1
|
Bertozzi TM, Ferguson-Smith AC. Metastable epialleles and their contribution to epigenetic inheritance in mammals. Semin Cell Dev Biol 2020; 97:93-105. [PMID: 31551132 DOI: 10.1016/j.semcdb.2019.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 02/02/2023]
Abstract
Many epigenetic differences between individuals are driven by genetic variation. Mammalian metastable epialleles are unusual in that they show variable DNA methylation states between genetically identical individuals. The occurrence of such states across generations has resulted in their consideration by many as strong evidence for epigenetic inheritance in mammals, with the classic Avy and AxinFu mouse models - each products of repeat element insertions - being the most widely accepted examples. Equally, there has been interest in exploring their use as epigenetic biosensors given their susceptibility to environmental compromise. Here we review the classic murine metastable epialleles as well as more recently identified candidates, with the aim of providing a more holistic understanding of their biology. We consider the extent to which epigenetic inheritance occurs at metastable epialleles and explore the limited mechanistic insights into the establishment of their variable epigenetic states. We discuss their environmental modulation and their potential relevance in genome regulation. In light of recent whole-genome screens for novel metastable epialleles, we point out the need to reassess their biological relevance in multi-generational studies and we highlight their value as a model to study repeat element silencing as well as the mechanisms and consequences of mammalian epigenetic stochasticity.
Collapse
Affiliation(s)
- Tessa M Bertozzi
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
2
|
Escribá MJ, Escrich L, Galiana Y, Grau N, Galán A, Pellicer A. Kinetics of the early development of uniparental human haploid embryos. Fertil Steril 2016; 105:1360-1368.e1. [DOI: 10.1016/j.fertnstert.2015.12.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
|
3
|
Van Hoeck V, Rizos D, Gutierrez-Adan A, Pintelon I, Jorssen E, Dufort I, Sirard MA, Verlaet A, Hermans N, Bols PEJ, Leroy JLMR. Interaction between differential gene expression profile and phenotype in bovine blastocysts originating from oocytes exposed to elevated non-esterified fatty acid concentrations. Reprod Fertil Dev 2015; 27:372-84. [PMID: 24360349 DOI: 10.1071/rd13263] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/28/2013] [Indexed: 02/03/2023] Open
Abstract
Maternal metabolic disorders linked to lipolysis are major risk factors for reproductive failure. A notable feature of such disorders is increased non-esterified fatty acid (NEFA) concentrations in the blood, which are reflected in the ovarian follicular fluid. Elevated NEFA concentrations impact on the maturing oocyte and even alter subsequent embryo physiology. The aetiological mechanisms have not been fully elucidated. Therefore, in the present study, bovine in vitro maturing cumulus-oocyte complexes were exposed (24 h) to three different maturation treatments containing: (1) physiological (72 µM) NEFA concentrations (=control); (2) elevated (75 µM) stearic acid (SA) concentrations (=HIGH SA); and (3) elevated (425 µM) NEFA concentrations (=HIGH COMBI). Zygotes were fertilised and cultured following standard procedures. Transcriptomic analyses in resulting Day 7.5 blastocysts revealed that the major pathways affected are related to lipid and carbohydrate metabolism in HIGH COMBI embryos and to lipid metabolism and cell death in HIGH SA embryos. Furthermore, lower glutathione content and a reduced number of lipid droplets per cell were observed in HIGH SA-exposed oocytes and resulting morulae, respectively, compared with their HIGH COMBI-exposed counterparts. Vitrified embryos originating from HIGH SA-exposed oocytes tended to exhibit lower survival rates compared with controls. These data suggest possible mechanisms explaining why females across species suffering lipolytic disorders experience difficulties in conceiving.
Collapse
Affiliation(s)
- V Van Hoeck
- Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - D Rizos
- Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, INIA, Ctra. de la Coruna Km 5.9, 28040 Madrid, Spain
| | - A Gutierrez-Adan
- Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, INIA, Ctra. de la Coruna Km 5.9, 28040 Madrid, Spain
| | - I Pintelon
- Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - E Jorssen
- Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - I Dufort
- Département des Sciences Animales Pavillon des services, INAF, Université Laval, G1V 0A6 Québec, Canada
| | - M A Sirard
- Département des Sciences Animales Pavillon des services, INAF, Université Laval, G1V 0A6 Québec, Canada
| | - A Verlaet
- Departement Pharmaceutical Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - N Hermans
- Departement Pharmaceutical Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P E J Bols
- Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - J L M R Leroy
- Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
4
|
Pfeiffer MJ, Taher L, Drexler H, Suzuki Y, Makałowski W, Schwarzer C, Wang B, Fuellen G, Boiani M. Differences in embryo quality are associated with differences in oocyte composition: a proteomic study in inbred mice. Proteomics 2015; 15:675-87. [PMID: 25367296 DOI: 10.1002/pmic.201400334] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/10/2014] [Accepted: 10/29/2014] [Indexed: 12/18/2022]
Abstract
Current models of early mouse development assign roles to stochastic processes and epigenetic regulation, which are considered to be as influential as the genetic differences that exist between strains of the species Mus musculus. The aim of this study was to test whether mouse oocytes vary from each other in the abundance of gene products that could influence, prime, or even predetermine developmental trajectories and features of derivative embryos. Using the paradigm of inbred mouse strains, we quantified 2010 protein groups (SILAC LC-MS/MS) and 15205 transcripts (RNA deep sequencing) present simultaneously in oocytes of four strains tested (129/Sv, C57Bl/6J, C3H/HeN, DBA/2J). Oocytes differed according to donor strain in the abundance of catalytic and regulatory proteins, as confirmed for a subset (bromodomain adjacent to zinc finger domain, 1B [BAZ1B], heme oxygenase 1 [HMOX1], estrogen related receptor, beta [ESRRB]) via immunofluorescence in situ. Given a Pearson's r correlation coefficient of 0.18-0.20, the abundance of oocytic proteins could not be predicted from that of cognate mRNAs. Our results document that a prerequisite to generate embryo diversity, namely the different abundances of maternal proteins in oocytes, can be studied in the model of inbred mouse strains. Thus, we highlight the importance of proteomic quantifications in modern embryology. All MS data have been deposited in the ProteomeXchange with identifier PXD001059 (http://proteomecentral.proteomexchange.org/dataset/PXD001059).
Collapse
Affiliation(s)
- Martin J Pfeiffer
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Porro F, Bockor L, De Caneva A, Bortolussi G, Muro AF. Generation of Ugt1-deficient murine liver cell lines using TALEN technology. PLoS One 2014; 9:e104816. [PMID: 25118822 PMCID: PMC4132024 DOI: 10.1371/journal.pone.0104816] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/17/2014] [Indexed: 12/22/2022] Open
Abstract
The Crigler-Najjar Syndrome Type I (CNSI) is a rare genetic disorder caused by mutations in the Ugt1a1 gene. It is characterized by unconjugated hyperbilirubinemia that may result in severe neurologic damage and death if untreated. To date, liver transplantation is the only curative treatment. With the aim of generating mutant cell lines of the Ugt1 gene, we utilized the TALEN technology to introduce site-specific mutations in Ugt1 exon 4. We report a fast and efficient method to perform gene knockout in tissue culture cells, based on the use of TALEN pairs targeting restriction enzyme (RE) sites in the region of interest. This strategy overcame the presence of allele-specific single nucleotide polymorphisms (SNPs) and pseudogenes, conditions that limit INDELs' detection by Surveyor. We obtained liver-derived murine N-Muli cell clones having INDELs with efficiency close to 40%, depending on the TALEN pair and RE target site. Sequencing of the target locus and WB analysis of the isolated cell clones showed a high proportion of biallelic mutations in cells treated with the most efficient TALEN pair. Ugt glucuronidation activity was reduced basal levels in the biallelic mutant clones. These mutant liver-derived cell lines could be a very useful tool to study biochemical aspects of Ugt1 enzyme activity in a more natural context, such as substrate specificity, requirement of specific co-factors, the study of inhibitors and other pharmacological aspects, and to correlate enzyme activity to the presence of specific mutations in the gene, by adding back to the mutant cell clones specific variants of the Ugt1 gene. In addition, since genome editing has recently emerged as a potential therapeutic approach to cure genetic diseases, the definition of the most efficient TALEN pair could be an important step towards setting up a platform to perform genome editing in CNSI.
Collapse
Affiliation(s)
- Fabiola Porro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, TS, Italy
| | - Luka Bockor
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, TS, Italy
| | - Alessia De Caneva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, TS, Italy
| | - Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, TS, Italy
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, TS, Italy
| |
Collapse
|
6
|
Uniparental embryos in the study of genomic imprinting. Methods Mol Biol 2012; 925:3-19. [PMID: 22907487 DOI: 10.1007/978-1-62703-011-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Nuclear transplantation has been used to study genomic imprinting. Available nuclear transfer methods include pronuclear transfer (PNT), intracytoplasmic sperm injection, and round spermatid injection. By generating uniparental embryos that have exclusively paternal or maternal genomes, it is possible to study the functions of the parental genomes separately. It is possible to compare functions in haploid and diploid states. In addition, nuclear transfer allows the effects of the ooplasm, including mitochondria, to be distinguished from effects of the maternally inherited chromosomes. PNTs can also be used to study epigenetic modifications of the parental genomes by the ooplasm. This chapter reviews the methods employed to generate uniparental embryonic constructs for these purposes.
Collapse
|
7
|
Abstract
AbstractSeveral common adult diseases appear to be related to impaired fetal growth and this may be caused either by nutritional inadequacies at particular stages of pregnancy or by variation in alleles at specific growth loci. Little is known about the genes involved in the underlying mechanism. This review proposes that at least some of the effects have their origins at imprinted loci, genes that are unusual because they are expressed from only one parental allele. Many imprinted genes are crucial for fetal growth and determine birthweight. They can be disrupted in the early embryo by environmental influences and these disruptions can be inherited through many cell cycles into adult tissues. Their disruption can affect specific organs during fetal development and disruption could affect adult disease in a variety of direct and indirect means. Imprinted genes may be particularly vulnerable to disruption as they are functionally haploid and their expression is regulated by different means from the rest of the genome. Thus many imprinted genes provide plausible candidates for programming adult disease and warrant further study in this context.
Collapse
|
8
|
Van Hoeck V, Sturmey RG, Bermejo-Alvarez P, Rizos D, Gutierrez-Adan A, Leese HJ, Bols PEJ, Leroy JLMR. Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS One 2011; 6:e23183. [PMID: 21858021 PMCID: PMC3157355 DOI: 10.1371/journal.pone.0023183] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/07/2011] [Indexed: 12/21/2022] Open
Abstract
Elevated concentrations of serum non-esterified fatty acids (NEFA), associated with maternal disorders such as obesity and type II diabetes, alter the ovarian follicular micro-environment and have been associated with subfertility arising from reduced oocyte developmental competence. We have asked whether elevated NEFA concentrations during oocyte maturation affect the development and physiology of zygotes formed from such oocytes, using the cow as a model. The zygotes were grown to blastocysts, which were evaluated for their quality in terms of cell number, apoptosis, expression of key genes, amino acid turnover and oxidative metabolism. Oocyte maturation under elevated NEFA concentrations resulted in blastocysts with significantly lower cell number, increased apoptotic cell ratio and altered mRNA abundance of DNMT3A, IGF2R and SLC2A1. In addition, the blastocysts displayed reduced oxygen, pyruvate and glucose consumption, up-regulated lactate consumption and higher amino acid metabolism. These data indicate that exposure of maturing oocytes to elevated NEFA concentrations has a negative impact on fertility not only through a reduction in oocyte developmental capacity but through compromised early embryo quality, viability and metabolism.
Collapse
Affiliation(s)
- Veerle Van Hoeck
- Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Liang CG, Han Z, Cheng Y, Zhong Z, Latham KE. Effects of ooplasm transfer on paternal genome function in mice. Hum Reprod 2009; 24:2718-28. [PMID: 19661122 DOI: 10.1093/humrep/dep286] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The ooplasm plays a central role in forming the paternal pronucleus, and subsequently in regulating the expression of paternally inherited chromosomes. Previous studies in mice have revealed genetic differences in paternal genome processing by ooplasm of different genotypes. Ooplasm donation coupled to intracytoplasmic sperm injection (ICSI) has been used in human assisted reproductive technology (ART). This procedure exposes the developing paternal pronucleus to 'foreign' ooplasm, which may direct aberrant epigenetic processing. The potential effects of the foreign ooplasm on epigenetic information in the paternal pronucleus are unknown; however, some human progeny from ooplasm donation procedures display abnormalities. METHODS In this study, we employed inter-genotype ooplasm transfer followed by ICSI using two mouse strains, C57BL/6 and DBA/2, to explore the influence of foreign ooplasm on paternal pronucleus function. In order to assay for effects on the paternal genome without masking effects of the maternal genome, we examined ooplasm effects in diploid androgenones, which are produced by pronuclear transfer to contain exclusively two paternal sets of chromosomes, in combination with ICSI. RESULTS There was no significant effect of intra-strain ooplasm transfer among androgenones made with either C57BL/6 or DBA/2 oocytes. There was a significant negative effect on androgenone blastocyst development with inter-genotype transfer (10% volume) of DBA/2 ooplasm to C57BL/6 oocytes (P < 0.05). The reciprocal inter-genotype ooplasm transfer had no significant effect. CONCLUSIONS Thus, inter-genotype ooplasm transfer in conjunction with ICSI can alter the function of the paternal genome. However, the effect of foreign ooplasm is restricted to a negative effect, with no evidence of a positive effect. This study provides important new information about the possible consequences of ooplasm donation in human ART.
Collapse
Affiliation(s)
- Cheng-Guang Liang
- The Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
10
|
Cheng Y, Wang K, Kellam LD, Lee YS, Liang CG, Han Z, Mtango NR, Latham KE. Effects of ooplasm manipulation on DNA methylation and growth of progeny in mice. Biol Reprod 2008; 80:464-72. [PMID: 19073997 DOI: 10.1095/biolreprod.108.073593] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
New techniques to boost male and female fertility are being pioneered at a rapid pace in fertility clinics to increase the efficiency of assisted reproduction methods in couples in which natural conception has not been achieved. This study investigates the possible epigenetic effects of ooplasm manipulation methods on postnatal growth and development using a mouse genetic model, with particular emphasis on the possible effects of intergenotype manipulations. We performed interstrain and control intrastrain maternal pronuclear transfers, metaphase-II spindle transfers, and ooplasm transfer between C57BL/6 and DBA/2 mice, and found no major, long-term growth defects or epigenetic abnormalities, in either males or females, associated with intergenotype transfers. Ooplasm transfer itself was associated with reduced viability, and additional subtle effects of ooplasm strain of origin were observed. Both inter- and intrastrain ooplasm transfer were associated with subtle, transient effects on growth early in life. We also performed inter- and intrastrain germinal vesicle transfers (GVTs). Interstrain GVT females, but not males, had significantly lower body weights at birth and thereafter compared with the intrastrain GVT and non-GVT controls. No GVT-associated changes were observed in DNA methylation of the Mup1, Rasgrf1, H19, Snrpn, or Peg3 genes, nor any difference in expression of the imprinted Rasgrf1, Igf2r, or Mest genes. These results indicate that some ooplasm manipulation procedures may exert subtle effects on growth early in life, while intergenotype GVT can result in significant growth deficiencies after birth.
Collapse
Affiliation(s)
- Yong Cheng
- The Fels Institute for Cancer Research and Molecular Biology, Temple University Medical School, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mtango NR, Potireddy S, Latham KE. Oocyte quality and maternal control of development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:223-90. [PMID: 18703408 DOI: 10.1016/s1937-6448(08)00807-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The oocyte is a unique and highly specialized cell responsible for creating, activating, and controlling the embryonic genome, as well as supporting basic processes such as cellular homeostasis, metabolism, and cell cycle progression in the early embryo. During oogenesis, the oocyte accumulates a myriad of factors to execute these processes. Oogenesis is critically dependent upon correct oocyte-follicle cell interactions. Disruptions in oogenesis through environmental factors and changes in maternal health and physiology can compromise oocyte quality, leading to arrested development, reduced fertility, and epigenetic defects that affect long-term health of the offspring. Our expanding understanding of the molecular determinants of oocyte quality and how these determinants can be disrupted has revealed exciting new insights into the role of oocyte functions in development and evolution.
Collapse
Affiliation(s)
- Namdori R Mtango
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
12
|
Smith LC, Thundathil J, Filion F. Role of the mitochondrial genome in preimplantation development and assisted reproductive technologies. Reprod Fertil Dev 2006; 17:15-22. [PMID: 15745628 DOI: 10.1071/rd04084] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Accepted: 10/01/2004] [Indexed: 11/23/2022] Open
Abstract
Our fascination for mitochondria relates to their origin as symbiotic, semi-independent organisms on which we, as eukaryotic beings, rely nearly exclusively to produce energy for every cell function. Therefore, it is not surprising that these organelles play an essential role in many events during early development and in artificial reproductive technologies (ARTs) applied to humans and domestic animals. However, much needs to be learned about the interactions between the nucleus and the mitochondrial genome (mtDNA), particularly with respect to the control of transcription, replication and segregation during preimplantation. Nuclear-encoded factors that control transcription and replication are expressed during preimplantation development in mice and are followed by mtDNA transcription, but these result in no change in mtDNA copy number. However, in cattle, mtDNA copy number increases during blastocyst expansion and hatching. Nuclear genes influence the mtDNA segregation patterns in heteroplasmic animals. Because many ARTs markedly modify the mtDNA content in embryos, it is essential that their application is preceded by careful experimental scrutiny, using suitable animal models.
Collapse
Affiliation(s)
- Lawrence C Smith
- Centre de Recherche en Reproduction Animale (CRRA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec J2S 7C6, Canada.
| | | | | |
Collapse
|
13
|
Duselis AR, Wiley CD, O'Neill MJ, Vrana PB. Genetic evidence for a maternal effect locus controlling genomic imprinting and growth. Genesis 2006; 43:155-65. [PMID: 16283622 DOI: 10.1002/gene.20166] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Crosses between two species of deer mouse (Peromyscus) yield dramatic parent-of-origin effects. Female P. maniculatus (BW) crossed with male P. polionotus (PO) produce animals smaller than either parent. PO females crossed with BW males yield lethal overgrowth that has been associated with loss-of-imprinting (LOI). Previously, we mapped two loci influencing fetal growth. These two loci, however, do not account for the LOI, nor for the dysmorphic phenotypes. Here we report that maternal genetic background strongly influences the LOI. Analyses of crosses wherein maternal genetic background is varied suggest that this effect is likely due to the action of a small number of loci. We have termed these putative loci Meil. Estimation of Meil loci number was confounded by skewed allelic ratios in the intercross line employed. We show that the Meil loci are not identical to any of the DNA methyltransferases shown to be involved in regulation of genomic imprinting.
Collapse
Affiliation(s)
- Amanda R Duselis
- Department of Biological Chemistry, College of Medicine, University of California Irvine, 92799-1700, USA
| | | | | | | |
Collapse
|
14
|
Han Z, Chung YG, Gao S, Latham KE. Maternal Factors Controlling Blastomere Fragmentation in Early Mouse Embryos1. Biol Reprod 2005; 72:612-8. [PMID: 15537860 DOI: 10.1095/biolreprod.104.035444] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Interactions between sperm and egg are required to maintain embryo viability and cellular integrity. Differential transcriptional activities and epigenetic differences that include genomic imprinting provide mechanisms by which complementary parental genome functions support early embryogenesis. We previously showed that cytofragmentation can be influenced by the specific combination of maternal and paternal genotypes. Using maternal pronuclear transfer in mouse embryos, we examined the cellular basis for the maternal genotype effect. We found that the maternal genotype effect is predominantly controlled by the maternal pronucleus, with a lesser role played by the ooplasm. This effect of the maternal pronucleus is sensitive to alpha-amanitin treatment. The effect of the maternal component of the embryonic genome on cytofragmentation constitutes the earliest known effect of the embryonic genome on mammalian embryo phenotype. The results also indicate that clinical procedures seeking to define or manipulate oocyte quality in humans should take into account early effects of the embryonic genome, particularly the maternal genome.
Collapse
Affiliation(s)
- Zhiming Han
- The Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
15
|
Ibáñez E, Albertini DF, Overström EW. Effect of genetic background and activating stimulus on the timing of meiotic cell cycle progression in parthenogenetically activated mouse oocytes. Reproduction 2005; 129:27-38. [PMID: 15615896 DOI: 10.1530/rep.1.00452] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
With the aim of investigating the effects of oocyte genotype and activating stimulus on the timing of nuclear events after activation, oocytes collected from hybrid B6D2F1, inbred C57BL/6 and outbred CF-1 and immunodeficient nude (NU/+) females were activated using ethanol or strontium and fixed at various time-points. Meiotic status, spindle rotation and second polar body (PB2) extrusion were monitored by fluorescence microscopy using DNA-, microtubule- and microfilament-selective probes. Although activation efficiency was similar in all groups of oocytes, a significant percentage of CF-1 and NU/+ oocytes treated with ethanol and of C57BL/6 oocytes treated either with ethanol or strontium failed to complete activation and became arrested at a new metaphase stage (MIII) after PB2 extrusion. C57BL/6 oocytes also showed slower release from MII arrest but faster progression to telophase (TII) after ethanol exposure, and they exhibited the most rapid exit from TII under both activation treatments. Strontium caused delayed meiotic resumption, spindle rotation and PB2 extrusion, but rapid TII exit, in B6D2F1, CF-1 and NU/+ oocytes when compared with ethanol. Compared with all other strains, NU/+ oocytes were significantly slower in completing spindle rotation and PB2 extrusion, irrespective of the activating stimulus, and a significant decrease in activation rates and pace of meiotic progression was observed after strontium exposure. Thus, our findings demonstrated that the kinetics of meiosis resumption and completion, spindle rotation and PB2 extrusion following parthenogenetic activation depends on both genotype-specific factors and on the activation treatment applied.
Collapse
Affiliation(s)
- Elena Ibáñez
- Department of Biomedical Sciences, Tufts University School of Veterinary Medicine, North Grafton, Massachusetts 01536, USA
| | | | | |
Collapse
|
16
|
Chamberlain SJ, Johnstone KA, DuBose AJ, Simon TA, Bartolomei MS, Resnick JL, Brannan CI. Evidence for genetic modifiers of postnatal lethality in PWS-IC deletion mice. Hum Mol Genet 2004; 13:2971-7. [PMID: 15459179 DOI: 10.1093/hmg/ddh314] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prader-Willi syndrome (PWS), most notably characterized by infantile hypotonia, short stature and morbid obesity, results from deficiencies in multiple genes that are subject to genomic imprinting. The usefulness of current mouse models of PWS has been limited by postnatal lethality in affected mice. Here, we report the survival of the PWS-imprinting center (IC) deletion mice on a variety of strain backgrounds. Expression analyses of the genes affected in the PWS region suggest that while there is low-level expression from both parental alleles in PWS-IC deletion pups, this expression does not explain their survival on certain strain backgrounds. Rather, the data provide evidence for strain-specific modifier genes that support the survival of PWS-IC deletion mice.
Collapse
Affiliation(s)
- Stormy J Chamberlain
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Cloning by the transfer of adult somatic cell nuclei to oocytes has produced viable offspring in a variety of mammalian species. The technology is still in its initial stages of development. Studies to date have answered several basic questions related to such issues as genome potency, life expectancy of clones, mitochondrial fates, and feasibility of inter-species nuclear transfer. They have also raised new questions related to the control of nuclear reprogramming and function. These questions are reviewed here.
Collapse
Affiliation(s)
- Keith E Latham
- The Fels Institute for Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
18
|
Gao S, Czirr E, Chung YG, Han Z, Latham KE. Genetic variation in oocyte phenotype revealed through parthenogenesis and cloning: correlation with differences in pronuclear epigenetic modification. Biol Reprod 2003; 70:1162-70. [PMID: 14681201 DOI: 10.1095/biolreprod.103.024216] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Previous studies revealed that oocytes of different genetic strains (e.g, C57BL/6 and DBA/2) modify maternal and paternal pronuclei differently, affecting early preimplantation development. To determine whether these strain-dependent effects would also apply to oocyte modifications of somatic cell nuclei introduced during cloning procedures, we compared the efficiency of development of parthenogenetic and cloned embryos made with DBA/2, C57BL/6, and (B6D2)F1 oocytes. Our results reveal significant differences in the ability of oocytes of different genetic backgrounds to support parthenogenetic development in different culture media. Additionally, our results reveal oocyte strain-dependent differences in the ability to support cloned embryo development beyond what can be accounted for on the basis of differences in parthenogenesis. Thus, the previously documented differences in oocyte-directed parental genome modification are accompanied in the same strains by differences in the ability of oocytes to modify somatic cell nuclei and support clonal development, raising the possibility that these oocyte functions may be mediated by related mechanisms. These results provide a genetic basis for further studies seeking to identify specific genes that determine oocyte phenotype, as well as genes that determine the success of nuclear reprogramming and clonal development.
Collapse
Affiliation(s)
- Shaorong Gao
- The Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | |
Collapse
|
19
|
Hiendleder S, Prelle K, Brüggerhoff K, Reichenbach HD, Wenigerkind H, Bebbere D, Stojkovic M, Müller S, Brem G, Zakhartchenko V, Wolf E. Nuclear-cytoplasmic interactions affect in utero developmental capacity, phenotype, and cellular metabolism of bovine nuclear transfer fetuses. Biol Reprod 2003; 70:1196-205. [PMID: 14681199 DOI: 10.1095/biolreprod.103.023028] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We generated a clone of bovine somatic cell nuclear transfer embryos using oocyte pools from defined maternal sources to study nuclear-cytoplasmic interactions. Nucleocytoplasmic hybrids were reconstructed with Bos taurus (Brown Swiss) granulosa cells and oocytes that contained B. taurus A (Simmental), B. taurus B (Simmental), or Bos indicus (Dwarf Zebu) cytoplasm. Another set of embryos was reconstructed with randomly selected Brown Swiss (B. taurus R) oocytes. Embryo transfer resulted in nine (12.5%), nine (13.8%), three (50%), and 11 (16.7%) Day 80 fetuses, of which eight (11.1%), three (4.6%), three (50%), and 10 (15.2%) were viable, respectively. The proportion of viable fetuses was affected by cytoplasm (likelihood ratio test, P < 0.02) and was higher for embryos with B. indicus cytoplasm than for the B. taurus A (P < 0.05) and B (P < 0.01) groups. Furthermore, the proportion of surviving Day 80 fetuses was reduced for B. taurus B as compared with B. taurus A and B. taurus R cytoplasm (P < 0.05 and P < 0.02). Body weight of nucleocytoplasmic hybrid fetuses was not significantly different from Brown Swiss control fetuses produced by artificial insemination (AI), but fetuses reconstructed with random cytoplasts of the same breed as the nuclear donor exhibited overgrowth (P < 0.01) and a higher coefficient of variation in weight. Furthermore, body weight, crown rump length, thorax circumference (P < 0.05), and femur length (P < 0.01) of fetuses with B. taurus A cytoplasm differed from fetuses with B. taurus R cytoplasms. Fetal skin, heart, and liver cells with B. indicus cytoplasm showed a greater increase in number per time period (P < 0.001) and oxygen consumption rate per cell (skin and liver, P < 0.001; heart, P < 0.08) in comparison with their counterparts with B. taurus A cytoplasm. These data point to complex oocyte cytoplasm-dependent epigenetic modifications and/or nuclear DNA-mitochondrial DNA interactions with relevance to nuclear transfer and other reproductive technologies such as ooplasmic transfer in human assisted reproduction.
Collapse
Affiliation(s)
- Stefan Hiendleder
- Department of Molecular Animal Breeding and Biotechnology, Gene Center of the Ludwig-Maximilian University, D-81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Ooplasmic transplantation is based on the premise that ooplasmic components are compromised in some individuals. In theory, the transfer of small amounts of healthy ooplasm can correct such deficits, allowing for improved development and implantation. The technique is based on a well-established background of experimental embryology demonstrating that cytoplasmic manipulation in oocytes and early embryos can be entirely compatible with normal development. Cytoplasm has been manipulated via karyoplast and cytoplast transfer and by cytoplasmic injection. Term development has been obtained following such manipulations in a variety of mammalian species. While some manipulative scenarios have exhibited compromised development, others have exhibited improved development. Developmental problems involving specific epigenetic and mitochondrial incompatibilities have been observed in a very limited subset of animal studies. These studies are based on genetic and physical models that have little relation to the actual substance of ooplasmic transplantation in the human. In fact, the majority of animal studies suggest that ooplasmic transplantation is well-founded and unlikely to result in negative developmental consequences. Furthermore, there are considerable physical, physiological and developmental differences between human and rodent eggs and embryos. These differences suggest that potentially negative issues raised by rodent results may not be relevant in the human.
Collapse
Affiliation(s)
- Henry E Malter
- The Institute for Reproductive Medicine and Science of Saint Barnabas Medical Center, 101 Old Short Hills Road, Suite 501, West Orange, NJ 07052, USA.
| | | |
Collapse
|
21
|
Smith LC, Bordignon V, Couto MM, Garcia SM, Yamazaki W, Meirelles FV. Mitochondrial genotype segregation and the bottleneck. Reprod Biomed Online 2002; 4:248-55. [PMID: 12709275 DOI: 10.1016/s1472-6483(10)61814-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mitochondria can produce a wide range of effects on many physiological systems, and these effects and their severity can vary with the ratio of mutant and wild-type mitochondrial genotype, i.e. heteroplasmy. It is therefore critical to understand the biological mechanisms controlling the segregation of mitochondrial genes, not only in somatic tissue, but also in the germ cell lineage, since the latter is the means of transmission of pathological mutations across generations. The bottleneck hypothesis was proposed to explain the homogeneity of mitochondrial genomes within organisms. This review addresses information available both from in-vitro cellular models and in-vivo animal models that have been designed to investigate mitochondrial DNA segregation in somatic and in germ cells at different stages of development. It appears that segregation occurs in multiple steps during development, and not in a single location or a single time during germ cell transmission. Nonetheless, persistent heteroplasmy of some lineages, replicative advantage of seemingly neutral genotypes and the effect of nuclear background on mitochondrial DNA segregation patterns are only a few of the observations that remain unexplained. Only after further characterization of these mechanisms will we be able to provide proper reproductive counselling to women carrying heteroplasmic mitochondrial DNA.
Collapse
Affiliation(s)
- Lawrence C Smith
- Centre de recherche en reproduction animale (CRRA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada J2S 7C6.
| | | | | | | | | | | |
Collapse
|
22
|
Pickard B, Dean W, Engemann S, Bergmann K, Fuermann M, Jung M, Reis A, Allen N, Reik W, Walter J. Epigenetic targeting in the mouse zygote marks DNA for later methylation: a mechanism for maternal effects in development. Mech Dev 2001; 103:35-47. [PMID: 11335110 DOI: 10.1016/s0925-4773(01)00329-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The transgenic sequences in the mouse line TKZ751 are demethylated on a DBA/2 inbred strain background but become highly methylated at postimplantation stages in offspring of a cross with a BALB/c female. In the reciprocal cross the transgene remains demethylated suggesting that imprinted BALB/c methylation modifiers or egg cytoplasmic factors are responsible for this striking maternal effect on de novo methylation. Reciprocal pronuclear transplantation experiments were carried out to distinguish between these mechanisms. The results indicate that a maternally-derived oocyte cytoplasmic factor from BALB/c marks the TKZ751 sequences at fertilization; this mark and postzygotic BALB/c modifiers are both required for de novo methylation of the target sequences at postimplantation stages. Using genetic linkage analyses we mapped the maternal effect to a locus on chromosome 17. Moreover, seven postzygotic modifier loci were identified that increase the postimplantation level of methylation. Analysis of interactions between the maternal and the postzygotic loci shows that both are needed for de novo methylation in the offspring. The combined experiments thus reveal a novel epigenetic marking process at fertilization which targets DNA for later methylation in the foetus. The most significant consequence is that the genotype of the mother can influence the epigenotype of the offspring by this marking process. A number of parental and imprinting effects may be explained by this epigenetic marking.
Collapse
Affiliation(s)
- B Pickard
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB2 4AT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cohen-Tannoudji M, Vandormael-Pournin S, Le Bras S, Coumailleau F, Babinet C, Baldacci P. A 2-Mb YAC/BAC-based physical map of the ovum mutant (Om) locus region on mouse chromosome 11. Genomics 2000; 68:273-82. [PMID: 10995569 DOI: 10.1006/geno.2000.6297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The embryonic lethal phenotype observed when DDK females are crossed with males from other strains results from a deleterious interaction between the egg cytoplasm and the paternal pronucleus soon after fertilization. We have previously mapped the Om locus responsible for this phenotype, called the DDK syndrome, to an approximately 2-cM region of chromosome 11. Here, we report the generation of a physical map of 28 yeast and bacterial artificial chromosome clones encompassing the entire genetic interval containing the Om locus. This contig, spanning approximately 2 Mb, was used to map precisely genes and genetic markers of the region. We determined the maximum physical interval for Om to be 1400 kb. In addition, 11 members of the Scya gene family were found to be organized into two clusters at the borders of the Om region. Two other genes (Rad51l3 and Schlafen 2) and one EST (D11Wsu78e) were also mapped in the Om region. This integrated map provides support for the identification of additional candidate genes for the DDK syndrome.
Collapse
Affiliation(s)
- M Cohen-Tannoudji
- Unité de Biologie du Développement, CNRS URA 1960, Institut Pasteur, 25 rue du Dr. Roux, Paris Cedex 15, 75724, France.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The developing oocyte constitutes the source of a unique and essential molecular legacy that supports embryo metabolism for a substantial period after fertilization and that also directs important epigenetic events that prepare the embryonic genome for transcription and faithful execution of the developmental program. Parthenogenetically activated embryos provide a useful tool with which to examine how maternally derived factors contribute to early development. They also provide a means for evaluating genetic effects on the maternal genomic imprinting process. We report here that the genetic background of the oocyte affects trophectoderm function at the blastocyst stage. Parthenogenetic embryos obtained from activated (B6D2)F1 oocytes hatch efficiently in culture, whereas parthenogenones from C57BL/6 oocytes hatch less efficiently. Fertilized embryos of both strains hatch efficiently. The (B6D2)F1 parthenogenones also undergo blastocoel re-expansion after treatment with cytoskeletal inhibitors more rapidly than do C57BL/6 parthenogenones and exhibit a moderately greater abundance of the Na+, K(+)-ATPase alpha 1 subunit mRNA. Surprisingly, parthenogenones of both strains undergo blastocoel re-expansion more rapidly than do their normal fertilized counterparts. Parthenogenones of both types are able to attach efficiently in culture after removal of the zona pellucida. These observations indicate that significant genetic effects of maternal genotype on trophectoderm function are revealed in the absence of a paternal genetic contribution and that trophectoderm function also differs between parthenogenetic embryos and fertilized embryos. The differences observed between parthenogenetic and fertilized embryos indicate a likely role for one or more imprinted genes in the development of hatching and blastocoel expansion ability. The effect of maternal genotype on parthenogenetic embryo phenotype is consistent with possible differences in maternal genome imprinting or differences in ooplasm composition that have long-term effects on development. The specific differences in hatching and blastocoel re-expansion between parthenogenones of the two strains may be the result of differences in the activity or expression of a hatching enzyme or other molecules that affect fluid accumulation within the blastocyst, such as components of junctional complexes or proteins that regulate Na+, K(+)-ATPase activity.
Collapse
Affiliation(s)
- K E Latham
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | |
Collapse
|
25
|
Wang Q, Latham KE. Translation of maternal messenger ribonucleic acids encoding transcription factors during genome activation in early mouse embryos. Biol Reprod 2000; 62:969-78. [PMID: 10727266 DOI: 10.1095/biolreprod62.4.969] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Embryonic genome activation (EGA) in mice is sensitive to treatment with cycloheximide, indicating that protein synthesis plays an important role in mediating EGA. We hypothesized that regulated maternal mRNA recruitment may control the time of EGA by controlling the time of appearance of certain transcription factors (TFs). We also hypothesized that synthesis of other TFs may contribute to EGA independently of controlling the timing of EGA. To test these hypotheses, we used sucrose density gradient fractionation coupled to a quantitative reverse transcription-polymerase chain reaction method to compare polysomal mRNA abundances of specific TF mRNAs between metaphase II oocytes, 1-cell-stage embryos, and 2-cell-stage embryos. We observed a 2-cell-stage-specific increase in polysomal abundance of mouse TEA DNA binding domain 2 (mTEAD-2) mRNA, coincident with the first appearance of mTEAD activity in the early embryo. The mRNAs encoding Sp1, TATA binding protein, and cyclic AMP response element binding protein did not undergo translational recruitment, but exhibited differences in polysomal abundance. We also observed a continuous, high proportion in the polysomal fraction for the mRNA encoding ribosomal protein L23 mRNA, which contrasted with the patterns observed for other maternal transcripts. These observations are consistent with the hypothesis that regulated recruitment of maternal TF mRNAs may control the time of activation of some genes during EGA, and that continuous synthesis of other TFs, like Sp1, may facilitate EGA.
Collapse
Affiliation(s)
- Q Wang
- The Fels Institute for Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
26
|
Ito T, Seldin MF, Taketo MM, Kubo T, Natori S. Gene structure and chromosome mapping of mouse transcription elongation factor S-II (Tcea1). Gene 2000; 244:55-63. [PMID: 10689187 DOI: 10.1016/s0378-1119(00)00007-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report the organization and chromosome localization of the mouse transcription elongation factor S-II gene (Tcea1). This gene was found to be a single copy gene consisting of 10 exons spanning approximately 30kb. Its organization was the same as those of the mouse testis-specific S-II gene (Tcea2) and Xenopus general S-II gene (xTFIIS.oA), but different from that of the human S-II gene family. We also identified a processed pseudogene (Tcea1-ps1) with a sequence highly homologous to those of S-II cDNAs but containing a translation termination codon within its open reading frame. Linkage analysis showed that Tcea1 and Tcea1-ps1 are mapped on mouse chromosomes 1 and 15, respectively. Relationships between Tcea1 and S-II cDNAs isolated so far are discussed.
Collapse
Affiliation(s)
- T Ito
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
27
|
Latham KE. Mechanisms and control of embryonic genome activation in mammalian embryos. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 193:71-124. [PMID: 10494621 DOI: 10.1016/s0074-7696(08)61779-9] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Activation of transcription within the embryonic genome (EGA) after fertilization is a complex process requiring a carefully coordinated series of nuclear and cytoplasmic events, which collectively ensure that the two parental genomes can be faithfully reprogrammed and restructured before transcription occurs. Available data indicate that inappropriate transcription of some genes during the period of nuclear reprogramming can have long-term detrimental effects on the embryo. Therefore, precise control over the time of EGA is essential for normal embryogenesis. In most mammals, genome activation occurs in a stepwise manner. In the mouse, for example, some transcription occurs during the second half of the one-cell stage, and then a much greater phase of genome activation occurs in two waves during the two-cell stage, with the second wave producing the largest onset of de novo gene expression. Changes in nuclear structure, chromatin structure, and cytoplasmic macromolecular content appear to regulate these periods of transcriptional activation. A model is presented in which a combination of cell cycle-dependent events and both translational and posttranslational regulatory mechanisms within the cytoplasm play key roles in mediating and regulating EGA.
Collapse
Affiliation(s)
- K E Latham
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| |
Collapse
|
28
|
Affiliation(s)
- C C Martin
- Fels Institute for Cancer Research and Molecular Biology, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
29
|
Abstract
Genomic imprinting in mammals results in the differential expression of maternal and paternal alleles of certain genes. Recent observations have revealed that the regulation of imprinted genes is only partially determined by epigenetic modifications imposed on the two parental genomes during gametogenesis. Additional modifications mediated by factors in the ooplasm, early embryo, or developing embryonic tissues appear to be involved in establishing monoallelic expression for a majority of imprinted genes. As a result, genomic imprinting effects may be manifested in a stage-specific or cell type-specific manner. The developmental aspects of imprinting are reviewed here, and the available molecular data that address the mechanism of allele silencing for three specific imprinted gene domains are considered within the context of explaining how the imprinted gene silencing may be controlled developmentally.
Collapse
Affiliation(s)
- K E Latham
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| |
Collapse
|
30
|
Abstract
The expression pattern of genes in mammals and plants can depend upon the parent from which the gene was inherited, evidence for a mechanism of parent-specific genomic imprinting. Kinship considerations are likely to be important in the natural selection of many such genes, because coefficients of relatedness will usually differ between maternally and paternally derived genes. Three classes of gene are likely to be involved in genomic imprinting: the imprinted genes themselves, trans-acting genes in the parents, which affect the application of the imprint, and trnas-acting genes in the offspring, which recognize and affect the expression of the imprint. We show that coefficients of relatedness will typically differ among these three classes, thus engendering conflicts of interest between Imprinter genes, imprinted genes, and imprint-recognition genes, with probable consequences for the evolution of the imprinting machinery.
Collapse
Affiliation(s)
- A Burt
- Department of Biology, Imperial College, Silwood Park, Ascot, Berkshire, UK.
| | | |
Collapse
|