the normal life stages of the blood system, particularly the historical recognition of its importance in the early growth stages of vertebrates, and what this means with respect to progressive gain and loss of hematopoietic function in the adult.
Collapse
Affiliation(s)
- Anna Popravko
- Institute for Regeneration and Repair, University of Edinburgh, UK
| | - Lorna Mackintosh
- Institute for Regeneration and Repair, University of Edinburgh, UK
| | - Elaine Dzierzak
- Institute for Regeneration and Repair, University of Edinburgh, UK
| |
Collapse
|
12
|
Gonzalez Galofre ZN, Kilpatrick AM, Marques M, Sá da Bandeira D, Ventura T, Gomez Salazar M, Bouilleau L, Marc Y, Barbosa AB, Rossi F, Beltran M, van de Werken HJG, van IJcken WFJ, Henderson NC, Forbes SJ, Crisan M. Runx1+ vascular smooth muscle cells are essential for hematopoietic stem and progenitor cell development in vivo. Nat Commun 2024; 15:1653. [PMID: 38395882 PMCID: PMC10891074 DOI: 10.1038/s41467-024-44913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Hematopoietic stem cells (HSCs) produce all essential cellular components of the blood. Stromal cell lines supporting HSCs follow a vascular smooth muscle cell (vSMC) differentiation pathway, suggesting that some hematopoiesis-supporting cells originate from vSMC precursors. These pericyte-like precursors were recently identified in the aorta-gonad-mesonephros (AGM) region; however, their role in the hematopoietic development in vivo remains unknown. Here, we identify a subpopulation of NG2+Runx1+ perivascular cells that display a sclerotome-derived vSMC transcriptomic profile. We show that deleting Runx1 in NG2+ cells impairs the hematopoietic development in vivo and causes transcriptional changes in pericytes/vSMCs, endothelial cells and hematopoietic cells in the murine AGM. Importantly, this deletion leads also to a significant reduction of HSC reconstitution potential in the bone marrow in vivo. This defect is developmental, as NG2+Runx1+ cells were not detected in the adult bone marrow, demonstrating the existence of a specialised pericyte population in the HSC-generating niche, unique to the embryo.
Collapse
Affiliation(s)
- Zaniah N Gonzalez Galofre
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Alastair M Kilpatrick
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Madalena Marques
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Diana Sá da Bandeira
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Telma Ventura
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mario Gomez Salazar
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Léa Bouilleau
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Yvan Marc
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Ana B Barbosa
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Fiona Rossi
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mariana Beltran
- Centre for Inflammation Research/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, 3000 CA, Rotterdam, The Netherlands
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center, 3000 CA, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC Cancer Institute, University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Wilfred F J van IJcken
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Centre, 3015 GE, Rotterdam, The Netherlands
| | - Neil C Henderson
- Centre for Inflammation Research/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mihaela Crisan
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK.
- Centre for Regenerative Medicine/Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
13
|
Zala M, Lipinski B, Costechareyre C, Jarrosson L, Teinturier R, Julia E, Lacourrège M, Verney A, Guitton J, Traverse-Glehen A, Bachy E, Salles G, Huet S, Genestier L, Castellani V, Delloye-Bourgeois C, Sujobert P. Functional precision oncology for follicular lymphoma with patient-derived xenograft in avian embryos. Leukemia 2024; 38:430-434. [PMID: 38225454 PMCID: PMC11514868 DOI: 10.1038/s41375-024-02150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Despite achieving high rates of complete remission with RCHOP immuno-chemotherapy, almost all patients with follicular lymphoma (FL) will experience multiple relapses after treatment. The lack of experimental model of FL limits our understanding of heterogeneity in treatment response. Here we characterized a new model of FL patient-derived xenograft (PDX) in avian embryos. Based on 20 biopsies, we observed that tumor volume reduction upon RCHOP treatment in ovo predicted progression free survival in multivariate analysis. To further explore the model, we performed single-cell RNA sequencing and discovered a signature of 21 genes upregulated after RCHOP exposure, with significant intratumoral heterogeneity. Among these genes, we functionally validated BAX as a critical effector of RCHOP which can be targeted with venetoclax in vitro and in ovo . Overall, the FL-AVI-PDX model is a platform for functional precision oncology in FL, which captures both interpatient and intratumoral heterogeneity, and opens an avenue for drug development.
Collapse
Affiliation(s)
- Manon Zala
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon), Lymphoma ImmunoBiology team, Faculté de Médecine Lyon sud, Université Claude Bernard Lyon 1, 69007, Lyon, France
| | - Boris Lipinski
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon), Lymphoma ImmunoBiology team, Faculté de Médecine Lyon sud, Université Claude Bernard Lyon 1, 69007, Lyon, France
| | - Clélia Costechareyre
- OncoFactory, an ERBC company, Faculté de Médecine et de Pharmacie, 8 avenue Rockefeller, 69008, Lyon, France
| | - Loraine Jarrosson
- OncoFactory, an ERBC company, Faculté de Médecine et de Pharmacie, 8 avenue Rockefeller, 69008, Lyon, France
| | - Romain Teinturier
- OncoFactory, an ERBC company, Faculté de Médecine et de Pharmacie, 8 avenue Rockefeller, 69008, Lyon, France
| | - Edith Julia
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon), Lymphoma ImmunoBiology team, Faculté de Médecine Lyon sud, Université Claude Bernard Lyon 1, 69007, Lyon, France
| | - Marjorie Lacourrège
- OncoFactory, an ERBC company, Faculté de Médecine et de Pharmacie, 8 avenue Rockefeller, 69008, Lyon, France
| | - Aurélie Verney
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon), Lymphoma ImmunoBiology team, Faculté de Médecine Lyon sud, Université Claude Bernard Lyon 1, 69007, Lyon, France
| | - Jérôme Guitton
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service de biochimie, 69310, Pierre Bénite, France
| | - Alexandra Traverse-Glehen
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon), Lymphoma ImmunoBiology team, Faculté de Médecine Lyon sud, Université Claude Bernard Lyon 1, 69007, Lyon, France
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'Anatomopathologie, 69310, Pierre Bénite, France
| | - Emmanuel Bachy
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon), Lymphoma ImmunoBiology team, Faculté de Médecine Lyon sud, Université Claude Bernard Lyon 1, 69007, Lyon, France
| | - Gilles Salles
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Huet
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon), Lymphoma ImmunoBiology team, Faculté de Médecine Lyon sud, Université Claude Bernard Lyon 1, 69007, Lyon, France
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'hématologie biologique, 69310, Pierre Bénite, France
| | - Laurent Genestier
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon), Lymphoma ImmunoBiology team, Faculté de Médecine Lyon sud, Université Claude Bernard Lyon 1, 69007, Lyon, France
| | - Valérie Castellani
- University of Lyon, University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene Institute, 69008, Lyon, France
| | - Céline Delloye-Bourgeois
- University of Lyon, University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene Institute, 69008, Lyon, France
- Cancer Research Center of Lyon (CRCL, INSERM U1052-CNRS UMR5286, University of Lyon), University Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France
| | - Pierre Sujobert
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon), Lymphoma ImmunoBiology team, Faculté de Médecine Lyon sud, Université Claude Bernard Lyon 1, 69007, Lyon, France.
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'hématologie biologique, 69310, Pierre Bénite, France.
| |
Collapse
|
14
|
Lin PK, Koller GM, Davis GE. Elucidating the Morphogenic and Signaling Roles of Defined Growth Factors Controlling Human Endothelial Cell Lumen Formation Versus Sprouting Behavior. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:2203-2217. [PMID: 37689384 PMCID: PMC10699133 DOI: 10.1016/j.ajpath.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
Five growth factors [ie, insulin, fibroblast growth factor-2 (FGF-2), stem cell factor, IL-3, and stromal-derived factor 1α] in combination are necessary for human endothelial cells (ECs) to undergo tube morphogenesis, a process requiring both lumen formation and sprouting behavior. This study investigated why these factors are required by subdividing the factors into 4 separate groups: insulin-only, insulin and FGF-2, no FGF-2 (all factors but without FGF-2), and all factors. The study found that the insulin-only condition failed to support EC morphogenesis or survival, the insulin and FGF-2 condition supported primarily EC lumen formation, and the no FGF-2 condition supported EC sprouting behavior. By comparison, the all-factors condition more strongly stimulated both EC lumen formation and sprouting behavior, and signaling analysis revealed prolonged stimulation of multiple promorphogenic signals coupled with inhibition of proregressive signals. Pharmacologic inhibition of Jak kinases more selectively blocked EC sprouting behavior, whereas inhibition of Raf, phosphatidylinositol 3-kinase, and Akt kinases showed selective blockade of lumen formation. Inhibition of Src family kinases and Notch led to increased sprouting coupled to decreased lumen formation, whereas inhibition of Pak, Mek, and mammalian target of rapamycin kinases blocked both sprouting and lumen formation. These findings reveal novel downstream biological and signaling activities of defined factors that are required for the assembly of human EC-lined capillary tube networks.
Collapse
Affiliation(s)
- Prisca K Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida
| | - Gretchen M Koller
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida
| | - George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida.
| |
Collapse
|
15
|
Goh I, Botting RA, Rose A, Webb S, Engelbert J, Gitton Y, Stephenson E, Londoño MQ, Mather M, Mende N, Imaz-Rosshandler I, Yang L, Horsfall D, Basurto-Lozada D, Chipampe NJ, Rook V, Lee JTH, Ton ML, Keitley D, Mazin P, Vijayabaskar M, Hannah R, Gambardella L, Green K, Ballereau S, Inoue M, Tuck E, Lorenzi V, Kwakwa K, Alsinet C, Olabi B, Miah M, Admane C, Popescu DM, Acres M, Dixon D, Ness T, Coulthard R, Lisgo S, Henderson DJ, Dann E, Suo C, Kinston SJ, Park JE, Polanski K, Marioni J, van Dongen S, Meyer KB, de Bruijn M, Palis J, Behjati S, Laurenti E, Wilson NK, Vento-Tormo R, Chédotal A, Bayraktar O, Roberts I, Jardine L, Göttgens B, Teichmann SA, Haniffa M. Yolk sac cell atlas reveals multiorgan functions during human early development. Science 2023; 381:eadd7564. [PMID: 37590359 PMCID: PMC7614978 DOI: 10.1126/science.add7564] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/03/2023] [Indexed: 08/19/2023]
Abstract
The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.
Collapse
Affiliation(s)
- Issac Goh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Rachel A. Botting
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Antony Rose
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Simone Webb
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Yorick Gitton
- Sorbonne Université, INSERM, CNRS, Institut de la Vision,
Paris, France
| | - Emily Stephenson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Michael Mather
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Nicole Mende
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Ivan Imaz-Rosshandler
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus,
CD2 0QH, UK
| | - Lu Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Dave Horsfall
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Daniela Basurto-Lozada
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Nana-Jane Chipampe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Victoria Rook
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Jimmy Tsz Hang Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Mai-Linh Ton
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Daniel Keitley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Department of Zoology, University of Cambridge, Cambridge UK
| | - Pavel Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - M.S. Vijayabaskar
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Rebecca Hannah
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Laure Gambardella
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Kile Green
- Translational and Clinical Research Institute, Newcastle University,
NE2 4HH, UK
| | - Stephane Ballereau
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Megumi Inoue
- Sorbonne Université, INSERM, CNRS, Institut de la Vision,
Paris, France
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Valentina Lorenzi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Kwasi Kwakwa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Clara Alsinet
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Centre Nacional d’Analisi Genomica-Centre de Regulacio
Genomica (CNAG-CRG), Barcelona Institute of Science and Technology (BIST),
Barcelona, Spain
| | - Bayanne Olabi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Mohi Miah
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Chloe Admane
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Meghan Acres
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - David Dixon
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Thomas Ness
- NovoPath, Department of Pathology, Newcastle Hospitals NHS
Foundation Trust, Newcastle upon Tyne, UK
| | - Rowen Coulthard
- NovoPath, Department of Pathology, Newcastle Hospitals NHS
Foundation Trust, Newcastle upon Tyne, UK
| | - Steven Lisgo
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Chenqu Suo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Sarah J. Kinston
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Jong-eun Park
- Korea Advanced Institute of Science and Technology, Daejeon, South
Korea
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - John Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- EMBL-EBI, Wellcome Genome Campus, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge,
UK
| | - Stijn van Dongen
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Kerstin B. Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Marella de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of
Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS,
UK
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center,
Rochester, 14642, NY, USA
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge,
UK
| | - Elisa Laurenti
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Nicola K. Wilson
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision,
Paris, France
| | - Omer Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Irene Roberts
- Department of Paediatrics, University of Oxford, OX3 9DS, UK
| | - Laura Jardine
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department
of Physics, University of Cambridge, Cambridge, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research
Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP,
UK
| |
Collapse
|
16
|
Li Y, Ding J, Araki D, Zou J, Larochelle A. Modulation of WNT, Activin/Nodal, and MAPK Signaling Pathways Increases Arterial Hemogenic Endothelium and Hematopoietic Stem/Progenitor Cell Formation During Human iPSC Differentiation. Stem Cells 2023; 41:685-697. [PMID: 37220178 PMCID: PMC10346406 DOI: 10.1093/stmcls/sxad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Several differentiation protocols enable the emergence of hematopoietic stem and progenitor cells (HSPCs) from human-induced pluripotent stem cells (iPSCs), yet optimized schemes to promote the development of HSPCs with self-renewal, multilineage differentiation, and engraftment potential are lacking. To improve human iPSC differentiation methods, we modulated WNT, Activin/Nodal, and MAPK signaling pathways by stage-specific addition of small-molecule regulators CHIR99021, SB431542, and LY294002, respectively, and measured the impact on hematoendothelial formation in culture. Manipulation of these pathways provided a synergy sufficient to enhance formation of arterial hemogenic endothelium (HE) relative to control culture conditions. Importantly, this approach significantly increased production of human HSPCs with self-renewal and multilineage differentiation properties, as well as phenotypic and molecular evidence of progressive maturation in culture. Together, these findings provide a stepwise improvement in human iPSC differentiation protocols and offer a framework for manipulating intrinsic cellular cues to enable de novo generation of human HSPCs with functionality in vivo.
Collapse
Affiliation(s)
- Yongqin Li
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jianyi Ding
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daisuke Araki
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jizhong Zou
- iPSC Core Facility, NHLBI, NIH, Bethesda, MD, USA
| | - Andre Larochelle
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
17
|
Bishop D, Schwarz Q, Wiszniak S. Endothelial-derived angiocrine factors as instructors of embryonic development. Front Cell Dev Biol 2023; 11:1172114. [PMID: 37457293 PMCID: PMC10339107 DOI: 10.3389/fcell.2023.1172114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Blood vessels are well-known to play roles in organ development and repair, primarily owing to their fundamental function in delivering oxygen and nutrients to tissues to promote their growth and homeostasis. Endothelial cells however are not merely passive conduits for carrying blood. There is now evidence that endothelial cells of the vasculature actively regulate tissue-specific development, morphogenesis and organ function, as well as playing roles in disease and cancer. Angiocrine factors are growth factors, cytokines, signaling molecules or other regulators produced directly from endothelial cells to instruct a diverse range of signaling outcomes in the cellular microenvironment, and are critical mediators of the vascular control of organ function. The roles of angiocrine signaling are only beginning to be uncovered in diverse fields such as homeostasis, regeneration, organogenesis, stem-cell maintenance, cell differentiation and tumour growth. While in some cases the specific angiocrine factor involved in these processes has been identified, in many cases the molecular identity of the angiocrine factor(s) remain to be discovered, even though the importance of angiocrine signaling has been implicated. In this review, we will specifically focus on roles for endothelial-derived angiocrine signaling in instructing tissue morphogenesis and organogenesis during embryonic and perinatal development.
Collapse
|
18
|
Kobayashi M, Yoshimoto M. Multiple waves of fetal-derived immune cells constitute adult immune system. Immunol Rev 2023; 315:11-30. [PMID: 36929134 PMCID: PMC10754384 DOI: 10.1111/imr.13192] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
It has been over three decades since Drs. Herzenberg and Herzenberg proposed the layered immune system hypothesis, suggesting that different types of stem cells with distinct hematopoietic potential produce specific immune cells. This layering of immune system development is now supported by recent studies showing the presence of fetal-derived immune cells that function in adults. It has been shown that various immune cells arise at different embryonic ages via multiple waves of hematopoiesis from special endothelial cells (ECs), referred to as hemogenic ECs. However, it remains unknown whether these fetal-derived immune cells are produced by hematopoietic stem cells (HSCs) during the fetal to neonatal period. To address this question, many advanced tools have been used, including lineage-tracing mouse models, cellular barcoding techniques, clonal assays, and transplantation assays at the single-cell level. In this review, we will review the history of the search for the origins of HSCs, B-1a progenitors, and mast cells in the mouse embryo. HSCs can produce both B-1a and mast cells within a very limited time window, and this ability declines after embryonic day (E) 14.5. Furthermore, the latest data have revealed that HSC-independent adaptive immune cells exist in adult mice, which implies more complicated developmental pathways of immune cells. We propose revised road maps of immune cell development.
Collapse
Affiliation(s)
- Michihiro Kobayashi
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Momoko Yoshimoto
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
19
|
Li Y, Ding J, Araki D, Zou J, Larochelle A. Modulation of WNT, Activin/Nodal and MAPK Signaling Pathways Increases Arterial Hemogenic Endothelium and Hematopoietic Stem/Progenitor Cell Formation During Human iPSC Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529379. [PMID: 36865308 PMCID: PMC9980074 DOI: 10.1101/2023.02.21.529379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Several differentiation protocols enable the emergence of hematopoietic stem and progenitor cells (HSPCs) from human induced pluripotent stem cells (iPSCs), yet optimized schemes to promote the development of HSPCs with self-renewal, multilineage differentiation and engraftment potential are lacking. To improve human iPSC differentiation methods, we modulated WNT, Activin/Nodal and MAPK signaling pathways by stage-specific addition of small molecule regulators CHIR99021, SB431542 and LY294002, respectively, and measured the impact on hematoendothelial formation in culture. Manipulation of these pathways provided a synergy sufficient to enhance formation of arterial hemogenic endothelium (HE) relative to control culture conditions. Importantly, this approach significantly increased production of human HSPCs with self-renewal and multilineage differentiation properties, as well as phenotypic and molecular evidence of progressive maturation in culture. Together, these findings provide a stepwise improvement in human iPSC differentiation protocols and offer a framework for manipulating intrinsic cellular cues to enable de novo generation of human HSPCs with functionality in vivo . Significance Statement The ability to produce functional HSPCs by differentiation of human iPSCs ex vivo holds enormous potential for cellular therapy of human blood disorders. However, obstacles still thwart translation of this approach to the clinic. In keeping with the prevailing arterial-specification model, we demonstrate that concurrent modulation of WNT, Activin/Nodal and MAPK signaling pathways by stage-specific addition of small molecules during human iPSC differentiation provides a synergy sufficient to promote arterialization of HE and production of HSPCs with features of definitive hematopoiesis. This simple differentiation scheme provides a unique tool for disease modeling, in vitro drug screening and eventual cell therapies.
Collapse
|
20
|
Vink CS, Dzierzak E. The (intra-aortic) hematopoietic cluster cocktail: what is in the mix? Exp Hematol 2023; 118:1-11. [PMID: 36529317 DOI: 10.1016/j.exphem.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
The adult-definitive hematopoietic hierarchy and hematopoietic stem cells (HSCs) residing in the bone marrow are established during embryonic development. In mouse, human, and many other mammals, it is the sudden formation of so-called intra-aortic/arterial hematopoietic clusters (IAHCs) that best signifies and visualizes this de novo generation of HSCs and hematopoietic progenitor cells (HPCs). Cluster cells arise through an endothelial-to-hematopoietic transition and, for some time, express markers/genes of both tissue types, whilst acquiring more hematopoietic features and losing endothelial ones. Among several hundreds of IAHC cells, the midgestation mouse embryo contains only very few bona fide adult-repopulating HSCs, suggestive of a challenging cell fate to achieve. Most others are HPCs of various types, some of which have the potential to mature into HSCs in vitro. Based on the number of cells that reveal hematopoietic function, a fraction of IAHC cells is uncharacterized. This review aims to explore the current state of knowledge on IAHC cells. We will describe markers useful for isolation and characterization of these fleetingly produced, yet vitally important, cells and for the refined enrichment of the HSCs they contain, and speculate on the role of some IAHC cells that are as-yet functionally uncharacterized.
Collapse
Affiliation(s)
- Chris S Vink
- The University of Edinburgh, Centre for Inflammation Research, Edinburgh, Midlothian, Scotland, UK
| | - Elaine Dzierzak
- The University of Edinburgh, Centre for Inflammation Research, Edinburgh, Midlothian, Scotland, UK.
| |
Collapse
|
21
|
Ding J, Li Y, Larochelle A. De Novo Generation of Human Hematopoietic Stem Cells from Pluripotent Stem Cells for Cellular Therapy. Cells 2023; 12:321. [PMID: 36672255 PMCID: PMC9857267 DOI: 10.3390/cells12020321] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The ability to manufacture human hematopoietic stem cells (HSCs) in the laboratory holds enormous promise for cellular therapy of human blood diseases. Several differentiation protocols have been developed to facilitate the emergence of HSCs from human pluripotent stem cells (PSCs). Most approaches employ a stepwise addition of cytokines and morphogens to recapitulate the natural developmental process. However, these protocols globally lack clinical relevance and uniformly induce PSCs to produce hematopoietic progenitors with embryonic features and limited engraftment and differentiation capabilities. This review examines how key intrinsic cues and extrinsic environmental inputs have been integrated within human PSC differentiation protocols to enhance the emergence of definitive hematopoiesis and how advances in genomics set the stage for imminent breakthroughs in this field.
Collapse
Affiliation(s)
| | | | - Andre Larochelle
- Cellular and Molecular Therapeutics Branch, National Heart Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Yvernogeau L, Dainese G, Jaffredo T. Dorsal aorta polarization and haematopoietic stem cell emergence. Development 2023; 150:286251. [PMID: 36602140 DOI: 10.1242/dev.201173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent studies have highlighted the crucial role of the aorta microenvironment in the generation of the first haematopoietic stem cells (HSCs) from specialized haemogenic endothelial cells (HECs). Despite more than two decades of investigations, we require a better understanding of the cellular and molecular events driving aorta formation and polarization, which will be pivotal to establish the mechanisms that operate during HEC specification and HSC competency. Here, we outline the early mechanisms involved in vertebrate aorta formation by comparing four different species: zebrafish, chicken, mouse and human. We highlight how this process, which is tightly controlled in time and space, requires a coordinated specification of several cell types, in particular endothelial cells originating from distinct mesodermal tissues. We also discuss how molecular signals originating from the aorta environment result in its polarization, creating a unique entity for HSC generation.
Collapse
Affiliation(s)
- Laurent Yvernogeau
- Sorbonne Université, IBPS, CNRS UMR7622, Inserm U1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Giovanna Dainese
- Sorbonne Université, IBPS, CNRS UMR7622, Inserm U1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Thierry Jaffredo
- Sorbonne Université, IBPS, CNRS UMR7622, Inserm U1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| |
Collapse
|
23
|
Lenaerts A, Kucinski I, Deboutte W, Derecka M, Cauchy P, Manke T, Göttgens B, Grosschedl R. EBF1 primes B-lymphoid enhancers and limits the myeloid bias in murine multipotent progenitors. J Exp Med 2022; 219:e20212437. [PMID: 36048017 PMCID: PMC9437269 DOI: 10.1084/jem.20212437] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/23/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022] Open
Abstract
Hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) generate all cells of the blood system. Despite their multipotency, MPPs display poorly understood lineage bias. Here, we examine whether lineage-specifying transcription factors, such as the B-lineage determinant EBF1, regulate lineage preference in early progenitors. We detect low-level EBF1 expression in myeloid-biased MPP3 and lymphoid-biased MPP4 cells, coinciding with expression of the myeloid determinant C/EBPα. Hematopoietic deletion of Ebf1 results in enhanced myelopoiesis and reduced HSC repopulation capacity. Ebf1-deficient MPP3 and MPP4 cells exhibit an augmented myeloid differentiation potential and a transcriptome with an enriched C/EBPα signature. Correspondingly, EBF1 binds the Cebpa enhancer, and the deficiency and overexpression of Ebf1 in MPP3 and MPP4 cells lead to an up- and downregulation of Cebpa expression, respectively. In addition, EBF1 primes the chromatin of B-lymphoid enhancers specifically in MPP3 cells. Thus, our study implicates EBF1 in regulating myeloid/lymphoid fate bias in MPPs by constraining C/EBPα-driven myelopoiesis and priming the B-lymphoid fate.
Collapse
Affiliation(s)
- Aurelie Lenaerts
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Iwo Kucinski
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Ward Deboutte
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Marta Derecka
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Pierre Cauchy
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Manke
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
24
|
Mimicry of embryonic circulation enhances the hoxa hemogenic niche and human blood development. Cell Rep 2022; 40:111339. [PMID: 36103836 DOI: 10.1016/j.celrep.2022.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 05/11/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Precursors of the adult hematopoietic system arise from the aorta-gonad-mesonephros (AGM) region shortly after the embryonic circulation is established. Here, we develop a microfluidic culture system to mimic the primitive embryonic circulation and address the hypothesis that circulatory flow and shear stress enhance embryonic blood development. Embryonic (HOXA+) hematopoiesis was derived from human pluripotent stem cells and induced from mesoderm by small-molecule manipulation of TGF-β and WNT signaling (SB/CHIR). Microfluidic and orbital culture promoted the formation of proliferative CD34+RUNX1C-GFP+SOX17-mCHERRY+ precursor cells that were released into the artificial circulation from SOX17+ arterial-like structures. Single-cell transcriptomic analysis delineated extra-embryonic (yolk sac) and HOXA+ embryonic blood differentiation pathways. SB/CHIR and circulatory flow enhance hematopoiesis by the formation of proliferative HOXA+RUNX1C+CD34+ precursor cells that differentiate into monocyte/macrophage, granulocyte, erythrocyte, and megakaryocyte progenitors.
Collapse
|
25
|
Rossi G, Giger S, Hübscher T, Lutolf MP. Gastruloids as in vitro models of embryonic blood development with spatial and temporal resolution. Sci Rep 2022; 12:13380. [PMID: 35927563 PMCID: PMC9352713 DOI: 10.1038/s41598-022-17265-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/22/2022] [Indexed: 01/01/2023] Open
Abstract
Gastruloids are three-dimensional embryonic organoids that reproduce key features of early mammalian development in vitro with unique scalability, accessibility, and spatiotemporal similarity to real embryos. Recently, we adapted the gastruloid culture conditions to promote cardiovascular development. In this work, we extended these conditions to capture features of embryonic blood development through a combination of immunophenotyping, detailed transcriptomics analysis, and identification of blood stem/progenitor cell potency. We uncovered the emergence of blood progenitor and erythroid-like cell populations in late gastruloids and showed the multipotent clonogenic capacity of these cells, both in vitro and after transplantation into irradiated mice. We also identified the spatial localization near a vessel-like plexus in the anterior portion of gastruloids with similarities to the emergence of blood stem cells in the mouse embryo. These results highlight the potential and applicability of gastruloids to the in vitro study of complex processes in embryonic blood development with spatiotemporal fidelity.
Collapse
Affiliation(s)
- Giuliana Rossi
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Vaud, 1015, Lausanne, Switzerland. .,Roche Institute for Translational Bioengineering (ITB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| | - Sonja Giger
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Vaud, 1015, Lausanne, Switzerland
| | - Tania Hübscher
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Vaud, 1015, Lausanne, Switzerland
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Vaud, 1015, Lausanne, Switzerland. .,Institute of Chemical Sciences and Engineering, School of Basic Science, École Polytechnique Fédérale de Lausanne (EPFL), Vaud, 1015, Lausanne, Switzerland. .,Roche Institute for Translational Bioengineering (ITB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
26
|
Chandrakanthan V, Rorimpandey P, Zanini F, Chacon D, Olivier J, Joshi S, Kang YC, Knezevic K, Huang Y, Qiao Q, Oliver RA, Unnikrishnan A, Carter DR, Lee B, Brownlee C, Power C, Brink R, Mendez-Ferrer S, Enikolopov G, Walsh W, Göttgens B, Taoudi S, Beck D, Pimanda JE. Mesoderm-derived PDGFRA + cells regulate the emergence of hematopoietic stem cells in the dorsal aorta. Nat Cell Biol 2022; 24:1211-1225. [PMID: 35902769 PMCID: PMC9359911 DOI: 10.1038/s41556-022-00955-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 06/06/2022] [Indexed: 12/13/2022]
Abstract
Mouse haematopoietic stem cells (HSCs) first emerge at embryonic day 10.5 (E10.5), on the ventral surface of the dorsal aorta, by endothelial-to-haematopoietic transition. We investigated whether mesenchymal stem cells, which provide an essential niche for long-term HSCs (LT-HSCs) in the bone marrow, reside in the aorta-gonad-mesonephros and contribute to the development of the dorsal aorta and endothelial-to-haematopoietic transition. Here we show that mesoderm-derived PDGFRA+ stromal cells (Mesp1der PSCs) contribute to the haemogenic endothelium of the dorsal aorta and populate the E10.5-E11.5 aorta-gonad-mesonephros but by E13.5 were replaced by neural-crest-derived PSCs (Wnt1der PSCs). Co-aggregating non-haemogenic endothelial cells with Mesp1der PSCs but not Wnt1der PSCs resulted in activation of a haematopoietic transcriptional programme in endothelial cells and generation of LT-HSCs. Dose-dependent inhibition of PDGFRA or BMP, WNT and NOTCH signalling interrupted this reprogramming event. Together, aorta-gonad-mesonephros Mesp1der PSCs could potentially be harnessed to manufacture LT-HSCs from endothelium.
Collapse
Affiliation(s)
- Vashe Chandrakanthan
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia. .,Department of Pathology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.
| | - Prunella Rorimpandey
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.,Department of Pathology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Fabio Zanini
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.,School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia.,Garvan-Weizmann Centre for Cellular Genomics, Sydney, Australia.,UNSW Futures Institute for Cellular Genomics, Sydney, Australia
| | - Diego Chacon
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Jake Olivier
- School of Mathematics and Statistics, UNSW Sydney, Sydney, NSW, Australia
| | - Swapna Joshi
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.,Department of Pathology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Young Chan Kang
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.,Department of Pathology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kathy Knezevic
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.,Department of Pathology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Yizhou Huang
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia.,School of Mathematics and Statistics, UNSW Sydney, Sydney, NSW, Australia.,Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Qiao Qiao
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Rema A Oliver
- Surgical & Orthopaedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Ashwin Unnikrishnan
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.,School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Daniel R Carter
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia.,School of Mathematics and Statistics, UNSW Sydney, Sydney, NSW, Australia.,Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Brendan Lee
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Chris Brownlee
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Carl Power
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,UNSW Sydney, Sydney, NSW, Australia
| | - Simon Mendez-Ferrer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Grigori Enikolopov
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - William Walsh
- Surgical & Orthopaedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Berthold Göttgens
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Samir Taoudi
- Epigenetics and development division, Walter and Eliza Hall Institute, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Dominik Beck
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - John E Pimanda
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia. .,Department of Pathology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia. .,Department of Haematology, The Prince of Wales Hospital, Sydney, NSW, Australia.
| |
Collapse
|
27
|
Sá da Bandeira D, Kilpatrick AM, Marques M, Gomez-Salazar M, Ventura T, Gonzalez ZN, Stefancova D, Rossi F, Vermeren M, Vink CS, Beltran M, Henderson NC, Jung B, van der Linden R, van de Werken HJG, van Ijcken WFJ, Betsholtz C, Forbes SJ, Cuervo H, Crisan M. PDGFRβ + cells play a dual role as hematopoietic precursors and niche cells during mouse ontogeny. Cell Rep 2022; 40:111114. [PMID: 35858557 PMCID: PMC9638014 DOI: 10.1016/j.celrep.2022.111114] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/18/2022] [Accepted: 06/28/2022] [Indexed: 11/27/2022] Open
Abstract
Hematopoietic stem cell (HSC) generation in the aorta-gonad-mesonephros region requires HSC specification signals from the surrounding microenvironment. In zebrafish, PDGF-B/PDGFRβ signaling controls hematopoietic stem/progenitor cell (HSPC) generation and is required in the HSC specification niche. Little is known about murine HSPC specification in vivo and whether PDGF-B/PDGFRβ is involved. Here, we show that PDGFRβ is expressed in distinct perivascular stromal cell layers surrounding the mid-gestation dorsal aorta, and its deletion impairs hematopoiesis. We demonstrate that PDGFRβ+ cells play a dual role in murine hematopoiesis. They act in the aortic niche to support HSPCs, and in addition, PDGFRβ+ embryonic precursors give rise to a subset of HSPCs that persist into adulthood. These findings provide crucial information for the controlled production of HSPCs in vitro. PDGFRβ deletion affects hematopoietic development in the AGM in vivo The transcriptome and hematopoietic support of the PDGFRβ-KO niche are altered The osteogenic gene profile and differentiation of KO AGM MSCs are affected PDGFRβ+ early embryonic precursors contribute to EC and HSPC lineages in vivo
Collapse
Affiliation(s)
- Diana Sá da Bandeira
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Alastair Morris Kilpatrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Madalena Marques
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Mario Gomez-Salazar
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Telma Ventura
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Zaniah Nashira Gonzalez
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Dorota Stefancova
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Fiona Rossi
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Matthieu Vermeren
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Chris Sebastiaan Vink
- Centre for Inflammation Research, Institute for Regeneration and Repair, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Mariana Beltran
- Centre for Inflammation Research, Institute for Regeneration and Repair, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Neil Cowan Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, UK
| | - Bongnam Jung
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 85 Uppsala, Sweden; Harvard Medical School, Department of Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Reinier van der Linden
- Hubrecht Institute, Department van Oudenaarden Quantitative Biology, 3584 Utrecht, the Netherlands
| | - Harmen Jan George van de Werken
- Erasmus MC Cancer Institute, University Medical Center, Cancer Computational Biology Center, and Departments of Urology and Immunology, 3000 Rotterdam, the Netherlands
| | - Wilfred F J van Ijcken
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Centre, 3015 Rotterdam, the Netherlands
| | - Christer Betsholtz
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 85 Uppsala, Sweden; Department of Medicine Huddinge, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Stuart John Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK
| | - Henar Cuervo
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mihaela Crisan
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, EH16 4UU Edinburgh, UK.
| |
Collapse
|
28
|
Adamov A, Serina Secanechia YN, Lancrin C. Single-cell transcriptome analysis of embryonic and adult endothelial cells allows to rank the hemogenic potential of post-natal endothelium. Sci Rep 2022; 12:12177. [PMID: 35842474 PMCID: PMC9288434 DOI: 10.1038/s41598-022-16127-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/05/2022] [Indexed: 01/02/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are crucial for the continuous production of blood cells during life. The transplantation of these cells is one of the most common treatments to cure patient suffering of blood diseases. However, the lack of suitable donors is a major limitation. One option to get HSCs matching perfectly a patient is cellular reprogramming. HSCs emerge from endothelial cells in blood vessels during embryogenesis through the endothelial to hematopoietic transition. Here, we used single-cell transcriptomics analysis to compare embryonic and post-natal endothelial cells to investigate the potential of adult vasculature to be reprogrammed in hematopoietic stem cells. Although transcriptional similarities have been found between embryonic and adult endothelial cells, we found some key differences in term of transcription factors expression. There is a deficit of expression of Runx1, Tal1, Lyl1 and Cbfb in adult endothelial cells compared to their embryonic counterparts. Using a combination of gene expression profiling and gene regulatory network analysis, we found that endothelial cells from the pancreas, brain, kidney and liver appear to be the most suitable targets for cellular reprogramming into HSCs. Overall, our work provides an important resource for the rational design of a reprogramming strategy for the generation of HSCs.
Collapse
Affiliation(s)
- Artem Adamov
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy
- Moscow Institute of Physics and Technology, Institutskii Per. 9, Moscow Region, Dolgoprudny, Russia, 141700
- Institut de la Vision, INSERM, Paris, France
| | - Yasmin Natalia Serina Secanechia
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy
| | - Christophe Lancrin
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy.
| |
Collapse
|
29
|
Ho VW, Grainger DE, Chagraoui H, Porcher C. Specification of the haematopoietic stem cell lineage: From blood-fated mesodermal angioblasts to haemogenic endothelium. Semin Cell Dev Biol 2022; 127:59-67. [PMID: 35125239 DOI: 10.1016/j.semcdb.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/19/2022]
Abstract
Haematopoietic stem and progenitor cells emerge from specialized haemogenic endothelial cells in select vascular beds during embryonic development. Specification and commitment to the blood lineage, however, occur before endothelial cells are endowed with haemogenic competence, at the time of mesoderm patterning and production of endothelial cell progenitors (angioblasts). Whilst early blood cell fate specification has long been recognized, very little is known about the mechanisms that induce endothelial cell diversification and progressive acquisition of a blood identity by a subset of these cells. Here, we review the endothelial origin of the haematopoietic system and the complex developmental journey of blood-fated angioblasts. We discuss how recent technological advances will be instrumental to examine the diversity of the embryonic anatomical niches, signaling pathways and downstream epigenetic and transcriptional processes controlling endothelial cell heterogeneity and blood cell fate specification. Ultimately, this will give essential insights into the ontogeny of the cells giving rise to haematopoietic stem cells, that may aid in the development of novel strategies for their in vitro production for clinical purposes.
Collapse
Affiliation(s)
- Vivien W Ho
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David E Grainger
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hedia Chagraoui
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Catherine Porcher
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
30
|
Green LA, O'Dea MR, Hoover CA, DeSantis DF, Smith CJ. The embryonic zebrafish brain is seeded by a lymphatic-dependent population of mrc1 + microglia precursors. Nat Neurosci 2022; 25:849-864. [PMID: 35710983 PMCID: PMC10680068 DOI: 10.1038/s41593-022-01091-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/06/2022] [Indexed: 02/02/2023]
Abstract
Microglia are the resident macrophages of the CNS that serve critical roles in brain construction. Although human brains contain microglia by 4 weeks gestation, an understanding of the earliest microglia that seed the brain during its development remains unresolved. Using time-lapse imaging in zebrafish, we discovered a mrc1a+ microglia precursor population that seeds the brain before traditionally described microglia. These early microglia precursors are dependent on lymphatic vasculature that surrounds the brain and are independent of pu1+ yolk sac-derived microglia. Single-cell RNA-sequencing datasets reveal Mrc1+ microglia in the embryonic brains of mice and humans. We then show in zebrafish that these early mrc1a+ microglia precursors preferentially expand during pathophysiological states in development. Taken together, our results identify a critical role of lymphatics in the microglia precursors that seed the early embryonic brain.
Collapse
Affiliation(s)
- Lauren A Green
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Michael R O'Dea
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Camden A Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Dana F DeSantis
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Cody J Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
- The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
31
|
Cissy Yu Q, Bai L, Chen Y, Chen Y, Peng G, Wang D, Yang G, Cui G, Jing N, Arial Zeng Y. Embryonic vascular establishment requires protein C receptor-expressing endothelial progenitors. Development 2022; 149:275466. [DOI: 10.1242/dev.200419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/05/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Vascular establishment is one of the early events in embryogenesis. It is believed that vessel-initiating endothelial progenitors cluster to form the first primitive vessel. Understanding the molecular identity of these progenitors is crucial in order to elucidate lineage hierarchy. In this study, we identify protein C receptor (Procr) as an endothelial progenitor marker and investigate the role of Procr+ progenitors during embryonic vascular development. Using a ProcrmGFP-2A-lacZ reporter, we reveal a much earlier Procr expression (embryonic day 7.5) than previously acknowledged (embryonic day 13.5). Genetic fate-mapping experiments using ProcrCre and ProcrCreER demonstrate that Procr+ cells give rise to blood vessels throughout the entire embryo proper. Single-cell RNA-sequencing analyses place Procr+ cells at the start of endothelial commitment and maturation. Furthermore, targeted ablation of Procr+ cells results in failure of vessel formation and early embryonic lethality. Notably, genetic fate mapping and scRNA-seq pseudotime analysis support the view that Procr+ progenitors can give rise to hemogenic endothelium. In this study, we establish a Procr expression timeline and identify Procr+ vessel-initiating progenitors, and demonstrate their indispensable role in establishment of the vasculature during embryo development.
Collapse
Affiliation(s)
- Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences 1 , Shanghai 200031 , China
| | - Lanyue Bai
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences 1 , Shanghai 200031 , China
| | - Yingying Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences 1 , Shanghai 200031 , China
| | - Yujie Chen
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS 3 Key Laboratory of Computational Biology , , Shanghai 200031 , China
| | - Guangdun Peng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Institutes of Biomedicine and Health, Chinese Academy of Sciences 4 , Guangzhou 510530 , China
| | - Daisong Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences 1 , Shanghai 200031 , China
| | - Guowei Yang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences 2 , 310024 Hangzhou , China
| | - Guizhong Cui
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Institutes of Biomedicine and Health, Chinese Academy of Sciences 4 , Guangzhou 510530 , China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences 1 , Shanghai 200031 , China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Institutes of Biomedicine and Health, Chinese Academy of Sciences 4 , Guangzhou 510530 , China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences 5 , Beijing 100101 , China
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences 1 , Shanghai 200031 , China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences 2 , 310024 Hangzhou , China
| |
Collapse
|
32
|
Klaus A, Clapes T, Yvernogeau L, Basu S, Weijts B, Maas J, Smal I, Galjart N, Robin C. CLASP2 safeguards hematopoietic stem cell properties during mouse and fish development. Cell Rep 2022; 39:110957. [PMID: 35705037 DOI: 10.1016/j.celrep.2022.110957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/28/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022] Open
Abstract
Hematopoietic stem cells (HSCs) express a large variety of cell surface receptors that are associated with acquisition of self-renewal and multipotent properties. Correct expression of these receptors depends on a delicate balance between cell surface trafficking, recycling, and degradation and is controlled by the microtubule network and Golgi apparatus, whose roles have hardly been explored during embryonic/fetal hematopoiesis. Here we show that, in the absence of CLASP2, a microtubule-associated protein, the overall production of HSCs is reduced, and the produced HSCs fail to self-renew and maintain their stemness throughout mouse and zebrafish development. This phenotype can be attributed to decreased cell surface expression of the hematopoietic receptor c-Kit, which originates from increased lysosomal degradation in combination with a reduction in trafficking to the plasma membrane. A dysfunctional Golgi apparatus in CLASP2-deficient HSCs seems to be the underlying cause of the c-Kit expression and signaling imbalance.
Collapse
Affiliation(s)
- Anna Klaus
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Thomas Clapes
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Laurent Yvernogeau
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Sreya Basu
- Department of Cell Biology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Bart Weijts
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Joris Maas
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Ihor Smal
- Theme Biomedical Sciences and Departments of Cell Biology and Molecular Genetics, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Niels Galjart
- Department of Cell Biology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands.
| |
Collapse
|
33
|
Patel SH, Christodoulou C, Weinreb C, Yu Q, da Rocha EL, Pepe-Mooney BJ, Bowling S, Li L, Osorio FG, Daley GQ, Camargo FD. Lifelong multilineage contribution by embryonic-born blood progenitors. Nature 2022; 606:747-753. [PMID: 35705805 DOI: 10.1038/s41586-022-04804-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 04/26/2022] [Indexed: 11/08/2022]
Abstract
Haematopoietic stem cells (HSCs) arise in the embryo from the arterial endothelium through a process known as the endothelial-to-haematopoietic transition (EHT)1-4. This process generates hundreds of blood progenitors, of which a fraction go on to become definitive HSCs. It is generally thought that most adult blood is derived from those HSCs, but to what extent other progenitors contribute to adult haematopoiesis is not known. Here we use in situ barcoding and classical fate mapping to assess the developmental and clonal origins of adult blood in mice. Our analysis uncovers an early wave of progenitor specification-independent of traditional HSCs-that begins soon after EHT. These embryonic multipotent progenitors (eMPPs) predominantly drive haematopoiesis in the young adult, have a decreasing yet lifelong contribution over time and are the predominant source of lymphoid output. Putative eMPPs are specified within intra-arterial haematopoietic clusters and represent one fate of the earliest haematopoietic progenitors. Altogether, our results reveal functional heterogeneity during the definitive wave that leads to distinct sources of adult blood.
Collapse
Affiliation(s)
- Sachin H Patel
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | | | - Caleb Weinreb
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Qi Yu
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Sarah Bowling
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Li Li
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | | | - George Q Daley
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Fernando D Camargo
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
34
|
Embryonic Origins of the Hematopoietic System: Hierarchies and Heterogeneity. Hemasphere 2022; 6:e737. [PMID: 35647488 PMCID: PMC9132533 DOI: 10.1097/hs9.0000000000000737] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
The hierarchical framework of the adult blood system as we know it from current medical and hematology textbooks, displays a linear branching network of dividing and differentiated cells essential for the growth and maintenance of the healthy organism. This view of the hierarchy has evolved over the last 75 years. An amazing increase in cellular complexity has been realized; however, innovative single-cell technologies continue to uncover essential cell types and functions in animal models and the human blood system. The most potent cell of the hematopoietic hierarchy is the hematopoietic stem cell. Stem cells for adult tissues are the long-lived self-renewing cellular component, which ensure that differentiated tissue-specific cells are maintained and replaced through the entire adult lifespan. Although much blood research is focused on hematopoietic tissue homeostasis, replacement and regeneration during adult life, embryological studies have widened and enriched our understanding of additional developmental hierarchies and interacting cells of this life-sustaining tissue. Here, we review the current state of knowledge of the hierarchical organization and the vast heterogeneity of the hematopoietic system from embryonic to adult stages.
Collapse
|
35
|
Novel insights into embryonic cardiac macrophages. Dev Biol 2022; 488:1-10. [DOI: 10.1016/j.ydbio.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/19/2022]
|
36
|
In the spotlight: the role of TGFβ signalling in haematopoietic stem and progenitor cell emergence. Biochem Soc Trans 2022; 50:703-712. [PMID: 35285494 PMCID: PMC9162451 DOI: 10.1042/bst20210363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022]
Abstract
Haematopoietic stem and progenitor cells (HSPCs) sustain haematopoiesis by generating precise numbers of mature blood cells throughout the lifetime of an individual. In vertebrates, HSPCs arise during embryonic development from a specialised endothelial cell population, the haemogenic endothelium (HE). Signalling by the Transforming Growth Factor β (TGFβ) pathway is key to regulate haematopoiesis in the adult bone marrow, but evidence for a role in the formation of HSPCs has only recently started to emerge. In this review, we examine recent work in various model systems that demonstrate a key role for TGFβ signalling in HSPC emergence from the HE. The current evidence underpins two seemingly contradictory views of TGFβ function: as a negative regulator of HSPCs by limiting haematopoietic output from HE, and as a positive regulator, by programming the HE towards the haematopoietic fate. Understanding how to modulate the requirement for TGFβ signalling in HSC emergence may have critical implications for the generation of these cells in vitro for therapeutic use.
Collapse
|
37
|
Fejszák N, Kocsis K, Halasy V, Szőcs E, Soós Á, Roche DVL, Härtle S, Nagy N. Characterization and functional properties of a novel monoclonal antibody which identifies a B cell subpopulation in bursa of Fabricius. Poult Sci 2022; 101:101711. [PMID: 35151935 PMCID: PMC8844905 DOI: 10.1016/j.psj.2022.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 11/08/2022] Open
Abstract
The bursa of Fabricius (BF) plays a central role in the development of B lymphocytes in birds. During embryonic development the BF primordium is colonized by myeloid and lymphoid prebursal stem cells to form the follicle buds, which ultimately develop into lymphoid follicles with a central medullary and an outer cortical region. Lympho-myeloid differentiation within the medulla is fundamental to normal B cell development. In contrast, the complexity of the cellular composition of the follicular cortex and its role in B cell differentiation has only recently begun to be studied. As an effort to characterize the different bursal cells we have produced a large panel of monoclonal antibodies (mAbs) by immunizing mice with a BF cell suspension of guinea fowl (Numida meleagris). One of these antibodies (clone: 7H3) was found to recognize a 80 kDa cell surface antigen expressed first in the yolk sac blood island of 2-day-old guinea fowl and chicken embryos, and later detected in the embryonic circulation and primary lymphoid organs. Double immunofluorescence revealed that chB6+ (Bu-1+) B cells of embryonic BF co-express the 7H3 antigen. 7H3 immunoreactivity of the bursal follicles gradually diminished after hatching and only a subpopulation of cortical B cells expressed the 7H3 antigen. In addition, in post-hatched birds 7H3 mAb recognizes all T lymphocytes of the thymus, peripheral lymphoid organs and blood. Embryonic BF injected with the 7H3 mAb showed a near complete block of lymphoid follicle formation In conclusion, 7H3 mAb labels a new differentiation antigen specific for avian hematopoietic cells, which migrate through the embryonic mesenchyme, colonize the developing BF lymphoid follicles, and differentiate into a subpopulation of cortical B cells. The staining pattern of the 7H3 mAb and the correlation of expression with cell migration suggest that the antigen will serve as valuable immunological marker for studying the ontogeny of avian B cells.
Collapse
|
38
|
Hemogenic and aortic endothelium arise from a common hemogenic angioblast precursor and are specified by the Etv2 dosage. Proc Natl Acad Sci U S A 2022; 119:e2119051119. [PMID: 35333649 PMCID: PMC9060440 DOI: 10.1073/pnas.2119051119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SignificanceHematopoietic stem cells (HSCs) are generated from specialized endothelial cells, called hemogenic endothelial cells (HECs). It has been debated whether HECs and non-HSC-forming conventional endothelial cells (cECs) arise from a common precursor or represent distinct lineages. Moreover, the molecular basis underlying their distinct fate determination is poorly understood. We use photoconvertible labeling, time-lapse imaging, and single-cell RNA-sequencing analysis to trace the lineage of HECs. We discovered that HECs and cECs arise from a common hemogenic angioblast precursor, and their distinct fate is determined by high or low dosage of Etv2, respectively. Our results illuminate the lineage origin and a mechanism on the fate determination of HECs, which may enhance the understanding on the ontogeny of HECs in vertebrates.
Collapse
|
39
|
Barone C, Orsenigo R, Meneveri R, Brunelli S, Azzoni E. One Size Does Not Fit All: Heterogeneity in Developmental Hematopoiesis. Cells 2022; 11:1061. [PMID: 35326511 PMCID: PMC8947200 DOI: 10.3390/cells11061061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
Our knowledge of the complexity of the developing hematopoietic system has dramatically expanded over the course of the last few decades. We now know that, while hematopoietic stem cells (HSCs) firmly reside at the top of the adult hematopoietic hierarchy, multiple HSC-independent progenitor populations play variegated and fundamental roles during fetal life, which reflect on adult physiology and can lead to disease if subject to perturbations. The importance of obtaining a high-resolution picture of the mechanisms by which the developing embryo establishes a functional hematopoietic system is demonstrated by many recent indications showing that ontogeny is a primary determinant of function of multiple critical cell types. This review will specifically focus on exploring the diversity of hematopoietic stem and progenitor cells unique to embryonic and fetal life. We will initially examine the evidence demonstrating heterogeneity within the hemogenic endothelium, precursor to all definitive hematopoietic cells. Next, we will summarize the dynamics and characteristics of the so-called "hematopoietic waves" taking place during vertebrate development. For each of these waves, we will define the cellular identities of their components, the extent and relevance of their respective contributions as well as potential drivers of heterogeneity.
Collapse
Affiliation(s)
| | | | | | | | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.B.); (R.O.); (R.M.); (S.B.)
| |
Collapse
|
40
|
Munro DAD, Movahedi K, Priller J. Macrophage compartmentalization in the brain and cerebrospinal fluid system. Sci Immunol 2022; 7:eabk0391. [PMID: 35245085 DOI: 10.1126/sciimmunol.abk0391] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages reside within the diverse anatomical compartments of the central nervous system (CNS). Within each compartment, these phagocytes are exposed to unique combinations of niche signals and mechanical stimuli that instruct their tissue-specific identities. Whereas most CNS macrophages are tissue-embedded, the macrophages of the cerebrospinal fluid (CSF) system are bathed in an oscillating liquid. Studies using multiomics technologies have recently uncovered the transcriptomic and proteomic profiles of CSF macrophages, enhancing our understanding of their cellular characteristics in both rodents and humans. Here, we review the relationships between CNS macrophage populations, with a focus on the origins, phenotypes, and functions of CSF macrophages in health and disease.
Collapse
Affiliation(s)
- David A D Munro
- UK Dementia Research Institute at University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Kiavash Movahedi
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Josef Priller
- UK Dementia Research Institute at University of Edinburgh, Edinburgh EH16 4TJ, UK.,Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin and DZNE, 10117 Berlin, Germany.,Technical University of Munich, School of Medicine, Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, 81675 Munich, Germany.,Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| |
Collapse
|
41
|
Thambyrajah R, Bigas A. Notch Signaling in HSC Emergence: When, Why and How. Cells 2022; 11:cells11030358. [PMID: 35159166 PMCID: PMC8833884 DOI: 10.3390/cells11030358] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
The hematopoietic stem cell (HSC) sustains blood homeostasis throughout life in vertebrates. During embryonic development, HSCs emerge from the aorta-gonads and mesonephros (AGM) region along with hematopoietic progenitors within hematopoietic clusters which are found in the dorsal aorta, the main arterial vessel. Notch signaling, which is essential for arterial specification of the aorta, is also crucial in hematopoietic development and HSC activity. In this review, we will present and discuss the evidence that we have for Notch activity in hematopoietic cell fate specification and the crosstalk with the endothelial and arterial lineage. The core hematopoietic program is conserved across vertebrates and here we review studies conducted using different models of vertebrate hematopoiesis, including zebrafish, mouse and in vitro differentiated Embryonic stem cells. To fulfill the goal of engineering HSCs in vitro, we need to understand the molecular processes that modulate Notch signaling during HSC emergence in a temporal and spatial context. Here, we review relevant contributions from different model systems that are required to specify precursors of HSC and HSC activity through Notch interactions at different stages of development.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, 08003 Barcelona, Spain
- Correspondence: (R.T.); (A.B.); Tel.: +34-933160437 (R.T.); +34-933160440 (A.B.)
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, 08003 Barcelona, Spain
- Josep Carreras Leukemia Research Institute, 08003 Barcelona, Spain
- Correspondence: (R.T.); (A.B.); Tel.: +34-933160437 (R.T.); +34-933160440 (A.B.)
| |
Collapse
|
42
|
Craig DJ, James AW, Wang Y, Tavian M, Crisan M, Péault BM. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:35-43. [PMID: 35641167 PMCID: PMC8895497 DOI: 10.1093/stcltm/szab001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
The vascular wall is comprised of distinct layers controlling angiogenesis, blood flow, vessel anchorage within organs, and cell and molecule transit between blood and tissues. Moreover, some blood vessels are home to essential stem-like cells, a classic example being the existence in the embryo of hemogenic endothelial cells at the origin of definitive hematopoiesis. In recent years, microvascular pericytes and adventitial perivascular cells were observed to include multi-lineage progenitor cells involved not only in organ turnover and regeneration but also in pathologic remodeling, including fibrosis and atherosclerosis. These perivascular mesodermal elements were identified as native forerunners of mesenchymal stem cells. We have presented in this brief review our current knowledge on vessel wall-associated tissue remodeling cells with respect to discriminating phenotypes, functional diversity in health and disease, and potential therapeutic interest.
Collapse
Affiliation(s)
- David J Craig
- Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Center for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Mihaela Crisan
- Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Center for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Bruno M Péault
- Center for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Orthopaedic Hospital Research Center and Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA
- Corresponding author: Bruno Péault, PhD, Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, 615 Charles E. Young Drive South, Los Angeles, CA 90095-7358, USA.
| |
Collapse
|
43
|
Menegatti S, Potts B, Garcia-Alegria E, Paredes R, Lie-A-Ling M, Lacaud G, Kouskoff V. The RUNX1b Isoform Defines Hemogenic Competency in Developing Human Endothelial Cells. Front Cell Dev Biol 2021; 9:812639. [PMID: 34977046 PMCID: PMC8716778 DOI: 10.3389/fcell.2021.812639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
The transcription factor RUNX1 is a master regulator of blood cell specification. During embryogenesis, hematopoietic progenitors are initially generated from hemogenic endothelium through an endothelium-to-hematopoietic transition controlled by RUNX1. Several studies have dissected the expression pattern and role of RUNX1 isoforms at the onset of mouse hematopoiesis, however the precise pattern of RUNX1 isoform expression and biological output of RUNX1-expressing cells at the onset of human hematopoiesis is still not fully understood. Here, we investigated these questions using a RUNX1b:VENUS RUNX1c:TOMATO human embryonic stem cell line which allows multi-parameter single cell resolution via flow cytometry and isolation of RUNX1b-expressing cells for further analysis. Our data reveal the sequential expression of the two RUNX1 isoforms with RUNX1b expressed first in a subset of endothelial cells and during the endothelial to hematopoietic transition while RUNX1c only becomes expressed in fully specified blood cells. Furthermore, our data show that RUNX1b marks endothelial cells endowed with hemogenic potential and that RUNX1b expression level determines hemogenic competency in a dose-dependent manner. Together our data reveal the dynamic of RUNX1 isoforms expression at the onset of human blood specification and establish RUNX1b isoform as the earliest known marker for hemogenic competency.
Collapse
Affiliation(s)
- Sara Menegatti
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- CytoSeek Ltd., Bristol, United Kingdom
| | - Bethany Potts
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Eva Garcia-Alegria
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Stem Cell Process Development, Adaptimmune Ltd., Abingdon, United Kingdom
| | - Roberto Paredes
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| | - Valerie Kouskoff
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
44
|
Weijts B, Yvernogeau L, Robin C. Recent Advances in Developmental Hematopoiesis: Diving Deeper With New Technologies. Front Immunol 2021; 12:790379. [PMID: 34899758 PMCID: PMC8652083 DOI: 10.3389/fimmu.2021.790379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
The journey of a hematopoietic stem cell (HSC) involves the passage through successive anatomical sites where HSCs are in direct contact with their surrounding microenvironment, also known as niche. These spatial and temporal cellular interactions throughout development are required for the acquisition of stem cell properties, and for maintaining the HSC pool through balancing self-renewal, quiescence and lineage commitment. Understanding the context and consequences of these interactions will be imperative for our understanding of HSC biology and will lead to the improvement of in vitro production of HSCs for clinical purposes. The aorta-gonad-mesonephros (AGM) region is in this light of particular interest since this is the cradle of HSC emergence during the embryonic development of all vertebrate species. In this review, we will focus on the developmental origin of HSCs and will discuss the novel technological approaches and recent progress made to identify the cellular composition of the HSC supportive niche and the underlying molecular events occurring in the AGM region.
Collapse
Affiliation(s)
- Bart Weijts
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
| | - Laurent Yvernogeau
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
45
|
Murine AGM single-cell profiling identifies a continuum of hemogenic endothelium differentiation marked by ACE. Blood 2021; 139:343-356. [PMID: 34517413 DOI: 10.1182/blood.2020007885] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/19/2021] [Indexed: 11/20/2022] Open
Abstract
In vitro generation and expansion of hematopoietic stem cells (HSCs) holds great promise for the treatment of any ailment that relies on bone marrow or blood transplantation. To achieve this, it is essential to resolve the molecular and cellular pathways that govern HSC formation in the embryo. HSCs first emerge in the aorta-gonad-mesonephros region (AGM) where a rare subset of endothelial cells, hemogenic endothelium (HE), undergoes an endothelial-to-hematopoietic transition (EHT). Here, we present full-length single-cell-RNA-sequencing of the EHT process with a focus on HE and dorsal aorta niche cells. By using Runx1b and Gfi1/1b transgenic reporter mouse models to isolate HE, we uncovered that the pre-HE to HE continuum is specifically marked by Angiotensin-I converting enzyme (ACE) expression. We established that HE cells begin to enter the cell cycle near the time of EHT initiation when their morphology still resembles endothelial cells. We further demonstrated that RUNX1 AGM niche cells consist of vascular smooth muscle cells and PDGFRa+ mesenchymal cells and can functionally support hematopoiesis. Overall, our study provides new insights into HE differentiation towards HSC and the role of AGM RUNX1+ niche cells in this process. Our expansive scRNA-seq datasets represents a powerful resource to investigate these processes further.
Collapse
|
46
|
Gioacchino E, Koyunlar C, Zink J, de Looper H, de Jong M, Dobrzycki T, Mahony CB, Hoogenboezem R, Bosch D, van Strien PMH, van Royen ME, French PJ, Bindels E, Gussinklo KJ, Monteiro R, Touw IP, de Pater E. Essential role for Gata2 in modulating lineage output from hematopoietic stem cells in zebrafish. Blood Adv 2021; 5:2687-2700. [PMID: 34170285 PMCID: PMC8288679 DOI: 10.1182/bloodadvances.2020002993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/22/2021] [Indexed: 01/22/2023] Open
Abstract
The differentiation of hematopoietic stem cells (HSCs) is tightly controlled to ensure a proper balance between myeloid and lymphoid cell output. GATA2 is a pivotal hematopoietic transcription factor required for generation and maintenance of HSCs. GATA2 is expressed throughout development, but because of early embryonic lethality in mice, its role during adult hematopoiesis is incompletely understood. Zebrafish contains 2 orthologs of GATA2: Gata2a and Gata2b, which are expressed in different cell types. We show that the mammalian functions of GATA2 are split between these orthologs. Gata2b-deficient zebrafish have a reduction in embryonic definitive hematopoietic stem and progenitor cell (HSPC) numbers, but are viable. This allows us to uniquely study the role of GATA2 in adult hematopoiesis. gata2b mutants have impaired myeloid lineage differentiation. Interestingly, this defect arises not in granulocyte-monocyte progenitors, but in HSPCs. Gata2b-deficient HSPCs showed impaired progression of the myeloid transcriptional program, concomitant with increased coexpression of lymphoid genes. This resulted in a decrease in myeloid-programmed progenitors and a relative increase in lymphoid-programmed progenitors. This shift in the lineage output could function as an escape mechanism to avoid a block in lineage differentiation. Our study helps to deconstruct the functions of GATA2 during hematopoiesis and shows that lineage differentiation flows toward a lymphoid lineage in the absence of Gata2b.
Collapse
Affiliation(s)
| | - Cansu Koyunlar
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Joke Zink
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Hans de Looper
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
- Cancer Genome Editing Center, Erasmus MC, Rotterdam, The Netherlands
| | - Madelon de Jong
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Tomasz Dobrzycki
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Christopher B. Mahony
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | | | - Dennis Bosch
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Martin E. van Royen
- Department of Pathology, Cancer Treatment Screening Facility, Erasmus MC Optical Imaging Centre, and
| | - Pim J. French
- Department of Neurology, Cancer Treatment Screening Facility, Erasmus MC, Rotterdam, The Netherlands
| | - Eric Bindels
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Rui Monteiro
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | - Ivo P. Touw
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Emma de Pater
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
- Cancer Genome Editing Center, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
47
|
Correa-Gallegos D, Jiang D, Rinkevich Y. Fibroblasts as confederates of the immune system. Immunol Rev 2021; 302:147-162. [PMID: 34036608 DOI: 10.1111/imr.12972] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
Fibroblastic stromal cells are as diverse, in origin and function, as the niches they fashion in the mammalian body. This cellular variety impacts the spectrum of responses elicited by the immune system. Fibroblast influence on the immune system keeps evolving our perspective on fibroblast roles and functions beyond just a passive structural part of organs. This review discusses the foundations of fibroblastic stromal-immune crosstalk, under the scope of stromal heterogeneity as a basis for tissue-specific tutoring of the immune system. Focusing on the skin as a relevant immunological organ, we detail the complex interactions between distinct fibroblast populations and immune cells that occur during homeostasis, injury repair, scarring, and disease. We further review the relevance of fibroblastic stromal cell heterogeneity and how this heterogeneity is central to regulate the immune system from its inception during embryonic development into adulthood.
Collapse
Affiliation(s)
- Donovan Correa-Gallegos
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Dongsheng Jiang
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
48
|
Lange L, Morgan M, Schambach A. The hemogenic endothelium: a critical source for the generation of PSC-derived hematopoietic stem and progenitor cells. Cell Mol Life Sci 2021; 78:4143-4160. [PMID: 33559689 PMCID: PMC8164610 DOI: 10.1007/s00018-021-03777-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/16/2020] [Accepted: 01/15/2021] [Indexed: 12/02/2022]
Abstract
In vitro generation of hematopoietic cells and especially hematopoietic stem cells (HSCs) from human pluripotent stem cells (PSCs) are subject to intensive research in recent decades, as these cells hold great potential for regenerative medicine and autologous cell replacement therapies. Despite many attempts, in vitro, de novo generation of bona fide HSCs remains challenging, and we are still far away from their clinical use, due to insufficient functionality and quantity of the produced HSCs. The challenges of generating PSC-derived HSCs are already apparent in early stages of hemato-endothelial specification with the limitation of recapitulating complex, dynamic processes of embryonic hematopoietic ontogeny in vitro. Further, these current shortcomings imply the incompleteness of our understanding of human ontogenetic processes from embryonic mesoderm over an intermediate, specialized hemogenic endothelium (HE) to their immediate progeny, the HSCs. In this review, we examine the recent investigations of hemato-endothelial ontogeny and recently reported progress for the conversion of PSCs and other promising somatic cell types towards HSCs with the focus on the crucial and inevitable role of the HE to achieve the long-standing goal—to generate therapeutically applicable PSC-derived HSCs in vitro.
Collapse
Affiliation(s)
- Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, 30625, Hannover, Germany.,REBIRTH, Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625, Hannover, Germany.,REBIRTH, Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625, Hannover, Germany. .,REBIRTH, Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625, Hannover, Germany. .,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
49
|
Julien E, Biasch K, El Omar R, Freund JN, Gachet C, Lanza F, Tavian M. Renin-angiotensin system is involved in embryonic emergence of hematopoietic stem/progenitor cells. Stem Cells 2021; 39:636-649. [PMID: 33480126 DOI: 10.1002/stem.3339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Angiotensin-converting enzyme (ACE), a key element of the renin-angiotensin system (RAS), has recently been identified as a new marker of both adult and embryonic human hematopoietic stem/progenitor cells (HSPCs). However, whether a full renin-angiotensin pathway is locally present during the hematopoietic emergence is still an open question. In the present study, we show that this enzyme is expressed by hematopoietic progenitors in the developing mouse embryo. Furthermore, ACE and the other elements of RAS-namely angiotensinogen, renin, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors-are expressed in the paraaortic splanchnopleura (P-Sp) and in its derivative, the aorta-gonad-mesonephros region, both in human and mouse embryos. Their localization is compatible with the existence of a local autocrine and/or paracrine RAS in these hemogenic sites. in vitro perturbation of the RAS by administration of a specific AT1 receptor antagonist inhibits almost totally the generation of blood CD45-positive cells from dissected P-Sp, implying that angiotensin II signaling is necessary for the emergence of hematopoietic cells. Conversely, addition of exogenous angiotensin II peptide stimulates hematopoiesis in culture, with an increase in the number of immature c-Kit+ CD41+ CD31+ CD45+ hematopoietic progenitors, compared to the control. These results highlight a novel role of local-RAS during embryogenesis, suggesting that angiotensin II, via activation of AT1 receptor, promotes the emergence of undifferentiated hematopoietic progenitors.
Collapse
Affiliation(s)
- Emmanuelle Julien
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - Katia Biasch
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France.,University of Strasbourg, INSERM, IRFAC/UMR-S1113, ITI InnoVec, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Reine El Omar
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France.,IMoPA, UMR7365 CNRS-University of Lorraine, Vandœuvre Les Nancy, France
| | - Jean-Noël Freund
- University of Strasbourg, INSERM, IRFAC/UMR-S1113, ITI InnoVec, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Christian Gachet
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - François Lanza
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - Manuela Tavian
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France.,University of Strasbourg, INSERM, IRFAC/UMR-S1113, ITI InnoVec, FHU ARRIMAGE, FMTS, Strasbourg, France
| |
Collapse
|
50
|
Ganuza M, Hall T, Obeng EA, McKinney-Freeman S. Clones assemble! The clonal complexity of blood during ontogeny and disease. Exp Hematol 2020; 83:35-47. [PMID: 32006606 PMCID: PMC8343955 DOI: 10.1016/j.exphem.2020.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 01/30/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) govern the daily expansion and turnover of billions of specialized blood cells. Given their clinical utility, much effort has been made toward understanding the dynamics of hematopoietic production from this pool of stem cells. An understanding of hematopoietic stem cell clonal dynamics during blood ontogeny could yield important insights into hematopoietic regulation, especially during aging and repeated exposure to hematopoietic stress-insults that may predispose individuals to the development of hematopoietic disease. Here, we review the current state of research regarding the clonal complexity of the hematopoietic system during embryogenesis, adulthood, and hematologic disease.
Collapse
Affiliation(s)
- Miguel Ganuza
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Trent Hall
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Esther A Obeng
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|